2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #define pr_fmt(fmt) "kexec: " fmt
11 #include <linux/capability.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
41 #include <asm/uaccess.h>
43 #include <asm/sections.h>
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
48 /* Per cpu memory for storing cpu states in case of system crash. */
49 note_buf_t __percpu
*crash_notes
;
51 /* vmcoreinfo stuff */
52 static unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
53 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
54 size_t vmcoreinfo_size
;
55 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
57 /* Flag to indicate we are going to kexec a new kernel */
58 bool kexec_in_progress
= false;
61 * Declare these symbols weak so that if architecture provides a purgatory,
62 * these will be overridden.
64 char __weak kexec_purgatory
[0];
65 size_t __weak kexec_purgatory_size
= 0;
67 #ifdef CONFIG_KEXEC_FILE
68 static int kexec_calculate_store_digests(struct kimage
*image
);
71 /* Location of the reserved area for the crash kernel */
72 struct resource crashk_res
= {
73 .name
= "Crash kernel",
76 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
78 struct resource crashk_low_res
= {
79 .name
= "Crash kernel",
82 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
85 int kexec_should_crash(struct task_struct
*p
)
87 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
93 * When kexec transitions to the new kernel there is a one-to-one
94 * mapping between physical and virtual addresses. On processors
95 * where you can disable the MMU this is trivial, and easy. For
96 * others it is still a simple predictable page table to setup.
98 * In that environment kexec copies the new kernel to its final
99 * resting place. This means I can only support memory whose
100 * physical address can fit in an unsigned long. In particular
101 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
102 * If the assembly stub has more restrictive requirements
103 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
104 * defined more restrictively in <asm/kexec.h>.
106 * The code for the transition from the current kernel to the
107 * the new kernel is placed in the control_code_buffer, whose size
108 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
109 * page of memory is necessary, but some architectures require more.
110 * Because this memory must be identity mapped in the transition from
111 * virtual to physical addresses it must live in the range
112 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
115 * The assembly stub in the control code buffer is passed a linked list
116 * of descriptor pages detailing the source pages of the new kernel,
117 * and the destination addresses of those source pages. As this data
118 * structure is not used in the context of the current OS, it must
121 * The code has been made to work with highmem pages and will use a
122 * destination page in its final resting place (if it happens
123 * to allocate it). The end product of this is that most of the
124 * physical address space, and most of RAM can be used.
126 * Future directions include:
127 * - allocating a page table with the control code buffer identity
128 * mapped, to simplify machine_kexec and make kexec_on_panic more
133 * KIMAGE_NO_DEST is an impossible destination address..., for
134 * allocating pages whose destination address we do not care about.
136 #define KIMAGE_NO_DEST (-1UL)
138 static int kimage_is_destination_range(struct kimage
*image
,
139 unsigned long start
, unsigned long end
);
140 static struct page
*kimage_alloc_page(struct kimage
*image
,
144 static int copy_user_segment_list(struct kimage
*image
,
145 unsigned long nr_segments
,
146 struct kexec_segment __user
*segments
)
149 size_t segment_bytes
;
151 /* Read in the segments */
152 image
->nr_segments
= nr_segments
;
153 segment_bytes
= nr_segments
* sizeof(*segments
);
154 ret
= copy_from_user(image
->segment
, segments
, segment_bytes
);
161 static int sanity_check_segment_list(struct kimage
*image
)
164 unsigned long nr_segments
= image
->nr_segments
;
167 * Verify we have good destination addresses. The caller is
168 * responsible for making certain we don't attempt to load
169 * the new image into invalid or reserved areas of RAM. This
170 * just verifies it is an address we can use.
172 * Since the kernel does everything in page size chunks ensure
173 * the destination addresses are page aligned. Too many
174 * special cases crop of when we don't do this. The most
175 * insidious is getting overlapping destination addresses
176 * simply because addresses are changed to page size
179 result
= -EADDRNOTAVAIL
;
180 for (i
= 0; i
< nr_segments
; i
++) {
181 unsigned long mstart
, mend
;
183 mstart
= image
->segment
[i
].mem
;
184 mend
= mstart
+ image
->segment
[i
].memsz
;
185 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
187 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
191 /* Verify our destination addresses do not overlap.
192 * If we alloed overlapping destination addresses
193 * through very weird things can happen with no
194 * easy explanation as one segment stops on another.
197 for (i
= 0; i
< nr_segments
; i
++) {
198 unsigned long mstart
, mend
;
201 mstart
= image
->segment
[i
].mem
;
202 mend
= mstart
+ image
->segment
[i
].memsz
;
203 for (j
= 0; j
< i
; j
++) {
204 unsigned long pstart
, pend
;
205 pstart
= image
->segment
[j
].mem
;
206 pend
= pstart
+ image
->segment
[j
].memsz
;
207 /* Do the segments overlap ? */
208 if ((mend
> pstart
) && (mstart
< pend
))
213 /* Ensure our buffer sizes are strictly less than
214 * our memory sizes. This should always be the case,
215 * and it is easier to check up front than to be surprised
219 for (i
= 0; i
< nr_segments
; i
++) {
220 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
225 * Verify we have good destination addresses. Normally
226 * the caller is responsible for making certain we don't
227 * attempt to load the new image into invalid or reserved
228 * areas of RAM. But crash kernels are preloaded into a
229 * reserved area of ram. We must ensure the addresses
230 * are in the reserved area otherwise preloading the
231 * kernel could corrupt things.
234 if (image
->type
== KEXEC_TYPE_CRASH
) {
235 result
= -EADDRNOTAVAIL
;
236 for (i
= 0; i
< nr_segments
; i
++) {
237 unsigned long mstart
, mend
;
239 mstart
= image
->segment
[i
].mem
;
240 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
241 /* Ensure we are within the crash kernel limits */
242 if ((mstart
< crashk_res
.start
) ||
243 (mend
> crashk_res
.end
))
251 static struct kimage
*do_kimage_alloc_init(void)
253 struct kimage
*image
;
255 /* Allocate a controlling structure */
256 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
261 image
->entry
= &image
->head
;
262 image
->last_entry
= &image
->head
;
263 image
->control_page
= ~0; /* By default this does not apply */
264 image
->type
= KEXEC_TYPE_DEFAULT
;
266 /* Initialize the list of control pages */
267 INIT_LIST_HEAD(&image
->control_pages
);
269 /* Initialize the list of destination pages */
270 INIT_LIST_HEAD(&image
->dest_pages
);
272 /* Initialize the list of unusable pages */
273 INIT_LIST_HEAD(&image
->unusable_pages
);
278 static void kimage_free_page_list(struct list_head
*list
);
280 static int kimage_alloc_init(struct kimage
**rimage
, unsigned long entry
,
281 unsigned long nr_segments
,
282 struct kexec_segment __user
*segments
,
286 struct kimage
*image
;
287 bool kexec_on_panic
= flags
& KEXEC_ON_CRASH
;
289 if (kexec_on_panic
) {
290 /* Verify we have a valid entry point */
291 if ((entry
< crashk_res
.start
) || (entry
> crashk_res
.end
))
292 return -EADDRNOTAVAIL
;
295 /* Allocate and initialize a controlling structure */
296 image
= do_kimage_alloc_init();
300 image
->start
= entry
;
302 ret
= copy_user_segment_list(image
, nr_segments
, segments
);
306 ret
= sanity_check_segment_list(image
);
310 /* Enable the special crash kernel control page allocation policy. */
311 if (kexec_on_panic
) {
312 image
->control_page
= crashk_res
.start
;
313 image
->type
= KEXEC_TYPE_CRASH
;
317 * Find a location for the control code buffer, and add it
318 * the vector of segments so that it's pages will also be
319 * counted as destination pages.
322 image
->control_code_page
= kimage_alloc_control_pages(image
,
323 get_order(KEXEC_CONTROL_PAGE_SIZE
));
324 if (!image
->control_code_page
) {
325 pr_err("Could not allocate control_code_buffer\n");
329 if (!kexec_on_panic
) {
330 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
331 if (!image
->swap_page
) {
332 pr_err("Could not allocate swap buffer\n");
333 goto out_free_control_pages
;
339 out_free_control_pages
:
340 kimage_free_page_list(&image
->control_pages
);
346 #ifdef CONFIG_KEXEC_FILE
347 static int copy_file_from_fd(int fd
, void **buf
, unsigned long *buf_len
)
349 struct fd f
= fdget(fd
);
358 ret
= vfs_getattr(&f
.file
->f_path
, &stat
);
362 if (stat
.size
> INT_MAX
) {
367 /* Don't hand 0 to vmalloc, it whines. */
368 if (stat
.size
== 0) {
373 *buf
= vmalloc(stat
.size
);
380 while (pos
< stat
.size
) {
381 bytes
= kernel_read(f
.file
, pos
, (char *)(*buf
) + pos
,
394 if (pos
!= stat
.size
) {
406 /* Architectures can provide this probe function */
407 int __weak
arch_kexec_kernel_image_probe(struct kimage
*image
, void *buf
,
408 unsigned long buf_len
)
413 void * __weak
arch_kexec_kernel_image_load(struct kimage
*image
)
415 return ERR_PTR(-ENOEXEC
);
418 void __weak
arch_kimage_file_post_load_cleanup(struct kimage
*image
)
422 int __weak
arch_kexec_kernel_verify_sig(struct kimage
*image
, void *buf
,
423 unsigned long buf_len
)
425 return -EKEYREJECTED
;
428 /* Apply relocations of type RELA */
430 arch_kexec_apply_relocations_add(const Elf_Ehdr
*ehdr
, Elf_Shdr
*sechdrs
,
433 pr_err("RELA relocation unsupported.\n");
437 /* Apply relocations of type REL */
439 arch_kexec_apply_relocations(const Elf_Ehdr
*ehdr
, Elf_Shdr
*sechdrs
,
442 pr_err("REL relocation unsupported.\n");
447 * Free up memory used by kernel, initrd, and comand line. This is temporary
448 * memory allocation which is not needed any more after these buffers have
449 * been loaded into separate segments and have been copied elsewhere.
