2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
24 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
25 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
27 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
28 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
31 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
32 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
33 * can be used with gadget ether.
37 /* #define UDC_VERBOSE */
40 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
41 #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/kernel.h>
47 #include <linux/delay.h>
48 #include <linux/ioport.h>
49 #include <linux/sched.h>
50 #include <linux/slab.h>
51 #include <linux/smp_lock.h>
52 #include <linux/errno.h>
53 #include <linux/init.h>
54 #include <linux/timer.h>
55 #include <linux/list.h>
56 #include <linux/interrupt.h>
57 #include <linux/ioctl.h>
59 #include <linux/dmapool.h>
60 #include <linux/moduleparam.h>
61 #include <linux/device.h>
63 #include <linux/irq.h>
65 #include <asm/byteorder.h>
66 #include <asm/system.h>
67 #include <asm/unaligned.h>
70 #include <linux/usb/ch9.h>
71 #include <linux/usb/gadget.h>
74 #include "amd5536udc.h"
77 static void udc_tasklet_disconnect(unsigned long);
78 static void empty_req_queue(struct udc_ep
*);
79 static int udc_probe(struct udc
*dev
);
80 static void udc_basic_init(struct udc
*dev
);
81 static void udc_setup_endpoints(struct udc
*dev
);
82 static void udc_soft_reset(struct udc
*dev
);
83 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
);
84 static void udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
);
85 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
);
86 static int udc_create_dma_chain(struct udc_ep
*ep
, struct udc_request
*req
,
87 unsigned long buf_len
, gfp_t gfp_flags
);
88 static int udc_remote_wakeup(struct udc
*dev
);
89 static int udc_pci_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
);
90 static void udc_pci_remove(struct pci_dev
*pdev
);
93 static const char mod_desc
[] = UDC_MOD_DESCRIPTION
;
94 static const char name
[] = "amd5536udc";
96 /* structure to hold endpoint function pointers */
97 static const struct usb_ep_ops udc_ep_ops
;
99 /* received setup data */
100 static union udc_setup_data setup_data
;
102 /* pointer to device object */
103 static struct udc
*udc
;
105 /* irq spin lock for soft reset */
106 static DEFINE_SPINLOCK(udc_irq_spinlock
);
107 /* stall spin lock */
108 static DEFINE_SPINLOCK(udc_stall_spinlock
);
111 * slave mode: pending bytes in rx fifo after nyet,
112 * used if EPIN irq came but no req was available
114 static unsigned int udc_rxfifo_pending
;
116 /* count soft resets after suspend to avoid loop */
117 static int soft_reset_occured
;
118 static int soft_reset_after_usbreset_occured
;
121 static struct timer_list udc_timer
;
122 static int stop_timer
;
124 /* set_rde -- Is used to control enabling of RX DMA. Problem is
125 * that UDC has only one bit (RDE) to enable/disable RX DMA for
126 * all OUT endpoints. So we have to handle race conditions like
127 * when OUT data reaches the fifo but no request was queued yet.
128 * This cannot be solved by letting the RX DMA disabled until a
129 * request gets queued because there may be other OUT packets
130 * in the FIFO (important for not blocking control traffic).
131 * The value of set_rde controls the correspondig timer.
133 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
134 * set_rde 0 == do not touch RDE, do no start the RDE timer
135 * set_rde 1 == timer function will look whether FIFO has data
136 * set_rde 2 == set by timer function to enable RX DMA on next call
138 static int set_rde
= -1;
140 static DECLARE_COMPLETION(on_exit
);
141 static struct timer_list udc_pollstall_timer
;
142 static int stop_pollstall_timer
;
143 static DECLARE_COMPLETION(on_pollstall_exit
);
145 /* tasklet for usb disconnect */
146 static DECLARE_TASKLET(disconnect_tasklet
, udc_tasklet_disconnect
,
147 (unsigned long) &udc
);
150 /* endpoint names used for print */
151 static const char ep0_string
[] = "ep0in";
152 static const char *ep_string
[] = {
154 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
155 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
156 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
157 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
158 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
159 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
160 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
164 static int use_dma
= 1;
165 /* packet per buffer dma */
166 static int use_dma_ppb
= 1;
167 /* with per descr. update */
168 static int use_dma_ppb_du
;
169 /* buffer fill mode */
170 static int use_dma_bufferfill_mode
;
171 /* full speed only mode */
172 static int use_fullspeed
;
173 /* tx buffer size for high speed */
174 static unsigned long hs_tx_buf
= UDC_EPIN_BUFF_SIZE
;
176 /* module parameters */
177 module_param(use_dma
, bool, S_IRUGO
);
178 MODULE_PARM_DESC(use_dma
, "true for DMA");
179 module_param(use_dma_ppb
, bool, S_IRUGO
);
180 MODULE_PARM_DESC(use_dma_ppb
, "true for DMA in packet per buffer mode");
181 module_param(use_dma_ppb_du
, bool, S_IRUGO
);
182 MODULE_PARM_DESC(use_dma_ppb_du
,
183 "true for DMA in packet per buffer mode with descriptor update");
184 module_param(use_fullspeed
, bool, S_IRUGO
);
185 MODULE_PARM_DESC(use_fullspeed
, "true for fullspeed only");
187 /*---------------------------------------------------------------------------*/
188 /* Prints UDC device registers and endpoint irq registers */
189 static void print_regs(struct udc
*dev
)
191 DBG(dev
, "------- Device registers -------\n");
192 DBG(dev
, "dev config = %08x\n", readl(&dev
->regs
->cfg
));
193 DBG(dev
, "dev control = %08x\n", readl(&dev
->regs
->ctl
));
194 DBG(dev
, "dev status = %08x\n", readl(&dev
->regs
->sts
));
196 DBG(dev
, "dev int's = %08x\n", readl(&dev
->regs
->irqsts
));
197 DBG(dev
, "dev intmask = %08x\n", readl(&dev
->regs
->irqmsk
));
199 DBG(dev
, "dev ep int's = %08x\n", readl(&dev
->regs
->ep_irqsts
));
200 DBG(dev
, "dev ep intmask = %08x\n", readl(&dev
->regs
->ep_irqmsk
));
202 DBG(dev
, "USE DMA = %d\n", use_dma
);
203 if (use_dma
&& use_dma_ppb
&& !use_dma_ppb_du
) {
204 DBG(dev
, "DMA mode = PPBNDU (packet per buffer "
205 "WITHOUT desc. update)\n");
206 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBNDU");
207 } else if (use_dma
&& use_dma_ppb_du
&& use_dma_ppb_du
) {
208 DBG(dev
, "DMA mode = PPBDU (packet per buffer "
209 "WITH desc. update)\n");
210 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBDU");
212 if (use_dma
&& use_dma_bufferfill_mode
) {
213 DBG(dev
, "DMA mode = BF (buffer fill mode)\n");
214 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "BF");
217 dev_info(&dev
->pdev
->dev
, "FIFO mode\n");
219 DBG(dev
, "-------------------------------------------------------\n");
222 /* Masks unused interrupts */
223 static int udc_mask_unused_interrupts(struct udc
*dev
)
227 /* mask all dev interrupts */
228 tmp
= AMD_BIT(UDC_DEVINT_SVC
) |
229 AMD_BIT(UDC_DEVINT_ENUM
) |
230 AMD_BIT(UDC_DEVINT_US
) |
231 AMD_BIT(UDC_DEVINT_UR
) |
232 AMD_BIT(UDC_DEVINT_ES
) |
233 AMD_BIT(UDC_DEVINT_SI
) |
234 AMD_BIT(UDC_DEVINT_SOF
)|
235 AMD_BIT(UDC_DEVINT_SC
);
236 writel(tmp
, &dev
->regs
->irqmsk
);
238 /* mask all ep interrupts */
239 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqmsk
);
244 /* Enables endpoint 0 interrupts */
245 static int udc_enable_ep0_interrupts(struct udc
*dev
)
249 DBG(dev
, "udc_enable_ep0_interrupts()\n");
252 tmp
= readl(&dev
->regs
->ep_irqmsk
);
253 /* enable ep0 irq's */
254 tmp
&= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0
)
255 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0
);
256 writel(tmp
, &dev
->regs
->ep_irqmsk
);
261 /* Enables device interrupts for SET_INTF and SET_CONFIG */
262 static int udc_enable_dev_setup_interrupts(struct udc
*dev
)
266 DBG(dev
, "enable device interrupts for setup data\n");
269 tmp
= readl(&dev
->regs
->irqmsk
);
271 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
272 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_SI
)
273 & AMD_UNMASK_BIT(UDC_DEVINT_SC
)
274 & AMD_UNMASK_BIT(UDC_DEVINT_UR
)
275 & AMD_UNMASK_BIT(UDC_DEVINT_SVC
)
276 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM
);
277 writel(tmp
, &dev
->regs
->irqmsk
);
282 /* Calculates fifo start of endpoint based on preceeding endpoints */
283 static int udc_set_txfifo_addr(struct udc_ep
*ep
)
289 if (!ep
|| !(ep
->in
))
293 ep
->txfifo
= dev
->txfifo
;
296 for (i
= 0; i
< ep
->num
; i
++) {
297 if (dev
->ep
[i
].regs
) {
299 tmp
= readl(&dev
->ep
[i
].regs
->bufin_framenum
);
300 tmp
= AMD_GETBITS(tmp
, UDC_EPIN_BUFF_SIZE
);
307 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
308 static u32 cnak_pending
;
310 static void UDC_QUEUE_CNAK(struct udc_ep
*ep
, unsigned num
)
312 if (readl(&ep
->regs
->ctl
) & AMD_BIT(UDC_EPCTL_NAK
)) {
313 DBG(ep
->dev
, "NAK could not be cleared for ep%d\n", num
);
314 cnak_pending
|= 1 << (num
);
317 cnak_pending
= cnak_pending
& (~(1 << (num
)));
321 /* Enables endpoint, is called by gadget driver */
323 udc_ep_enable(struct usb_ep
*usbep
, const struct usb_endpoint_descriptor
*desc
)
328 unsigned long iflags
;
333 || usbep
->name
== ep0_string
335 || desc
->bDescriptorType
!= USB_DT_ENDPOINT
)
338 ep
= container_of(usbep
, struct udc_ep
, ep
);
341 DBG(dev
, "udc_ep_enable() ep %d\n", ep
->num
);
343 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
346 spin_lock_irqsave(&dev
->lock
, iflags
);
351 /* set traffic type */
352 tmp
= readl(&dev
->ep
[ep
->num
].regs
->ctl
);
353 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_EPCTL_ET
);
354 writel(tmp
, &dev
->ep
[ep
->num
].regs
->ctl
);
356 /* set max packet size */
357 maxpacket
= le16_to_cpu(desc
->wMaxPacketSize
);
358 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
359 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_EP_MAX_PKT_SIZE
);
360 ep
->ep
.maxpacket
= maxpacket
;
361 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
366 /* ep ix in UDC CSR register space */
