fuse: readdirplus: fix dentry leak
[linux/fpc-iii.git] / fs / f2fs / data.c
blob035f9a345cdf23446abbdaa26e8ac28340b715a0
1 /*
2 * fs/f2fs/data.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include <trace/events/f2fs.h>
28 * Lock ordering for the change of data block address:
29 * ->data_page
30 * ->node_page
31 * update block addresses in the node page
33 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
35 struct f2fs_node *rn;
36 __le32 *addr_array;
37 struct page *node_page = dn->node_page;
38 unsigned int ofs_in_node = dn->ofs_in_node;
40 wait_on_page_writeback(node_page);
42 rn = (struct f2fs_node *)page_address(node_page);
44 /* Get physical address of data block */
45 addr_array = blkaddr_in_node(rn);
46 addr_array[ofs_in_node] = cpu_to_le32(new_addr);
47 set_page_dirty(node_page);
50 int reserve_new_block(struct dnode_of_data *dn)
52 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
54 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
55 return -EPERM;
56 if (!inc_valid_block_count(sbi, dn->inode, 1))
57 return -ENOSPC;
59 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
61 __set_data_blkaddr(dn, NEW_ADDR);
62 dn->data_blkaddr = NEW_ADDR;
63 sync_inode_page(dn);
64 return 0;
67 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
68 struct buffer_head *bh_result)
70 struct f2fs_inode_info *fi = F2FS_I(inode);
71 #ifdef CONFIG_F2FS_STAT_FS
72 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
73 #endif
74 pgoff_t start_fofs, end_fofs;
75 block_t start_blkaddr;
77 read_lock(&fi->ext.ext_lock);
78 if (fi->ext.len == 0) {
79 read_unlock(&fi->ext.ext_lock);
80 return 0;
83 #ifdef CONFIG_F2FS_STAT_FS
84 sbi->total_hit_ext++;
85 #endif
86 start_fofs = fi->ext.fofs;
87 end_fofs = fi->ext.fofs + fi->ext.len - 1;
88 start_blkaddr = fi->ext.blk_addr;
90 if (pgofs >= start_fofs && pgofs <= end_fofs) {
91 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
92 size_t count;
94 clear_buffer_new(bh_result);
95 map_bh(bh_result, inode->i_sb,
96 start_blkaddr + pgofs - start_fofs);
97 count = end_fofs - pgofs + 1;
98 if (count < (UINT_MAX >> blkbits))
99 bh_result->b_size = (count << blkbits);
100 else
101 bh_result->b_size = UINT_MAX;
103 #ifdef CONFIG_F2FS_STAT_FS
104 sbi->read_hit_ext++;
105 #endif
106 read_unlock(&fi->ext.ext_lock);
107 return 1;
109 read_unlock(&fi->ext.ext_lock);
110 return 0;
113 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
115 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
116 pgoff_t fofs, start_fofs, end_fofs;
117 block_t start_blkaddr, end_blkaddr;
119 BUG_ON(blk_addr == NEW_ADDR);
120 fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
122 /* Update the page address in the parent node */
123 __set_data_blkaddr(dn, blk_addr);
125 write_lock(&fi->ext.ext_lock);
127 start_fofs = fi->ext.fofs;
128 end_fofs = fi->ext.fofs + fi->ext.len - 1;
129 start_blkaddr = fi->ext.blk_addr;
130 end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
132 /* Drop and initialize the matched extent */
133 if (fi->ext.len == 1 && fofs == start_fofs)
134 fi->ext.len = 0;
136 /* Initial extent */
137 if (fi->ext.len == 0) {
138 if (blk_addr != NULL_ADDR) {
139 fi->ext.fofs = fofs;
140 fi->ext.blk_addr = blk_addr;
141 fi->ext.len = 1;
143 goto end_update;
146 /* Front merge */
147 if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
148 fi->ext.fofs--;
