staging:iio:accel:adis16220 move to info_mask_(shared_by_type/separate)
[linux/fpc-iii.git] / fs / btrfs / ctree.c
blobecd25a1b4e519562ff874112515052403877fbc4
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 struct btrfs_path *path, int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
44 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45 u32 blocksize, u64 parent_transid,
46 u64 time_seq);
47 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48 u64 bytenr, u32 blocksize,
49 u64 time_seq);
51 struct btrfs_path *btrfs_alloc_path(void)
53 struct btrfs_path *path;
54 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
55 return path;
59 * set all locked nodes in the path to blocking locks. This should
60 * be done before scheduling
62 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 int i;
65 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
66 if (!p->nodes[i] || !p->locks[i])
67 continue;
68 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69 if (p->locks[i] == BTRFS_READ_LOCK)
70 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
77 * reset all the locked nodes in the patch to spinning locks.
79 * held is used to keep lockdep happy, when lockdep is enabled
80 * we set held to a blocking lock before we go around and
81 * retake all the spinlocks in the path. You can safely use NULL
82 * for held
84 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
85 struct extent_buffer *held, int held_rw)
87 int i;
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 /* lockdep really cares that we take all of these spinlocks
91 * in the right order. If any of the locks in the path are not
92 * currently blocking, it is going to complain. So, make really
93 * really sure by forcing the path to blocking before we clear
94 * the path blocking.
96 if (held) {
97 btrfs_set_lock_blocking_rw(held, held_rw);
98 if (held_rw == BTRFS_WRITE_LOCK)
99 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100 else if (held_rw == BTRFS_READ_LOCK)
101 held_rw = BTRFS_READ_LOCK_BLOCKING;
103 btrfs_set_path_blocking(p);
104 #endif
106 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
107 if (p->nodes[i] && p->locks[i]) {
108 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110 p->locks[i] = BTRFS_WRITE_LOCK;
111 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112 p->locks[i] = BTRFS_READ_LOCK;
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117 if (held)
118 btrfs_clear_lock_blocking_rw(held, held_rw);
119 #endif
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path *p)
125 if (!p)
126 return;
127 btrfs_release_path(p);
128 kmem_cache_free(btrfs_path_cachep, p);
132 * path release drops references on the extent buffers in the path
133 * and it drops any locks held by this path
135 * It is safe to call this on paths that no locks or extent buffers held.
137 noinline void btrfs_release_path(struct btrfs_path *p)
139 int i;
141 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
142 p->slots[i] = 0;
143 if (!p->nodes[i])
144 continue;
145 if (p->locks[i]) {
146 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
147 p->locks[i] = 0;
149 free_extent_buffer(p->nodes[i]);
150 p->nodes[i] = NULL;
155 * safely gets a reference on the root node of a tree. A lock
156 * is not taken, so a concurrent writer may put a different node
157 * at the root of the tree. See btrfs_lock_root_node for the
158 * looping required.
160 * The extent buffer returned by this has a reference taken, so
161 * it won't disappear. It may stop being the root of the tree
162 * at any time because there are no locks held.
164 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 struct extent_buffer *eb;
168 while (1) {
169 rcu_read_lock();
170 eb = rcu_dereference(root->node);
173 * RCU really hurts here, we could free up the root node because
174 * it was cow'ed but we may not get the new root node yet so do
175 * the inc_not_zero dance and if it doesn't work then
176 * synchronize_rcu and try again.
178 if (atomic_inc_not_zero(&eb->refs)) {
179 rcu_read_unlock();
180 break;
182 rcu_read_unlock();
183 synchronize_rcu();
185 return eb;
188 /* loop around taking references on and locking the root node of the
189 * tree until you end up with a lock on the root. A locked buffer
190 * is returned, with a reference held.
192 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 struct extent_buffer *eb;
196 while (1) {
197 eb = btrfs_root_node(root);
198 btrfs_tree_lock(eb);
199 if (eb == root->node)
200 break;
201 btrfs_tree_unlock(eb);
202 free_extent_buffer(eb);
204 return eb;
207 /* loop around taking references on and locking the root node of the
208 * tree until you end up with a lock on the root. A locked buffer
209 * is returned, with a reference held.
211 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 struct extent_buffer *eb;
215 while (1) {
216 eb = btrfs_root_node(root);
217 btrfs_tree_read_lock(eb);
218 if (eb == root->node)
219 break;
220 btrfs_tree_read_unlock(eb);
221 free_extent_buffer(eb);
223 return eb;
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227 * put onto a simple dirty list. transaction.c walks this to make sure they
228 * get properly updated on disk.
230 static void add_root_to_dirty_list(struct btrfs_root *root)
232 spin_lock(&root->fs_info->trans_lock);
233 if (root->track_dirty && list_empty(&root->dirty_list)) {
234 list_add(&root->dirty_list,
235 &root->fs_info->dirty_cowonly_roots);
237 spin_unlock(&root->fs_info->trans_lock);
241 * used by snapshot creation to make a copy of a root for a tree with
242 * a given objectid. The buffer with the new root node is returned in
243 * cow_ret, and this func returns zero on success or a negative error code.
245 int btrfs_copy_root(struct btrfs_trans_handle *trans,
246 struct btrfs_root *root,
247 struct extent_buffer *buf,
248 struct extent_buffer **cow_ret, u64 new_root_objectid)
250 struct extent_buffer *cow;
251 int ret = 0;
252 int level;
253 struct btrfs_disk_key disk_key;
255 WARN_ON(root->ref_cows && trans->transid !=
256 root->fs_info->running_transaction->transid);
257 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259 level = btrfs_header_level(buf);
260 if (level == 0)
261 btrfs_item_key(buf, &disk_key, 0);
262 else
263 btrfs_node_key(buf, &disk_key, 0);
265 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266 new_root_objectid, &disk_key, level,
267 buf->start, 0);
268 if (IS_ERR(cow))
269 return PTR_ERR(cow);
271 copy_extent_buffer(cow, buf, 0, 0, cow->len);
272 btrfs_set_header_bytenr(cow, cow->start);
273 btrfs_set_header_generation(cow, trans->transid);
274 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276 BTRFS_HEADER_FLAG_RELOC);
277 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279 else
280 btrfs_set_header_owner(cow, new_root_objectid);
282 write_extent_buffer(cow, root->fs_info->fsid,
283 (unsigned long)btrfs_header_fsid(cow),
284 BTRFS_FSID_SIZE);
286 WARN_ON(btrfs_header_generation(buf) > trans->transid);
287 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
288 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
289 else
290 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292 if (ret)
293 return ret;
295 btrfs_mark_buffer_dirty(cow);
296 *cow_ret = cow;
297 return 0;
300 enum mod_log_op {
301 MOD_LOG_KEY_REPLACE,
302 MOD_LOG_KEY_ADD,
303 MOD_LOG_KEY_REMOVE,
304 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306 MOD_LOG_MOVE_KEYS,
307 MOD_LOG_ROOT_REPLACE,
310 struct tree_mod_move {
311 int dst_slot;
312 int nr_items;
315 struct tree_mod_root {
316 u64 logical;
317 u8 level;
320 struct tree_mod_elem {
321 struct rb_node node;
322 u64 index; /* shifted logical */
323 u64 seq;
324 enum mod_log_op op;
326 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327 int slot;
329 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330 u64 generation;
332 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 struct btrfs_disk_key key;
334 u64 blockptr;
336 /* this is used for op == MOD_LOG_MOVE_KEYS */
337 struct tree_mod_move move;
339 /* this is used for op == MOD_LOG_ROOT_REPLACE */
340 struct tree_mod_root old_root;
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
345 read_lock(&fs_info->tree_mod_log_lock);
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
350 read_unlock(&fs_info->tree_mod_log_lock);
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
355 write_lock(&fs_info->tree_mod_log_lock);
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
360 write_unlock(&fs_info->tree_mod_log_lock);
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
374 u64 seq;
376 tree_mod_log_write_lock(fs_info);
377 spin_lock(&fs_info->tree_mod_seq_lock);
378 if (!elem->seq) {
379 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382 seq = btrfs_inc_tree_mod_seq(fs_info);
383 spin_unlock(&fs_info->tree_mod_seq_lock);
384 tree_mod_log_write_unlock(fs_info);
386 return seq;
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 struct seq_list *elem)
392 struct rb_root *tm_root;
393 struct rb_node *node;
394 struct rb_node *next;
395 struct seq_list *cur_elem;
396 struct tree_mod_elem *tm;
397 u64 min_seq = (u64)-1;
398 u64 seq_putting = elem->seq;
400 if (!seq_putting)
401 return;
403 spin_lock(&fs_info->tree_mod_seq_lock);
404 list_del(&elem->list);
405 elem->seq = 0;
407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408 if (cur_elem->seq < min_seq) {
409 if (seq_putting > cur_elem->seq) {
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
414 spin_unlock(&fs_info->tree_mod_seq_lock);
415 return;
417 min_seq = cur_elem->seq;
420 spin_unlock(&fs_info->tree_mod_seq_lock);
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
426 tree_mod_log_write_lock(fs_info);
427 tm_root = &fs_info->tree_mod_log;
428 for (node = rb_first(tm_root); node; node = next) {
429 next = rb_next(node);
430 tm = container_of(node, struct tree_mod_elem, node);
431 if (tm->seq > min_seq)
432 continue;
433 rb_erase(node, tm_root);
434 kfree(tm);
436 tree_mod_log_write_unlock(fs_info);
440 * key order of the log:
441 * index -> sequence
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
445 * operations.
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 struct rb_root *tm_root;
451 struct rb_node **new;
452 struct rb_node *parent = NULL;
453 struct tree_mod_elem *cur;
455 BUG_ON(!tm || !tm->seq);
457 tm_root = &fs_info->tree_mod_log;
458 new = &tm_root->rb_node;
459 while (*new) {
460 cur = container_of(*new, struct tree_mod_elem, node);
461 parent = *new;
462 if (cur->index < tm->index)
463 new = &((*new)->rb_left);
464 else if (cur->index > tm->index)
465 new = &((*new)->rb_right);
466 else if (cur->seq < tm->seq)
467 new = &((*new)->rb_left);
468 else if (cur->seq > tm->seq)
469 new = &((*new)->rb_right);
470 else {
471 kfree(tm);
472 return -EEXIST;
476 rb_link_node(&tm->node, parent, new);
477 rb_insert_color(&tm->node, tm_root);
478 return 0;
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 struct extent_buffer *eb) {
489 smp_mb();
490 if (list_empty(&(fs_info)->tree_mod_seq_list))
491 return 1;
492 if (eb && btrfs_header_level(eb) == 0)
493 return 1;
495 tree_mod_log_write_lock(fs_info);
496 if (list_empty(&fs_info->tree_mod_seq_list)) {
498 * someone emptied the list while we were waiting for the lock.
499 * we must not add to the list when no blocker exists.
501 tree_mod_log_write_unlock(fs_info);
502 return 1;
505 return 0;
509 * This allocates memory and gets a tree modification sequence number.