367 udc_csr_epix
= ep
->num
;
369 /* set buffer size (tx fifo entries) */
370 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufin_framenum
);
371 /* double buffering: fifo size = 2 x max packet size */
374 maxpacket
* UDC_EPIN_BUFF_SIZE_MULT
377 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufin_framenum
);
379 /* calc. tx fifo base addr */
380 udc_set_txfifo_addr(ep
);
383 tmp
= readl(&ep
->regs
->ctl
);
384 tmp
|= AMD_BIT(UDC_EPCTL_F
);
385 writel(tmp
, &ep
->regs
->ctl
);
389 /* ep ix in UDC CSR register space */
390 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
392 /* set max packet size UDC CSR */
393 tmp
= readl(&dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
394 tmp
= AMD_ADDBITS(tmp
, maxpacket
,
396 writel(tmp
, &dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
398 if (use_dma
&& !ep
->in
) {
399 /* alloc and init BNA dummy request */
400 ep
->bna_dummy_req
= udc_alloc_bna_dummy(ep
);
401 ep
->bna_occurred
= 0;
404 if (ep
->num
!= UDC_EP0OUT_IX
)
405 dev
->data_ep_enabled
= 1;
409 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
411 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_CSR_NE_MAX_PKT
);
413 tmp
= AMD_ADDBITS(tmp
, desc
->bEndpointAddress
, UDC_CSR_NE_NUM
);
415 tmp
= AMD_ADDBITS(tmp
, ep
->in
, UDC_CSR_NE_DIR
);
417 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_CSR_NE_TYPE
);
419 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
, UDC_CSR_NE_CFG
);
421 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
, UDC_CSR_NE_INTF
);
423 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
, UDC_CSR_NE_ALT
);
425 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
428 tmp
= readl(&dev
->regs
->ep_irqmsk
);
429 tmp
&= AMD_UNMASK_BIT(ep
->num
);
430 writel(tmp
, &dev
->regs
->ep_irqmsk
);
433 * clear NAK by writing CNAK
434 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
436 if (!use_dma
|| ep
->in
) {
437 tmp
= readl(&ep
->regs
->ctl
);
438 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
439 writel(tmp
, &ep
->regs
->ctl
);
441 UDC_QUEUE_CNAK(ep
, ep
->num
);
443 tmp
= desc
->bEndpointAddress
;
444 DBG(dev
, "%s enabled\n", usbep
->name
);
446 spin_unlock_irqrestore(&dev
->lock
, iflags
);
450 /* Resets endpoint */
451 static void ep_init(struct udc_regs __iomem
*regs
, struct udc_ep
*ep
)
455 VDBG(ep
->dev
, "ep-%d reset\n", ep
->num
);
457 ep
->ep
.ops
= &udc_ep_ops
;
458 INIT_LIST_HEAD(&ep
->queue
);
460 ep
->ep
.maxpacket
= (u16
) ~0;
462 tmp
= readl(&ep
->regs
->ctl
);
463 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
464 writel(tmp
, &ep
->regs
->ctl
);
467 /* disable interrupt */
468 tmp
= readl(®s
->ep_irqmsk
);
469 tmp
|= AMD_BIT(ep
->num
);
470 writel(tmp
, ®s
->ep_irqmsk
);
473 /* unset P and IN bit of potential former DMA */
474 tmp
= readl(&ep
->regs
->ctl
);
475 tmp
&= AMD_UNMASK_BIT(UDC_EPCTL_P
);
476 writel(tmp
, &ep
->regs
->ctl
);
478 tmp
= readl(&ep
->regs
->sts
);
479 tmp
|= AMD_BIT(UDC_EPSTS_IN
);
480 writel(tmp
, &ep
->regs
->sts
);
483 tmp
= readl(&ep
->regs
->ctl
);
484 tmp
|= AMD_BIT(UDC_EPCTL_F
);
485 writel(tmp
, &ep
->regs
->ctl
);
488 /* reset desc pointer */
489 writel(0, &ep
->regs
->desptr
);
492 /* Disables endpoint, is called by gadget driver */
493 static int udc_ep_disable(struct usb_ep
*usbep
)
495 struct udc_ep
*ep
= NULL
;
496 unsigned long iflags
;
501 ep
= container_of(usbep
, struct udc_ep
, ep
);
502 if (usbep
->name
== ep0_string
|| !ep
->desc
)
505 DBG(ep
->dev
, "Disable ep-%d\n", ep
->num
);
507 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
508 udc_free_request(&ep
->ep
, &ep
->bna_dummy_req
->req
);
510 ep_init(ep
->dev
->regs
, ep
);
511 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
516 /* Allocates request packet, called by gadget driver */
517 static struct usb_request
*
518 udc_alloc_request(struct usb_ep
*usbep
, gfp_t gfp
)
520 struct udc_request
*req
;
521 struct udc_data_dma
*dma_desc
;
527 ep
= container_of(usbep
, struct udc_ep
, ep
);
529 VDBG(ep
->dev
, "udc_alloc_req(): ep%d\n", ep
->num
);
530 req
= kzalloc(sizeof(struct udc_request
), gfp
);
534 req
->req
.dma
= DMA_DONT_USE
;
535 INIT_LIST_HEAD(&req
->queue
);
538 /* ep0 in requests are allocated from data pool here */
539 dma_desc
= pci_pool_alloc(ep
->dev
->data_requests
, gfp
,
546 VDBG(ep
->dev
, "udc_alloc_req: req = %p dma_desc = %p, "
549 (unsigned long)req
->td_phys
);
550 /* prevent from using desc. - set HOST BUSY */
551 dma_desc
->status
= AMD_ADDBITS(dma_desc
->status
,
552 UDC_DMA_STP_STS_BS_HOST_BUSY
,
554 dma_desc
->bufptr
= __constant_cpu_to_le32(DMA_DONT_USE
);
555 req
->td_data
= dma_desc
;
556 req
->td_data_last
= NULL
;
563 /* Frees request packet, called by gadget driver */
565 udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
568 struct udc_request
*req
;
570 if (!usbep
|| !usbreq
)
573 ep
= container_of(usbep
, struct udc_ep
, ep
);
574 req
= container_of(usbreq
, struct udc_request
, req
);
575 VDBG(ep
->dev
, "free_req req=%p\n", req
);
576 BUG_ON(!list_empty(&req
->queue
));
578 VDBG(ep
->dev
, "req->td_data=%p\n", req
->td_data
);
580 /* free dma chain if created */
581 if (req
->chain_len
> 1) {
582 udc_free_dma_chain(ep
->dev
, req
);
585 pci_pool_free(ep
->dev
->data_requests
, req
->td_data
,
591 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
592 static void udc_init_bna_dummy(struct udc_request
*req
)
596 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
597 /* set next pointer to itself */
598 req
->td_data
->next
= req
->td_phys
;
601 = AMD_ADDBITS(req
->td_data
->status
,
602 UDC_DMA_STP_STS_BS_DMA_DONE
,
605 pr_debug("bna desc = %p, sts = %08x\n",
606 req
->td_data
, req
->td_data
->status
);
611 /* Allocate BNA dummy descriptor */
612 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
)
614 struct udc_request
*req
= NULL
;
615 struct usb_request
*_req
= NULL
;
617 /* alloc the dummy request */
618 _req
= udc_alloc_request(&ep
->ep
, GFP_ATOMIC
);
620 req
= container_of(_req
, struct udc_request
, req
);
621 ep
->bna_dummy_req
= req
;
622 udc_init_bna_dummy(req
);
627 /* Write data to TX fifo for IN packets */
629 udc_txfifo_write(struct udc_ep
*ep
, struct usb_request
*req
)
635 unsigned remaining
= 0;
640 req_buf
= req
->buf
+ req
->actual
;
642 remaining
= req
->length
- req
->actual
;
644 buf
= (u32
*) req_buf
;
646 bytes
= ep
->ep
.maxpacket
;
647 if (bytes
> remaining
)
651 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++) {
652 writel(*(buf
+ i
), ep
->txfifo
);
655 /* remaining bytes must be written by byte access */
656 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
657 writeb((u8
)(*(buf
+ i
) >> (j
<< UDC_BITS_PER_BYTE_SHIFT
)),
661 /* dummy write confirm */
662 writel(0, &ep
->regs
->confirm
);
665 /* Read dwords from RX fifo for OUT transfers */
666 static int udc_rxfifo_read_dwords(struct udc
*dev
, u32
*buf
, int dwords
)
670 VDBG(dev
, "udc_read_dwords(): %d dwords\n", dwords
);
672 for (i
= 0; i
< dwords
; i
++) {
673 *(buf
+ i
) = readl(dev
->rxfifo
);
678 /* Read bytes from RX fifo for OUT transfers */
679 static int udc_rxfifo_read_bytes(struct udc
*dev
, u8
*buf
, int bytes
)
684 VDBG(dev
, "udc_read_bytes(): %d bytes\n", bytes
);
687 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++) {
688 *((u32
*)(buf
+ (i
<<2))) = readl(dev
->rxfifo
);
691 /* remaining bytes must be read by byte access */
692 if (bytes
% UDC_DWORD_BYTES
) {
693 tmp
= readl(dev
->rxfifo
);
694 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
695 *(buf
+ (i
<<2) + j
) = (u8
)(tmp
& UDC_BYTE_MASK
);
696 tmp
= tmp
>> UDC_BITS_PER_BYTE
;
703 /* Read data from RX fifo for OUT transfers */
705 udc_rxfifo_read(struct udc_ep
*ep
, struct udc_request
*req
)
710 unsigned finished
= 0;
712 /* received number bytes */
713 bytes
= readl(&ep
->regs
->sts
);
714 bytes
= AMD_GETBITS(bytes
, UDC_EPSTS_RX_PKT_SIZE
);
716 buf_space
= req
->req
.length
- req
->req
.actual
;
717 buf
= req
->req
.buf
+ req
->req
.actual
;
718 if (bytes
> buf_space
) {
719 if ((buf_space
% ep
->ep
.maxpacket
) != 0) {
721 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
722 ep
->ep
.name
, bytes
, buf_space
);
723 req
->req
.status
= -EOVERFLOW
;
727 req
->req
.actual
+= bytes
;
730 if (((bytes
% ep
->ep
.maxpacket
) != 0) || (!bytes
)
731 || ((req
->req
.actual
== req
->req
.length
) && !req
->req
.zero
))
734 /* read rx fifo bytes */
735 VDBG(ep
->dev
, "ep %s: rxfifo read %d bytes\n", ep
->ep
.name
, bytes
);
736 udc_rxfifo_read_bytes(ep
->dev
, buf
, bytes
);
741 /* create/re-init a DMA descriptor or a DMA descriptor chain */
742 static int prep_dma(struct udc_ep
*ep
, struct udc_request
*req
, gfp_t gfp
)
747 VDBG(ep
->dev
, "prep_dma\n");
748 VDBG(ep
->dev
, "prep_dma ep%d req->td_data=%p\n",
749 ep
->num
, req
->td_data
);
751 /* set buffer pointer */
752 req
->td_data
->bufptr
= req
->req
.dma
;
755 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
757 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
760 retval
= udc_create_dma_chain(ep
, req
, ep
->ep
.maxpacket
, gfp
);
762 if (retval
== -ENOMEM
)
763 DBG(ep
->dev
, "Out of DMA memory\n");
767 if (req
->req
.length
== ep
->ep
.maxpacket
) {
769 req
->td_data
->status
=
770 AMD_ADDBITS(req
->td_data
->status
,
772 UDC_DMA_IN_STS_TXBYTES
);
780 VDBG(ep
->dev
, "IN: use_dma_ppb=%d req->req.len=%d "
781 "maxpacket=%d ep%d\n",
782 use_dma_ppb
, req
->req
.length
,
783 ep
->ep
.maxpacket
, ep
->num
);
785 * if bytes < max packet then tx bytes must
786 * be written in packet per buffer mode
788 if (!use_dma_ppb
|| req
->req
.length
< ep
->ep
.maxpacket
789 || ep
->num
== UDC_EP0OUT_IX
790 || ep
->num
== UDC_EP0IN_IX
) {
792 req
->td_data
->status
=
793 AMD_ADDBITS(req
->td_data
->status
,
795 UDC_DMA_IN_STS_TXBYTES
);
796 /* reset frame num */
797 req
->td_data
->status
=
798 AMD_ADDBITS(req
->td_data
->status
,
800 UDC_DMA_IN_STS_FRAMENUM
);
803 req
->td_data
->status
=
804 AMD_ADDBITS(req
->td_data
->status
,
805 UDC_DMA_STP_STS_BS_HOST_BUSY
,
808 VDBG(ep
->dev
, "OUT set host ready\n");
810 req
->td_data
->status
=
811 AMD_ADDBITS(req
->td_data
->status
,
812 UDC_DMA_STP_STS_BS_HOST_READY
,