451 static void kimage_file_post_load_cleanup(struct kimage
*image
)
453 struct purgatory_info
*pi
= &image
->purgatory_info
;
455 vfree(image
->kernel_buf
);
456 image
->kernel_buf
= NULL
;
458 vfree(image
->initrd_buf
);
459 image
->initrd_buf
= NULL
;
461 kfree(image
->cmdline_buf
);
462 image
->cmdline_buf
= NULL
;
464 vfree(pi
->purgatory_buf
);
465 pi
->purgatory_buf
= NULL
;
470 /* See if architecture has anything to cleanup post load */
471 arch_kimage_file_post_load_cleanup(image
);
474 * Above call should have called into bootloader to free up
475 * any data stored in kimage->image_loader_data. It should
476 * be ok now to free it up.
478 kfree(image
->image_loader_data
);
479 image
->image_loader_data
= NULL
;
483 * In file mode list of segments is prepared by kernel. Copy relevant
484 * data from user space, do error checking, prepare segment list
487 kimage_file_prepare_segments(struct kimage
*image
, int kernel_fd
, int initrd_fd
,
488 const char __user
*cmdline_ptr
,
489 unsigned long cmdline_len
, unsigned flags
)
494 ret
= copy_file_from_fd(kernel_fd
, &image
->kernel_buf
,
495 &image
->kernel_buf_len
);
499 /* Call arch image probe handlers */
500 ret
= arch_kexec_kernel_image_probe(image
, image
->kernel_buf
,
501 image
->kernel_buf_len
);
506 #ifdef CONFIG_KEXEC_VERIFY_SIG
507 ret
= arch_kexec_kernel_verify_sig(image
, image
->kernel_buf
,
508 image
->kernel_buf_len
);
510 pr_debug("kernel signature verification failed.\n");
513 pr_debug("kernel signature verification successful.\n");
515 /* It is possible that there no initramfs is being loaded */
516 if (!(flags
& KEXEC_FILE_NO_INITRAMFS
)) {
517 ret
= copy_file_from_fd(initrd_fd
, &image
->initrd_buf
,
518 &image
->initrd_buf_len
);
524 image
->cmdline_buf
= kzalloc(cmdline_len
, GFP_KERNEL
);
525 if (!image
->cmdline_buf
) {
530 ret
= copy_from_user(image
->cmdline_buf
, cmdline_ptr
,
537 image
->cmdline_buf_len
= cmdline_len
;
539 /* command line should be a string with last byte null */
540 if (image
->cmdline_buf
[cmdline_len
- 1] != '\0') {
546 /* Call arch image load handlers */
547 ldata
= arch_kexec_kernel_image_load(image
);
550 ret
= PTR_ERR(ldata
);
554 image
->image_loader_data
= ldata
;
556 /* In case of error, free up all allocated memory in this function */
558 kimage_file_post_load_cleanup(image
);
563 kimage_file_alloc_init(struct kimage
**rimage
, int kernel_fd
,
564 int initrd_fd
, const char __user
*cmdline_ptr
,
565 unsigned long cmdline_len
, unsigned long flags
)
568 struct kimage
*image
;
569 bool kexec_on_panic
= flags
& KEXEC_FILE_ON_CRASH
;
571 image
= do_kimage_alloc_init();
575 image
->file_mode
= 1;
577 if (kexec_on_panic
) {
578 /* Enable special crash kernel control page alloc policy. */
579 image
->control_page
= crashk_res
.start
;
580 image
->type
= KEXEC_TYPE_CRASH
;
583 ret
= kimage_file_prepare_segments(image
, kernel_fd
, initrd_fd
,
584 cmdline_ptr
, cmdline_len
, flags
);
588 ret
= sanity_check_segment_list(image
);
590 goto out_free_post_load_bufs
;
593 image
->control_code_page
= kimage_alloc_control_pages(image
,
594 get_order(KEXEC_CONTROL_PAGE_SIZE
));
595 if (!image
->control_code_page
) {
596 pr_err("Could not allocate control_code_buffer\n");
597 goto out_free_post_load_bufs
;
600 if (!kexec_on_panic
) {
601 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
602 if (!image
->swap_page
) {
603 pr_err(KERN_ERR
"Could not allocate swap buffer\n");
604 goto out_free_control_pages
;
610 out_free_control_pages
:
611 kimage_free_page_list(&image
->control_pages
);
612 out_free_post_load_bufs
:
613 kimage_file_post_load_cleanup(image
);
618 #else /* CONFIG_KEXEC_FILE */
619 static inline void kimage_file_post_load_cleanup(struct kimage
*image
) { }
620 #endif /* CONFIG_KEXEC_FILE */
622 static int kimage_is_destination_range(struct kimage
*image
,
628 for (i
= 0; i
< image
->nr_segments
; i
++) {
629 unsigned long mstart
, mend
;
631 mstart
= image
->segment
[i
].mem
;
632 mend
= mstart
+ image
->segment
[i
].memsz
;
633 if ((end
> mstart
) && (start
< mend
))
640 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
644 pages
= alloc_pages(gfp_mask
, order
);
646 unsigned int count
, i
;
647 pages
->mapping
= NULL
;
648 set_page_private(pages
, order
);
650 for (i
= 0; i
< count
; i
++)
651 SetPageReserved(pages
+ i
);
657 static void kimage_free_pages(struct page
*page
)
659 unsigned int order
, count
, i
;
661 order
= page_private(page
);
663 for (i
= 0; i
< count
; i
++)
664 ClearPageReserved(page
+ i
);
665 __free_pages(page
, order
);
668 static void kimage_free_page_list(struct list_head
*list
)
670 struct list_head
*pos
, *next
;
672 list_for_each_safe(pos
, next
, list
) {
675 page
= list_entry(pos
, struct page
, lru
);
676 list_del(&page
->lru
);
677 kimage_free_pages(page
);
681 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
684 /* Control pages are special, they are the intermediaries
685 * that are needed while we copy the rest of the pages
686 * to their final resting place. As such they must
687 * not conflict with either the destination addresses
688 * or memory the kernel is already using.
690 * The only case where we really need more than one of
691 * these are for architectures where we cannot disable
692 * the MMU and must instead generate an identity mapped
693 * page table for all of the memory.
695 * At worst this runs in O(N) of the image size.
697 struct list_head extra_pages
;
702 INIT_LIST_HEAD(&extra_pages
);
704 /* Loop while I can allocate a page and the page allocated
705 * is a destination page.
708 unsigned long pfn
, epfn
, addr
, eaddr
;
710 pages
= kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP
, order
);
713 pfn
= page_to_pfn(pages
);
715 addr
= pfn
<< PAGE_SHIFT
;
716 eaddr
= epfn
<< PAGE_SHIFT
;
717 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
718 kimage_is_destination_range(image
, addr
, eaddr
)) {
719 list_add(&pages
->lru
, &extra_pages
);
725 /* Remember the allocated page... */
726 list_add(&pages
->lru
, &image
->control_pages
);
728 /* Because the page is already in it's destination
729 * location we will never allocate another page at
730 * that address. Therefore kimage_alloc_pages
731 * will not return it (again) and we don't need
732 * to give it an entry in image->segment[].
735 /* Deal with the destination pages I have inadvertently allocated.
737 * Ideally I would convert multi-page allocations into single
738 * page allocations, and add everything to image->dest_pages.
740 * For now it is simpler to just free the pages.
742 kimage_free_page_list(&extra_pages
);
747 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
750 /* Control pages are special, they are the intermediaries
751 * that are needed while we copy the rest of the pages
752 * to their final resting place. As such they must
753 * not conflict with either the destination addresses
754 * or memory the kernel is already using.
756 * Control pages are also the only pags we must allocate
757 * when loading a crash kernel. All of the other pages
758 * are specified by the segments and we just memcpy
759 * into them directly.