149 fi->ext.blk_addr--;
150 fi->ext.len++;
151 goto end_update;
154 /* Back merge */
155 if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
156 fi->ext.len++;
157 goto end_update;
160 /* Split the existing extent */
161 if (fi->ext.len > 1 &&
162 fofs >= start_fofs && fofs <= end_fofs) {
163 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
164 fi->ext.len = fofs - start_fofs;
165 } else {
166 fi->ext.fofs = fofs + 1;
167 fi->ext.blk_addr = start_blkaddr +
168 fofs - start_fofs + 1;
169 fi->ext.len -= fofs - start_fofs + 1;
171 goto end_update;
173 write_unlock(&fi->ext.ext_lock);
174 return;
176 end_update:
177 write_unlock(&fi->ext.ext_lock);
178 sync_inode_page(dn);
179 return;
182 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
184 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
185 struct address_space *mapping = inode->i_mapping;
186 struct dnode_of_data dn;
187 struct page *page;
188 int err;
190 page = find_get_page(mapping, index);
191 if (page && PageUptodate(page))
192 return page;
193 f2fs_put_page(page, 0);
195 set_new_dnode(&dn, inode, NULL, NULL, 0);
196 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
197 if (err)
198 return ERR_PTR(err);
199 f2fs_put_dnode(&dn);
201 if (dn.data_blkaddr == NULL_ADDR)
202 return ERR_PTR(-ENOENT);
204 /* By fallocate(), there is no cached page, but with NEW_ADDR */
205 if (dn.data_blkaddr == NEW_ADDR)
206 return ERR_PTR(-EINVAL);
208 page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
209 if (!page)
210 return ERR_PTR(-ENOMEM);
212 if (PageUptodate(page)) {
213 unlock_page(page);
214 return page;
217 err = f2fs_readpage(sbi, page, dn.data_blkaddr,
218 sync ? READ_SYNC : READA);
219 if (sync) {
220 wait_on_page_locked(page);
221 if (!PageUptodate(page)) {
222 f2fs_put_page(page, 0);
223 return ERR_PTR(-EIO);
226 return page;
230 * If it tries to access a hole, return an error.
231 * Because, the callers, functions in dir.c and GC, should be able to know
232 * whether this page exists or not.
234 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
236 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
237 struct address_space *mapping = inode->i_mapping;
238 struct dnode_of_data dn;
239 struct page *page;
240 int err;
242 repeat:
243 page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
244 if (!page)
245 return ERR_PTR(-ENOMEM);
247 set_new_dnode(&dn, inode, NULL, NULL, 0);
248 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
249 if (err) {
250 f2fs_put_page(page, 1);
251 return ERR_PTR(err);
253 f2fs_put_dnode(&dn);
255 if (dn.data_blkaddr == NULL_ADDR) {
256 f2fs_put_page(page, 1);
257 return ERR_PTR(-ENOENT);
260 if (PageUptodate(page))
261 return page;
263 BUG_ON(dn.data_blkaddr == NEW_ADDR);
264 BUG_ON(dn.data_blkaddr == NULL_ADDR);
266 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
267 if (err)
268 return ERR_PTR(err);
270 lock_page(page);
271 if (!PageUptodate(page)) {
272 f2fs_put_page(page, 1);
273 return ERR_PTR(-EIO);
275 if (page->mapping != mapping) {
276 f2fs_put_page(page, 1);
277 goto repeat;
279 return page;
283 * Caller ensures that this data page is never allocated.
284 * A new zero-filled data page is allocated in the page cache.
286 * Also, caller should grab and release a mutex by calling mutex_lock_op() and
287 * mutex_unlock_op().
288 * Note that, npage is set only by make_empty_dir.