816 /* clear NAK by writing CNAK */
818 tmp
= readl(&ep
->regs
->ctl
);
819 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
820 writel(tmp
, &ep
->regs
->ctl
);
822 UDC_QUEUE_CNAK(ep
, ep
->num
);
830 /* Completes request packet ... caller MUST hold lock */
832 complete_req(struct udc_ep
*ep
, struct udc_request
*req
, int sts
)
833 __releases(ep
->dev
->lock
)
834 __acquires(ep
->dev
->lock
)
839 VDBG(ep
->dev
, "complete_req(): ep%d\n", ep
->num
);
843 if (req
->dma_mapping
) {
845 pci_unmap_single(dev
->pdev
,
850 pci_unmap_single(dev
->pdev
,
854 req
->dma_mapping
= 0;
855 req
->req
.dma
= DMA_DONT_USE
;
861 /* set new status if pending */
862 if (req
->req
.status
== -EINPROGRESS
)
863 req
->req
.status
= sts
;
865 /* remove from ep queue */
866 list_del_init(&req
->queue
);
868 VDBG(ep
->dev
, "req %p => complete %d bytes at %s with sts %d\n",
869 &req
->req
, req
->req
.length
, ep
->ep
.name
, sts
);
871 spin_unlock(&dev
->lock
);
872 req
->req
.complete(&ep
->ep
, &req
->req
);
873 spin_lock(&dev
->lock
);
877 /* frees pci pool descriptors of a DMA chain */
878 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
)
882 struct udc_data_dma
*td
;
883 struct udc_data_dma
*td_last
= NULL
;
886 DBG(dev
, "free chain req = %p\n", req
);
888 /* do not free first desc., will be done by free for request */
889 td_last
= req
->td_data
;
890 td
= phys_to_virt(td_last
->next
);
892 for (i
= 1; i
< req
->chain_len
; i
++) {
894 pci_pool_free(dev
->data_requests
, td
,
895 (dma_addr_t
) td_last
->next
);
897 td
= phys_to_virt(td_last
->next
);
903 /* Iterates to the end of a DMA chain and returns last descriptor */
904 static struct udc_data_dma
*udc_get_last_dma_desc(struct udc_request
*req
)
906 struct udc_data_dma
*td
;
909 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
910 td
= phys_to_virt(td
->next
);
917 /* Iterates to the end of a DMA chain and counts bytes received */
918 static u32
udc_get_ppbdu_rxbytes(struct udc_request
*req
)
920 struct udc_data_dma
*td
;
924 /* received number bytes */
925 count
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_RXBYTES
);
927 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
928 td
= phys_to_virt(td
->next
);
929 /* received number bytes */
931 count
+= AMD_GETBITS(td
->status
,
932 UDC_DMA_OUT_STS_RXBYTES
);
940 /* Creates or re-inits a DMA chain */
941 static int udc_create_dma_chain(
943 struct udc_request
*req
,
944 unsigned long buf_len
, gfp_t gfp_flags
947 unsigned long bytes
= req
->req
.length
;
950 struct udc_data_dma
*td
= NULL
;
951 struct udc_data_dma
*last
= NULL
;
952 unsigned long txbytes
;
953 unsigned create_new_chain
= 0;
956 VDBG(ep
->dev
, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
958 dma_addr
= DMA_DONT_USE
;
960 /* unset L bit in first desc for OUT */
962 req
->td_data
->status
&= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L
);
965 /* alloc only new desc's if not already available */
966 len
= req
->req
.length
/ ep
->ep
.maxpacket
;
967 if (req
->req
.length
% ep
->ep
.maxpacket
) {
971 if (len
> req
->chain_len
) {
972 /* shorter chain already allocated before */
973 if (req
->chain_len
> 1) {
974 udc_free_dma_chain(ep
->dev
, req
);
976 req
->chain_len
= len
;
977 create_new_chain
= 1;
981 /* gen. required number of descriptors and buffers */
982 for (i
= buf_len
; i
< bytes
; i
+= buf_len
) {
983 /* create or determine next desc. */
984 if (create_new_chain
) {
986 td
= pci_pool_alloc(ep
->dev
->data_requests
,
987 gfp_flags
, &dma_addr
);
992 } else if (i
== buf_len
) {
994 td
= (struct udc_data_dma
*) phys_to_virt(
998 td
= (struct udc_data_dma
*) phys_to_virt(last
->next
);
1004 td
->bufptr
= req
->req
.dma
+ i
; /* assign buffer */
1008 /* short packet ? */
1009 if ((bytes
- i
) >= buf_len
) {
1013 txbytes
= bytes
- i
;
1016 /* link td and assign tx bytes */
1018 if (create_new_chain
) {
1019 req
->td_data
->next
= dma_addr
;
1021 /* req->td_data->next = virt_to_phys(td); */
1023 /* write tx bytes */
1026 req
->td_data
->status
=
1027 AMD_ADDBITS(req
->td_data
->status
,
1029 UDC_DMA_IN_STS_TXBYTES
);
1031 td
->status
= AMD_ADDBITS(td
->status
,
1033 UDC_DMA_IN_STS_TXBYTES
);
1036 if (create_new_chain
) {
1037 last
->next
= dma_addr
;
1039 /* last->next = virt_to_phys(td); */
1042 /* write tx bytes */
1043 td
->status
= AMD_ADDBITS(td
->status
,
1045 UDC_DMA_IN_STS_TXBYTES
);
1052 td
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
1053 /* last desc. points to itself */
1054 req
->td_data_last
= td
;
1060 /* Enabling RX DMA */
1061 static void udc_set_rde(struct udc
*dev
)
1065 VDBG(dev
, "udc_set_rde()\n");
1066 /* stop RDE timer */
1067 if (timer_pending(&udc_timer
)) {
1069 mod_timer(&udc_timer
, jiffies
- 1);
1072 tmp
= readl(&dev
->regs
->ctl
);
1073 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1074 writel(tmp
, &dev
->regs
->ctl
);
1077 /* Queues a request packet, called by gadget driver */
1079 udc_queue(struct usb_ep
*usbep
, struct usb_request
*usbreq
, gfp_t gfp
)
1083 unsigned long iflags
;
1085 struct udc_request
*req
;
1089 /* check the inputs */
1090 req
= container_of(usbreq
, struct udc_request
, req
);
1092 if (!usbep
|| !usbreq
|| !usbreq
->complete
|| !usbreq
->buf
1093 || !list_empty(&req
->queue
))
1096 ep
= container_of(usbep
, struct udc_ep
, ep
);
1097 if (!ep
->desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1100 VDBG(ep
->dev
, "udc_queue(): ep%d-in=%d\n", ep
->num
, ep
->in
);
1103 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1106 /* map dma (usually done before) */
1107 if (ep
->dma
&& usbreq
->length
!= 0
1108 && (usbreq
->dma
== DMA_DONT_USE
|| usbreq
->dma
== 0)) {
1109 VDBG(dev
, "DMA map req %p\n", req
);
1111 usbreq
->dma
= pci_map_single(dev
->pdev
,
1116 usbreq
->dma
= pci_map_single(dev
->pdev
,
1119 PCI_DMA_FROMDEVICE
);
1120 req
->dma_mapping
= 1;
1123 VDBG(dev
, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1124 usbep
->name
, usbreq
, usbreq
->length
,
1125 req
->td_data
, usbreq
->buf
);
1127 spin_lock_irqsave(&dev
->lock
, iflags
);
1129 usbreq
->status
= -EINPROGRESS
;
1132 /* on empty queue just do first transfer */
1133 if (list_empty(&ep
->queue
)) {
1135 if (usbreq
->length
== 0) {
1136 /* IN zlp's are handled by hardware */
1137 complete_req(ep
, req
, 0);
1138 VDBG(dev
, "%s: zlp\n", ep
->ep
.name
);
1140 * if set_config or set_intf is waiting for ack by zlp
1143 if (dev
->set_cfg_not_acked
) {
1144 tmp
= readl(&dev
->regs
->ctl
);
1145 tmp
|= AMD_BIT(UDC_DEVCTL_CSR_DONE
);
1146 writel(tmp
, &dev
->regs
->ctl
);
1147 dev
->set_cfg_not_acked
= 0;
1149 /* setup command is ACK'ed now by zlp */
1150 if (dev
->waiting_zlp_ack_ep0in
) {
1151 /* clear NAK by writing CNAK in EP0_IN */
1152 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1153 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1154 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1155 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1156 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
],
1158 dev
->waiting_zlp_ack_ep0in
= 0;
1163 retval
= prep_dma(ep
, req
, gfp
);
1166 /* write desc pointer to enable DMA */
1168 /* set HOST READY */
1169 req
->td_data
->status
=
1170 AMD_ADDBITS(req
->td_data
->status
,
1171 UDC_DMA_IN_STS_BS_HOST_READY
,
1175 /* disabled rx dma while descriptor update */
1177 /* stop RDE timer */
1178 if (timer_pending(&udc_timer
)) {
1180 mod_timer(&udc_timer
, jiffies
- 1);
1183 tmp
= readl(&dev
->regs
->ctl
);
1184 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1185 writel(tmp
, &dev
->regs
->ctl
);
1189 * if BNA occurred then let BNA dummy desc.
1190 * point to current desc.
1192 if (ep
->bna_occurred
) {
1193 VDBG(dev
, "copy to BNA dummy desc.\n");
1194 memcpy(ep
->bna_dummy_req
->td_data
,
1196 sizeof(struct udc_data_dma
));
1199 /* write desc pointer */
1200 writel(req
->td_phys
, &ep
->regs
->desptr
);
1202 /* clear NAK by writing CNAK */
1204 tmp
= readl(&ep
->regs
->ctl
);
1205 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1206 writel(tmp
, &ep
->regs
->ctl
);
1208 UDC_QUEUE_CNAK(ep
, ep
->num
);
1213 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1214 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1215 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1219 } else if (ep
->dma
) {
1222 * prep_dma not used for OUT ep's, this is not possible
1223 * for PPB modes, because of chain creation reasons
1226 retval
= prep_dma(ep
, req
, gfp
);
1231 VDBG(dev
, "list_add\n");
1232 /* add request to ep queue */
1235 list_add_tail(&req
->queue
, &ep
->queue
);
1237 /* open rxfifo if out data queued */
1242 if (ep
->num
!= UDC_EP0OUT_IX
)
1243 dev
->data_ep_queued
= 1;
1245 /* stop OUT naking */
1247 if (!use_dma
&& udc_rxfifo_pending
) {
1248 DBG(dev
, "udc_queue(): pending bytes in "
1249 "rxfifo after nyet\n");
1251 * read pending bytes afer nyet:
1254 if (udc_rxfifo_read(ep
, req
)) {
1256 complete_req(ep
, req
, 0);
1258 udc_rxfifo_pending
= 0;
1265 spin_unlock_irqrestore(&dev
->lock
, iflags
);
1269 /* Empty request queue of an endpoint; caller holds spinlock */
1270 static void empty_req_queue(struct udc_ep
*ep
)
1272 struct udc_request
*req
;
1275 while (!list_empty(&ep
->queue
)) {
1276 req
= list_entry(ep
->queue
.next
,
1279 complete_req(ep
, req
, -ESHUTDOWN
);
1283 /* Dequeues a request packet, called by gadget driver */
1284 static int udc_dequeue(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
1287 struct udc_request
*req
;
1289 unsigned long iflags
;
1291 ep
= container_of(usbep
, struct udc_ep
, ep
);
1292 if (!usbep
|| !usbreq
|| (!ep
->desc
&& (ep
->num
!= 0
1293 && ep
->num
!= UDC_EP0OUT_IX
)))
1296 req
= container_of(usbreq
, struct udc_request
, req
);
1298 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
1299 halted
= ep
->halted
;
1301 /* request in processing or next one */
1302 if (ep
->queue
.next
== &req
->queue
) {
1303 if (ep
->dma
&& req
->dma_going
) {
1305 ep
->cancel_transfer
= 1;
1309 /* stop potential receive DMA */
1310 tmp
= readl(&udc
->regs
->ctl
);
1311 writel(tmp
& AMD_UNMASK_BIT(UDC_DEVCTL_RDE
),
1314 * Cancel transfer later in ISR
1315 * if descriptor was touched.