761 * The only case where we really need more than one of
762 * these are for architectures where we cannot disable
763 * the MMU and must instead generate an identity mapped
764 * page table for all of the memory.
766 * Given the low demand this implements a very simple
767 * allocator that finds the first hole of the appropriate
768 * size in the reserved memory region, and allocates all
769 * of the memory up to and including the hole.
771 unsigned long hole_start
, hole_end
, size
;
775 size
= (1 << order
) << PAGE_SHIFT
;
776 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
777 hole_end
= hole_start
+ size
- 1;
778 while (hole_end
<= crashk_res
.end
) {
781 if (hole_end
> KEXEC_CRASH_CONTROL_MEMORY_LIMIT
)
783 /* See if I overlap any of the segments */
784 for (i
= 0; i
< image
->nr_segments
; i
++) {
785 unsigned long mstart
, mend
;
787 mstart
= image
->segment
[i
].mem
;
788 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
789 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
790 /* Advance the hole to the end of the segment */
791 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
792 hole_end
= hole_start
+ size
- 1;
796 /* If I don't overlap any segments I have found my hole! */
797 if (i
== image
->nr_segments
) {
798 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
803 image
->control_page
= hole_end
;
809 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
812 struct page
*pages
= NULL
;
814 switch (image
->type
) {
815 case KEXEC_TYPE_DEFAULT
:
816 pages
= kimage_alloc_normal_control_pages(image
, order
);
818 case KEXEC_TYPE_CRASH
:
819 pages
= kimage_alloc_crash_control_pages(image
, order
);
826 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
828 if (*image
->entry
!= 0)
831 if (image
->entry
== image
->last_entry
) {
832 kimage_entry_t
*ind_page
;
835 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
839 ind_page
= page_address(page
);
840 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
841 image
->entry
= ind_page
;
842 image
->last_entry
= ind_page
+
843 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
845 *image
->entry
= entry
;
852 static int kimage_set_destination(struct kimage
*image
,
853 unsigned long destination
)
857 destination
&= PAGE_MASK
;
858 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
860 image
->destination
= destination
;
866 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
871 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
873 image
->destination
+= PAGE_SIZE
;
879 static void kimage_free_extra_pages(struct kimage
*image
)
881 /* Walk through and free any extra destination pages I may have */
882 kimage_free_page_list(&image
->dest_pages
);
884 /* Walk through and free any unusable pages I have cached */
885 kimage_free_page_list(&image
->unusable_pages
);
888 static void kimage_terminate(struct kimage
*image
)
890 if (*image
->entry
!= 0)
893 *image
->entry
= IND_DONE
;
896 #define for_each_kimage_entry(image, ptr, entry) \
897 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
898 ptr = (entry & IND_INDIRECTION) ? \
899 phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
901 static void kimage_free_entry(kimage_entry_t entry
)
905 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
906 kimage_free_pages(page
);
909 static void kimage_free(struct kimage
*image
)
911 kimage_entry_t
*ptr
, entry
;
912 kimage_entry_t ind
= 0;
917 kimage_free_extra_pages(image
);
918 for_each_kimage_entry(image
, ptr
, entry
) {
919 if (entry
& IND_INDIRECTION
) {
920 /* Free the previous indirection page */
921 if (ind
& IND_INDIRECTION
)
922 kimage_free_entry(ind
);
923 /* Save this indirection page until we are
927 } else if (entry
& IND_SOURCE
)
928 kimage_free_entry(entry
);
930 /* Free the final indirection page */
931 if (ind
& IND_INDIRECTION
)
932 kimage_free_entry(ind
);
934 /* Handle any machine specific cleanup */
935 machine_kexec_cleanup(image
);
937 /* Free the kexec control pages... */
938 kimage_free_page_list(&image
->control_pages
);
941 * Free up any temporary buffers allocated. This might hit if
942 * error occurred much later after buffer allocation.
944 if (image
->file_mode
)
945 kimage_file_post_load_cleanup(image
);
950 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
953 kimage_entry_t
*ptr
, entry
;
954 unsigned long destination
= 0;
956 for_each_kimage_entry(image
, ptr
, entry
) {
957 if (entry
& IND_DESTINATION
)
958 destination
= entry
& PAGE_MASK
;
959 else if (entry
& IND_SOURCE
) {
960 if (page
== destination
)
962 destination
+= PAGE_SIZE
;
969 static struct page
*kimage_alloc_page(struct kimage
*image
,
971 unsigned long destination
)
974 * Here we implement safeguards to ensure that a source page
975 * is not copied to its destination page before the data on
976 * the destination page is no longer useful.
978 * To do this we maintain the invariant that a source page is
979 * either its own destination page, or it is not a
980 * destination page at all.
982 * That is slightly stronger than required, but the proof
983 * that no problems will not occur is trivial, and the
984 * implementation is simply to verify.
986 * When allocating all pages normally this algorithm will run
987 * in O(N) time, but in the worst case it will run in O(N^2)
988 * time. If the runtime is a problem the data structures can
995 * Walk through the list of destination pages, and see if I
998 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
999 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
1000 if (addr
== destination
) {
1001 list_del(&page
->lru
);
1007 kimage_entry_t
*old
;
1009 /* Allocate a page, if we run out of memory give up */
1010 page
= kimage_alloc_pages(gfp_mask
, 0);
1013 /* If the page cannot be used file it away */
1014 if (page_to_pfn(page
) >
1015 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
1016 list_add(&page
->lru
, &image
->unusable_pages
);
1019 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
1021 /* If it is the destination page we want use it */
1022 if (addr
== destination
)
1025 /* If the page is not a destination page use it */
1026 if (!kimage_is_destination_range(image
, addr
,
1031 * I know that the page is someones destination page.
1032 * See if there is already a source page for this
1033 * destination page. And if so swap the source pages.
1035 old
= kimage_dst_used(image
, addr
);
1038 unsigned long old_addr
;
1039 struct page
*old_page
;
1041 old_addr
= *old
& PAGE_MASK
;
1042 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
1043 copy_highpage(page
, old_page
);
1044 *old
= addr
| (*old
& ~PAGE_MASK
);
1046 /* The old page I have found cannot be a
1047 * destination page, so return it if it's
1048 * gfp_flags honor the ones passed in.
1050 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
1051 PageHighMem(old_page
)) {
1052 kimage_free_pages(old_page
);
1059 /* Place the page on the destination list I
1060 * will use it later.
1062 list_add(&page
->lru
, &image
->dest_pages
);
1069 static int kimage_load_normal_segment(struct kimage
*image
,
1070 struct kexec_segment
*segment
)
1072 unsigned long maddr
;
1073 size_t ubytes
, mbytes
;
1075 unsigned char __user
*buf
= NULL
;
1076 unsigned char *kbuf
= NULL
;
1079 if (image
->file_mode
)
1080 kbuf
= segment
->kbuf
;
1083 ubytes
= segment
->bufsz
;
1084 mbytes
= segment
->memsz
;
1085 maddr
= segment
->mem
;
1087 result
= kimage_set_destination(image
, maddr
);
1094 size_t uchunk
, mchunk
;
1096 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
1101 result
= kimage_add_page(image
, page_to_pfn(page
)
1107 /* Start with a clear page */
1109 ptr
+= maddr
& ~PAGE_MASK
;
1110 mchunk
= min_t(size_t, mbytes
,
1111 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
1112 uchunk
= min(ubytes
, mchunk
);
1114 /* For file based kexec, source pages are in kernel memory */
1115 if (image
->file_mode
)
1116 memcpy(ptr
, kbuf
, uchunk
);
1118 result
= copy_from_user(ptr
, buf
, uchunk
);
1126 if (image
->file_mode
)
1136 static int kimage_load_crash_segment(struct kimage
*image
,
1137 struct kexec_segment
*segment
)
1139 /* For crash dumps kernels we simply copy the data from
1140 * user space to it's destination.
1141 * We do things a page at a time for the sake of kmap.
1143 unsigned long maddr
;
1144 size_t ubytes
, mbytes
;
1146 unsigned char __user
*buf
= NULL
;
1147 unsigned char *kbuf
= NULL
;
1150 if (image
->file_mode
)
1151 kbuf
= segment
->kbuf
;
1154 ubytes
= segment
->bufsz
;
1155 mbytes
= segment
->memsz
;
1156 maddr
= segment
->mem
;
1160 size_t uchunk
, mchunk
;
1162 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
1168 ptr
+= maddr
& ~PAGE_MASK
;
1169 mchunk
= min_t(size_t, mbytes
,
1170 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
1171 uchunk
= min(ubytes
, mchunk
);
1172 if (mchunk
> uchunk
) {
1173 /* Zero the trailing part of the page */
1174 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
1177 /* For file based kexec, source pages are in kernel memory */
1178 if (image
->file_mode
)
1179 memcpy(ptr
, kbuf
, uchunk
);
1181 result
= copy_from_user(ptr
, buf
, uchunk
);
1182 kexec_flush_icache_page(page
);
1190 if (image
->file_mode
)
1200 static int kimage_load_segment(struct kimage
*image
,
1201 struct kexec_segment
*segment
)
1203 int result
= -ENOMEM
;
1205 switch (image
->type
) {
1206 case KEXEC_TYPE_DEFAULT
:
1207 result
= kimage_load_normal_segment(image
, segment
);
1209 case KEXEC_TYPE_CRASH
:
1210 result
= kimage_load_crash_segment(image
, segment
);
1218 * Exec Kernel system call: for obvious reasons only root may call it.