511 * Returns <0 on error.
512 * Returns >0 (the added sequence number) on success.
514 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515 struct tree_mod_elem **tm_ret)
517 struct tree_mod_elem *tm;
520 * once we switch from spin locks to something different, we should
521 * honor the flags parameter here.
523 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
524 if (!tm)
525 return -ENOMEM;
527 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528 return tm->seq;
531 static inline int
532 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533 struct extent_buffer *eb, int slot,
534 enum mod_log_op op, gfp_t flags)
536 int ret;
537 struct tree_mod_elem *tm;
539 ret = tree_mod_alloc(fs_info, flags, &tm);
540 if (ret < 0)
541 return ret;
543 tm->index = eb->start >> PAGE_CACHE_SHIFT;
544 if (op != MOD_LOG_KEY_ADD) {
545 btrfs_node_key(eb, &tm->key, slot);
546 tm->blockptr = btrfs_node_blockptr(eb, slot);
548 tm->op = op;
549 tm->slot = slot;
550 tm->generation = btrfs_node_ptr_generation(eb, slot);
552 return __tree_mod_log_insert(fs_info, tm);
555 static noinline int
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557 struct extent_buffer *eb, int slot,
558 enum mod_log_op op, gfp_t flags)
560 int ret;
562 if (tree_mod_dont_log(fs_info, eb))
563 return 0;
565 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
567 tree_mod_log_write_unlock(fs_info);
568 return ret;
571 static noinline int
572 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573 int slot, enum mod_log_op op)
575 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
578 static noinline int
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580 struct extent_buffer *eb, int slot,
581 enum mod_log_op op)
583 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
586 static noinline int
587 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588 struct extent_buffer *eb, int dst_slot, int src_slot,
589 int nr_items, gfp_t flags)
591 struct tree_mod_elem *tm;
592 int ret;
593 int i;
595 if (tree_mod_dont_log(fs_info, eb))
596 return 0;
599 * When we override something during the move, we log these removals.
600 * This can only happen when we move towards the beginning of the
601 * buffer, i.e. dst_slot < src_slot.
603 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
604 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
605 MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606 BUG_ON(ret < 0);
609 ret = tree_mod_alloc(fs_info, flags, &tm);
610 if (ret < 0)
611 goto out;
613 tm->index = eb->start >> PAGE_CACHE_SHIFT;
614 tm->slot = src_slot;
615 tm->move.dst_slot = dst_slot;
616 tm->move.nr_items = nr_items;
617 tm->op = MOD_LOG_MOVE_KEYS;
619 ret = __tree_mod_log_insert(fs_info, tm);
620 out:
621 tree_mod_log_write_unlock(fs_info);
622 return ret;
625 static inline void
626 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
628 int i;
629 u32 nritems;
630 int ret;
632 if (btrfs_header_level(eb) == 0)
633 return;
635 nritems = btrfs_header_nritems(eb);
636 for (i = nritems - 1; i >= 0; i--) {
637 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638 MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639 BUG_ON(ret < 0);
643 static noinline int
644 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645 struct extent_buffer *old_root,
646 struct extent_buffer *new_root, gfp_t flags)
648 struct tree_mod_elem *tm;
649 int ret;
651 if (tree_mod_dont_log(fs_info, NULL))
652 return 0;
654 ret = tree_mod_alloc(fs_info, flags, &tm);
655 if (ret < 0)
656 goto out;
658 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
659 tm->old_root.logical = old_root->start;
660 tm->old_root.level = btrfs_header_level(old_root);
661 tm->generation = btrfs_header_generation(old_root);
662 tm->op = MOD_LOG_ROOT_REPLACE;
664 ret = __tree_mod_log_insert(fs_info, tm);
665 out:
666 tree_mod_log_write_unlock(fs_info);
667 return ret;
670 static struct tree_mod_elem *
671 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
672 int smallest)
674 struct rb_root *tm_root;
675 struct rb_node *node;
676 struct tree_mod_elem *cur = NULL;
677 struct tree_mod_elem *found = NULL;
678 u64 index = start >> PAGE_CACHE_SHIFT;
680 tree_mod_log_read_lock(fs_info);
681 tm_root = &fs_info->tree_mod_log;
682 node = tm_root->rb_node;
683 while (node) {
684 cur = container_of(node, struct tree_mod_elem, node);
685 if (cur->index < index) {
686 node = node->rb_left;
687 } else if (cur->index > index) {
688 node = node->rb_right;
689 } else if (cur->seq < min_seq) {
690 node = node->rb_left;
691 } else if (!smallest) {
692 /* we want the node with the highest seq */
693 if (found)
694 BUG_ON(found->seq > cur->seq);
695 found = cur;
696 node = node->rb_left;
697 } else if (cur->seq > min_seq) {
698 /* we want the node with the smallest seq */
699 if (found)
700 BUG_ON(found->seq < cur->seq);
701 found = cur;
702 node = node->rb_right;
703 } else {
704 found = cur;
705 break;
708 tree_mod_log_read_unlock(fs_info);
710 return found;
714 * this returns the element from the log with the smallest time sequence
715 * value that's in the log (the oldest log item). any element with a time
716 * sequence lower than min_seq will be ignored.
718 static struct tree_mod_elem *
719 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
720 u64 min_seq)
722 return __tree_mod_log_search(fs_info, start, min_seq, 1);
726 * this returns the element from the log with the largest time sequence
727 * value that's in the log (the most recent log item). any element with
728 * a time sequence lower than min_seq will be ignored.
730 static struct tree_mod_elem *
731 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
733 return __tree_mod_log_search(fs_info, start, min_seq, 0);
736 static noinline void
737 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
738 struct extent_buffer *src, unsigned long dst_offset,
739 unsigned long src_offset, int nr_items)
741 int ret;
742 int i;
744 if (tree_mod_dont_log(fs_info, NULL))
745 return;
747 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
748 tree_mod_log_write_unlock(fs_info);
749 return;
752 for (i = 0; i < nr_items; i++) {
753 ret = tree_mod_log_insert_key_locked(fs_info, src,
754 i + src_offset,
755 MOD_LOG_KEY_REMOVE);
756 BUG_ON(ret < 0);
757 ret = tree_mod_log_insert_key_locked(fs_info, dst,
758 i + dst_offset,
759 MOD_LOG_KEY_ADD);
760 BUG_ON(ret < 0);
763 tree_mod_log_write_unlock(fs_info);
766 static inline void
767 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
768 int dst_offset, int src_offset, int nr_items)
770 int ret;
771 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
772 nr_items, GFP_NOFS);
773 BUG_ON(ret < 0);
776 static noinline void
777 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
778 struct extent_buffer *eb, int slot, int atomic)
780 int ret;
782 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
783 MOD_LOG_KEY_REPLACE,
784 atomic ? GFP_ATOMIC : GFP_NOFS);
785 BUG_ON(ret < 0);
788 static noinline void
789 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
791 if (tree_mod_dont_log(fs_info, eb))
792 return;
794 __tree_mod_log_free_eb(fs_info, eb);
796 tree_mod_log_write_unlock(fs_info);
799 static noinline void
800 tree_mod_log_set_root_pointer(struct btrfs_root *root,
801 struct extent_buffer *new_root_node)
803 int ret;
804 ret = tree_mod_log_insert_root(root->fs_info, root->node,
805 new_root_node, GFP_NOFS);
806 BUG_ON(ret < 0);
810 * check if the tree block can be shared by multiple trees
812 int btrfs_block_can_be_shared(struct btrfs_root *root,
813 struct extent_buffer *buf)
816 * Tree blocks not in refernece counted trees and tree roots
817 * are never shared. If a block was allocated after the last
818 * snapshot and the block was not allocated by tree relocation,
819 * we know the block is not shared.
821 if (root->ref_cows &&
822 buf != root->node && buf != root->commit_root &&
823 (btrfs_header_generation(buf) <=
824 btrfs_root_last_snapshot(&root->root_item) ||
825 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
826 return 1;
827 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
828 if (root->ref_cows &&
829 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
830 return 1;
831 #endif
832 return 0;
835 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
836 struct btrfs_root *root,
837 struct extent_buffer *buf,
838 struct extent_buffer *cow,
839 int *last_ref)
841 u64 refs;
842 u64 owner;
843 u64 flags;
844 u64 new_flags = 0;
845 int ret;
848 * Backrefs update rules:
850 * Always use full backrefs for extent pointers in tree block
851 * allocated by tree relocation.
853 * If a shared tree block is no longer referenced by its owner
854 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
855 * use full backrefs for extent pointers in tree block.
857 * If a tree block is been relocating
858 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
859 * use full backrefs for extent pointers in tree block.
860 * The reason for this is some operations (such as drop tree)
861 * are only allowed for blocks use full backrefs.
864 if (btrfs_block_can_be_shared(root, buf)) {
865 ret = btrfs_lookup_extent_info(trans, root, buf->start,
866 buf->len, &refs, &flags);
867 if (ret)
868 return ret;
869 if (refs == 0) {
870 ret = -EROFS;
871 btrfs_std_error(root->fs_info, ret);
872 return ret;
874 } else {
875 refs = 1;
876 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
877 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
878 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
879 else
880 flags = 0;
883 owner = btrfs_header_owner(buf);
884 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
885 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
887 if (refs > 1) {
888 if ((owner == root->root_key.objectid ||
889 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
890 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
891 ret = btrfs_inc_ref(trans, root, buf, 1, 1);
892 BUG_ON(ret); /* -ENOMEM */
894 if (root->root_key.objectid ==
895 BTRFS_TREE_RELOC_OBJECTID) {
896 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
897 BUG_ON(ret); /* -ENOMEM */
898 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
899 BUG_ON(ret); /* -ENOMEM */
901 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
902 } else {
904 if (root->root_key.objectid ==
905 BTRFS_TREE_RELOC_OBJECTID)
906 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
907 else
908 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
909 BUG_ON(ret); /* -ENOMEM */
911 if (new_flags != 0) {
912 ret = btrfs_set_disk_extent_flags(trans, root,
913 buf->start,
914 buf->len,
915 new_flags, 0);
916 if (ret)
917 return ret;
919 } else {
920 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
921 if (root->root_key.objectid ==
922 BTRFS_TREE_RELOC_OBJECTID)
923 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
924 else
925 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
926 BUG_ON(ret); /* -ENOMEM */
927 ret = btrfs_dec_ref(trans, root, buf, 1, 1);
928 BUG_ON(ret); /* -ENOMEM */
930 tree_mod_log_free_eb(root->fs_info, buf);
931 clean_tree_block(trans, root, buf);
932 *last_ref = 1;
934 return 0;
938 * does the dirty work in cow of a single block. The parent block (if
939 * supplied) is updated to point to the new cow copy. The new buffer is marked
940 * dirty and returned locked. If you modify the block it needs to be marked
941 * dirty again.
943 * search_start -- an allocation hint for the new block
945 * empty_size -- a hint that you plan on doing more cow. This is the size in
946 * bytes the allocator should try to find free next to the block it returns.