1317 dma_sts
= AMD_GETBITS(req
->td_data
->status
,
1318 UDC_DMA_OUT_STS_BS
);
1319 if (dma_sts
!= UDC_DMA_OUT_STS_BS_HOST_READY
)
1320 ep
->cancel_transfer
= 1;
1322 udc_init_bna_dummy(ep
->req
);
1323 writel(ep
->bna_dummy_req
->td_phys
,
1326 writel(tmp
, &udc
->regs
->ctl
);
1330 complete_req(ep
, req
, -ECONNRESET
);
1331 ep
->halted
= halted
;
1333 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
1337 /* Halt or clear halt of endpoint */
1339 udc_set_halt(struct usb_ep
*usbep
, int halt
)
1343 unsigned long iflags
;
1349 pr_debug("set_halt %s: halt=%d\n", usbep
->name
, halt
);
1351 ep
= container_of(usbep
, struct udc_ep
, ep
);
1352 if (!ep
->desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1354 if (!ep
->dev
->driver
|| ep
->dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1357 spin_lock_irqsave(&udc_stall_spinlock
, iflags
);
1358 /* halt or clear halt */
1361 ep
->dev
->stall_ep0in
= 1;
1365 * rxfifo empty not taken into acount
1367 tmp
= readl(&ep
->regs
->ctl
);
1368 tmp
|= AMD_BIT(UDC_EPCTL_S
);
1369 writel(tmp
, &ep
->regs
->ctl
);
1372 /* setup poll timer */
1373 if (!timer_pending(&udc_pollstall_timer
)) {
1374 udc_pollstall_timer
.expires
= jiffies
+
1375 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1377 if (!stop_pollstall_timer
) {
1378 DBG(ep
->dev
, "start polltimer\n");
1379 add_timer(&udc_pollstall_timer
);
1384 /* ep is halted by set_halt() before */
1386 tmp
= readl(&ep
->regs
->ctl
);
1387 /* clear stall bit */
1388 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
1389 /* clear NAK by writing CNAK */
1390 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1391 writel(tmp
, &ep
->regs
->ctl
);
1393 UDC_QUEUE_CNAK(ep
, ep
->num
);
1396 spin_unlock_irqrestore(&udc_stall_spinlock
, iflags
);
1400 /* gadget interface */
1401 static const struct usb_ep_ops udc_ep_ops
= {
1402 .enable
= udc_ep_enable
,
1403 .disable
= udc_ep_disable
,
1405 .alloc_request
= udc_alloc_request
,
1406 .free_request
= udc_free_request
,
1409 .dequeue
= udc_dequeue
,
1411 .set_halt
= udc_set_halt
,
1412 /* fifo ops not implemented */
1415 /*-------------------------------------------------------------------------*/
1417 /* Get frame counter (not implemented) */
1418 static int udc_get_frame(struct usb_gadget
*gadget
)
1423 /* Remote wakeup gadget interface */
1424 static int udc_wakeup(struct usb_gadget
*gadget
)
1430 dev
= container_of(gadget
, struct udc
, gadget
);
1431 udc_remote_wakeup(dev
);
1436 /* gadget operations */
1437 static const struct usb_gadget_ops udc_ops
= {
1438 .wakeup
= udc_wakeup
,
1439 .get_frame
= udc_get_frame
,
1442 /* Setups endpoint parameters, adds endpoints to linked list */
1443 static void make_ep_lists(struct udc
*dev
)
1445 /* make gadget ep lists */
1446 INIT_LIST_HEAD(&dev
->gadget
.ep_list
);
1447 list_add_tail(&dev
->ep
[UDC_EPIN_STATUS_IX
].ep
.ep_list
,
1448 &dev
->gadget
.ep_list
);
1449 list_add_tail(&dev
->ep
[UDC_EPIN_IX
].ep
.ep_list
,
1450 &dev
->gadget
.ep_list
);
1451 list_add_tail(&dev
->ep
[UDC_EPOUT_IX
].ep
.ep_list
,
1452 &dev
->gadget
.ep_list
);
1455 dev
->ep
[UDC_EPIN_STATUS_IX
].fifo_depth
= UDC_EPIN_SMALLINT_BUFF_SIZE
;
1456 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1457 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= UDC_FS_EPIN_BUFF_SIZE
;
1458 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1459 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= hs_tx_buf
;
1460 dev
->ep
[UDC_EPOUT_IX
].fifo_depth
= UDC_RXFIFO_SIZE
;
1463 /* init registers at driver load time */
1464 static int startup_registers(struct udc
*dev
)
1468 /* init controller by soft reset */
1469 udc_soft_reset(dev
);
1471 /* mask not needed interrupts */
1472 udc_mask_unused_interrupts(dev
);
1474 /* put into initial config */
1475 udc_basic_init(dev
);
1476 /* link up all endpoints */
1477 udc_setup_endpoints(dev
);
1480 tmp
= readl(&dev
->regs
->cfg
);
1481 if (use_fullspeed
) {
1482 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1484 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_HS
, UDC_DEVCFG_SPD
);
1486 writel(tmp
, &dev
->regs
->cfg
);
1491 /* Inits UDC context */
1492 static void udc_basic_init(struct udc
*dev
)
1496 DBG(dev
, "udc_basic_init()\n");
1498 dev
->gadget
.speed
= USB_SPEED_UNKNOWN
;
1500 /* stop RDE timer */
1501 if (timer_pending(&udc_timer
)) {
1503 mod_timer(&udc_timer
, jiffies
- 1);
1505 /* stop poll stall timer */
1506 if (timer_pending(&udc_pollstall_timer
)) {
1507 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1510 tmp
= readl(&dev
->regs
->ctl
);
1511 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1512 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_TDE
);
1513 writel(tmp
, &dev
->regs
->ctl
);
1515 /* enable dynamic CSR programming */
1516 tmp
= readl(&dev
->regs
->cfg
);
1517 tmp
|= AMD_BIT(UDC_DEVCFG_CSR_PRG
);
1518 /* set self powered */
1519 tmp
|= AMD_BIT(UDC_DEVCFG_SP
);
1520 /* set remote wakeupable */
1521 tmp
|= AMD_BIT(UDC_DEVCFG_RWKP
);
1522 writel(tmp
, &dev
->regs
->cfg
);
1526 dev
->data_ep_enabled
= 0;
1527 dev
->data_ep_queued
= 0;
1530 /* Sets initial endpoint parameters */
1531 static void udc_setup_endpoints(struct udc
*dev
)
1537 DBG(dev
, "udc_setup_endpoints()\n");
1539 /* read enum speed */
1540 tmp
= readl(&dev
->regs
->sts
);
1541 tmp
= AMD_GETBITS(tmp
, UDC_DEVSTS_ENUM_SPEED
);
1542 if (tmp
== UDC_DEVSTS_ENUM_SPEED_HIGH
) {
1543 dev
->gadget
.speed
= USB_SPEED_HIGH
;
1544 } else if (tmp
== UDC_DEVSTS_ENUM_SPEED_FULL
) {
1545 dev
->gadget
.speed
= USB_SPEED_FULL
;
1548 /* set basic ep parameters */
1549 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1552 ep
->ep
.name
= ep_string
[tmp
];
1554 /* txfifo size is calculated at enable time */
1555 ep
->txfifo
= dev
->txfifo
;
1558 if (tmp
< UDC_EPIN_NUM
) {
1559 ep
->fifo_depth
= UDC_TXFIFO_SIZE
;
1562 ep
->fifo_depth
= UDC_RXFIFO_SIZE
;
1566 ep
->regs
= &dev
->ep_regs
[tmp
];
1568 * ep will be reset only if ep was not enabled before to avoid
1569 * disabling ep interrupts when ENUM interrupt occurs but ep is
1570 * not enabled by gadget driver
1573 ep_init(dev
->regs
, ep
);
1578 * ep->dma is not really used, just to indicate that
1579 * DMA is active: remove this
1580 * dma regs = dev control regs
1582 ep
->dma
= &dev
->regs
->ctl
;
1584 /* nak OUT endpoints until enable - not for ep0 */
1585 if (tmp
!= UDC_EP0IN_IX
&& tmp
!= UDC_EP0OUT_IX
1586 && tmp
> UDC_EPIN_NUM
) {
1588 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
1589 reg
|= AMD_BIT(UDC_EPCTL_SNAK
);
1590 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
1591 dev
->ep
[tmp
].naking
= 1;
1596 /* EP0 max packet */
1597 if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
1598 dev
->ep
[UDC_EP0IN_IX
].ep
.maxpacket
= UDC_FS_EP0IN_MAX_PKT_SIZE
;
1599 dev
->ep
[UDC_EP0OUT_IX
].ep
.maxpacket
=
1600 UDC_FS_EP0OUT_MAX_PKT_SIZE
;
1601 } else if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
1602 dev
->ep
[UDC_EP0IN_IX
].ep
.maxpacket
= UDC_EP0IN_MAX_PKT_SIZE
;
1603 dev
->ep
[UDC_EP0OUT_IX
].ep
.maxpacket
= UDC_EP0OUT_MAX_PKT_SIZE
;
1607 * with suspend bug workaround, ep0 params for gadget driver
1608 * are set at gadget driver bind() call
1610 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
1611 dev
->ep
[UDC_EP0IN_IX
].halted
= 0;
1612 INIT_LIST_HEAD(&dev
->gadget
.ep0
->ep_list
);
1614 /* init cfg/alt/int */
1615 dev
->cur_config
= 0;
1620 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1621 static void usb_connect(struct udc
*dev
)
1624 dev_info(&dev
->pdev
->dev
, "USB Connect\n");
1628 /* put into initial config */
1629 udc_basic_init(dev
);
1631 /* enable device setup interrupts */
1632 udc_enable_dev_setup_interrupts(dev
);
1636 * Calls gadget with disconnect event and resets the UDC and makes
1637 * initial bringup to be ready for ep0 events
1639 static void usb_disconnect(struct udc
*dev
)
1642 dev_info(&dev
->pdev
->dev
, "USB Disconnect\n");
1646 /* mask interrupts */
1647 udc_mask_unused_interrupts(dev
);
1649 /* REVISIT there doesn't seem to be a point to having this
1650 * talk to a tasklet ... do it directly, we already hold
1651 * the spinlock needed to process the disconnect.
1654 tasklet_schedule(&disconnect_tasklet
);
1657 /* Tasklet for disconnect to be outside of interrupt context */
1658 static void udc_tasklet_disconnect(unsigned long par
)
1660 struct udc
*dev
= (struct udc
*)(*((struct udc
**) par
));
1663 DBG(dev
, "Tasklet disconnect\n");
1664 spin_lock_irq(&dev
->lock
);
1667 spin_unlock(&dev
->lock
);
1668 dev
->driver
->disconnect(&dev
->gadget
);
1669 spin_lock(&dev
->lock
);
1672 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1673 empty_req_queue(&dev
->ep
[tmp
]);
1680 &dev
->ep
[UDC_EP0IN_IX
]);
1683 if (!soft_reset_occured
) {
1684 /* init controller by soft reset */
1685 udc_soft_reset(dev
);
1686 soft_reset_occured
++;
1689 /* re-enable dev interrupts */
1690 udc_enable_dev_setup_interrupts(dev
);
1691 /* back to full speed ? */
1692 if (use_fullspeed
) {
1693 tmp
= readl(&dev
->regs
->cfg
);
1694 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1695 writel(tmp
, &dev
->regs
->cfg
);
1698 spin_unlock_irq(&dev
->lock
);
1701 /* Reset the UDC core */
1702 static void udc_soft_reset(struct udc
*dev
)
1704 unsigned long flags
;
1706 DBG(dev
, "Soft reset\n");
1708 * reset possible waiting interrupts, because int.