290 struct page *get_new_data_page(struct inode *inode,
291 struct page *npage, pgoff_t index, bool new_i_size)
293 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
294 struct address_space *mapping = inode->i_mapping;
295 struct page *page;
296 struct dnode_of_data dn;
297 int err;
299 set_new_dnode(&dn, inode, npage, npage, 0);
300 err = get_dnode_of_data(&dn, index, ALLOC_NODE);
301 if (err)
302 return ERR_PTR(err);
304 if (dn.data_blkaddr == NULL_ADDR) {
305 if (reserve_new_block(&dn)) {
306 if (!npage)
307 f2fs_put_dnode(&dn);
308 return ERR_PTR(-ENOSPC);
311 if (!npage)
312 f2fs_put_dnode(&dn);
313 repeat:
314 page = grab_cache_page(mapping, index);
315 if (!page)
316 return ERR_PTR(-ENOMEM);
318 if (PageUptodate(page))
319 return page;
321 if (dn.data_blkaddr == NEW_ADDR) {
322 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
323 SetPageUptodate(page);
324 } else {
325 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
326 if (err)
327 return ERR_PTR(err);
328 lock_page(page);
329 if (!PageUptodate(page)) {
330 f2fs_put_page(page, 1);
331 return ERR_PTR(-EIO);
333 if (page->mapping != mapping) {
334 f2fs_put_page(page, 1);
335 goto repeat;
339 if (new_i_size &&
340 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
341 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
342 /* Only the directory inode sets new_i_size */
343 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
344 mark_inode_dirty_sync(inode);
346 return page;
349 static void read_end_io(struct bio *bio, int err)
351 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
352 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
354 do {
355 struct page *page = bvec->bv_page;
357 if (--bvec >= bio->bi_io_vec)
358 prefetchw(&bvec->bv_page->flags);
360 if (uptodate) {
361 SetPageUptodate(page);
362 } else {
363 ClearPageUptodate(page);
364 SetPageError(page);
366 unlock_page(page);
367 } while (bvec >= bio->bi_io_vec);
368 kfree(bio->bi_private);
369 bio_put(bio);
373 * Fill the locked page with data located in the block address.
374 * Return unlocked page.
376 int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
377 block_t blk_addr, int type)
379 struct block_device *bdev = sbi->sb->s_bdev;
380 struct bio *bio;
382 trace_f2fs_readpage(page, blk_addr, type);
384 down_read(&sbi->bio_sem);
386 /* Allocate a new bio */
387 bio = f2fs_bio_alloc(bdev, 1);
389 /* Initialize the bio */
390 bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
391 bio->bi_end_io = read_end_io;
393 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
394 kfree(bio->bi_private);
395 bio_put(bio);
396 up_read(&sbi->bio_sem);
397 f2fs_put_page(page, 1);
398 return -EFAULT;
401 submit_bio(type, bio);
402 up_read(&sbi->bio_sem);
403 return 0;
407 * This function should be used by the data read flow only where it
408 * does not check the "create" flag that indicates block allocation.
409 * The reason for this special functionality is to exploit VFS readahead
410 * mechanism.
412 static int get_data_block_ro(struct inode *inode, sector_t iblock,
413 struct buffer_head *bh_result, int create)
415 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
416 unsigned maxblocks = bh_result->b_size >> blkbits;
417 struct dnode_of_data dn;
418 pgoff_t pgofs;
419 int err;
421 /* Get the page offset from the block offset(iblock) */
422 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
424 if (check_extent_cache(inode, pgofs, bh_result)) {
425 trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
426 return 0;
429 /* When reading holes, we need its node page */
430 set_new_dnode(&dn, inode, NULL, NULL, 0);
431 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
432 if (err) {
433 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
434 return (err == -ENOENT) ? 0 : err;
437 /* It does not support data allocation */
438 BUG_ON(create);
440 if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
441 int i;
442 unsigned int end_offset;
444 end_offset = IS_INODE(dn.node_page) ?
445 ADDRS_PER_INODE :
446 ADDRS_PER_BLOCK;
448 clear_buffer_new(bh_result);
450 /* Give more consecutive addresses for the read ahead */
451 for (i = 0; i < end_offset - dn.ofs_in_node; i++)
452 if (((datablock_addr(dn.node_page,
453 dn.ofs_in_node + i))
454 != (dn.data_blkaddr + i)) || maxblocks == i)
455 break;
456 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
457 bh_result->b_size = (i << blkbits);
459 f2fs_put_dnode(&dn);
460 trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
461 return 0;
464 static int f2fs_read_data_page(struct file *file, struct page *page)
466 return mpage_readpage(page, get_data_block_ro);
469 static int f2fs_read_data_pages(struct file *file,
470 struct address_space *mapping,
471 struct list_head *pages, unsigned nr_pages)
473 return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
476 int do_write_data_page(struct page *page)
478 struct inode *inode = page->mapping->host;
479 block_t old_blk_addr, new_blk_addr;
480 struct dnode_of_data dn;
481 int err = 0;
483 set_new_dnode(&dn, inode, NULL, NULL, 0);
484 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
485 if (err)
486 return err;
488 old_blk_addr = dn.data_blkaddr;
490 /* This page is already truncated */
491 if (old_blk_addr == NULL_ADDR)
492 goto out_writepage;
494 set_page_writeback(page);
497 * If current allocation needs SSR,
498 * it had better in-place writes for updated data.