947 * This is just a hint and may be ignored by the allocator.
949 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
950 struct btrfs_root *root,
951 struct extent_buffer *buf,
952 struct extent_buffer *parent, int parent_slot,
953 struct extent_buffer **cow_ret,
954 u64 search_start, u64 empty_size)
956 struct btrfs_disk_key disk_key;
957 struct extent_buffer *cow;
958 int level, ret;
959 int last_ref = 0;
960 int unlock_orig = 0;
961 u64 parent_start;
963 if (*cow_ret == buf)
964 unlock_orig = 1;
966 btrfs_assert_tree_locked(buf);
968 WARN_ON(root->ref_cows && trans->transid !=
969 root->fs_info->running_transaction->transid);
970 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
972 level = btrfs_header_level(buf);
974 if (level == 0)
975 btrfs_item_key(buf, &disk_key, 0);
976 else
977 btrfs_node_key(buf, &disk_key, 0);
979 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
980 if (parent)
981 parent_start = parent->start;
982 else
983 parent_start = 0;
984 } else
985 parent_start = 0;
987 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
988 root->root_key.objectid, &disk_key,
989 level, search_start, empty_size);
990 if (IS_ERR(cow))
991 return PTR_ERR(cow);
993 /* cow is set to blocking by btrfs_init_new_buffer */
995 copy_extent_buffer(cow, buf, 0, 0, cow->len);
996 btrfs_set_header_bytenr(cow, cow->start);
997 btrfs_set_header_generation(cow, trans->transid);
998 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
999 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1000 BTRFS_HEADER_FLAG_RELOC);
1001 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1002 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1003 else
1004 btrfs_set_header_owner(cow, root->root_key.objectid);
1006 write_extent_buffer(cow, root->fs_info->fsid,
1007 (unsigned long)btrfs_header_fsid(cow),
1008 BTRFS_FSID_SIZE);
1010 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1011 if (ret) {
1012 btrfs_abort_transaction(trans, root, ret);
1013 return ret;
1016 if (root->ref_cows)
1017 btrfs_reloc_cow_block(trans, root, buf, cow);
1019 if (buf == root->node) {
1020 WARN_ON(parent && parent != buf);
1021 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023 parent_start = buf->start;
1024 else
1025 parent_start = 0;
1027 extent_buffer_get(cow);
1028 tree_mod_log_set_root_pointer(root, cow);
1029 rcu_assign_pointer(root->node, cow);
1031 btrfs_free_tree_block(trans, root, buf, parent_start,
1032 last_ref);
1033 free_extent_buffer(buf);
1034 add_root_to_dirty_list(root);
1035 } else {
1036 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1037 parent_start = parent->start;
1038 else
1039 parent_start = 0;
1041 WARN_ON(trans->transid != btrfs_header_generation(parent));
1042 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1043 MOD_LOG_KEY_REPLACE);
1044 btrfs_set_node_blockptr(parent, parent_slot,
1045 cow->start);
1046 btrfs_set_node_ptr_generation(parent, parent_slot,
1047 trans->transid);
1048 btrfs_mark_buffer_dirty(parent);
1049 btrfs_free_tree_block(trans, root, buf, parent_start,
1050 last_ref);
1052 if (unlock_orig)
1053 btrfs_tree_unlock(buf);
1054 free_extent_buffer_stale(buf);
1055 btrfs_mark_buffer_dirty(cow);
1056 *cow_ret = cow;
1057 return 0;
1061 * returns the logical address of the oldest predecessor of the given root.
1062 * entries older than time_seq are ignored.
1064 static struct tree_mod_elem *
1065 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1066 struct btrfs_root *root, u64 time_seq)
1068 struct tree_mod_elem *tm;
1069 struct tree_mod_elem *found = NULL;
1070 u64 root_logical = root->node->start;
1071 int looped = 0;
1073 if (!time_seq)
1074 return 0;
1077 * the very last operation that's logged for a root is the replacement
1078 * operation (if it is replaced at all). this has the index of the *new*
1079 * root, making it the very first operation that's logged for this root.
1081 while (1) {
1082 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1083 time_seq);
1084 if (!looped && !tm)
1085 return 0;
1087 * if there are no tree operation for the oldest root, we simply
1088 * return it. this should only happen if that (old) root is at
1089 * level 0.
1091 if (!tm)
1092 break;
1095 * if there's an operation that's not a root replacement, we
1096 * found the oldest version of our root. normally, we'll find a
1097 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1099 if (tm->op != MOD_LOG_ROOT_REPLACE)
1100 break;
1102 found = tm;
1103 root_logical = tm->old_root.logical;
1104 BUG_ON(root_logical == root->node->start);
1105 looped = 1;
1108 /* if there's no old root to return, return what we found instead */
1109 if (!found)
1110 found = tm;
1112 return found;
1116 * tm is a pointer to the first operation to rewind within eb. then, all
1117 * previous operations will be rewinded (until we reach something older than
1118 * time_seq).
1120 static void
1121 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1122 struct tree_mod_elem *first_tm)
1124 u32 n;
1125 struct rb_node *next;
1126 struct tree_mod_elem *tm = first_tm;
1127 unsigned long o_dst;
1128 unsigned long o_src;
1129 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1131 n = btrfs_header_nritems(eb);
1132 while (tm && tm->seq >= time_seq) {
1134 * all the operations are recorded with the operator used for
1135 * the modification. as we're going backwards, we do the
1136 * opposite of each operation here.
1138 switch (tm->op) {
1139 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1140 BUG_ON(tm->slot < n);
1141 /* Fallthrough */
1142 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1143 case MOD_LOG_KEY_REMOVE:
1144 btrfs_set_node_key(eb, &tm->key, tm->slot);
1145 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1146 btrfs_set_node_ptr_generation(eb, tm->slot,
1147 tm->generation);
1148 n++;
1149 break;
1150 case MOD_LOG_KEY_REPLACE:
1151 BUG_ON(tm->slot >= n);
1152 btrfs_set_node_key(eb, &tm->key, tm->slot);
1153 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1154 btrfs_set_node_ptr_generation(eb, tm->slot,
1155 tm->generation);
1156 break;
1157 case MOD_LOG_KEY_ADD:
1158 /* if a move operation is needed it's in the log */
1159 n--;
1160 break;
1161 case MOD_LOG_MOVE_KEYS:
1162 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1163 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1164 memmove_extent_buffer(eb, o_dst, o_src,
1165 tm->move.nr_items * p_size);
1166 break;
1167 case MOD_LOG_ROOT_REPLACE:
1169 * this operation is special. for roots, this must be
1170 * handled explicitly before rewinding.
1171 * for non-roots, this operation may exist if the node
1172 * was a root: root A -> child B; then A gets empty and
1173 * B is promoted to the new root. in the mod log, we'll
1174 * have a root-replace operation for B, a tree block
1175 * that is no root. we simply ignore that operation.
1177 break;
1179 next = rb_next(&tm->node);
1180 if (!next)
1181 break;
1182 tm = container_of(next, struct tree_mod_elem, node);
1183 if (tm->index != first_tm->index)
1184 break;
1186 btrfs_set_header_nritems(eb, n);
1189 static struct extent_buffer *
1190 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1191 u64 time_seq)
1193 struct extent_buffer *eb_rewin;
1194 struct tree_mod_elem *tm;
1196 if (!time_seq)
1197 return eb;
1199 if (btrfs_header_level(eb) == 0)
1200 return eb;
1202 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1203 if (!tm)
1204 return eb;
1206 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1207 BUG_ON(tm->slot != 0);
1208 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1209 fs_info->tree_root->nodesize);
1210 BUG_ON(!eb_rewin);
1211 btrfs_set_header_bytenr(eb_rewin, eb->start);
1212 btrfs_set_header_backref_rev(eb_rewin,
1213 btrfs_header_backref_rev(eb));
1214 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1215 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1216 } else {
1217 eb_rewin = btrfs_clone_extent_buffer(eb);
1218 BUG_ON(!eb_rewin);
1221 extent_buffer_get(eb_rewin);
1222 free_extent_buffer(eb);
1224 __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1225 WARN_ON(btrfs_header_nritems(eb_rewin) >
1226 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1228 return eb_rewin;
1232 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1233 * value. If there are no changes, the current root->root_node is returned. If
1234 * anything changed in between, there's a fresh buffer allocated on which the
1235 * rewind operations are done. In any case, the returned buffer is read locked.
1236 * Returns NULL on error (with no locks held).
1238 static inline struct extent_buffer *
1239 get_old_root(struct btrfs_root *root, u64 time_seq)
1241 struct tree_mod_elem *tm;
1242 struct extent_buffer *eb;
1243 struct extent_buffer *old;
1244 struct tree_mod_root *old_root = NULL;
1245 u64 old_generation = 0;
1246 u64 logical;
1247 u32 blocksize;
1249 eb = btrfs_read_lock_root_node(root);
1250 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1251 if (!tm)
1252 return root->node;
1254 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1255 old_root = &tm->old_root;
1256 old_generation = tm->generation;
1257 logical = old_root->logical;
1258 } else {
1259 logical = root->node->start;
1262 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1263 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1264 btrfs_tree_read_unlock(root->node);
1265 free_extent_buffer(root->node);
1266 blocksize = btrfs_level_size(root, old_root->level);
1267 old = read_tree_block(root, logical, blocksize, 0);
1268 if (!old) {
1269 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1270 logical);
1271 WARN_ON(1);
1272 } else {
1273 eb = btrfs_clone_extent_buffer(old);
1274 free_extent_buffer(old);
1276 } else if (old_root) {
1277 btrfs_tree_read_unlock(root->node);
1278 free_extent_buffer(root->node);
1279 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1280 } else {
1281 eb = btrfs_clone_extent_buffer(root->node);
1282 btrfs_tree_read_unlock(root->node);
1283 free_extent_buffer(root->node);
1286 if (!eb)
1287 return NULL;
1288 extent_buffer_get(eb);
1289 btrfs_tree_read_lock(eb);
1290 if (old_root) {
1291 btrfs_set_header_bytenr(eb, eb->start);
1292 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1293 btrfs_set_header_owner(eb, root->root_key.objectid);
1294 btrfs_set_header_level(eb, old_root->level);
1295 btrfs_set_header_generation(eb, old_generation);
1297 if (tm)
1298 __tree_mod_log_rewind(eb, time_seq, tm);
1299 else
1300 WARN_ON(btrfs_header_level(eb) != 0);
1301 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1303 return eb;
1306 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1308 struct tree_mod_elem *tm;
1309 int level;
1311 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1312 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1313 level = tm->old_root.level;
1314 } else {
1315 rcu_read_lock();
1316 level = btrfs_header_level(root->node);
1317 rcu_read_unlock();
1320 return level;
1323 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1324 struct btrfs_root *root,
1325 struct extent_buffer *buf)
1327 /* ensure we can see the force_cow */
1328 smp_rmb();
1331 * We do not need to cow a block if
1332 * 1) this block is not created or changed in this transaction;
1333 * 2) this block does not belong to TREE_RELOC tree;
1334 * 3) the root is not forced COW.