1709 * status is lost after soft reset,
1710 * ep int. status reset
1712 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqsts
);
1713 /* device int. status reset */
1714 writel(UDC_DEV_MSK_DISABLE
, &dev
->regs
->irqsts
);
1716 spin_lock_irqsave(&udc_irq_spinlock
, flags
);
1717 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
1718 readl(&dev
->regs
->cfg
);
1719 spin_unlock_irqrestore(&udc_irq_spinlock
, flags
);
1723 /* RDE timer callback to set RDE bit */
1724 static void udc_timer_function(unsigned long v
)
1728 spin_lock_irq(&udc_irq_spinlock
);
1732 * open the fifo if fifo was filled on last timer call
1736 /* set RDE to receive setup data */
1737 tmp
= readl(&udc
->regs
->ctl
);
1738 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1739 writel(tmp
, &udc
->regs
->ctl
);
1741 } else if (readl(&udc
->regs
->sts
)
1742 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
1744 * if fifo empty setup polling, do not just
1747 udc_timer
.expires
= jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
1749 add_timer(&udc_timer
);
1753 * fifo contains data now, setup timer for opening
1754 * the fifo when timer expires to be able to receive
1755 * setup packets, when data packets gets queued by
1756 * gadget layer then timer will forced to expire with
1757 * set_rde=0 (RDE is set in udc_queue())
1760 /* debug: lhadmot_timer_start = 221070 */
1761 udc_timer
.expires
= jiffies
+ HZ
*UDC_RDE_TIMER_SECONDS
;
1763 add_timer(&udc_timer
);
1768 set_rde
= -1; /* RDE was set by udc_queue() */
1769 spin_unlock_irq(&udc_irq_spinlock
);
1775 /* Handle halt state, used in stall poll timer */
1776 static void udc_handle_halt_state(struct udc_ep
*ep
)
1779 /* set stall as long not halted */
1780 if (ep
->halted
== 1) {
1781 tmp
= readl(&ep
->regs
->ctl
);
1782 /* STALL cleared ? */
1783 if (!(tmp
& AMD_BIT(UDC_EPCTL_S
))) {
1785 * FIXME: MSC spec requires that stall remains
1786 * even on receivng of CLEAR_FEATURE HALT. So
1787 * we would set STALL again here to be compliant.
1788 * But with current mass storage drivers this does
1789 * not work (would produce endless host retries).
1790 * So we clear halt on CLEAR_FEATURE.
1792 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1793 tmp |= AMD_BIT(UDC_EPCTL_S);
1794 writel(tmp, &ep->regs->ctl);*/
1796 /* clear NAK by writing CNAK */
1797 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1798 writel(tmp
, &ep
->regs
->ctl
);
1800 UDC_QUEUE_CNAK(ep
, ep
->num
);
1805 /* Stall timer callback to poll S bit and set it again after */
1806 static void udc_pollstall_timer_function(unsigned long v
)
1811 spin_lock_irq(&udc_stall_spinlock
);
1813 * only one IN and OUT endpoints are handled
1816 ep
= &udc
->ep
[UDC_EPIN_IX
];
1817 udc_handle_halt_state(ep
);
1820 /* OUT poll stall */
1821 ep
= &udc
->ep
[UDC_EPOUT_IX
];
1822 udc_handle_halt_state(ep
);
1826 /* setup timer again when still halted */
1827 if (!stop_pollstall_timer
&& halted
) {
1828 udc_pollstall_timer
.expires
= jiffies
+
1829 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1831 add_timer(&udc_pollstall_timer
);
1833 spin_unlock_irq(&udc_stall_spinlock
);
1835 if (stop_pollstall_timer
)
1836 complete(&on_pollstall_exit
);
1839 /* Inits endpoint 0 so that SETUP packets are processed */
1840 static void activate_control_endpoints(struct udc
*dev
)
1844 DBG(dev
, "activate_control_endpoints\n");
1847 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1848 tmp
|= AMD_BIT(UDC_EPCTL_F
);
1849 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1851 /* set ep0 directions */
1852 dev
->ep
[UDC_EP0IN_IX
].in
= 1;
1853 dev
->ep
[UDC_EP0OUT_IX
].in
= 0;
1855 /* set buffer size (tx fifo entries) of EP0_IN */
1856 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1857 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1858 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EPIN0_BUFF_SIZE
,
1859 UDC_EPIN_BUFF_SIZE
);
1860 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1861 tmp
= AMD_ADDBITS(tmp
, UDC_EPIN0_BUFF_SIZE
,
1862 UDC_EPIN_BUFF_SIZE
);
1863 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1865 /* set max packet size of EP0_IN */
1866 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1867 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1868 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0IN_MAX_PKT_SIZE
,
1869 UDC_EP_MAX_PKT_SIZE
);
1870 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1871 tmp
= AMD_ADDBITS(tmp
, UDC_EP0IN_MAX_PKT_SIZE
,
1872 UDC_EP_MAX_PKT_SIZE
);
1873 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1875 /* set max packet size of EP0_OUT */
1876 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1877 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1878 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1879 UDC_EP_MAX_PKT_SIZE
);
1880 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1881 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1882 UDC_EP_MAX_PKT_SIZE
);
1883 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1885 /* set max packet size of EP0 in UDC CSR */
1886 tmp
= readl(&dev
->csr
->ne
[0]);
1887 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1888 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1889 UDC_CSR_NE_MAX_PKT
);
1890 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1891 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1892 UDC_CSR_NE_MAX_PKT
);
1893 writel(tmp
, &dev
->csr
->ne
[0]);
1896 dev
->ep
[UDC_EP0OUT_IX
].td
->status
|=
1897 AMD_BIT(UDC_DMA_OUT_STS_L
);
1898 /* write dma desc address */
1899 writel(dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
,
1900 &dev
->ep
[UDC_EP0OUT_IX
].regs
->subptr
);
1901 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
1902 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
1903 /* stop RDE timer */
1904 if (timer_pending(&udc_timer
)) {
1906 mod_timer(&udc_timer
, jiffies
- 1);
1908 /* stop pollstall timer */
1909 if (timer_pending(&udc_pollstall_timer
)) {
1910 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1913 tmp
= readl(&dev
->regs
->ctl
);
1914 tmp
|= AMD_BIT(UDC_DEVCTL_MODE
)
1915 | AMD_BIT(UDC_DEVCTL_RDE
)
1916 | AMD_BIT(UDC_DEVCTL_TDE
);
1917 if (use_dma_bufferfill_mode
) {
1918 tmp
|= AMD_BIT(UDC_DEVCTL_BF
);
1919 } else if (use_dma_ppb_du
) {
1920 tmp
|= AMD_BIT(UDC_DEVCTL_DU
);
1922 writel(tmp
, &dev
->regs
->ctl
);
1925 /* clear NAK by writing CNAK for EP0IN */
1926 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1927 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1928 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1929 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1930 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
1932 /* clear NAK by writing CNAK for EP0OUT */
1933 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1934 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1935 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1936 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
1937 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
1940 /* Make endpoint 0 ready for control traffic */
1941 static int setup_ep0(struct udc
*dev
)
1943 activate_control_endpoints(dev
);
1944 /* enable ep0 interrupts */
1945 udc_enable_ep0_interrupts(dev
);
1946 /* enable device setup interrupts */
1947 udc_enable_dev_setup_interrupts(dev
);
1952 /* Called by gadget driver to register itself */
1953 int usb_gadget_register_driver(struct usb_gadget_driver
*driver
)
1955 struct udc
*dev
= udc
;
1959 if (!driver
|| !driver
->bind
|| !driver
->setup
1960 || driver
->speed
!= USB_SPEED_HIGH
)
1967 driver
->driver
.bus
= NULL
;
1968 dev
->driver
= driver
;
1969 dev
->gadget
.dev
.driver
= &driver
->driver
;
1971 retval
= driver
->bind(&dev
->gadget
);
1973 /* Some gadget drivers use both ep0 directions.
1974 * NOTE: to gadget driver, ep0 is just one endpoint...
1976 dev
->ep
[UDC_EP0OUT_IX
].ep
.driver_data
=
1977 dev
->ep
[UDC_EP0IN_IX
].ep
.driver_data
;
1980 DBG(dev
, "binding to %s returning %d\n",
1981 driver
->driver
.name
, retval
);
1983 dev
->gadget
.dev
.driver
= NULL
;
1987 /* get ready for ep0 traffic */
1991 tmp
= readl(&dev
->regs
->ctl
);
1992 tmp
= tmp
& AMD_CLEAR_BIT(UDC_DEVCTL_SD
);
1993 writel(tmp
, &dev
->regs
->ctl
);
1999 EXPORT_SYMBOL(usb_gadget_register_driver
);
2001 /* shutdown requests and disconnect from gadget */
2003 shutdown(struct udc
*dev
, struct usb_gadget_driver
*driver
)
2004 __releases(dev
->lock
)
2005 __acquires(dev
->lock
)
2009 /* empty queues and init hardware */
2010 udc_basic_init(dev
);
2011 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
2012 empty_req_queue(&dev
->ep
[tmp
]);
2015 if (dev
->gadget
.speed
!= USB_SPEED_UNKNOWN
) {
2016 spin_unlock(&dev
->lock
);
2017 driver
->disconnect(&dev
->gadget
);
2018 spin_lock(&dev
->lock
);
2021 udc_setup_endpoints(dev
);
2024 /* Called by gadget driver to unregister itself */
2025 int usb_gadget_unregister_driver(struct usb_gadget_driver
*driver
)
2027 struct udc
*dev
= udc
;
2028 unsigned long flags
;
2033 if (!driver
|| driver
!= dev
->driver
|| !driver
->unbind
)
2036 spin_lock_irqsave(&dev
->lock
, flags
);
2037 udc_mask_unused_interrupts(dev
);
2038 shutdown(dev
, driver
);
2039 spin_unlock_irqrestore(&dev
->lock
, flags
);
2041 driver
->unbind(&dev
->gadget
);
2042 dev
->gadget
.dev
.driver
= NULL
;
2046 tmp
= readl(&dev
->regs
->ctl
);
2047 tmp
|= AMD_BIT(UDC_DEVCTL_SD
);
2048 writel(tmp
, &dev
->regs
->ctl
);
2051 DBG(dev
, "%s: unregistered\n", driver
->driver
.name
);
2055 EXPORT_SYMBOL(usb_gadget_unregister_driver
);
2058 /* Clear pending NAK bits */
2059 static void udc_process_cnak_queue(struct udc
*dev
)
2065 DBG(dev
, "CNAK pending queue processing\n");
2066 for (tmp
= 0; tmp
< UDC_EPIN_NUM_USED
; tmp
++) {
2067 if (cnak_pending
& (1 << tmp
)) {
2068 DBG(dev
, "CNAK pending for ep%d\n", tmp
);
2069 /* clear NAK by writing CNAK */
2070 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
2071 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2072 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
2073 dev
->ep
[tmp
].naking
= 0;
2074 UDC_QUEUE_CNAK(&dev
->ep
[tmp
], dev
->ep
[tmp
].num
);
2077 /* ... and ep0out */
2078 if (cnak_pending
& (1 << UDC_EP0OUT_IX
)) {
2079 DBG(dev
, "CNAK pending for ep%d\n", UDC_EP0OUT_IX
);
2080 /* clear NAK by writing CNAK */
2081 reg
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2082 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2083 writel(reg
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2084 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2085 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
],
2086 dev
->ep
[UDC_EP0OUT_IX
].num
);
2090 /* Enabling RX DMA after setup packet */
2091 static void udc_ep0_set_rde(struct udc
*dev
)
2095 * only enable RXDMA when no data endpoint enabled
2098 if (!dev
->data_ep_enabled
|| dev
->data_ep_queued
) {
2102 * setup timer for enabling RDE (to not enable
2103 * RXFIFO DMA for data endpoints to early)
2105 if (set_rde
!= 0 && !timer_pending(&udc_timer
)) {
2107 jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
2110 add_timer(&udc_timer
);
2118 /* Interrupt handler for data OUT traffic */
2119 static irqreturn_t
udc_data_out_isr(struct udc
*dev
, int ep_ix
)
2121 irqreturn_t ret_val
= IRQ_NONE
;
2124 struct udc_request
*req
;
2126 struct udc_data_dma
*td
= NULL
;
2129 VDBG(dev
, "ep%d irq\n", ep_ix
);
2130 ep
= &dev
->ep
[ep_ix
];
2132 tmp
= readl(&ep
->regs
->sts
);
2135 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2136 DBG(dev
, "BNA ep%dout occured - DESPTR = %x \n",
2137 ep
->num
, readl(&ep
->regs
->desptr
));
2139 writel(tmp
| AMD_BIT(UDC_EPSTS_BNA
), &ep
->regs
->sts
);
2140 if (!ep
->cancel_transfer
)
2141 ep
->bna_occurred
= 1;
2143 ep
->cancel_transfer
= 0;
2144 ret_val
= IRQ_HANDLED
;
2149 if (tmp
& AMD_BIT(UDC_EPSTS_HE
)) {
2150 dev_err(&dev
->pdev
->dev
, "HE ep%dout occured\n", ep
->num
);
2153 writel(tmp
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2154 ret_val
= IRQ_HANDLED
;
2158 if (!list_empty(&ep
->queue
)) {
2161 req
= list_entry(ep
->queue
.next
,
2162 struct udc_request
, queue
);
2165 udc_rxfifo_pending
= 1;
2167 VDBG(dev
, "req = %p\n", req
);
2172 if (req
&& udc_rxfifo_read(ep
, req
)) {
2173 ret_val
= IRQ_HANDLED
;
2176 complete_req(ep
, req
, 0);
2178 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2179 req
= list_entry(ep
->queue
.next
,
2180 struct udc_request
, queue
);
2186 } else if (!ep
->cancel_transfer
&& req
!= NULL
) {
2187 ret_val
= IRQ_HANDLED
;
2189 /* check for DMA done */
2191 dma_done
= AMD_GETBITS(req
->td_data
->status
,
2192 UDC_DMA_OUT_STS_BS
);
2193 /* packet per buffer mode - rx bytes */
2196 * if BNA occurred then recover desc. from
2199 if (ep
->bna_occurred
) {
2200 VDBG(dev
, "Recover desc. from BNA dummy\n");
2201 memcpy(req
->td_data
, ep
->bna_dummy_req
->td_data
,
2202 sizeof(struct udc_data_dma
));
2203 ep
->bna_occurred
= 0;
2204 udc_init_bna_dummy(ep
->req
);
2206 td
= udc_get_last_dma_desc(req
);
2207 dma_done
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_BS
);
2209 if (dma_done
== UDC_DMA_OUT_STS_BS_DMA_DONE
) {
2210 /* buffer fill mode - rx bytes */
2212 /* received number bytes */
2213 count
= AMD_GETBITS(req
->td_data
->status
,
2214 UDC_DMA_OUT_STS_RXBYTES
);
2215 VDBG(dev
, "rx bytes=%u\n", count
);
2216 /* packet per buffer mode - rx bytes */
2218 VDBG(dev
, "req->td_data=%p\n", req
->td_data
);
2219 VDBG(dev
, "last desc = %p\n", td
);
2220 /* received number bytes */
2221 if (use_dma_ppb_du
) {
2222 /* every desc. counts bytes */
2223 count
= udc_get_ppbdu_rxbytes(req
);
2225 /* last desc. counts bytes */
2226 count
= AMD_GETBITS(td
->status
,
2227 UDC_DMA_OUT_STS_RXBYTES
);
2228 if (!count
&& req
->req
.length
2229 == UDC_DMA_MAXPACKET
) {
2231 * on 64k packets the RXBYTES
2234 count
= UDC_DMA_MAXPACKET
;
2237 VDBG(dev
, "last desc rx bytes=%u\n", count
);
2240 tmp
= req
->req
.length
- req
->req
.actual
;
2242 if ((tmp
% ep
->ep
.maxpacket
) != 0) {
2243 DBG(dev
, "%s: rx %db, space=%db\n",
2244 ep
->ep
.name
, count
, tmp
);
2245 req
->req
.status
= -EOVERFLOW
;
2249 req
->req
.actual
+= count
;
2251 /* complete request */
2252 complete_req(ep
, req
, 0);
2255 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2256 req
= list_entry(ep
->queue
.next
,
2260 * DMA may be already started by udc_queue()
2261 * called by gadget drivers completion
2262 * routine. This happens when queue
2263 * holds one request only.