1220 * This call breaks up into three pieces.
1221 * - A generic part which loads the new kernel from the current
1222 * address space, and very carefully places the data in the
1225 * - A generic part that interacts with the kernel and tells all of
1226 * the devices to shut down. Preventing on-going dmas, and placing
1227 * the devices in a consistent state so a later kernel can
1228 * reinitialize them.
1230 * - A machine specific part that includes the syscall number
1231 * and then copies the image to it's final destination. And
1232 * jumps into the image at entry.
1234 * kexec does not sync, or unmount filesystems so if you need
1235 * that to happen you need to do that yourself.
1237 struct kimage
*kexec_image
;
1238 struct kimage
*kexec_crash_image
;
1239 int kexec_load_disabled
;
1241 static DEFINE_MUTEX(kexec_mutex
);
1243 SYSCALL_DEFINE4(kexec_load
, unsigned long, entry
, unsigned long, nr_segments
,
1244 struct kexec_segment __user
*, segments
, unsigned long, flags
)
1246 struct kimage
**dest_image
, *image
;
1249 /* We only trust the superuser with rebooting the system. */
1250 if (!capable(CAP_SYS_BOOT
) || kexec_load_disabled
)
1254 * Verify we have a legal set of flags
1255 * This leaves us room for future extensions.
1257 if ((flags
& KEXEC_FLAGS
) != (flags
& ~KEXEC_ARCH_MASK
))
1260 /* Verify we are on the appropriate architecture */
1261 if (((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH
) &&
1262 ((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH_DEFAULT
))
1265 /* Put an artificial cap on the number
1266 * of segments passed to kexec_load.
1268 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1274 /* Because we write directly to the reserved memory
1275 * region when loading crash kernels we need a mutex here to
1276 * prevent multiple crash kernels from attempting to load
1277 * simultaneously, and to prevent a crash kernel from loading
1278 * over the top of a in use crash kernel.
1280 * KISS: always take the mutex.
1282 if (!mutex_trylock(&kexec_mutex
))
1285 dest_image
= &kexec_image
;
1286 if (flags
& KEXEC_ON_CRASH
)
1287 dest_image
= &kexec_crash_image
;
1288 if (nr_segments
> 0) {
1291 /* Loading another kernel to reboot into */
1292 if ((flags
& KEXEC_ON_CRASH
) == 0)
1293 result
= kimage_alloc_init(&image
, entry
, nr_segments
,
1295 /* Loading another kernel to switch to if this one crashes */
1296 else if (flags
& KEXEC_ON_CRASH
) {
1297 /* Free any current crash dump kernel before
1300 kimage_free(xchg(&kexec_crash_image
, NULL
));
1301 result
= kimage_alloc_init(&image
, entry
, nr_segments
,
1303 crash_map_reserved_pages();
1308 if (flags
& KEXEC_PRESERVE_CONTEXT
)
1309 image
->preserve_context
= 1;
1310 result
= machine_kexec_prepare(image
);
1314 for (i
= 0; i
< nr_segments
; i
++) {
1315 result
= kimage_load_segment(image
, &image
->segment
[i
]);
1319 kimage_terminate(image
);
1320 if (flags
& KEXEC_ON_CRASH
)
1321 crash_unmap_reserved_pages();
1323 /* Install the new kernel, and Uninstall the old */
1324 image
= xchg(dest_image
, image
);
1327 mutex_unlock(&kexec_mutex
);
1334 * Add and remove page tables for crashkernel memory
1336 * Provide an empty default implementation here -- architecture
1337 * code may override this
1339 void __weak
crash_map_reserved_pages(void)
1342 void __weak
crash_unmap_reserved_pages(void)
1345 #ifdef CONFIG_COMPAT
1346 COMPAT_SYSCALL_DEFINE4(kexec_load
, compat_ulong_t
, entry
,
1347 compat_ulong_t
, nr_segments
,
1348 struct compat_kexec_segment __user
*, segments
,
1349 compat_ulong_t
, flags
)
1351 struct compat_kexec_segment in
;
1352 struct kexec_segment out
, __user
*ksegments
;
1353 unsigned long i
, result
;
1355 /* Don't allow clients that don't understand the native
1356 * architecture to do anything.
1358 if ((flags
& KEXEC_ARCH_MASK
) == KEXEC_ARCH_DEFAULT
)
1361 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1364 ksegments
= compat_alloc_user_space(nr_segments
* sizeof(out
));
1365 for (i
= 0; i
< nr_segments
; i
++) {
1366 result
= copy_from_user(&in
, &segments
[i
], sizeof(in
));
1370 out
.buf
= compat_ptr(in
.buf
);
1371 out
.bufsz
= in
.bufsz
;
1373 out
.memsz
= in
.memsz
;
1375 result
= copy_to_user(&ksegments
[i
], &out
, sizeof(out
));
1380 return sys_kexec_load(entry
, nr_segments
, ksegments
, flags
);
1384 #ifdef CONFIG_KEXEC_FILE
1385 SYSCALL_DEFINE5(kexec_file_load
, int, kernel_fd
, int, initrd_fd
,
1386 unsigned long, cmdline_len
, const char __user
*, cmdline_ptr
,
1387 unsigned long, flags
)
1390 struct kimage
**dest_image
, *image
;
1392 /* We only trust the superuser with rebooting the system. */
1393 if (!capable(CAP_SYS_BOOT
) || kexec_load_disabled
)
1396 /* Make sure we have a legal set of flags */
1397 if (flags
!= (flags
& KEXEC_FILE_FLAGS
))
1402 if (!mutex_trylock(&kexec_mutex
))
1405 dest_image
= &kexec_image
;
1406 if (flags
& KEXEC_FILE_ON_CRASH
)
1407 dest_image
= &kexec_crash_image
;
1409 if (flags
& KEXEC_FILE_UNLOAD
)
1413 * In case of crash, new kernel gets loaded in reserved region. It is
1414 * same memory where old crash kernel might be loaded. Free any
1415 * current crash dump kernel before we corrupt it.
1417 if (flags
& KEXEC_FILE_ON_CRASH
)
1418 kimage_free(xchg(&kexec_crash_image
, NULL
));
1420 ret
= kimage_file_alloc_init(&image
, kernel_fd
, initrd_fd
, cmdline_ptr
,
1421 cmdline_len
, flags
);
1425 ret
= machine_kexec_prepare(image
);
1429 ret
= kexec_calculate_store_digests(image
);
1433 for (i
= 0; i
< image
->nr_segments
; i
++) {
1434 struct kexec_segment
*ksegment
;
1436 ksegment
= &image
->segment
[i
];
1437 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1438 i
, ksegment
->buf
, ksegment
->bufsz
, ksegment
->mem
,
1441 ret
= kimage_load_segment(image
, &image
->segment
[i
]);
1446 kimage_terminate(image
);
1449 * Free up any temporary buffers allocated which are not needed
1450 * after image has been loaded
1452 kimage_file_post_load_cleanup(image
);
1454 image
= xchg(dest_image
, image
);
1456 mutex_unlock(&kexec_mutex
);
1461 #endif /* CONFIG_KEXEC_FILE */
1463 void crash_kexec(struct pt_regs
*regs
)
1465 /* Take the kexec_mutex here to prevent sys_kexec_load
1466 * running on one cpu from replacing the crash kernel
1467 * we are using after a panic on a different cpu.
1469 * If the crash kernel was not located in a fixed area
1470 * of memory the xchg(&kexec_crash_image) would be
1471 * sufficient. But since I reuse the memory...