1336 * What is forced COW:
1337 * when we create snapshot during commiting the transaction,
1338 * after we've finished coping src root, we must COW the shared
1339 * block to ensure the metadata consistency.
1341 if (btrfs_header_generation(buf) == trans->transid &&
1342 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1343 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1344 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1345 !root->force_cow)
1346 return 0;
1347 return 1;
1351 * cows a single block, see __btrfs_cow_block for the real work.
1352 * This version of it has extra checks so that a block isn't cow'd more than
1353 * once per transaction, as long as it hasn't been written yet
1355 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1356 struct btrfs_root *root, struct extent_buffer *buf,
1357 struct extent_buffer *parent, int parent_slot,
1358 struct extent_buffer **cow_ret)
1360 u64 search_start;
1361 int ret;
1363 if (trans->transaction != root->fs_info->running_transaction)
1364 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1365 (unsigned long long)trans->transid,
1366 (unsigned long long)
1367 root->fs_info->running_transaction->transid);
1369 if (trans->transid != root->fs_info->generation)
1370 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1371 (unsigned long long)trans->transid,
1372 (unsigned long long)root->fs_info->generation);
1374 if (!should_cow_block(trans, root, buf)) {
1375 *cow_ret = buf;
1376 return 0;
1379 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1381 if (parent)
1382 btrfs_set_lock_blocking(parent);
1383 btrfs_set_lock_blocking(buf);
1385 ret = __btrfs_cow_block(trans, root, buf, parent,
1386 parent_slot, cow_ret, search_start, 0);
1388 trace_btrfs_cow_block(root, buf, *cow_ret);
1390 return ret;
1394 * helper function for defrag to decide if two blocks pointed to by a
1395 * node are actually close by
1397 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1399 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1400 return 1;
1401 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1402 return 1;
1403 return 0;
1407 * compare two keys in a memcmp fashion
1409 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1411 struct btrfs_key k1;
1413 btrfs_disk_key_to_cpu(&k1, disk);
1415 return btrfs_comp_cpu_keys(&k1, k2);
1419 * same as comp_keys only with two btrfs_key's
1421 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1423 if (k1->objectid > k2->objectid)
1424 return 1;
1425 if (k1->objectid < k2->objectid)
1426 return -1;
1427 if (k1->type > k2->type)
1428 return 1;
1429 if (k1->type < k2->type)
1430 return -1;
1431 if (k1->offset > k2->offset)
1432 return 1;
1433 if (k1->offset < k2->offset)
1434 return -1;
1435 return 0;
1439 * this is used by the defrag code to go through all the
1440 * leaves pointed to by a node and reallocate them so that
1441 * disk order is close to key order
1443 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1444 struct btrfs_root *root, struct extent_buffer *parent,
1445 int start_slot, u64 *last_ret,
1446 struct btrfs_key *progress)
1448 struct extent_buffer *cur;
1449 u64 blocknr;
1450 u64 gen;
1451 u64 search_start = *last_ret;
1452 u64 last_block = 0;
1453 u64 other;
1454 u32 parent_nritems;
1455 int end_slot;
1456 int i;
1457 int err = 0;
1458 int parent_level;
1459 int uptodate;
1460 u32 blocksize;
1461 int progress_passed = 0;
1462 struct btrfs_disk_key disk_key;
1464 parent_level = btrfs_header_level(parent);
1466 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1467 WARN_ON(trans->transid != root->fs_info->generation);
1469 parent_nritems = btrfs_header_nritems(parent);
1470 blocksize = btrfs_level_size(root, parent_level - 1);
1471 end_slot = parent_nritems;
1473 if (parent_nritems == 1)
1474 return 0;
1476 btrfs_set_lock_blocking(parent);
1478 for (i = start_slot; i < end_slot; i++) {
1479 int close = 1;
1481 btrfs_node_key(parent, &disk_key, i);
1482 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1483 continue;
1485 progress_passed = 1;
1486 blocknr = btrfs_node_blockptr(parent, i);
1487 gen = btrfs_node_ptr_generation(parent, i);
1488 if (last_block == 0)
1489 last_block = blocknr;
1491 if (i > 0) {
1492 other = btrfs_node_blockptr(parent, i - 1);
1493 close = close_blocks(blocknr, other, blocksize);
1495 if (!close && i < end_slot - 2) {
1496 other = btrfs_node_blockptr(parent, i + 1);
1497 close = close_blocks(blocknr, other, blocksize);
1499 if (close) {
1500 last_block = blocknr;
1501 continue;
1504 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1505 if (cur)
1506 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1507 else
1508 uptodate = 0;
1509 if (!cur || !uptodate) {
1510 if (!cur) {
1511 cur = read_tree_block(root, blocknr,
1512 blocksize, gen);
1513 if (!cur)
1514 return -EIO;
1515 } else if (!uptodate) {
1516 err = btrfs_read_buffer(cur, gen);
1517 if (err) {
1518 free_extent_buffer(cur);
1519 return err;
1523 if (search_start == 0)
1524 search_start = last_block;
1526 btrfs_tree_lock(cur);
1527 btrfs_set_lock_blocking(cur);
1528 err = __btrfs_cow_block(trans, root, cur, parent, i,
1529 &cur, search_start,
1530 min(16 * blocksize,
1531 (end_slot - i) * blocksize));
1532 if (err) {
1533 btrfs_tree_unlock(cur);
1534 free_extent_buffer(cur);
1535 break;
1537 search_start = cur->start;
1538 last_block = cur->start;
1539 *last_ret = search_start;
1540 btrfs_tree_unlock(cur);
1541 free_extent_buffer(cur);
1543 return err;
1547 * The leaf data grows from end-to-front in the node.
1548 * this returns the address of the start of the last item,
1549 * which is the stop of the leaf data stack
1551 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1552 struct extent_buffer *leaf)
1554 u32 nr = btrfs_header_nritems(leaf);
1555 if (nr == 0)
1556 return BTRFS_LEAF_DATA_SIZE(root);
1557 return btrfs_item_offset_nr(leaf, nr - 1);
1562 * search for key in the extent_buffer. The items start at offset p,
1563 * and they are item_size apart. There are 'max' items in p.
1565 * the slot in the array is returned via slot, and it points to
1566 * the place where you would insert key if it is not found in
1567 * the array.
1569 * slot may point to max if the key is bigger than all of the keys
1571 static noinline int generic_bin_search(struct extent_buffer *eb,
1572 unsigned long p,
1573 int item_size, struct btrfs_key *key,
1574 int max, int *slot)
1576 int low = 0;
1577 int high = max;
1578 int mid;
1579 int ret;
1580 struct btrfs_disk_key *tmp = NULL;
1581 struct btrfs_disk_key unaligned;
1582 unsigned long offset;
1583 char *kaddr = NULL;
1584 unsigned long map_start = 0;
1585 unsigned long map_len = 0;
1586 int err;
1588 while (low < high) {
1589 mid = (low + high) / 2;
1590 offset = p + mid * item_size;
1592 if (!kaddr || offset < map_start ||
1593 (offset + sizeof(struct btrfs_disk_key)) >
1594 map_start + map_len) {
1596 err = map_private_extent_buffer(eb, offset,
1597 sizeof(struct btrfs_disk_key),
1598 &kaddr, &map_start, &map_len);
1600 if (!err) {
1601 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1602 map_start);
1603 } else {
1604 read_extent_buffer(eb, &unaligned,
1605 offset, sizeof(unaligned));
1606 tmp = &unaligned;
1609 } else {
1610 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1611 map_start);
1613 ret = comp_keys(tmp, key);
1615 if (ret < 0)
1616 low = mid + 1;
1617 else if (ret > 0)
1618 high = mid;
1619 else {
1620 *slot = mid;
1621 return 0;
1624 *slot = low;
1625 return 1;
1629 * simple bin_search frontend that does the right thing for
1630 * leaves vs nodes
1632 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1633 int level, int *slot)
1635 if (level == 0)
1636 return generic_bin_search(eb,
1637 offsetof(struct btrfs_leaf, items),
1638 sizeof(struct btrfs_item),
1639 key, btrfs_header_nritems(eb),
1640 slot);
1641 else
1642 return generic_bin_search(eb,
1643 offsetof(struct btrfs_node, ptrs),
1644 sizeof(struct btrfs_key_ptr),
1645 key, btrfs_header_nritems(eb),
1646 slot);
1649 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1650 int level, int *slot)
1652 return bin_search(eb, key, level, slot);
1655 static void root_add_used(struct btrfs_root *root, u32 size)
1657 spin_lock(&root->accounting_lock);
1658 btrfs_set_root_used(&root->root_item,
1659 btrfs_root_used(&root->root_item) + size);
1660 spin_unlock(&root->accounting_lock);
1663 static void root_sub_used(struct btrfs_root *root, u32 size)
1665 spin_lock(&root->accounting_lock);
1666 btrfs_set_root_used(&root->root_item,
1667 btrfs_root_used(&root->root_item) - size);
1668 spin_unlock(&root->accounting_lock);
1671 /* given a node and slot number, this reads the blocks it points to. The
1672 * extent buffer is returned with a reference taken (but unlocked).
1673 * NULL is returned on error.
1675 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1676 struct extent_buffer *parent, int slot)
1678 int level = btrfs_header_level(parent);
1679 if (slot < 0)
1680 return NULL;
1681 if (slot >= btrfs_header_nritems(parent))
1682 return NULL;
1684 BUG_ON(level == 0);
1686 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1687 btrfs_level_size(root, level - 1),
1688 btrfs_node_ptr_generation(parent, slot));
1692 * node level balancing, used to make sure nodes are in proper order for
1693 * item deletion. We balance from the top down, so we have to make sure
1694 * that a deletion won't leave an node completely empty later on.