2265 if (req
->dma_going
== 0) {
2267 if (prep_dma(ep
, req
, GFP_ATOMIC
) != 0)
2269 /* write desc pointer */
2270 writel(req
->td_phys
,
2278 * implant BNA dummy descriptor to allow
2279 * RXFIFO opening by RDE
2281 if (ep
->bna_dummy_req
) {
2282 /* write desc pointer */
2283 writel(ep
->bna_dummy_req
->td_phys
,
2285 ep
->bna_occurred
= 0;
2289 * schedule timer for setting RDE if queue
2290 * remains empty to allow ep0 packets pass
2294 && !timer_pending(&udc_timer
)) {
2297 + HZ
*UDC_RDE_TIMER_SECONDS
;
2300 add_timer(&udc_timer
);
2303 if (ep
->num
!= UDC_EP0OUT_IX
)
2304 dev
->data_ep_queued
= 0;
2309 * RX DMA must be reenabled for each desc in PPBDU mode
2310 * and must be enabled for PPBNDU mode in case of BNA
2315 } else if (ep
->cancel_transfer
) {
2316 ret_val
= IRQ_HANDLED
;
2317 ep
->cancel_transfer
= 0;
2320 /* check pending CNAKS */
2322 /* CNAk processing when rxfifo empty only */
2323 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
2324 udc_process_cnak_queue(dev
);
2328 /* clear OUT bits in ep status */
2329 writel(UDC_EPSTS_OUT_CLEAR
, &ep
->regs
->sts
);
2334 /* Interrupt handler for data IN traffic */
2335 static irqreturn_t
udc_data_in_isr(struct udc
*dev
, int ep_ix
)
2337 irqreturn_t ret_val
= IRQ_NONE
;
2341 struct udc_request
*req
;
2342 struct udc_data_dma
*td
;
2346 ep
= &dev
->ep
[ep_ix
];
2348 epsts
= readl(&ep
->regs
->sts
);
2351 if (epsts
& AMD_BIT(UDC_EPSTS_BNA
)) {
2352 dev_err(&dev
->pdev
->dev
,
2353 "BNA ep%din occured - DESPTR = %08lx \n",
2355 (unsigned long) readl(&ep
->regs
->desptr
));
2358 writel(epsts
, &ep
->regs
->sts
);
2359 ret_val
= IRQ_HANDLED
;
2364 if (epsts
& AMD_BIT(UDC_EPSTS_HE
)) {
2365 dev_err(&dev
->pdev
->dev
,
2366 "HE ep%dn occured - DESPTR = %08lx \n",
2367 ep
->num
, (unsigned long) readl(&ep
->regs
->desptr
));
2370 writel(epsts
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2371 ret_val
= IRQ_HANDLED
;
2375 /* DMA completion */
2376 if (epsts
& AMD_BIT(UDC_EPSTS_TDC
)) {
2377 VDBG(dev
, "TDC set- completion\n");
2378 ret_val
= IRQ_HANDLED
;
2379 if (!ep
->cancel_transfer
&& !list_empty(&ep
->queue
)) {
2380 req
= list_entry(ep
->queue
.next
,
2381 struct udc_request
, queue
);
2384 * length bytes transfered
2385 * check dma done of last desc. in PPBDU mode
2387 if (use_dma_ppb_du
) {
2388 td
= udc_get_last_dma_desc(req
);
2391 AMD_GETBITS(td
->status
,
2393 /* don't care DMA done */
2398 /* assume all bytes transferred */
2399 req
->req
.actual
= req
->req
.length
;
2402 if (req
->req
.actual
== req
->req
.length
) {
2404 complete_req(ep
, req
, 0);
2406 /* further request available ? */
2407 if (list_empty(&ep
->queue
)) {
2408 /* disable interrupt */
2410 &dev
->regs
->ep_irqmsk
);
2411 tmp
|= AMD_BIT(ep
->num
);
2413 &dev
->regs
->ep_irqmsk
);
2419 ep
->cancel_transfer
= 0;
2423 * status reg has IN bit set and TDC not set (if TDC was handled,
2424 * IN must not be handled (UDC defect) ?
2426 if ((epsts
& AMD_BIT(UDC_EPSTS_IN
))
2427 && !(epsts
& AMD_BIT(UDC_EPSTS_TDC
))) {
2428 ret_val
= IRQ_HANDLED
;
2429 if (!list_empty(&ep
->queue
)) {
2431 req
= list_entry(ep
->queue
.next
,
2432 struct udc_request
, queue
);
2436 udc_txfifo_write(ep
, &req
->req
);
2437 len
= req
->req
.length
- req
->req
.actual
;
2438 if (len
> ep
->ep
.maxpacket
)
2439 len
= ep
->ep
.maxpacket
;
2440 req
->req
.actual
+= len
;
2441 if (req
->req
.actual
== req
->req
.length
2442 || (len
!= ep
->ep
.maxpacket
)) {
2444 complete_req(ep
, req
, 0);
2447 } else if (req
&& !req
->dma_going
) {
2448 VDBG(dev
, "IN DMA : req=%p req->td_data=%p\n",
2455 * unset L bit of first desc.
2458 if (use_dma_ppb
&& req
->req
.length
>
2460 req
->td_data
->status
&=
2465 /* write desc pointer */
2466 writel(req
->td_phys
, &ep
->regs
->desptr
);
2468 /* set HOST READY */
2469 req
->td_data
->status
=
2471 req
->td_data
->status
,
2472 UDC_DMA_IN_STS_BS_HOST_READY
,
2475 /* set poll demand bit */
2476 tmp
= readl(&ep
->regs
->ctl
);
2477 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2478 writel(tmp
, &ep
->regs
->ctl
);
2484 /* clear status bits */
2485 writel(epsts
, &ep
->regs
->sts
);
2492 /* Interrupt handler for Control OUT traffic */
2493 static irqreturn_t
udc_control_out_isr(struct udc
*dev
)
2494 __releases(dev
->lock
)
2495 __acquires(dev
->lock
)
2497 irqreturn_t ret_val
= IRQ_NONE
;
2499 int setup_supported
;
2503 struct udc_ep
*ep_tmp
;
2505 ep
= &dev
->ep
[UDC_EP0OUT_IX
];
2508 writel(AMD_BIT(UDC_EPINT_OUT_EP0
), &dev
->regs
->ep_irqsts
);
2510 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2511 /* check BNA and clear if set */
2512 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2513 VDBG(dev
, "ep0: BNA set\n");
2514 writel(AMD_BIT(UDC_EPSTS_BNA
),
2515 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2516 ep
->bna_occurred
= 1;
2517 ret_val
= IRQ_HANDLED
;
2521 /* type of data: SETUP or DATA 0 bytes */
2522 tmp
= AMD_GETBITS(tmp
, UDC_EPSTS_OUT
);
2523 VDBG(dev
, "data_typ = %x\n", tmp
);
2526 if (tmp
== UDC_EPSTS_OUT_SETUP
) {
2527 ret_val
= IRQ_HANDLED
;
2529 ep
->dev
->stall_ep0in
= 0;
2530 dev
->waiting_zlp_ack_ep0in
= 0;
2532 /* set NAK for EP0_IN */
2533 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2534 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
2535 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2536 dev
->ep
[UDC_EP0IN_IX
].naking
= 1;
2537 /* get setup data */
2540 /* clear OUT bits in ep status */
2541 writel(UDC_EPSTS_OUT_CLEAR
,
2542 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2544 setup_data
.data
[0] =
2545 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data12
;
2546 setup_data
.data
[1] =
2547 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data34
;
2548 /* set HOST READY */
2549 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->status
=
2550 UDC_DMA_STP_STS_BS_HOST_READY
;
2553 udc_rxfifo_read_dwords(dev
, setup_data
.data
, 2);
2556 /* determine direction of control data */
2557 if ((setup_data
.request
.bRequestType
& USB_DIR_IN
) != 0) {
2558 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
2560 udc_ep0_set_rde(dev
);
2563 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0OUT_IX
].ep
;
2565 * implant BNA dummy descriptor to allow RXFIFO opening
2568 if (ep
->bna_dummy_req
) {
2569 /* write desc pointer */
2570 writel(ep
->bna_dummy_req
->td_phys
,
2571 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2572 ep
->bna_occurred
= 0;
2576 dev
->ep
[UDC_EP0OUT_IX
].naking
= 1;
2578 * setup timer for enabling RDE (to not enable
2579 * RXFIFO DMA for data to early)
2582 if (!timer_pending(&udc_timer
)) {
2583 udc_timer
.expires
= jiffies
+
2584 HZ
/UDC_RDE_TIMER_DIV
;
2586 add_timer(&udc_timer
);
2592 * mass storage reset must be processed here because
2593 * next packet may be a CLEAR_FEATURE HALT which would not
2594 * clear the stall bit when no STALL handshake was received
2595 * before (autostall can cause this)
2597 if (setup_data
.data
[0] == UDC_MSCRES_DWORD0
2598 && setup_data
.data
[1] == UDC_MSCRES_DWORD1
) {
2599 DBG(dev
, "MSC Reset\n");
2602 * only one IN and OUT endpoints are handled
2604 ep_tmp
= &udc
->ep
[UDC_EPIN_IX
];
2605 udc_set_halt(&ep_tmp
->ep
, 0);
2606 ep_tmp
= &udc
->ep
[UDC_EPOUT_IX
];
2607 udc_set_halt(&ep_tmp
->ep
, 0);
2610 /* call gadget with setup data received */
2611 spin_unlock(&dev
->lock
);
2612 setup_supported
= dev
->driver
->setup(&dev
->gadget
,
2613 &setup_data
.request
);
2614 spin_lock(&dev
->lock
);
2616 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2617 /* ep0 in returns data (not zlp) on IN phase */
2618 if (setup_supported
>= 0 && setup_supported
<
2619 UDC_EP0IN_MAXPACKET
) {
2620 /* clear NAK by writing CNAK in EP0_IN */
2621 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2622 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2623 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
2624 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
2626 /* if unsupported request then stall */
2627 } else if (setup_supported
< 0) {
2628 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2629 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2631 dev
->waiting_zlp_ack_ep0in
= 1;
2634 /* clear NAK by writing CNAK in EP0_OUT */
2636 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2637 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2638 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2639 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2640 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
2644 /* clear OUT bits in ep status */
2645 writel(UDC_EPSTS_OUT_CLEAR
,
2646 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2649 /* data packet 0 bytes */
2650 } else if (tmp
== UDC_EPSTS_OUT_DATA
) {
2651 /* clear OUT bits in ep status */
2652 writel(UDC_EPSTS_OUT_CLEAR
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2654 /* get setup data: only 0 packet */
2656 /* no req if 0 packet, just reactivate */
2657 if (list_empty(&dev
->ep
[UDC_EP0OUT_IX
].queue
)) {
2660 /* set HOST READY */
2661 dev
->ep
[UDC_EP0OUT_IX
].td
->status
=
2663 dev
->ep