1473 if (mutex_trylock(&kexec_mutex
)) {
1474 if (kexec_crash_image
) {
1475 struct pt_regs fixed_regs
;
1477 crash_setup_regs(&fixed_regs
, regs
);
1478 crash_save_vmcoreinfo();
1479 machine_crash_shutdown(&fixed_regs
);
1480 machine_kexec(kexec_crash_image
);
1482 mutex_unlock(&kexec_mutex
);
1486 size_t crash_get_memory_size(void)
1489 mutex_lock(&kexec_mutex
);
1490 if (crashk_res
.end
!= crashk_res
.start
)
1491 size
= resource_size(&crashk_res
);
1492 mutex_unlock(&kexec_mutex
);
1496 void __weak
crash_free_reserved_phys_range(unsigned long begin
,
1501 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
)
1502 free_reserved_page(pfn_to_page(addr
>> PAGE_SHIFT
));
1505 int crash_shrink_memory(unsigned long new_size
)
1508 unsigned long start
, end
;
1509 unsigned long old_size
;
1510 struct resource
*ram_res
;
1512 mutex_lock(&kexec_mutex
);
1514 if (kexec_crash_image
) {
1518 start
= crashk_res
.start
;
1519 end
= crashk_res
.end
;
1520 old_size
= (end
== 0) ? 0 : end
- start
+ 1;
1521 if (new_size
>= old_size
) {
1522 ret
= (new_size
== old_size
) ? 0 : -EINVAL
;
1526 ram_res
= kzalloc(sizeof(*ram_res
), GFP_KERNEL
);
1532 start
= roundup(start
, KEXEC_CRASH_MEM_ALIGN
);
1533 end
= roundup(start
+ new_size
, KEXEC_CRASH_MEM_ALIGN
);
1535 crash_map_reserved_pages();
1536 crash_free_reserved_phys_range(end
, crashk_res
.end
);
1538 if ((start
== end
) && (crashk_res
.parent
!= NULL
))
1539 release_resource(&crashk_res
);
1541 ram_res
->start
= end
;
1542 ram_res
->end
= crashk_res
.end
;
1543 ram_res
->flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
;
1544 ram_res
->name
= "System RAM";
1546 crashk_res
.end
= end
- 1;
1548 insert_resource(&iomem_resource
, ram_res
);
1549 crash_unmap_reserved_pages();
1552 mutex_unlock(&kexec_mutex
);
1556 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
1559 struct elf_note note
;
1561 note
.n_namesz
= strlen(name
) + 1;
1562 note
.n_descsz
= data_len
;
1564 memcpy(buf
, ¬e
, sizeof(note
));
1565 buf
+= (sizeof(note
) + 3)/4;
1566 memcpy(buf
, name
, note
.n_namesz
);
1567 buf
+= (note
.n_namesz
+ 3)/4;
1568 memcpy(buf
, data
, note
.n_descsz
);
1569 buf
+= (note
.n_descsz
+ 3)/4;
1574 static void final_note(u32
*buf
)
1576 struct elf_note note
;
1581 memcpy(buf
, ¬e
, sizeof(note
));
1584 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1586 struct elf_prstatus prstatus
;
1589 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1592 /* Using ELF notes here is opportunistic.
1593 * I need a well defined structure format
1594 * for the data I pass, and I need tags
1595 * on the data to indicate what information I have
1596 * squirrelled away. ELF notes happen to provide
1597 * all of that, so there is no need to invent something new.
1599 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1602 memset(&prstatus
, 0, sizeof(prstatus
));
1603 prstatus
.pr_pid
= current
->pid
;
1604 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1605 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1606 &prstatus
, sizeof(prstatus
));
1610 static int __init
crash_notes_memory_init(void)
1612 /* Allocate memory for saving cpu registers. */
1613 crash_notes
= alloc_percpu(note_buf_t
);
1615 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1620 subsys_initcall(crash_notes_memory_init
);
1624 * parsing the "crashkernel" commandline
1626 * this code is intended to be called from architecture specific code
1631 * This function parses command lines in the format
1633 * crashkernel=ramsize-range:size[,...][@offset]
1635 * The function returns 0 on success and -EINVAL on failure.
1637 static int __init
parse_crashkernel_mem(char *cmdline
,
1638 unsigned long long system_ram
,
1639 unsigned long long *crash_size
,
1640 unsigned long long *crash_base
)
1642 char *cur
= cmdline
, *tmp
;
1644 /* for each entry of the comma-separated list */
1646 unsigned long long start
, end
= ULLONG_MAX
, size
;
1648 /* get the start of the range */
1649 start
= memparse(cur
, &tmp
);
1651 pr_warn("crashkernel: Memory value expected\n");
1656 pr_warn("crashkernel: '-' expected\n");
1661 /* if no ':' is here, than we read the end */
1663 end
= memparse(cur
, &tmp
);
1665 pr_warn("crashkernel: Memory value expected\n");
1670 pr_warn("crashkernel: end <= start\n");
1676 pr_warn("crashkernel: ':' expected\n");
1681 size
= memparse(cur
, &tmp
);
1683 pr_warn("Memory value expected\n");
1687 if (size
>= system_ram
) {
1688 pr_warn("crashkernel: invalid size\n");
1693 if (system_ram
>= start
&& system_ram
< end
) {
1697 } while (*cur
++ == ',');
1699 if (*crash_size
> 0) {
1700 while (*cur
&& *cur
!= ' ' && *cur
!= '@')
1704 *crash_base
= memparse(cur
, &tmp
);
1706 pr_warn("Memory value expected after '@'\n");
1716 * That function parses "simple" (old) crashkernel command lines like
1718 * crashkernel=size[@offset]
1720 * It returns 0 on success and -EINVAL on failure.
1722 static int __init
parse_crashkernel_simple(char *cmdline
,
1723 unsigned long long *crash_size
,
1724 unsigned long long *crash_base
)
1726 char *cur
= cmdline
;
1728 *crash_size
= memparse(cmdline
, &cur
);
1729 if (cmdline
== cur
) {
1730 pr_warn("crashkernel: memory value expected\n");
1735 *crash_base
= memparse(cur
+1, &cur
);
1736 else if (*cur
!= ' ' && *cur
!= '\0') {
1737 pr_warn("crashkernel: unrecognized char\n");
1744 #define SUFFIX_HIGH 0
1745 #define SUFFIX_LOW 1
1746 #define SUFFIX_NULL 2
1747 static __initdata
char *suffix_tbl
[] = {
1748 [SUFFIX_HIGH
] = ",high",
1749 [SUFFIX_LOW
] = ",low",
1750 [SUFFIX_NULL
] = NULL
,
1754 * That function parses "suffix" crashkernel command lines like
1756 * crashkernel=size,[high|low]
1758 * It returns 0 on success and -EINVAL on failure.
1760 static int __init
parse_crashkernel_suffix(char *cmdline
,
1761 unsigned long long *crash_size
,
1764 char *cur
= cmdline
;
1766 *crash_size
= memparse(cmdline
, &cur
);
1767 if (cmdline
== cur
) {
1768 pr_warn("crashkernel: memory value expected\n");
1772 /* check with suffix */
1773 if (strncmp(cur
, suffix
, strlen(suffix
))) {
1774 pr_warn("crashkernel: unrecognized char\n");
1777 cur
+= strlen(suffix
);
1778 if (*cur
!= ' ' && *cur
!= '\0') {
1779 pr_warn("crashkernel: unrecognized char\n");
1786 static __init
char *get_last_crashkernel(char *cmdline
,
1790 char *p
= cmdline
, *ck_cmdline
= NULL
;
1792 /* find crashkernel and use the last one if there are more */
1793 p
= strstr(p
, name
);
1795 char *end_p
= strchr(p
, ' ');
1799 end_p
= p
+ strlen(p
);
1804 /* skip the one with any known suffix */
1805 for (i
= 0; suffix_tbl
[i
]; i
++) {
1806 q
= end_p
- strlen(suffix_tbl
[i
]);
1807 if (!strncmp(q
, suffix_tbl
[i
],
1808 strlen(suffix_tbl
[i
])))
1813 q
= end_p
- strlen(suffix
);
1814 if (!strncmp(q
, suffix
, strlen(suffix
)))
1818 p
= strstr(p
+1, name
);
1827 static int __init
__parse_crashkernel(char *cmdline
,
1828 unsigned long long system_ram
,
1829 unsigned long long *crash_size
,
1830 unsigned long long *crash_base
,
1834 char *first_colon
, *first_space
;
1837 BUG_ON(!crash_size
|| !crash_base
);
1841 ck_cmdline
= get_last_crashkernel(cmdline
, name
, suffix
);
1846 ck_cmdline
+= strlen(name
);
1849 return parse_crashkernel_suffix(ck_cmdline
, crash_size
,
1852 * if the commandline contains a ':', then that's the extended
1853 * syntax -- if not, it must be the classic syntax
1855 first_colon
= strchr(ck_cmdline
, ':');
1856 first_space
= strchr(ck_cmdline
, ' ');
1857 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1858 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1859 crash_size
, crash_base
);
1861 return parse_crashkernel_simple(ck_cmdline
, crash_size
, crash_base
);
1865 * That function is the entry point for command line parsing and should be
1866 * called from the arch-specific code.