1696 static noinline int balance_level(struct btrfs_trans_handle *trans,
1697 struct btrfs_root *root,
1698 struct btrfs_path *path, int level)
1700 struct extent_buffer *right = NULL;
1701 struct extent_buffer *mid;
1702 struct extent_buffer *left = NULL;
1703 struct extent_buffer *parent = NULL;
1704 int ret = 0;
1705 int wret;
1706 int pslot;
1707 int orig_slot = path->slots[level];
1708 u64 orig_ptr;
1710 if (level == 0)
1711 return 0;
1713 mid = path->nodes[level];
1715 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1716 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1717 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1719 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1721 if (level < BTRFS_MAX_LEVEL - 1) {
1722 parent = path->nodes[level + 1];
1723 pslot = path->slots[level + 1];
1727 * deal with the case where there is only one pointer in the root
1728 * by promoting the node below to a root
1730 if (!parent) {
1731 struct extent_buffer *child;
1733 if (btrfs_header_nritems(mid) != 1)
1734 return 0;
1736 /* promote the child to a root */
1737 child = read_node_slot(root, mid, 0);
1738 if (!child) {
1739 ret = -EROFS;
1740 btrfs_std_error(root->fs_info, ret);
1741 goto enospc;
1744 btrfs_tree_lock(child);
1745 btrfs_set_lock_blocking(child);
1746 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1747 if (ret) {
1748 btrfs_tree_unlock(child);
1749 free_extent_buffer(child);
1750 goto enospc;
1753 tree_mod_log_free_eb(root->fs_info, root->node);
1754 tree_mod_log_set_root_pointer(root, child);
1755 rcu_assign_pointer(root->node, child);
1757 add_root_to_dirty_list(root);
1758 btrfs_tree_unlock(child);
1760 path->locks[level] = 0;
1761 path->nodes[level] = NULL;
1762 clean_tree_block(trans, root, mid);
1763 btrfs_tree_unlock(mid);
1764 /* once for the path */
1765 free_extent_buffer(mid);
1767 root_sub_used(root, mid->len);
1768 btrfs_free_tree_block(trans, root, mid, 0, 1);
1769 /* once for the root ptr */
1770 free_extent_buffer_stale(mid);
1771 return 0;
1773 if (btrfs_header_nritems(mid) >
1774 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1775 return 0;
1777 left = read_node_slot(root, parent, pslot - 1);
1778 if (left) {
1779 btrfs_tree_lock(left);
1780 btrfs_set_lock_blocking(left);
1781 wret = btrfs_cow_block(trans, root, left,
1782 parent, pslot - 1, &left);
1783 if (wret) {
1784 ret = wret;
1785 goto enospc;
1788 right = read_node_slot(root, parent, pslot + 1);
1789 if (right) {
1790 btrfs_tree_lock(right);
1791 btrfs_set_lock_blocking(right);
1792 wret = btrfs_cow_block(trans, root, right,
1793 parent, pslot + 1, &right);
1794 if (wret) {
1795 ret = wret;
1796 goto enospc;
1800 /* first, try to make some room in the middle buffer */
1801 if (left) {
1802 orig_slot += btrfs_header_nritems(left);
1803 wret = push_node_left(trans, root, left, mid, 1);
1804 if (wret < 0)
1805 ret = wret;
1809 * then try to empty the right most buffer into the middle
1811 if (right) {
1812 wret = push_node_left(trans, root, mid, right, 1);
1813 if (wret < 0 && wret != -ENOSPC)
1814 ret = wret;
1815 if (btrfs_header_nritems(right) == 0) {
1816 clean_tree_block(trans, root, right);
1817 btrfs_tree_unlock(right);
1818 del_ptr(trans, root, path, level + 1, pslot + 1);
1819 root_sub_used(root, right->len);
1820 btrfs_free_tree_block(trans, root, right, 0, 1);
1821 free_extent_buffer_stale(right);
1822 right = NULL;
1823 } else {
1824 struct btrfs_disk_key right_key;
1825 btrfs_node_key(right, &right_key, 0);
1826 tree_mod_log_set_node_key(root->fs_info, parent,
1827 pslot + 1, 0);
1828 btrfs_set_node_key(parent, &right_key, pslot + 1);
1829 btrfs_mark_buffer_dirty(parent);
1832 if (btrfs_header_nritems(mid) == 1) {
1834 * we're not allowed to leave a node with one item in the
1835 * tree during a delete. A deletion from lower in the tree
1836 * could try to delete the only pointer in this node.
1837 * So, pull some keys from the left.
1838 * There has to be a left pointer at this point because
1839 * otherwise we would have pulled some pointers from the
1840 * right
1842 if (!left) {
1843 ret = -EROFS;
1844 btrfs_std_error(root->fs_info, ret);
1845 goto enospc;
1847 wret = balance_node_right(trans, root, mid, left);
1848 if (wret < 0) {
1849 ret = wret;
1850 goto enospc;
1852 if (wret == 1) {
1853 wret = push_node_left(trans, root, left, mid, 1);
1854 if (wret < 0)
1855 ret = wret;
1857 BUG_ON(wret == 1);
1859 if (btrfs_header_nritems(mid) == 0) {
1860 clean_tree_block(trans, root, mid);
1861 btrfs_tree_unlock(mid);
1862 del_ptr(trans, root, path, level + 1, pslot);
1863 root_sub_used(root, mid->len);
1864 btrfs_free_tree_block(trans, root, mid, 0, 1);
1865 free_extent_buffer_stale(mid);
1866 mid = NULL;
1867 } else {
1868 /* update the parent key to reflect our changes */
1869 struct btrfs_disk_key mid_key;
1870 btrfs_node_key(mid, &mid_key, 0);
1871 tree_mod_log_set_node_key(root->fs_info, parent,
1872 pslot, 0);
1873 btrfs_set_node_key(parent, &mid_key, pslot);
1874 btrfs_mark_buffer_dirty(parent);
1877 /* update the path */
1878 if (left) {
1879 if (btrfs_header_nritems(left) > orig_slot) {
1880 extent_buffer_get(left);
1881 /* left was locked after cow */
1882 path->nodes[level] = left;
1883 path->slots[level + 1] -= 1;
1884 path->slots[level] = orig_slot;
1885 if (mid) {
1886 btrfs_tree_unlock(mid);
1887 free_extent_buffer(mid);
1889 } else {
1890 orig_slot -= btrfs_header_nritems(left);
1891 path->slots[level] = orig_slot;
1894 /* double check we haven't messed things up */
1895 if (orig_ptr !=
1896 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1897 BUG();
1898 enospc:
1899 if (right) {
1900 btrfs_tree_unlock(right);
1901 free_extent_buffer(right);
1903 if (left) {
1904 if (path->nodes[level] != left)
1905 btrfs_tree_unlock(left);
1906 free_extent_buffer(left);
1908 return ret;
1911 /* Node balancing for insertion. Here we only split or push nodes around
1912 * when they are completely full. This is also done top down, so we
1913 * have to be pessimistic.
1915 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1916 struct btrfs_root *root,
1917 struct btrfs_path *path, int level)
1919 struct extent_buffer *right = NULL;
1920 struct extent_buffer *mid;
1921 struct extent_buffer *left = NULL;
1922 struct extent_buffer *parent = NULL;
1923 int ret = 0;
1924 int wret;
1925 int pslot;
1926 int orig_slot = path->slots[level];
1928 if (level == 0)
1929 return 1;
1931 mid = path->nodes[level];
1932 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1934 if (level < BTRFS_MAX_LEVEL - 1) {
1935 parent = path->nodes[level + 1];
1936 pslot = path->slots[level + 1];
1939 if (!parent)
1940 return 1;
1942 left = read_node_slot(root, parent, pslot - 1);
1944 /* first, try to make some room in the middle buffer */
1945 if (left) {
1946 u32 left_nr;
1948 btrfs_tree_lock(left);
1949 btrfs_set_lock_blocking(left);
1951 left_nr = btrfs_header_nritems(left);
1952 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1953 wret = 1;
1954 } else {
1955 ret = btrfs_cow_block(trans, root, left, parent,
1956 pslot - 1, &left);
1957 if (ret)
1958 wret = 1;
1959 else {
1960 wret = push_node_left(trans, root,
1961 left, mid, 0);
1964 if (wret < 0)
1965 ret = wret;
1966 if (wret == 0) {
1967 struct btrfs_disk_key disk_key;
1968 orig_slot += left_nr;
1969 btrfs_node_key(mid, &disk_key, 0);
1970 tree_mod_log_set_node_key(root->fs_info, parent,
1971 pslot, 0);
1972 btrfs_set_node_key(parent, &disk_key, pslot);
1973 btrfs_mark_buffer_dirty(parent);
1974 if (btrfs_header_nritems(left) > orig_slot) {
1975 path->nodes[level] = left;
1976 path->slots[level + 1] -= 1;
1977 path->slots[level] = orig_slot;
1978 btrfs_tree_unlock(mid);
1979 free_extent_buffer(mid);
1980 } else {
1981 orig_slot -=
1982 btrfs_header_nritems(left);
1983 path->slots[level] = orig_slot;
1984 btrfs_tree_unlock(left);
1985 free_extent_buffer(left);
1987 return 0;
1989 btrfs_tree_unlock(left);
1990 free_extent_buffer(left);
1992 right = read_node_slot(root, parent, pslot + 1);
1995 * then try to empty the right most buffer into the middle
1997 if (right) {
1998 u32 right_nr;
2000 btrfs_tree_lock(right);
2001 btrfs_set_lock_blocking(right);
2003 right_nr = btrfs_header_nritems(right);
2004 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2005 wret = 1;
2006 } else {
2007 ret = btrfs_cow_block(trans, root, right,
2008 parent, pslot + 1,
2009 &right);
2010 if (ret)
2011 wret = 1;
2012 else {
2013 wret = balance_node_right(trans, root,
2014 right, mid);
2017 if (wret < 0)
2018 ret = wret;
2019 if (wret == 0) {
2020 struct btrfs_disk_key disk_key;
2022 btrfs_node_key(right, &disk_key, 0);
2023 tree_mod_log_set_node_key(root->fs_info, parent,
2024 pslot + 1, 0);
2025 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2026 btrfs_mark_buffer_dirty(parent);
2028 if (btrfs_header_nritems(mid) <= orig_slot) {
2029 path->nodes[level] = right;
2030 path->slots[level + 1] += 1;
2031 path->slots[level] = orig_slot -
2032 btrfs_header_nritems(mid);
2033 btrfs_tree_unlock(mid);
2034 free_extent_buffer(mid);
2035 } else {
2036 btrfs_tree_unlock(right);
2037 free_extent_buffer(right);
2039 return 0;
2041 btrfs_tree_unlock(right);
2042 free_extent_buffer(right);
2044 return 1;
2048 * readahead one full node of leaves, finding things that are close
2049 * to the block in 'slot', and triggering ra on them.