[UDC_EP0OUT_IX
].td
->status
,
2664 UDC_DMA_OUT_STS_BS_HOST_READY
,
2665 UDC_DMA_OUT_STS_BS
);
2667 udc_ep0_set_rde(dev
);
2668 ret_val
= IRQ_HANDLED
;
2672 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2673 /* re-program desc. pointer for possible ZLPs */
2674 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
2675 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2677 udc_ep0_set_rde(dev
);
2681 /* received number bytes */
2682 count
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2683 count
= AMD_GETBITS(count
, UDC_EPSTS_RX_PKT_SIZE
);
2684 /* out data for fifo mode not working */
2687 /* 0 packet or real data ? */
2689 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2691 /* dummy read confirm */
2692 readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->confirm
);
2693 ret_val
= IRQ_HANDLED
;
2698 /* check pending CNAKS */
2700 /* CNAk processing when rxfifo empty only */
2701 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
2702 udc_process_cnak_queue(dev
);
2710 /* Interrupt handler for Control IN traffic */
2711 static irqreturn_t
udc_control_in_isr(struct udc
*dev
)
2713 irqreturn_t ret_val
= IRQ_NONE
;
2716 struct udc_request
*req
;
2719 ep
= &dev
->ep
[UDC_EP0IN_IX
];
2722 writel(AMD_BIT(UDC_EPINT_IN_EP0
), &dev
->regs
->ep_irqsts
);
2724 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2725 /* DMA completion */
2726 if (tmp
& AMD_BIT(UDC_EPSTS_TDC
)) {
2727 VDBG(dev
, "isr: TDC clear \n");
2728 ret_val
= IRQ_HANDLED
;
2731 writel(AMD_BIT(UDC_EPSTS_TDC
),
2732 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2734 /* status reg has IN bit set ? */
2735 } else if (tmp
& AMD_BIT(UDC_EPSTS_IN
)) {
2736 ret_val
= IRQ_HANDLED
;
2740 writel(AMD_BIT(UDC_EPSTS_IN
),
2741 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2743 if (dev
->stall_ep0in
) {
2744 DBG(dev
, "stall ep0in\n");
2746 tmp
= readl(&ep
->regs
->ctl
);
2747 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2748 writel(tmp
, &ep
->regs
->ctl
);
2750 if (!list_empty(&ep
->queue
)) {
2752 req
= list_entry(ep
->queue
.next
,
2753 struct udc_request
, queue
);
2756 /* write desc pointer */
2757 writel(req
->td_phys
, &ep
->regs
->desptr
);
2758 /* set HOST READY */
2759 req
->td_data
->status
=
2761 req
->td_data
->status
,
2762 UDC_DMA_STP_STS_BS_HOST_READY
,
2763 UDC_DMA_STP_STS_BS
);
2765 /* set poll demand bit */
2767 readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2768 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2770 &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2772 /* all bytes will be transferred */
2773 req
->req
.actual
= req
->req
.length
;
2776 complete_req(ep
, req
, 0);
2780 udc_txfifo_write(ep
, &req
->req
);
2782 /* lengh bytes transfered */
2783 len
= req
->req
.length
- req
->req
.actual
;
2784 if (len
> ep
->ep
.maxpacket
)
2785 len
= ep
->ep
.maxpacket
;
2787 req
->req
.actual
+= len
;
2788 if (req
->req
.actual
== req
->req
.length
2789 || (len
!= ep
->ep
.maxpacket
)) {
2791 complete_req(ep
, req
, 0);
2798 dev
->stall_ep0in
= 0;
2801 writel(AMD_BIT(UDC_EPSTS_IN
),
2802 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2810 /* Interrupt handler for global device events */
2811 static irqreturn_t
udc_dev_isr(struct udc
*dev
, u32 dev_irq
)
2812 __releases(dev
->lock
)
2813 __acquires(dev
->lock
)
2815 irqreturn_t ret_val
= IRQ_NONE
;
2822 /* SET_CONFIG irq ? */
2823 if (dev_irq
& AMD_BIT(UDC_DEVINT_SC
)) {
2824 ret_val
= IRQ_HANDLED
;
2826 /* read config value */
2827 tmp
= readl(&dev
->regs
->sts
);
2828 cfg
= AMD_GETBITS(tmp
, UDC_DEVSTS_CFG
);
2829 DBG(dev
, "SET_CONFIG interrupt: config=%d\n", cfg
);
2830 dev
->cur_config
= cfg
;
2831 dev
->set_cfg_not_acked
= 1;
2833 /* make usb request for gadget driver */
2834 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2835 setup_data
.request
.bRequest
= USB_REQ_SET_CONFIGURATION
;
2836 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_config
);
2838 /* programm the NE registers */
2839 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2843 /* ep ix in UDC CSR register space */
2844 udc_csr_epix
= ep
->num
;
2849 /* ep ix in UDC CSR register space */
2850 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2853 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2855 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
,
2858 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2860 /* clear stall bits */
2862 tmp
= readl(&ep
->regs
->ctl
);
2863 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2864 writel(tmp
, &ep
->regs
->ctl
);
2866 /* call gadget zero with setup data received */
2867 spin_unlock(&dev
->lock
);
2868 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2869 spin_lock(&dev
->lock
);
2871 } /* SET_INTERFACE ? */
2872 if (dev_irq
& AMD_BIT(UDC_DEVINT_SI
)) {
2873 ret_val
= IRQ_HANDLED
;
2875 dev
->set_cfg_not_acked
= 1;
2876 /* read interface and alt setting values */
2877 tmp
= readl(&dev
->regs
->sts
);
2878 dev
->cur_alt
= AMD_GETBITS(tmp
, UDC_DEVSTS_ALT
);
2879 dev
->cur_intf
= AMD_GETBITS(tmp
, UDC_DEVSTS_INTF
);
2881 /* make usb request for gadget driver */
2882 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2883 setup_data
.request
.bRequest
= USB_REQ_SET_INTERFACE
;
2884 setup_data
.request
.bRequestType
= USB_RECIP_INTERFACE
;
2885 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_alt
);
2886 setup_data
.request
.wIndex
= cpu_to_le16(dev
->cur_intf
);
2888 DBG(dev
, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2889 dev
->cur_alt
, dev
->cur_intf
);
2891 /* programm the NE registers */
2892 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2896 /* ep ix in UDC CSR register space */
2897 udc_csr_epix
= ep
->num
;
2902 /* ep ix in UDC CSR register space */
2903 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2908 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2910 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
,
2912 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2914 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
,
2917 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2919 /* clear stall bits */
2921 tmp
= readl(&ep
->regs
->ctl
);
2922 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2923 writel(tmp
, &ep
->regs
->ctl
);
2926 /* call gadget zero with setup data received */
2927 spin_unlock(&dev
->lock
);
2928 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2929 spin_lock(&dev
->lock
);
2932 if (dev_irq
& AMD_BIT(UDC_DEVINT_UR
)) {
2933 DBG(dev
, "USB Reset interrupt\n");
2934 ret_val
= IRQ_HANDLED
;
2936 /* allow soft reset when suspend occurs */
2937 soft_reset_occured
= 0;
2939 dev
->waiting_zlp_ack_ep0in
= 0;
2940 dev
->set_cfg_not_acked
= 0;
2942 /* mask not needed interrupts */
2943 udc_mask_unused_interrupts(dev
);
2945 /* call gadget to resume and reset configs etc. */
2946 spin_unlock(&dev
->lock
);
2947 if (dev
->sys_suspended
&& dev
->driver
->resume
) {
2948 dev
->driver
->resume(&dev
->gadget
);
2949 dev
->sys_suspended
= 0;
2951 dev
->driver
->disconnect(&dev
->gadget
);
2952 spin_lock(&dev
->lock
);
2954 /* disable ep0 to empty req queue */
2955 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
2956 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
2958 /* soft reset when rxfifo not empty */
2959 tmp
= readl(&dev
->regs
->sts
);
2960 if (!(tmp
& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2961 && !soft_reset_after_usbreset_occured
) {
2962 udc_soft_reset(dev
);
2963 soft_reset_after_usbreset_occured
++;
2967 * DMA reset to kill potential old DMA hw hang,
2968 * POLL bit is already reset by ep_init() through
2971 DBG(dev
, "DMA machine reset\n");
2972 tmp
= readl(&dev
->regs
->cfg
);
2973 writel(tmp
| AMD_BIT(UDC_DEVCFG_DMARST
), &dev
->regs
->cfg
);
2974 writel(tmp
, &dev
->regs
->cfg
);
2976 /* put into initial config */
2977 udc_basic_init(dev
);
2979 /* enable device setup interrupts */
2980 udc_enable_dev_setup_interrupts(dev
);
2982 /* enable suspend interrupt */
2983 tmp
= readl(&dev
->regs
->irqmsk
);
2984 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_US
);
2985 writel(tmp
, &dev
->regs
->irqmsk
);
2988 if (dev_irq
& AMD_BIT(UDC_DEVINT_US
)) {
2989 DBG(dev
, "USB Suspend interrupt\n");
2990 ret_val
= IRQ_HANDLED
;
2991 if (dev
->driver
->suspend
) {
2992 spin_unlock(&dev
->lock
);
2993 dev
->sys_suspended
= 1;
2994 dev
->driver
->suspend(&dev
->gadget
);
2995 spin_lock(&dev
->lock
);
2998 if (dev_irq
& AMD_BIT(UDC_DEVINT_ENUM
)) {
2999 DBG(dev
, "ENUM interrupt\n");
3000 ret_val
= IRQ_HANDLED
;
3001 soft_reset_after_usbreset_occured
= 0;
3003 /* disable ep0 to empty req queue */
3004 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
3005 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
3007 /* link up all endpoints */
3008 udc_setup_endpoints(dev
);
3009 if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
3010 dev_info(&dev
->pdev
->dev
, "Connect: speed = %s\n",
3012 } else if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
3013 dev_info(&dev
->pdev
->dev
, "Connect: speed = %s\n",
3018 activate_control_endpoints(dev