500 if (unlikely(old_blk_addr != NEW_ADDR &&
501 !is_cold_data(page) &&
502 need_inplace_update(inode))) {
503 rewrite_data_page(F2FS_SB(inode->i_sb), page,
504 old_blk_addr);
505 } else {
506 write_data_page(inode, page, &dn,
507 old_blk_addr, &new_blk_addr);
508 update_extent_cache(new_blk_addr, &dn);
510 out_writepage:
511 f2fs_put_dnode(&dn);
512 return err;
515 static int f2fs_write_data_page(struct page *page,
516 struct writeback_control *wbc)
518 struct inode *inode = page->mapping->host;
519 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
520 loff_t i_size = i_size_read(inode);
521 const pgoff_t end_index = ((unsigned long long) i_size)
522 >> PAGE_CACHE_SHIFT;
523 unsigned offset;
524 bool need_balance_fs = false;
525 int err = 0;
527 if (page->index < end_index)
528 goto write;
531 * If the offset is out-of-range of file size,
532 * this page does not have to be written to disk.
534 offset = i_size & (PAGE_CACHE_SIZE - 1);
535 if ((page->index >= end_index + 1) || !offset) {
536 if (S_ISDIR(inode->i_mode)) {
537 dec_page_count(sbi, F2FS_DIRTY_DENTS);
538 inode_dec_dirty_dents(inode);
540 goto out;
543 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
544 write:
545 if (sbi->por_doing) {
546 err = AOP_WRITEPAGE_ACTIVATE;
547 goto redirty_out;
550 /* Dentry blocks are controlled by checkpoint */
551 if (S_ISDIR(inode->i_mode)) {
552 dec_page_count(sbi, F2FS_DIRTY_DENTS);
553 inode_dec_dirty_dents(inode);
554 err = do_write_data_page(page);
555 } else {
556 int ilock = mutex_lock_op(sbi);
557 err = do_write_data_page(page);
558 mutex_unlock_op(sbi, ilock);
559 need_balance_fs = true;
561 if (err == -ENOENT)
562 goto out;
563 else if (err)
564 goto redirty_out;
566 if (wbc->for_reclaim)
567 f2fs_submit_bio(sbi, DATA, true);
569 clear_cold_data(page);
570 out:
571 unlock_page(page);
572 if (need_balance_fs)
573 f2fs_balance_fs(sbi);
574 return 0;
576 redirty_out:
577 wbc->pages_skipped++;
578 set_page_dirty(page);
579 return err;
582 #define MAX_DESIRED_PAGES_WP 4096
584 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
585 void *data)
587 struct address_space *mapping = data;
588 int ret = mapping->a_ops->writepage(page, wbc);
589 mapping_set_error(mapping, ret);
590 return ret;
593 static int f2fs_write_data_pages(struct address_space *mapping,
594 struct writeback_control *wbc)
596 struct inode *inode = mapping->host;
597 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
598 bool locked = false;
599 int ret;
600 long excess_nrtw = 0, desired_nrtw;
602 /* deal with chardevs and other special file */
603 if (!mapping->a_ops->writepage)
604 return 0;
606 if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
607 desired_nrtw = MAX_DESIRED_PAGES_WP;
608 excess_nrtw = desired_nrtw - wbc->nr_to_write;
609 wbc->nr_to_write = desired_nrtw;
612 if (!S_ISDIR(inode->i_mode)) {
613 mutex_lock(&sbi->writepages);
614 locked = true;
616 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
617 if (locked)
618 mutex_unlock(&sbi->writepages);
619 f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
621 remove_dirty_dir_inode(inode);
623 wbc->nr_to_write -= excess_nrtw;
624 return ret;
627 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
628 loff_t pos, unsigned len, unsigned flags,
629 struct page **pagep, void **fsdata)
631 struct inode *inode = mapping->host;
632 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
633 struct page *page;
634 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
635 struct dnode_of_data dn;
636 int err = 0;
637 int ilock;
639 /* for nobh_write_end */
640 *fsdata = NULL;