2051 static void reada_for_search(struct btrfs_root *root,
2052 struct btrfs_path *path,
2053 int level, int slot, u64 objectid)
2055 struct extent_buffer *node;
2056 struct btrfs_disk_key disk_key;
2057 u32 nritems;
2058 u64 search;
2059 u64 target;
2060 u64 nread = 0;
2061 u64 gen;
2062 int direction = path->reada;
2063 struct extent_buffer *eb;
2064 u32 nr;
2065 u32 blocksize;
2066 u32 nscan = 0;
2068 if (level != 1)
2069 return;
2071 if (!path->nodes[level])
2072 return;
2074 node = path->nodes[level];
2076 search = btrfs_node_blockptr(node, slot);
2077 blocksize = btrfs_level_size(root, level - 1);
2078 eb = btrfs_find_tree_block(root, search, blocksize);
2079 if (eb) {
2080 free_extent_buffer(eb);
2081 return;
2084 target = search;
2086 nritems = btrfs_header_nritems(node);
2087 nr = slot;
2089 while (1) {
2090 if (direction < 0) {
2091 if (nr == 0)
2092 break;
2093 nr--;
2094 } else if (direction > 0) {
2095 nr++;
2096 if (nr >= nritems)
2097 break;
2099 if (path->reada < 0 && objectid) {
2100 btrfs_node_key(node, &disk_key, nr);
2101 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2102 break;
2104 search = btrfs_node_blockptr(node, nr);
2105 if ((search <= target && target - search <= 65536) ||
2106 (search > target && search - target <= 65536)) {
2107 gen = btrfs_node_ptr_generation(node, nr);
2108 readahead_tree_block(root, search, blocksize, gen);
2109 nread += blocksize;
2111 nscan++;
2112 if ((nread > 65536 || nscan > 32))
2113 break;
2118 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2119 * cache
2121 static noinline int reada_for_balance(struct btrfs_root *root,
2122 struct btrfs_path *path, int level)
2124 int slot;
2125 int nritems;
2126 struct extent_buffer *parent;
2127 struct extent_buffer *eb;
2128 u64 gen;
2129 u64 block1 = 0;
2130 u64 block2 = 0;
2131 int ret = 0;
2132 int blocksize;
2134 parent = path->nodes[level + 1];
2135 if (!parent)
2136 return 0;
2138 nritems = btrfs_header_nritems(parent);
2139 slot = path->slots[level + 1];
2140 blocksize = btrfs_level_size(root, level);
2142 if (slot > 0) {
2143 block1 = btrfs_node_blockptr(parent, slot - 1);
2144 gen = btrfs_node_ptr_generation(parent, slot - 1);
2145 eb = btrfs_find_tree_block(root, block1, blocksize);
2147 * if we get -eagain from btrfs_buffer_uptodate, we
2148 * don't want to return eagain here. That will loop
2149 * forever
2151 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2152 block1 = 0;
2153 free_extent_buffer(eb);
2155 if (slot + 1 < nritems) {
2156 block2 = btrfs_node_blockptr(parent, slot + 1);
2157 gen = btrfs_node_ptr_generation(parent, slot + 1);
2158 eb = btrfs_find_tree_block(root, block2, blocksize);
2159 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2160 block2 = 0;
2161 free_extent_buffer(eb);
2163 if (block1 || block2) {
2164 ret = -EAGAIN;
2166 /* release the whole path */
2167 btrfs_release_path(path);
2169 /* read the blocks */
2170 if (block1)
2171 readahead_tree_block(root, block1, blocksize, 0);
2172 if (block2)
2173 readahead_tree_block(root, block2, blocksize, 0);
2175 if (block1) {
2176 eb = read_tree_block(root, block1, blocksize, 0);
2177 free_extent_buffer(eb);
2179 if (block2) {
2180 eb = read_tree_block(root, block2, blocksize, 0);
2181 free_extent_buffer(eb);
2184 return ret;
2189 * when we walk down the tree, it is usually safe to unlock the higher layers
2190 * in the tree. The exceptions are when our path goes through slot 0, because
2191 * operations on the tree might require changing key pointers higher up in the
2192 * tree.
2194 * callers might also have set path->keep_locks, which tells this code to keep
2195 * the lock if the path points to the last slot in the block. This is part of
2196 * walking through the tree, and selecting the next slot in the higher block.
2198 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2199 * if lowest_unlock is 1, level 0 won't be unlocked
2201 static noinline void unlock_up(struct btrfs_path *path, int level,
2202 int lowest_unlock, int min_write_lock_level,
2203 int *write_lock_level)
2205 int i;
2206 int skip_level = level;
2207 int no_skips = 0;
2208 struct extent_buffer *t;
2210 if (path->really_keep_locks)
2211 return;
2213 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2214 if (!path->nodes[i])
2215 break;
2216 if (!path->locks[i])
2217 break;
2218 if (!no_skips && path->slots[i] == 0) {
2219 skip_level = i + 1;
2220 continue;
2222 if (!no_skips && path->keep_locks) {
2223 u32 nritems;
2224 t = path->nodes[i];
2225 nritems = btrfs_header_nritems(t);
2226 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2227 skip_level = i + 1;
2228 continue;
2231 if (skip_level < i && i >= lowest_unlock)
2232 no_skips = 1;
2234 t = path->nodes[i];
2235 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2236 btrfs_tree_unlock_rw(t, path->locks[i]);
2237 path->locks[i] = 0;
2238 if (write_lock_level &&
2239 i > min_write_lock_level &&
2240 i <= *write_lock_level) {
2241 *write_lock_level = i - 1;
2248 * This releases any locks held in the path starting at level and
2249 * going all the way up to the root.
2251 * btrfs_search_slot will keep the lock held on higher nodes in a few
2252 * corner cases, such as COW of the block at slot zero in the node. This
2253 * ignores those rules, and it should only be called when there are no
2254 * more updates to be done higher up in the tree.
2256 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2258 int i;
2260 if (path->keep_locks || path->really_keep_locks)
2261 return;
2263 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2264 if (!path->nodes[i])
2265 continue;
2266 if (!path->locks[i])
2267 continue;
2268 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2269 path->locks[i] = 0;
2274 * helper function for btrfs_search_slot. The goal is to find a block
2275 * in cache without setting the path to blocking. If we find the block
2276 * we return zero and the path is unchanged.
2278 * If we can't find the block, we set the path blocking and do some
2279 * reada. -EAGAIN is returned and the search must be repeated.
2281 static int
2282 read_block_for_search(struct btrfs_trans_handle *trans,
2283 struct btrfs_root *root, struct btrfs_path *p,
2284 struct extent_buffer **eb_ret, int level, int slot,
2285 struct btrfs_key *key, u64 time_seq)
2287 u64 blocknr;
2288 u64 gen;
2289 u32 blocksize;
2290 struct extent_buffer *b = *eb_ret;
2291 struct extent_buffer *tmp;
2292 int ret;
2294 blocknr = btrfs_node_blockptr(b, slot);
2295 gen = btrfs_node_ptr_generation(b, slot);
2296 blocksize = btrfs_level_size(root, level - 1);
2298 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2299 if (tmp) {
2300 /* first we do an atomic uptodate check */
2301 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2302 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2304 * we found an up to date block without
2305 * sleeping, return
2306 * right away
2308 *eb_ret = tmp;
2309 return 0;
2311 /* the pages were up to date, but we failed
2312 * the generation number check. Do a full
2313 * read for the generation number that is correct.
2314 * We must do this without dropping locks so
2315 * we can trust our generation number
2317 free_extent_buffer(tmp);
2318 btrfs_set_path_blocking(p);
2320 /* now we're allowed to do a blocking uptodate check */
2321 tmp = read_tree_block(root, blocknr, blocksize, gen);
2322 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2323 *eb_ret = tmp;
2324 return 0;
2326 free_extent_buffer(tmp);
2327 btrfs_release_path(p);
2328 return -EIO;
2333 * reduce lock contention at high levels
2334 * of the btree by dropping locks before
2335 * we read. Don't release the lock on the current
2336 * level because we need to walk this node to figure
2337 * out which blocks to read.
2339 btrfs_unlock_up_safe(p, level + 1);
2340 btrfs_set_path_blocking(p);
2342 free_extent_buffer(tmp);
2343 if (p->reada)
2344 reada_for_search(root, p, level, slot, key->objectid);
2346 btrfs_release_path(p);
2348 ret = -EAGAIN;
2349 tmp = read_tree_block(root, blocknr, blocksize, 0);
2350 if (tmp) {
2352 * If the read above didn't mark this buffer up to date,
2353 * it will never end up being up to date. Set ret to EIO now
2354 * and give up so that our caller doesn't loop forever
2355 * on our EAGAINs.
2357 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2358 ret = -EIO;
2359 free_extent_buffer(tmp);
2361 return ret;
2365 * helper function for btrfs_search_slot. This does all of the checks
2366 * for node-level blocks and does any balancing required based on
2367 * the ins_len.
2369 * If no extra work was required, zero is returned. If we had to
2370 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2371 * start over
2373 static int
2374 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2375 struct btrfs_root *root, struct btrfs_path *p,
2376 struct extent_buffer *b, int level, int ins_len,
2377 int *write_lock_level)
2379 int ret;
2380 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2381 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2382 int sret;
2384 if (*write_lock_level < level + 1) {
2385 *write_lock_level = level + 1;
2386 btrfs_release_path(p);
2387 goto again;
2390 sret = reada_for_balance(root, p, level);
2391 if (sret)
2392 goto again;
2394 btrfs_set_path_blocking(p);
2395 sret = split_node(trans, root, p, level);
2396 btrfs_clear_path_blocking(p, NULL, 0);
2398 BUG_ON(sret > 0);
2399 if (sret) {
2400 ret = sret;
2401 goto done;
2403 b = p->nodes[level];
2404 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2405 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2406 int sret;
2408 if (*write_lock_level < level + 1) {
2409 *write_lock_level = level + 1;
2410 btrfs_release_path(p);
2411 goto again;
2414 sret = reada_for_balance(root, p, level);
2415 if (sret)
2416 goto again;
2418 btrfs_set_path_blocking(p);
2419 sret = balance_level(trans, root, p, level);
2420 btrfs_clear_path_blocking(p, NULL, 0);
2422 if (sret) {
2423 ret = sret;
2424 goto done;
2426 b = p->nodes[level];
2427 if (!b) {
2428 btrfs_release_path(p);
2429 goto again;
2431 BUG_ON(btrfs_header_nritems(b) == 1);
2433 return 0;
2435 again:
2436 ret = -EAGAIN;
2437 done:
2438 return ret;
2442 * look for key in the tree. path is filled in with nodes along the way
2443 * if key is found, we return zero and you can find the item in the leaf
2444 * level of the path (level 0)
2446 * If the key isn't found, the path points to the slot where it should
2447 * be inserted, and 1 is returned. If there are other errors during the
2448 * search a negative error number is returned.