1868 int __init
parse_crashkernel(char *cmdline
,
1869 unsigned long long system_ram
,
1870 unsigned long long *crash_size
,
1871 unsigned long long *crash_base
)
1873 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1874 "crashkernel=", NULL
);
1877 int __init
parse_crashkernel_high(char *cmdline
,
1878 unsigned long long system_ram
,
1879 unsigned long long *crash_size
,
1880 unsigned long long *crash_base
)
1882 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1883 "crashkernel=", suffix_tbl
[SUFFIX_HIGH
]);
1886 int __init
parse_crashkernel_low(char *cmdline
,
1887 unsigned long long system_ram
,
1888 unsigned long long *crash_size
,
1889 unsigned long long *crash_base
)
1891 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1892 "crashkernel=", suffix_tbl
[SUFFIX_LOW
]);
1895 static void update_vmcoreinfo_note(void)
1897 u32
*buf
= vmcoreinfo_note
;
1899 if (!vmcoreinfo_size
)
1901 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1906 void crash_save_vmcoreinfo(void)
1908 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1909 update_vmcoreinfo_note();
1912 void vmcoreinfo_append_str(const char *fmt
, ...)
1918 va_start(args
, fmt
);
1919 r
= vscnprintf(buf
, sizeof(buf
), fmt
, args
);
1922 r
= min(r
, vmcoreinfo_max_size
- vmcoreinfo_size
);
1924 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1926 vmcoreinfo_size
+= r
;
1930 * provide an empty default implementation here -- architecture
1931 * code may override this
1933 void __weak
arch_crash_save_vmcoreinfo(void)
1936 unsigned long __weak
paddr_vmcoreinfo_note(void)
1938 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1941 static int __init
crash_save_vmcoreinfo_init(void)
1943 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1944 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1946 VMCOREINFO_SYMBOL(init_uts_ns
);
1947 VMCOREINFO_SYMBOL(node_online_map
);
1949 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1951 VMCOREINFO_SYMBOL(_stext
);
1952 VMCOREINFO_SYMBOL(vmap_area_list
);
1954 #ifndef CONFIG_NEED_MULTIPLE_NODES
1955 VMCOREINFO_SYMBOL(mem_map
);
1956 VMCOREINFO_SYMBOL(contig_page_data
);
1958 #ifdef CONFIG_SPARSEMEM
1959 VMCOREINFO_SYMBOL(mem_section
);
1960 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1961 VMCOREINFO_STRUCT_SIZE(mem_section
);
1962 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1964 VMCOREINFO_STRUCT_SIZE(page
);
1965 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1966 VMCOREINFO_STRUCT_SIZE(zone
);
1967 VMCOREINFO_STRUCT_SIZE(free_area
);
1968 VMCOREINFO_STRUCT_SIZE(list_head
);
1969 VMCOREINFO_SIZE(nodemask_t
);
1970 VMCOREINFO_OFFSET(page
, flags
);
1971 VMCOREINFO_OFFSET(page
, _count
);
1972 VMCOREINFO_OFFSET(page
, mapping
);
1973 VMCOREINFO_OFFSET(page
, lru
);
1974 VMCOREINFO_OFFSET(page
, _mapcount
);
1975 VMCOREINFO_OFFSET(page
, private);
1976 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1977 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1978 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1979 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1981 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1982 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1983 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1984 VMCOREINFO_OFFSET(zone
, free_area
);
1985 VMCOREINFO_OFFSET(zone
, vm_stat
);
1986 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1987 VMCOREINFO_OFFSET(free_area
, free_list
);
1988 VMCOREINFO_OFFSET(list_head
, next
);
1989 VMCOREINFO_OFFSET(list_head
, prev
);
1990 VMCOREINFO_OFFSET(vmap_area
, va_start
);
1991 VMCOREINFO_OFFSET(vmap_area
, list
);
1992 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1993 log_buf_kexec_setup();
1994 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1995 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1996 VMCOREINFO_NUMBER(PG_lru
);
1997 VMCOREINFO_NUMBER(PG_private
);
1998 VMCOREINFO_NUMBER(PG_swapcache
);
1999 VMCOREINFO_NUMBER(PG_slab
);
2000 #ifdef CONFIG_MEMORY_FAILURE
2001 VMCOREINFO_NUMBER(PG_hwpoison
);
2003 VMCOREINFO_NUMBER(PG_head_mask
);
2004 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE
);
2005 #ifdef CONFIG_HUGETLBFS
2006 VMCOREINFO_SYMBOL(free_huge_page
);
2009 arch_crash_save_vmcoreinfo();
2010 update_vmcoreinfo_note();
2015 subsys_initcall(crash_save_vmcoreinfo_init
);
2017 #ifdef CONFIG_KEXEC_FILE
2018 static int locate_mem_hole_top_down(unsigned long start
, unsigned long end
,
2019 struct kexec_buf
*kbuf
)
2021 struct kimage
*image
= kbuf
->image
;
2022 unsigned long temp_start
, temp_end
;
2024 temp_end
= min(end
, kbuf
->buf_max
);
2025 temp_start
= temp_end
- kbuf
->memsz
;
2028 /* align down start */
2029 temp_start
= temp_start
& (~(kbuf
->buf_align
- 1));
2031 if (temp_start
< start
|| temp_start
< kbuf
->buf_min
)
2034 temp_end
= temp_start
+ kbuf
->memsz
- 1;
2037 * Make sure this does not conflict with any of existing
2040 if (kimage_is_destination_range(image
, temp_start
, temp_end
)) {
2041 temp_start
= temp_start
- PAGE_SIZE
;
2045 /* We found a suitable memory range */
2049 /* If we are here, we found a suitable memory range */
2050 kbuf
->mem
= temp_start
;
2052 /* Success, stop navigating through remaining System RAM ranges */
2056 static int locate_mem_hole_bottom_up(unsigned long start
, unsigned long end
,
2057 struct kexec_buf
*kbuf
)
2059 struct kimage
*image
= kbuf
->image
;
2060 unsigned long temp_start
, temp_end
;
2062 temp_start
= max(start
, kbuf
->buf_min
);
2065 temp_start
= ALIGN(temp_start
, kbuf
->buf_align
);
2066 temp_end
= temp_start
+ kbuf
->memsz
- 1;
2068 if (temp_end
> end
|| temp_end
> kbuf
->buf_max
)
2071 * Make sure this does not conflict with any of existing
2074 if (kimage_is_destination_range(image
, temp_start
, temp_end
)) {
2075 temp_start
= temp_start
+ PAGE_SIZE
;
2079 /* We found a suitable memory range */
2083 /* If we are here, we found a suitable memory range */
2084 kbuf
->mem
= temp_start
;
2086 /* Success, stop navigating through remaining System RAM ranges */
2090 static int locate_mem_hole_callback(u64 start
, u64 end
, void *arg
)
2092 struct kexec_buf
*kbuf
= (struct kexec_buf
*)arg
;
2093 unsigned long sz
= end
- start
+ 1;
2095 /* Returning 0 will take to next memory range */
2096 if (sz
< kbuf
->memsz
)
2099 if (end
< kbuf
->buf_min
|| start
> kbuf
->buf_max
)
2103 * Allocate memory top down with-in ram range. Otherwise bottom up
2107 return locate_mem_hole_top_down(start
, end
, kbuf
);
2108 return locate_mem_hole_bottom_up(start
, end
, kbuf
);
2112 * Helper function for placing a buffer in a kexec segment. This assumes
2113 * that kexec_mutex is held.
2115 int kexec_add_buffer(struct kimage
*image
, char *buffer
, unsigned long bufsz
,
2116 unsigned long memsz
, unsigned long buf_align
,
2117 unsigned long buf_min
, unsigned long buf_max
,
2118 bool top_down
, unsigned long *load_addr
)
2121 struct kexec_segment
*ksegment
;
2122 struct kexec_buf buf
, *kbuf
;
2125 /* Currently adding segment this way is allowed only in file mode */
2126 if (!image
->file_mode
)
2129 if (image
->nr_segments
>= KEXEC_SEGMENT_MAX
)
2133 * Make sure we are not trying to add buffer after allocating
2134 * control pages. All segments need to be placed first before
2135 * any control pages are allocated. As control page allocation
2136 * logic goes through list of segments to make sure there are
2137 * no destination overlaps.