642 f2fs_balance_fs(sbi);
643 repeat:
644 page = grab_cache_page_write_begin(mapping, index, flags);
645 if (!page)
646 return -ENOMEM;
647 *pagep = page;
649 ilock = mutex_lock_op(sbi);
651 set_new_dnode(&dn, inode, NULL, NULL, 0);
652 err = get_dnode_of_data(&dn, index, ALLOC_NODE);
653 if (err)
654 goto err;
656 if (dn.data_blkaddr == NULL_ADDR)
657 err = reserve_new_block(&dn);
659 f2fs_put_dnode(&dn);
660 if (err)
661 goto err;
663 mutex_unlock_op(sbi, ilock);
665 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
666 return 0;
668 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
669 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
670 unsigned end = start + len;
672 /* Reading beyond i_size is simple: memset to zero */
673 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
674 goto out;
677 if (dn.data_blkaddr == NEW_ADDR) {
678 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
679 } else {
680 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
681 if (err)
682 return err;
683 lock_page(page);
684 if (!PageUptodate(page)) {
685 f2fs_put_page(page, 1);
686 return -EIO;
688 if (page->mapping != mapping) {
689 f2fs_put_page(page, 1);
690 goto repeat;
693 out:
694 SetPageUptodate(page);
695 clear_cold_data(page);
696 return 0;
698 err:
699 mutex_unlock_op(sbi, ilock);
700 f2fs_put_page(page, 1);
701 return err;
704 static int f2fs_write_end(struct file *file,
705 struct address_space *mapping,
706 loff_t pos, unsigned len, unsigned copied,
707 struct page *page, void *fsdata)
709 struct inode *inode = page->mapping->host;
711 SetPageUptodate(page);
712 set_page_dirty(page);
714 if (pos + copied > i_size_read(inode)) {
715 i_size_write(inode, pos + copied);
716 mark_inode_dirty(inode);
717 update_inode_page(inode);
720 unlock_page(page);
721 page_cache_release(page);
722 return copied;
725 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
726 const struct iovec *iov, loff_t offset, unsigned long nr_segs)
728 struct file *file = iocb->ki_filp;
729 struct inode *inode = file->f_mapping->host;
731 if (rw == WRITE)
732 return 0;
734 /* Needs synchronization with the cleaner */
735 return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
736 get_data_block_ro);
739 static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
740 unsigned int length)
742 struct inode *inode = page->mapping->host;
743 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
744 if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
745 dec_page_count(sbi, F2FS_DIRTY_DENTS);
746 inode_dec_dirty_dents(inode);
748 ClearPagePrivate(page);
751 static int f2fs_release_data_page(struct page *page, gfp_t wait)
753 ClearPagePrivate(page);
754 return 1;
757 static int f2fs_set_data_page_dirty(struct page *page)
759 struct address_space *mapping = page->mapping;
760 struct inode *inode = mapping->host;
762 SetPageUptodate(page);
763 if (!PageDirty(page)) {
764 __set_page_dirty_nobuffers(page);
765 set_dirty_dir_page(inode, page);
766 return 1;
768 return 0;
771 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
773 return generic_block_bmap(mapping, block, get_data_block_ro);
776 const struct address_space_operations f2fs_dblock_aops = {
777 .readpage = f2fs_read_data_page,
778 .readpages = f2fs_read_data_pages,
779 .writepage = f2fs_write_data_page,
780 .writepages = f2fs_write_data_pages,
781 .write_begin = f2fs_write_begin,
782 .write_end = f2fs_write_end,
783 .set_page_dirty = f2fs_set_data_page_dirty,
784 .invalidatepage = f2fs_invalidate_data_page,
785 .releasepage = f2fs_release_data_page,
786 .direct_IO = f2fs_direct_IO,
787 .bmap = f2fs_bmap,