2450 * if ins_len > 0, nodes and leaves will be split as we walk down the
2451 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2452 * possible)
2454 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2455 *root, struct btrfs_key *key, struct btrfs_path *p, int
2456 ins_len, int cow)
2458 struct extent_buffer *b;
2459 int slot;
2460 int ret;
2461 int err;
2462 int level;
2463 int lowest_unlock = 1;
2464 int root_lock;
2465 /* everything at write_lock_level or lower must be write locked */
2466 int write_lock_level = 0;
2467 u8 lowest_level = 0;
2468 int min_write_lock_level;
2470 lowest_level = p->lowest_level;
2471 WARN_ON(lowest_level && ins_len > 0);
2472 WARN_ON(p->nodes[0] != NULL);
2474 if (ins_len < 0) {
2475 lowest_unlock = 2;
2477 /* when we are removing items, we might have to go up to level
2478 * two as we update tree pointers Make sure we keep write
2479 * for those levels as well
2481 write_lock_level = 2;
2482 } else if (ins_len > 0) {
2484 * for inserting items, make sure we have a write lock on
2485 * level 1 so we can update keys
2487 write_lock_level = 1;
2490 if (!cow)
2491 write_lock_level = -1;
2493 if (cow && (p->really_keep_locks || p->keep_locks || p->lowest_level))
2494 write_lock_level = BTRFS_MAX_LEVEL;
2496 min_write_lock_level = write_lock_level;
2498 again:
2500 * we try very hard to do read locks on the root
2502 root_lock = BTRFS_READ_LOCK;
2503 level = 0;
2504 if (p->search_commit_root) {
2506 * the commit roots are read only
2507 * so we always do read locks
2509 b = root->commit_root;
2510 extent_buffer_get(b);
2511 level = btrfs_header_level(b);
2512 if (!p->skip_locking)
2513 btrfs_tree_read_lock(b);
2514 } else {
2515 if (p->skip_locking) {
2516 b = btrfs_root_node(root);
2517 level = btrfs_header_level(b);
2518 } else {
2519 /* we don't know the level of the root node
2520 * until we actually have it read locked
2522 b = btrfs_read_lock_root_node(root);
2523 level = btrfs_header_level(b);
2524 if (level <= write_lock_level) {
2525 /* whoops, must trade for write lock */
2526 btrfs_tree_read_unlock(b);
2527 free_extent_buffer(b);
2528 b = btrfs_lock_root_node(root);
2529 root_lock = BTRFS_WRITE_LOCK;
2531 /* the level might have changed, check again */
2532 level = btrfs_header_level(b);
2536 p->nodes[level] = b;
2537 if (!p->skip_locking)
2538 p->locks[level] = root_lock;
2540 while (b) {
2541 level = btrfs_header_level(b);
2544 * setup the path here so we can release it under lock
2545 * contention with the cow code
2547 if (cow) {
2549 * if we don't really need to cow this block
2550 * then we don't want to set the path blocking,
2551 * so we test it here
2553 if (!should_cow_block(trans, root, b))
2554 goto cow_done;
2556 btrfs_set_path_blocking(p);
2559 * must have write locks on this node and the
2560 * parent
2562 if (level > write_lock_level ||
2563 (level + 1 > write_lock_level &&
2564 level + 1 < BTRFS_MAX_LEVEL &&
2565 p->nodes[level + 1])) {
2566 write_lock_level = level + 1;
2567 btrfs_release_path(p);
2568 goto again;
2571 err = btrfs_cow_block(trans, root, b,
2572 p->nodes[level + 1],
2573 p->slots[level + 1], &b);
2574 if (err) {
2575 ret = err;
2576 goto done;
2579 cow_done:
2580 BUG_ON(!cow && ins_len);
2582 p->nodes[level] = b;
2583 btrfs_clear_path_blocking(p, NULL, 0);
2586 * we have a lock on b and as long as we aren't changing
2587 * the tree, there is no way to for the items in b to change.
2588 * It is safe to drop the lock on our parent before we
2589 * go through the expensive btree search on b.
2591 * If cow is true, then we might be changing slot zero,
2592 * which may require changing the parent. So, we can't
2593 * drop the lock until after we know which slot we're
2594 * operating on.
2596 if (!cow)
2597 btrfs_unlock_up_safe(p, level + 1);
2599 ret = bin_search(b, key, level, &slot);
2601 if (level != 0) {
2602 int dec = 0;
2603 if (ret && slot > 0) {
2604 dec = 1;
2605 slot -= 1;
2607 p->slots[level] = slot;
2608 err = setup_nodes_for_search(trans, root, p, b, level,
2609 ins_len, &write_lock_level);
2610 if (err == -EAGAIN)
2611 goto again;
2612 if (err) {
2613 ret = err;
2614 goto done;
2616 b = p->nodes[level];
2617 slot = p->slots[level];
2620 * slot 0 is special, if we change the key
2621 * we have to update the parent pointer
2622 * which means we must have a write lock
2623 * on the parent
2625 if (slot == 0 && cow &&
2626 write_lock_level < level + 1) {
2627 write_lock_level = level + 1;
2628 btrfs_release_path(p);
2629 goto again;
2632 unlock_up(p, level, lowest_unlock,
2633 min_write_lock_level, &write_lock_level);
2635 if (level == lowest_level) {
2636 if (dec)
2637 p->slots[level]++;
2638 goto done;
2641 err = read_block_for_search(trans, root, p,
2642 &b, level, slot, key, 0);
2643 if (err == -EAGAIN)
2644 goto again;
2645 if (err) {
2646 ret = err;
2647 goto done;
2650 if (!p->skip_locking) {
2651 level = btrfs_header_level(b);
2652 if (level <= write_lock_level) {
2653 err = btrfs_try_tree_write_lock(b);
2654 if (!err) {
2655 btrfs_set_path_blocking(p);
2656 btrfs_tree_lock(b);
2657 btrfs_clear_path_blocking(p, b,
2658 BTRFS_WRITE_LOCK);
2660 p->locks[level] = BTRFS_WRITE_LOCK;
2661 } else {
2662 err = btrfs_try_tree_read_lock(b);
2663 if (!err) {
2664 btrfs_set_path_blocking(p);
2665 btrfs_tree_read_lock(b);
2666 btrfs_clear_path_blocking(p, b,
2667 BTRFS_READ_LOCK);
2669 p->locks[level] = BTRFS_READ_LOCK;
2671 p->nodes[level] = b;
2673 } else {
2674 p->slots[level] = slot;
2675 if (ins_len > 0 &&
2676 btrfs_leaf_free_space(root, b) < ins_len) {
2677 if (write_lock_level < 1) {
2678 write_lock_level = 1;
2679 btrfs_release_path(p);
2680 goto again;
2683 btrfs_set_path_blocking(p);
2684 err = split_leaf(trans, root, key,
2685 p, ins_len, ret == 0);
2686 btrfs_clear_path_blocking(p, NULL, 0);
2688 BUG_ON(err > 0);
2689 if (err) {
2690 ret = err;
2691 goto done;
2694 if (!p->search_for_split)
2695 unlock_up(p, level, lowest_unlock,
2696 min_write_lock_level, &write_lock_level);
2697 goto done;
2700 ret = 1;
2701 done:
2703 * we don't really know what they plan on doing with the path
2704 * from here on, so for now just mark it as blocking
2706 if (!p->leave_spinning)
2707 btrfs_set_path_blocking(p);
2708 if (ret < 0)
2709 btrfs_release_path(p);
2710 return ret;
2714 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2715 * current state of the tree together with the operations recorded in the tree
2716 * modification log to search for the key in a previous version of this tree, as
2717 * denoted by the time_seq parameter.
2719 * Naturally, there is no support for insert, delete or cow operations.
2721 * The resulting path and return value will be set up as if we called
2722 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2724 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2725 struct btrfs_path *p, u64 time_seq)
2727 struct extent_buffer *b;
2728 int slot;
2729 int ret;
2730 int err;
2731 int level;
2732 int lowest_unlock = 1;
2733 u8 lowest_level = 0;
2735 lowest_level = p->lowest_level;
2736 WARN_ON(p->nodes[0] != NULL);
2738 if (p->search_commit_root) {
2739 BUG_ON(time_seq);
2740 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2743 again:
2744 b = get_old_root(root, time_seq);
2745 level = btrfs_header_level(b);
2746 p->locks[level] = BTRFS_READ_LOCK;
2748 while (b) {
2749 level = btrfs_header_level(b);
2750 p->nodes[level] = b;
2751 btrfs_clear_path_blocking(p, NULL, 0);
2754 * we have a lock on b and as long as we aren't changing
2755 * the tree, there is no way to for the items in b to change.
2756 * It is safe to drop the lock on our parent before we
2757 * go through the expensive btree search on b.
2759 btrfs_unlock_up_safe(p, level + 1);
2761 ret = bin_search(b, key, level, &slot);
2763 if (level != 0) {
2764 int dec = 0;
2765 if (ret && slot > 0) {
2766 dec = 1;
2767 slot -= 1;
2769 p->slots[level] = slot;
2770 unlock_up(p, level, lowest_unlock, 0, NULL);
2772 if (level == lowest_level) {
2773 if (dec)
2774 p->slots[level]++;
2775 goto done;
2778 err = read_block_for_search(NULL, root, p, &b, level,
2779 slot, key, time_seq);
2780 if (err == -EAGAIN)
2781 goto again;
2782 if (err) {
2783 ret = err;
2784 goto done;
2787 level = btrfs_header_level(b);
2788 err = btrfs_try_tree_read_lock(b);
2789 if (!err) {
2790 btrfs_set_path_blocking(p);
2791 btrfs_tree_read_lock(b);
2792 btrfs_clear_path_blocking(p, b,
2793 BTRFS_READ_LOCK);
2795 p->locks[level] = BTRFS_READ_LOCK;
2796 p->nodes[level] = b;
2797 b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2798 if (b != p->nodes[level]) {
2799 btrfs_tree_unlock_rw(p->nodes[level],
2800 p->locks[level]);
2801 p->locks[level] = 0;
2802 p->nodes[level] = b;
2804 } else {
2805 p->slots[level] = slot;
2806 unlock_up(p, level, lowest_unlock, 0, NULL);
2807 goto done;
2810 ret = 1;
2811 done:
2812 if (!p->leave_spinning)
2813 btrfs_set_path_blocking(p);
2814 if (ret < 0)
2815 btrfs_release_path(p);
2817 return ret;
2821 * helper to use instead of search slot if no exact match is needed but
2822 * instead the next or previous item should be returned.
2823 * When find_higher is true, the next higher item is returned, the next lower
2824 * otherwise.
2825 * When return_any and find_higher are both true, and no higher item is found,
2826 * return the next lower instead.
2827 * When return_any is true and find_higher is false, and no lower item is found,
2828 * return the next higher instead.
2829 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2830 * < 0 on error
2832 int btrfs_search_slot_for_read(struct btrfs_root *root,
2833 struct btrfs_key *key, struct btrfs_path *p,
2834 int find_higher, int return_any)
2836 int ret;
2837 struct extent_buffer *leaf;
2839 again:
2840 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2841 if (ret <= 0)
2842 return ret;
2844 * a return value of 1 means the path is at the position where the
2845 * item should be inserted. Normally this is the next bigger item,
2846 * but in case the previous item is the last in a leaf, path points
2847 * to the first free slot in the previous leaf, i.e. at an invalid
2848 * item.
2850 leaf = p->nodes[0];
2852 if (find_higher) {
2853 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2854 ret = btrfs_next_leaf(root, p);
2855 if (ret <= 0)
2856 return ret;
2857 if (!return_any)
2858 return 1;
2860 * no higher item found, return the next
2861 * lower instead
2863 return_any = 0;
2864 find_higher = 0;
2865 btrfs_release_path(p);
2866 goto again;
2868 } else {
2869 if (p->slots[0] == 0) {
2870 ret = btrfs_prev_leaf(root, p);
2871 if (ret < 0)
2872 return ret;
2873 if (!ret) {
2874 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2875 return 0;
2877 if (!return_any)
2878 return 1;
2880 * no lower item found, return the next
2881 * higher instead
2883 return_any = 0;
2884 find_higher = 1;
2885 btrfs_release_path(p);
2886 goto again;
2887 } else {
2888 --p->slots[0];
2891 return 0;
2895 * adjust the pointers going up the tree, starting at level
2896 * making sure the right key of each node is points to 'key'.