2139 if (!list_empty(&image
->control_pages
)) {
2144 memset(&buf
, 0, sizeof(struct kexec_buf
));
2146 kbuf
->image
= image
;
2147 kbuf
->buffer
= buffer
;
2148 kbuf
->bufsz
= bufsz
;
2150 kbuf
->memsz
= ALIGN(memsz
, PAGE_SIZE
);
2151 kbuf
->buf_align
= max(buf_align
, PAGE_SIZE
);
2152 kbuf
->buf_min
= buf_min
;
2153 kbuf
->buf_max
= buf_max
;
2154 kbuf
->top_down
= top_down
;
2156 /* Walk the RAM ranges and allocate a suitable range for the buffer */
2157 if (image
->type
== KEXEC_TYPE_CRASH
)
2158 ret
= walk_iomem_res("Crash kernel",
2159 IORESOURCE_MEM
| IORESOURCE_BUSY
,
2160 crashk_res
.start
, crashk_res
.end
, kbuf
,
2161 locate_mem_hole_callback
);
2163 ret
= walk_system_ram_res(0, -1, kbuf
,
2164 locate_mem_hole_callback
);
2166 /* A suitable memory range could not be found for buffer */
2167 return -EADDRNOTAVAIL
;
2170 /* Found a suitable memory range */
2171 ksegment
= &image
->segment
[image
->nr_segments
];
2172 ksegment
->kbuf
= kbuf
->buffer
;
2173 ksegment
->bufsz
= kbuf
->bufsz
;
2174 ksegment
->mem
= kbuf
->mem
;
2175 ksegment
->memsz
= kbuf
->memsz
;
2176 image
->nr_segments
++;
2177 *load_addr
= ksegment
->mem
;
2181 /* Calculate and store the digest of segments */
2182 static int kexec_calculate_store_digests(struct kimage
*image
)
2184 struct crypto_shash
*tfm
;
2185 struct shash_desc
*desc
;
2186 int ret
= 0, i
, j
, zero_buf_sz
, sha_region_sz
;
2187 size_t desc_size
, nullsz
;
2190 struct kexec_sha_region
*sha_regions
;
2191 struct purgatory_info
*pi
= &image
->purgatory_info
;
2193 zero_buf
= __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT
);
2194 zero_buf_sz
= PAGE_SIZE
;
2196 tfm
= crypto_alloc_shash("sha256", 0, 0);
2202 desc_size
= crypto_shash_descsize(tfm
) + sizeof(*desc
);
2203 desc
= kzalloc(desc_size
, GFP_KERNEL
);
2209 sha_region_sz
= KEXEC_SEGMENT_MAX
* sizeof(struct kexec_sha_region
);
2210 sha_regions
= vzalloc(sha_region_sz
);
2217 ret
= crypto_shash_init(desc
);
2219 goto out_free_sha_regions
;
2221 digest
= kzalloc(SHA256_DIGEST_SIZE
, GFP_KERNEL
);
2224 goto out_free_sha_regions
;
2227 for (j
= i
= 0; i
< image
->nr_segments
; i
++) {
2228 struct kexec_segment
*ksegment
;
2230 ksegment
= &image
->segment
[i
];
2232 * Skip purgatory as it will be modified once we put digest
2233 * info in purgatory.
2235 if (ksegment
->kbuf
== pi
->purgatory_buf
)
2238 ret
= crypto_shash_update(desc
, ksegment
->kbuf
,
2244 * Assume rest of the buffer is filled with zero and
2245 * update digest accordingly.
2247 nullsz
= ksegment
->memsz
- ksegment
->bufsz
;
2249 unsigned long bytes
= nullsz
;
2251 if (bytes
> zero_buf_sz
)
2252 bytes
= zero_buf_sz
;
2253 ret
= crypto_shash_update(desc
, zero_buf
, bytes
);
2262 sha_regions
[j
].start
= ksegment
->mem
;
2263 sha_regions
[j
].len
= ksegment
->memsz
;
2268 ret
= crypto_shash_final(desc
, digest
);
2270 goto out_free_digest
;
2271 ret
= kexec_purgatory_get_set_symbol(image
, "sha_regions",
2272 sha_regions
, sha_region_sz
, 0);
2274 goto out_free_digest
;
2276 ret
= kexec_purgatory_get_set_symbol(image
, "sha256_digest",
2277 digest
, SHA256_DIGEST_SIZE
, 0);
2279 goto out_free_digest
;
2284 out_free_sha_regions
:
2294 /* Actually load purgatory. Lot of code taken from kexec-tools */
2295 static int __kexec_load_purgatory(struct kimage
*image
, unsigned long min
,
2296 unsigned long max
, int top_down
)
2298 struct purgatory_info
*pi
= &image
->purgatory_info
;
2299 unsigned long align
, buf_align
, bss_align
, buf_sz
, bss_sz
, bss_pad
;
2300 unsigned long memsz
, entry
, load_addr
, curr_load_addr
, bss_addr
, offset
;
2301 unsigned char *buf_addr
, *src
;
2302 int i
, ret
= 0, entry_sidx
= -1;
2303 const Elf_Shdr
*sechdrs_c
;
2304 Elf_Shdr
*sechdrs
= NULL
;
2305 void *purgatory_buf
= NULL
;
2308 * sechdrs_c points to section headers in purgatory and are read
2309 * only. No modifications allowed.
2311 sechdrs_c
= (void *)pi
->ehdr
+ pi
->ehdr
->e_shoff
;
2314 * We can not modify sechdrs_c[] and its fields. It is read only.
2315 * Copy it over to a local copy where one can store some temporary
2316 * data and free it at the end. We need to modify ->sh_addr and
2317 * ->sh_offset fields to keep track of permanent and temporary
2318 * locations of sections.
2320 sechdrs
= vzalloc(pi
->ehdr
->e_shnum
* sizeof(Elf_Shdr
));
2324 memcpy(sechdrs
, sechdrs_c
, pi
->ehdr
->e_shnum
* sizeof(Elf_Shdr
));
2327 * We seem to have multiple copies of sections. First copy is which
2328 * is embedded in kernel in read only section. Some of these sections
2329 * will be copied to a temporary buffer and relocated. And these
2330 * sections will finally be copied to their final destination at
2331 * segment load time.
2333 * Use ->sh_offset to reflect section address in memory. It will
2334 * point to original read only copy if section is not allocatable.
2335 * Otherwise it will point to temporary copy which will be relocated.
2337 * Use ->sh_addr to contain final address of the section where it
2338 * will go during execution time.
2340 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
2341 if (sechdrs
[i
].sh_type
== SHT_NOBITS
)
2344 sechdrs
[i
].sh_offset
= (unsigned long)pi
->ehdr
+
2345 sechdrs
[i
].sh_offset
;
2349 * Identify entry point section and make entry relative to section
2352 entry
= pi
->ehdr
->e_entry
;
2353 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
2354 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
2357 if (!(sechdrs
[i
].sh_flags
& SHF_EXECINSTR
))
2360 /* Make entry section relative */
2361 if (sechdrs
[i
].sh_addr
<= pi
->ehdr
->e_entry
&&
2362 ((sechdrs
[i
].sh_addr
+ sechdrs
[i
].sh_size
) >
2363 pi
->ehdr
->e_entry
)) {
2365 entry
-= sechdrs
[i
].sh_addr
;
2370 /* Determine how much memory is needed to load relocatable object. */
2376 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
2377 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
2380 align
= sechdrs
[i
].sh_addralign
;
2381 if (sechdrs
[i
].sh_type
!= SHT_NOBITS
) {
2382 if (buf_align
< align
)
2384 buf_sz
= ALIGN(buf_sz
, align
);
2385 buf_sz
+= sechdrs
[i
].sh_size
;
2388 if (bss_align
< align
)
2390 bss_sz
= ALIGN(bss_sz
, align
);
2391 bss_sz
+= sechdrs
[i
].sh_size
;
2395 /* Determine the bss padding required to align bss properly */
2397 if (buf_sz
& (bss_align
- 1))
2398 bss_pad
= bss_align
- (buf_sz
& (bss_align
- 1));
2400 memsz
= buf_sz
+ bss_pad
+ bss_sz
;
2402 /* Allocate buffer for purgatory */
2403 purgatory_buf
= vzalloc(buf_sz
);
2404 if (!purgatory_buf
) {
2409 if (buf_align
< bss_align
)
2410 buf_align
= bss_align
;
2412 /* Add buffer to segment list */
2413 ret
= kexec_add_buffer(image
, purgatory_buf
, buf_sz
, memsz
,
2414 buf_align
, min
, max
, top_down
,
2415 &pi
->purgatory_load_addr
);
2419 /* Load SHF_ALLOC sections */
2420 buf_addr
= purgatory_buf
;
2421 load_addr
= curr_load_addr
= pi
->purgatory_load_addr
;
2422 bss_addr
= load_addr
+ buf_sz
+ bss_pad
;
2424 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
2425 if (!(sechdrs
[i
].sh_flags
& SHF_ALLOC
))
2428 align
= sechdrs
[i
].sh_addralign
;
2429 if (sechdrs
[i
].sh_type
!= SHT_NOBITS
) {
2430 curr_load_addr
= ALIGN(curr_load_addr
, align
);
2431 offset
= curr_load_addr
- load_addr
;
2432 /* We already modifed ->sh_offset to keep src addr */
2433 src
= (char *) sechdrs
[i
].sh_offset
;
2434 memcpy(buf_addr
+ offset
, src
, sechdrs
[i
].sh_size
);
2436 /* Store load address and source address of section */
2437 sechdrs
[i
].sh_addr
= curr_load_addr
;
2440 * This section got copied to temporary buffer. Update
2441 * ->sh_offset accordingly.