);
3020 /* enable ep0 interrupts */
3021 udc_enable_ep0_interrupts(dev
);
3023 /* session valid change interrupt */
3024 if (dev_irq
& AMD_BIT(UDC_DEVINT_SVC
)) {
3025 DBG(dev
, "USB SVC interrupt\n");
3026 ret_val
= IRQ_HANDLED
;
3028 /* check that session is not valid to detect disconnect */
3029 tmp
= readl(&dev
->regs
->sts
);
3030 if (!(tmp
& AMD_BIT(UDC_DEVSTS_SESSVLD
))) {
3031 /* disable suspend interrupt */
3032 tmp
= readl(&dev
->regs
->irqmsk
);
3033 tmp
|= AMD_BIT(UDC_DEVINT_US
);
3034 writel(tmp
, &dev
->regs
->irqmsk
);
3035 DBG(dev
, "USB Disconnect (session valid low)\n");
3036 /* cleanup on disconnect */
3037 usb_disconnect(udc
);
3045 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3046 static irqreturn_t
udc_irq(int irq
, void *pdev
)
3048 struct udc
*dev
= pdev
;
3052 irqreturn_t ret_val
= IRQ_NONE
;
3054 spin_lock(&dev
->lock
);
3056 /* check for ep irq */
3057 reg
= readl(&dev
->regs
->ep_irqsts
);
3059 if (reg
& AMD_BIT(UDC_EPINT_OUT_EP0
))
3060 ret_val
|= udc_control_out_isr(dev
);
3061 if (reg
& AMD_BIT(UDC_EPINT_IN_EP0
))
3062 ret_val
|= udc_control_in_isr(dev
);
3068 for (i
= 1; i
< UDC_EP_NUM
; i
++) {
3070 if (!(reg
& ep_irq
) || i
== UDC_EPINT_OUT_EP0
)
3073 /* clear irq status */
3074 writel(ep_irq
, &dev
->regs
->ep_irqsts
);
3076 /* irq for out ep ? */
3077 if (i
> UDC_EPIN_NUM
)
3078 ret_val
|= udc_data_out_isr(dev
, i
);
3080 ret_val
|= udc_data_in_isr(dev
, i
);
3086 /* check for dev irq */
3087 reg
= readl(&dev
->regs
->irqsts
);
3090 writel(reg
, &dev
->regs
->irqsts
);
3091 ret_val
|= udc_dev_isr(dev
, reg
);
3095 spin_unlock(&dev
->lock
);
3099 /* Tears down device */
3100 static void gadget_release(struct device
*pdev
)
3102 struct amd5536udc
*dev
= dev_get_drvdata(pdev
);
3106 /* Cleanup on device remove */
3107 static void udc_remove(struct udc
*dev
)
3111 if (timer_pending(&udc_timer
))
3112 wait_for_completion(&on_exit
);
3114 del_timer_sync(&udc_timer
);
3115 /* remove pollstall timer */
3116 stop_pollstall_timer
++;
3117 if (timer_pending(&udc_pollstall_timer
))
3118 wait_for_completion(&on_pollstall_exit
);
3119 if (udc_pollstall_timer
.data
)
3120 del_timer_sync(&udc_pollstall_timer
);
3124 /* Reset all pci context */
3125 static void udc_pci_remove(struct pci_dev
*pdev
)
3129 dev
= pci_get_drvdata(pdev
);
3131 /* gadget driver must not be registered */
3132 BUG_ON(dev
->driver
!= NULL
);
3134 /* dma pool cleanup */
3135 if (dev
->data_requests
)
3136 pci_pool_destroy(dev
->data_requests
);
3138 if (dev
->stp_requests
) {
3139 /* cleanup DMA desc's for ep0in */
3140 pci_pool_free(dev
->stp_requests
,
3141 dev
->ep
[UDC_EP0OUT_IX
].td_stp
,
3142 dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3143 pci_pool_free(dev
->stp_requests
,
3144 dev
->ep
[UDC_EP0OUT_IX
].td
,
3145 dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3147 pci_pool_destroy(dev
->stp_requests
);
3150 /* reset controller */
3151 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
3152 if (dev
->irq_registered
)
3153 free_irq(pdev
->irq
, dev
);
3156 if (dev
->mem_region
)
3157 release_mem_region(pci_resource_start(pdev
, 0),
3158 pci_resource_len(pdev
, 0));
3160 pci_disable_device(pdev
);
3162 device_unregister(&dev
->gadget
.dev
);
3163 pci_set_drvdata(pdev
, NULL
);
3168 /* create dma pools on init */
3169 static int init_dma_pools(struct udc
*dev
)
3171 struct udc_stp_dma
*td_stp
;
3172 struct udc_data_dma
*td_data
;
3175 /* consistent DMA mode setting ? */
3177 use_dma_bufferfill_mode
= 0;
3180 use_dma_bufferfill_mode
= 1;
3184 dev
->data_requests
= dma_pool_create("data_requests", NULL
,
3185 sizeof(struct udc_data_dma
), 0, 0);
3186 if (!dev
->data_requests
) {
3187 DBG(dev
, "can't get request data pool\n");
3192 /* EP0 in dma regs = dev control regs */
3193 dev
->ep
[UDC_EP0IN_IX
].dma
= &dev
->regs
->ctl
;
3195 /* dma desc for setup data */
3196 dev
->stp_requests
= dma_pool_create("setup requests", NULL
,
3197 sizeof(struct udc_stp_dma
), 0, 0);
3198 if (!dev
->stp_requests
) {
3199 DBG(dev
, "can't get stp request pool\n");
3204 td_stp
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3205 &dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3206 if (td_stp
== NULL
) {
3210 dev
->ep
[UDC_EP0OUT_IX
].td_stp
= td_stp
;
3212 /* data: 0 packets !? */
3213 td_data
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3214 &dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3215 if (td_data
== NULL
) {
3219 dev
->ep
[UDC_EP0OUT_IX
].td
= td_data
;
3226 /* Called by pci bus driver to init pci context */
3227 static int udc_pci_probe(
3228 struct pci_dev
*pdev
,
3229 const struct pci_device_id
*id
3233 unsigned long resource
;
3239 dev_dbg(&pdev
->dev
, "already probed\n");
3244 dev
= kzalloc(sizeof(struct udc
), GFP_KERNEL
);
3251 if (pci_enable_device(pdev
) < 0) {
3259 /* PCI resource allocation */
3260 resource
= pci_resource_start(pdev
, 0);
3261 len
= pci_resource_len(pdev
, 0);
3263 if (!request_mem_region(resource
, len
, name
)) {
3264 dev_dbg(&pdev
->dev
, "pci device used already\n");
3270 dev
->mem_region
= 1;
3272 dev
->virt_addr
= ioremap_nocache(resource
, len
);
3273 if (dev
->virt_addr
== NULL
) {
3274 dev_dbg(&pdev
->dev
, "start address cannot be mapped\n");
3282 dev_err(&dev
->pdev
->dev
, "irq not set\n");
3289 if (request_irq(pdev
->irq
, udc_irq
, IRQF_SHARED
, name
, dev
) != 0) {
3290 dev_dbg(&dev
->pdev
->dev
, "request_irq(%d) fail\n", pdev
->irq
);
3296 dev
->irq_registered
= 1;
3298 pci_set_drvdata(pdev
, dev
);
3300 /* chip revision for Hs AMD5536 */
3301 dev
->chiprev
= pdev
->revision
;
3303 pci_set_master(pdev
);
3304 pci_try_set_mwi(pdev
);
3306 /* init dma pools */
3308 retval
= init_dma_pools(dev
);
3313 dev
->phys_addr
= resource
;
3314 dev
->irq
= pdev
->irq
;
3316 dev
->gadget
.dev
.parent
= &pdev
->dev
;
3317 dev
->gadget
.dev
.dma_mask
= pdev
->dev
.dma_mask
;
3319 /* general probing */
3320 if (udc_probe(dev
) == 0)
3325 udc_pci_remove(pdev
);
3330 static int udc_probe(struct udc
*dev
)
3336 /* mark timer as not initialized */
3338 udc_pollstall_timer
.data
= 0;
3340 /* device struct setup */
3341 spin_lock_init(&dev
->lock
);
3342 dev
->gadget
.ops
= &udc_ops
;
3344 dev_set_name(&dev
->gadget
.dev
, "gadget");
3345 dev
->gadget
.dev
.release
= gadget_release
;
3346 dev
->gadget
.name
= name
;
3347 dev
->gadget
.name
= name
;
3348 dev
->gadget
.is_dualspeed
= 1;
3350 /* udc csr registers base */
3351 dev
->csr
= dev
->virt_addr
+ UDC_CSR_ADDR
;
3352 /* dev registers base */
3353 dev
->regs
= dev
->virt_addr
+ UDC_DEVCFG_ADDR
;
3354 /* ep registers base */
3355 dev
->ep_regs
= dev
->virt_addr
+ UDC_EPREGS_ADDR
;
3357 dev
->rxfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_RXFIFO_ADDR
);
3358 dev
->txfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_TXFIFO_ADDR
);
3360 /* init registers, interrupts, ... */
3361 startup_registers(dev
);
3363 dev_info(&dev
->pdev
->dev
, "%s\n", mod_desc
);
3365 snprintf(tmp
, sizeof tmp
, "%d", dev
->irq
);
3366 dev_info(&dev
->pdev
->dev
,
3367 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3368 tmp
, dev
->phys_addr
, dev
->chiprev
,
3369 (dev
->chiprev
== UDC_HSA0_REV
) ? "A0" : "B1");
3370 strcpy(tmp
, UDC_DRIVER_VERSION_STRING
);
3371 if (dev
->chiprev
== UDC_HSA0_REV
) {
3372 dev_err(&dev
->pdev
->dev
, "chip revision is A0; too old\n");
3376 dev_info(&dev
->pdev
->dev
,
3377 "driver version: %s(for Geode5536 B1)\n", tmp
);
3380 retval
= device_register(&dev
->gadget
.dev
);
3385 init_timer(&udc_timer
);
3386 udc_timer
.function
= udc_timer_function
;
3388 /* timer pollstall init */
3389 init_timer(&udc_pollstall_timer
);
3390 udc_pollstall_timer
.function
= udc_pollstall_timer_function
;
3391 udc_pollstall_timer
.data
= 1;
3394 reg
= readl(&dev
->regs
->ctl
);
3395 reg
|= AMD_BIT(UDC_DEVCTL_SD
);
3396 writel(reg
, &dev
->regs
->ctl
);
3398 /* print dev register info */
3407 /* Initiates a remote wakeup */
3408 static int udc_remote_wakeup(struct udc
*dev
)
3410 unsigned long flags
;
3413 DBG(dev
, "UDC initiates remote wakeup\n");
3415 spin_lock_irqsave(&dev
->lock
, flags
);
3417 tmp
= readl(&dev
->regs
->ctl
);
3418 tmp
|= AMD_BIT(UDC_DEVCTL_RES
);
3419 writel(tmp
, &dev
->regs
->ctl
);
3420 tmp
&= AMD_CLEAR_BIT(UDC_DEVCTL_RES
);
3421 writel(tmp
, &dev
->regs
->ctl
);
3423 spin_unlock_irqrestore(&dev
->lock
, flags
);
3427 /* PCI device parameters */
3428 static const struct pci_device_id pci_id
[] = {
3430 PCI_DEVICE(PCI_VENDOR_ID_AMD
, 0x2096),
3431 .class = (PCI_CLASS_SERIAL_USB
<< 8) | 0xfe,
3432 .class_mask
= 0xffffffff,
3436 MODULE_DEVICE_TABLE(pci
, pci_id
);
3439 static struct pci_driver udc_pci_driver
= {
3440 .name
= (char *) name
,
3442 .probe
= udc_pci_probe
,
3443 .remove
= udc_pci_remove
,
3447 static int __init
init(void)
3449 return pci_register_driver(&udc_pci_driver
);
3454 static void __exit
cleanup(void)
3456 pci_unregister_driver(&udc_pci_driver
);
3458 module_exit(cleanup
);
3460 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION
);
3461 MODULE_AUTHOR("Thomas Dahlmann");
3462 MODULE_LICENSE("GPL");