2443 sechdrs
[i
].sh_offset
= (unsigned long)(buf_addr
+ offset
);
2445 /* Advance to the next address */
2446 curr_load_addr
+= sechdrs
[i
].sh_size
;
2448 bss_addr
= ALIGN(bss_addr
, align
);
2449 sechdrs
[i
].sh_addr
= bss_addr
;
2450 bss_addr
+= sechdrs
[i
].sh_size
;
2454 /* Update entry point based on load address of text section */
2455 if (entry_sidx
>= 0)
2456 entry
+= sechdrs
[entry_sidx
].sh_addr
;
2458 /* Make kernel jump to purgatory after shutdown */
2459 image
->start
= entry
;
2461 /* Used later to get/set symbol values */
2462 pi
->sechdrs
= sechdrs
;
2465 * Used later to identify which section is purgatory and skip it
2466 * from checksumming.
2468 pi
->purgatory_buf
= purgatory_buf
;
2472 vfree(purgatory_buf
);
2476 static int kexec_apply_relocations(struct kimage
*image
)
2479 struct purgatory_info
*pi
= &image
->purgatory_info
;
2480 Elf_Shdr
*sechdrs
= pi
->sechdrs
;
2482 /* Apply relocations */
2483 for (i
= 0; i
< pi
->ehdr
->e_shnum
; i
++) {
2484 Elf_Shdr
*section
, *symtab
;
2486 if (sechdrs
[i
].sh_type
!= SHT_RELA
&&
2487 sechdrs
[i
].sh_type
!= SHT_REL
)
2491 * For section of type SHT_RELA/SHT_REL,
2492 * ->sh_link contains section header index of associated
2493 * symbol table. And ->sh_info contains section header
2494 * index of section to which relocations apply.
2496 if (sechdrs
[i
].sh_info
>= pi
->ehdr
->e_shnum
||
2497 sechdrs
[i
].sh_link
>= pi
->ehdr
->e_shnum
)
2500 section
= &sechdrs
[sechdrs
[i
].sh_info
];
2501 symtab
= &sechdrs
[sechdrs
[i
].sh_link
];
2503 if (!(section
->sh_flags
& SHF_ALLOC
))
2507 * symtab->sh_link contain section header index of associated
2510 if (symtab
->sh_link
>= pi
->ehdr
->e_shnum
)
2511 /* Invalid section number? */
2515 * Respective archicture needs to provide support for applying
2516 * relocations of type SHT_RELA/SHT_REL.
2518 if (sechdrs
[i
].sh_type
== SHT_RELA
)
2519 ret
= arch_kexec_apply_relocations_add(pi
->ehdr
,
2521 else if (sechdrs
[i
].sh_type
== SHT_REL
)
2522 ret
= arch_kexec_apply_relocations(pi
->ehdr
,
2531 /* Load relocatable purgatory object and relocate it appropriately */
2532 int kexec_load_purgatory(struct kimage
*image
, unsigned long min
,
2533 unsigned long max
, int top_down
,
2534 unsigned long *load_addr
)
2536 struct purgatory_info
*pi
= &image
->purgatory_info
;
2539 if (kexec_purgatory_size
<= 0)
2542 if (kexec_purgatory_size
< sizeof(Elf_Ehdr
))
2545 pi
->ehdr
= (Elf_Ehdr
*)kexec_purgatory
;
2547 if (memcmp(pi
->ehdr
->e_ident
, ELFMAG
, SELFMAG
) != 0
2548 || pi
->ehdr
->e_type
!= ET_REL
2549 || !elf_check_arch(pi
->ehdr
)
2550 || pi
->ehdr
->e_shentsize
!= sizeof(Elf_Shdr
))
2553 if (pi
->ehdr
->e_shoff
>= kexec_purgatory_size
2554 || (pi
->ehdr
->e_shnum
* sizeof(Elf_Shdr
) >
2555 kexec_purgatory_size
- pi
->ehdr
->e_shoff
))
2558 ret
= __kexec_load_purgatory(image
, min
, max
, top_down
);
2562 ret
= kexec_apply_relocations(image
);
2566 *load_addr
= pi
->purgatory_load_addr
;
2570 vfree(pi
->purgatory_buf
);
2574 static Elf_Sym
*kexec_purgatory_find_symbol(struct purgatory_info
*pi
,
2583 if (!pi
->sechdrs
|| !pi
->ehdr
)
2586 sechdrs
= pi
->sechdrs
;
2589 for (i
= 0; i
< ehdr
->e_shnum
; i
++) {
2590 if (sechdrs
[i
].sh_type
!= SHT_SYMTAB
)
2593 if (sechdrs
[i
].sh_link
>= ehdr
->e_shnum
)
2594 /* Invalid strtab section number */
2596 strtab
= (char *)sechdrs
[sechdrs
[i
].sh_link
].sh_offset
;
2597 syms
= (Elf_Sym
*)sechdrs
[i
].sh_offset
;
2599 /* Go through symbols for a match */
2600 for (k
= 0; k
< sechdrs
[i
].sh_size
/sizeof(Elf_Sym
); k
++) {
2601 if (ELF_ST_BIND(syms
[k
].st_info
) != STB_GLOBAL
)
2604 if (strcmp(strtab
+ syms
[k
].st_name
, name
) != 0)
2607 if (syms
[k
].st_shndx
== SHN_UNDEF
||
2608 syms
[k
].st_shndx
>= ehdr
->e_shnum
) {
2609 pr_debug("Symbol: %s has bad section index %d.\n",
2610 name
, syms
[k
].st_shndx
);
2614 /* Found the symbol we are looking for */
2622 void *kexec_purgatory_get_symbol_addr(struct kimage
*image
, const char *name
)
2624 struct purgatory_info
*pi
= &image
->purgatory_info
;
2628 sym
= kexec_purgatory_find_symbol(pi
, name
);
2630 return ERR_PTR(-EINVAL
);
2632 sechdr
= &pi
->sechdrs
[sym
->st_shndx
];
2635 * Returns the address where symbol will finally be loaded after
2636 * kexec_load_segment()
2638 return (void *)(sechdr
->sh_addr
+ sym
->st_value
);
2642 * Get or set value of a symbol. If "get_value" is true, symbol value is
2643 * returned in buf otherwise symbol value is set based on value in buf.
2645 int kexec_purgatory_get_set_symbol(struct kimage
*image
, const char *name
,
2646 void *buf
, unsigned int size
, bool get_value
)
2650 struct purgatory_info
*pi
= &image
->purgatory_info
;
2653 sym
= kexec_purgatory_find_symbol(pi
, name
);
2657 if (sym
->st_size
!= size
) {
2658 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2659 name
, (unsigned long)sym
->st_size
, size
);
2663 sechdrs
= pi
->sechdrs
;
2665 if (sechdrs
[sym
->st_shndx
].sh_type
== SHT_NOBITS
) {
2666 pr_err("symbol %s is in a bss section. Cannot %s\n", name
,
2667 get_value
? "get" : "set");
2671 sym_buf
= (unsigned char *)sechdrs
[sym
->st_shndx
].sh_offset
+
2675 memcpy((void *)buf
, sym_buf
, size
);
2677 memcpy((void *)sym_buf
, buf
, size
);
2681 #endif /* CONFIG_KEXEC_FILE */
2684 * Move into place and start executing a preloaded standalone
2685 * executable. If nothing was preloaded return an error.
2687 int kernel_kexec(void)
2691 if (!mutex_trylock(&kexec_mutex
))
2698 #ifdef CONFIG_KEXEC_JUMP
2699 if (kexec_image
->preserve_context
) {
2700 lock_system_sleep();
2701 pm_prepare_console();
2702 error
= freeze_processes();
2705 goto Restore_console
;
2708 error
= dpm_suspend_start(PMSG_FREEZE
);
2710 goto Resume_console
;
2711 /* At this point, dpm_suspend_start() has been called,
2712 * but *not* dpm_suspend_end(). We *must* call
2713 * dpm_suspend_end() now. Otherwise, drivers for
2714 * some devices (e.g. interrupt controllers) become
2715 * desynchronized with the actual state of the
2716 * hardware at resume time, and evil weirdness ensues.
2718 error
= dpm_suspend_end(PMSG_FREEZE
);
2720 goto Resume_devices
;
2721 error
= disable_nonboot_cpus();
2724 local_irq_disable();
2725 error
= syscore_suspend();
2731 kexec_in_progress
= true;
2732 kernel_restart_prepare(NULL
);
2733 migrate_to_reboot_cpu();
2736 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2737 * no further code needs to use CPU hotplug (which is true in
2738 * the reboot case). However, the kexec path depends on using
2739 * CPU hotplug again; so re-enable it here.
2741 cpu_hotplug_enable();
2742 pr_emerg("Starting new kernel\n");
2746 machine_kexec(kexec_image
);
2748 #ifdef CONFIG_KEXEC_JUMP
2749 if (kexec_image
->preserve_context
) {
2754 enable_nonboot_cpus();
2755 dpm_resume_start(PMSG_RESTORE
);
2757 dpm_resume_end(PMSG_RESTORE
);
2762 pm_restore_console();
2763 unlock_system_sleep();
2768 mutex_unlock(&kexec_mutex
);