2897 * This is used after shifting pointers to the left, so it stops
2898 * fixing up pointers when a given leaf/node is not in slot 0 of the
2899 * higher levels
2902 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2903 struct btrfs_root *root, struct btrfs_path *path,
2904 struct btrfs_disk_key *key, int level)
2906 int i;
2907 struct extent_buffer *t;
2909 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2910 int tslot = path->slots[i];
2911 if (!path->nodes[i])
2912 break;
2913 t = path->nodes[i];
2914 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2915 btrfs_set_node_key(t, key, tslot);
2916 btrfs_mark_buffer_dirty(path->nodes[i]);
2917 if (tslot != 0)
2918 break;
2923 * update item key.
2925 * This function isn't completely safe. It's the caller's responsibility
2926 * that the new key won't break the order
2928 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2929 struct btrfs_root *root, struct btrfs_path *path,
2930 struct btrfs_key *new_key)
2932 struct btrfs_disk_key disk_key;
2933 struct extent_buffer *eb;
2934 int slot;
2936 eb = path->nodes[0];
2937 slot = path->slots[0];
2938 if (slot > 0) {
2939 btrfs_item_key(eb, &disk_key, slot - 1);
2940 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2942 if (slot < btrfs_header_nritems(eb) - 1) {
2943 btrfs_item_key(eb, &disk_key, slot + 1);
2944 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2947 btrfs_cpu_key_to_disk(&disk_key, new_key);
2948 btrfs_set_item_key(eb, &disk_key, slot);
2949 btrfs_mark_buffer_dirty(eb);
2950 if (slot == 0)
2951 fixup_low_keys(trans, root, path, &disk_key, 1);
2955 * try to push data from one node into the next node left in the
2956 * tree.
2958 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2959 * error, and > 0 if there was no room in the left hand block.
2961 static int push_node_left(struct btrfs_trans_handle *trans,
2962 struct btrfs_root *root, struct extent_buffer *dst,
2963 struct extent_buffer *src, int empty)
2965 int push_items = 0;
2966 int src_nritems;
2967 int dst_nritems;
2968 int ret = 0;
2970 src_nritems = btrfs_header_nritems(src);
2971 dst_nritems = btrfs_header_nritems(dst);
2972 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2973 WARN_ON(btrfs_header_generation(src) != trans->transid);
2974 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2976 if (!empty && src_nritems <= 8)
2977 return 1;
2979 if (push_items <= 0)
2980 return 1;
2982 if (empty) {
2983 push_items = min(src_nritems, push_items);
2984 if (push_items < src_nritems) {
2985 /* leave at least 8 pointers in the node if
2986 * we aren't going to empty it
2988 if (src_nritems - push_items < 8) {
2989 if (push_items <= 8)
2990 return 1;
2991 push_items -= 8;
2994 } else
2995 push_items = min(src_nritems - 8, push_items);
2997 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2998 push_items);
2999 copy_extent_buffer(dst, src,
3000 btrfs_node_key_ptr_offset(dst_nritems),
3001 btrfs_node_key_ptr_offset(0),
3002 push_items * sizeof(struct btrfs_key_ptr));
3004 if (push_items < src_nritems) {
3006 * don't call tree_mod_log_eb_move here, key removal was already
3007 * fully logged by tree_mod_log_eb_copy above.
3009 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3010 btrfs_node_key_ptr_offset(push_items),
3011 (src_nritems - push_items) *
3012 sizeof(struct btrfs_key_ptr));
3014 btrfs_set_header_nritems(src, src_nritems - push_items);
3015 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3016 btrfs_mark_buffer_dirty(src);
3017 btrfs_mark_buffer_dirty(dst);
3019 return ret;
3023 * try to push data from one node into the next node right in the
3024 * tree.
3026 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3027 * error, and > 0 if there was no room in the right hand block.
3029 * this will only push up to 1/2 the contents of the left node over
3031 static int balance_node_right(struct btrfs_trans_handle *trans,
3032 struct btrfs_root *root,
3033 struct extent_buffer *dst,
3034 struct extent_buffer *src)
3036 int push_items = 0;
3037 int max_push;
3038 int src_nritems;
3039 int dst_nritems;
3040 int ret = 0;
3042 WARN_ON(btrfs_header_generation(src) != trans->transid);
3043 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3045 src_nritems = btrfs_header_nritems(src);
3046 dst_nritems = btrfs_header_nritems(dst);
3047 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3048 if (push_items <= 0)
3049 return 1;
3051 if (src_nritems < 4)
3052 return 1;
3054 max_push = src_nritems / 2 + 1;
3055 /* don't try to empty the node */
3056 if (max_push >= src_nritems)
3057 return 1;
3059 if (max_push < push_items)
3060 push_items = max_push;
3062 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3063 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3064 btrfs_node_key_ptr_offset(0),
3065 (dst_nritems) *
3066 sizeof(struct btrfs_key_ptr));
3068 tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3069 src_nritems - push_items, push_items);
3070 copy_extent_buffer(dst, src,
3071 btrfs_node_key_ptr_offset(0),
3072 btrfs_node_key_ptr_offset(src_nritems - push_items),
3073 push_items * sizeof(struct btrfs_key_ptr));
3075 btrfs_set_header_nritems(src, src_nritems - push_items);
3076 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3078 btrfs_mark_buffer_dirty(src);
3079 btrfs_mark_buffer_dirty(dst);
3081 return ret;
3085 * helper function to insert a new root level in the tree.
3086 * A new node is allocated, and a single item is inserted to
3087 * point to the existing root
3089 * returns zero on success or < 0 on failure.
3091 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3092 struct btrfs_root *root,
3093 struct btrfs_path *path, int level)
3095 u64 lower_gen;
3096 struct extent_buffer *lower;
3097 struct extent_buffer *c;
3098 struct extent_buffer *old;
3099 struct btrfs_disk_key lower_key;
3101 BUG_ON(path->nodes[level]);
3102 BUG_ON(path->nodes[level-1] != root->node);
3104 lower = path->nodes[level-1];
3105 if (level == 1)
3106 btrfs_item_key(lower, &lower_key, 0);
3107 else
3108 btrfs_node_key(lower, &lower_key, 0);
3110 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3111 root->root_key.objectid, &lower_key,
3112 level, root->node->start, 0);
3113 if (IS_ERR(c))
3114 return PTR_ERR(c);
3116 root_add_used(root, root->nodesize);
3118 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3119 btrfs_set_header_nritems(c, 1);
3120 btrfs_set_header_level(c, level);
3121 btrfs_set_header_bytenr(c, c->start);
3122 btrfs_set_header_generation(c, trans->transid);
3123 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3124 btrfs_set_header_owner(c, root->root_key.objectid);
3126 write_extent_buffer(c, root->fs_info->fsid,
3127 (unsigned long)btrfs_header_fsid(c),
3128 BTRFS_FSID_SIZE);
3130 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3131 (unsigned long)btrfs_header_chunk_tree_uuid(c),
3132 BTRFS_UUID_SIZE);
3134 btrfs_set_node_key(c, &lower_key, 0);
3135 btrfs_set_node_blockptr(c, 0, lower->start);
3136 lower_gen = btrfs_header_generation(lower);
3137 WARN_ON(lower_gen != trans->transid);
3139 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3141 btrfs_mark_buffer_dirty(c);
3143 old = root->node;
3144 tree_mod_log_set_root_pointer(root, c);
3145 rcu_assign_pointer(root->node, c);
3147 /* the super has an extra ref to root->node */
3148 free_extent_buffer(old);
3150 add_root_to_dirty_list(root);
3151 extent_buffer_get(c);
3152 path->nodes[level] = c;
3153 path->locks[level] = BTRFS_WRITE_LOCK;
3154 path->slots[level] = 0;
3155 return 0;
3159 * worker function to insert a single pointer in a node.
3160 * the node should have enough room for the pointer already
3162 * slot and level indicate where you want the key to go, and
3163 * blocknr is the block the key points to.
3165 static void insert_ptr(struct btrfs_trans_handle *trans,
3166 struct btrfs_root *root, struct btrfs_path *path,
3167 struct btrfs_disk_key *key, u64 bytenr,
3168 int slot, int level)
3170 struct extent_buffer *lower;
3171 int nritems;
3172 int ret;
3174 BUG_ON(!path->nodes[level]);
3175 btrfs_assert_tree_locked(path->nodes[level]);
3176 lower = path->nodes[level];
3177 nritems = btrfs_header_nritems(lower);
3178 BUG_ON(slot > nritems);
3179 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3180 if (slot != nritems) {
3181 if (level)
3182 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3183 slot, nritems - slot);
3184 memmove_extent_buffer(lower,
3185 btrfs_node_key_ptr_offset(slot + 1),
3186 btrfs_node_key_ptr_offset(slot),
3187 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3189 if (level) {
3190 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3191 MOD_LOG_KEY_ADD);
3192 BUG_ON(ret < 0);
3194 btrfs_set_node_key(lower, key, slot);
3195 btrfs_set_node_blockptr(lower, slot, bytenr);
3196 WARN_ON(trans->transid == 0);
3197 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3198 btrfs_set_header_nritems(lower, nritems + 1);
3199 btrfs_mark_buffer_dirty(lower);
3203 * split the node at the specified level in path in two.
3204 * The path is corrected to point to the appropriate node after the split
3206 * Before splitting this tries to make some room in the node by pushing
3207 * left and right, if either one works, it returns right away.
3209 * returns 0 on success and < 0 on failure
3211 static noinline int split_node(struct btrfs_trans_handle *trans,
3212 struct btrfs_root *root,
3213 struct btrfs_path *path, int level)
3215 struct extent_buffer *c;
3216 struct extent_buffer *split;
3217 struct btrfs_disk_key disk_key;
3218 int mid;
3219 int ret;
3220 u32 c_nritems;
3222 c = path->nodes[level];
3223 WARN_ON(btrfs_header_generation(c) != trans->transid);
3224 if (c == root->node) {
3225 /* trying to split the root, lets make a new one */
3226 ret = insert_new_root(trans, root, path, level + 1);
3227 if (ret)
3228 return ret;
3229 } else {
3230 ret = push_nodes_for_insert(trans, root, path, level);
3231 c = path->nodes[level];
3232 if (!ret && btrfs_header_nritems(c) <
3233 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3234 return 0;
3235 if (ret < 0)
3236 return ret;
3239 c_nritems = btrfs_header_nritems(c);
3240 mid = (c_nritems + 1) / 2;
3241 btrfs_node_key(c, &disk_key, mid);
3243 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3244 root->root_key.objectid,
3245 &disk_key, level, c->start, 0);
3246 if (IS_ERR(split))
3247 return PTR_ERR(split);
3249 root_add_used(root, root->nodesize);
3251 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3252 btrfs_set_header_level(split, btrfs_header_level(c));
3253 btrfs_set_header_bytenr(split, split->start);
3254 btrfs_set_header_generation(split, trans->transid);
3255 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3256 btrfs_set_header_owner(split, root->root_key.objectid);
3257 write_extent_buffer(split, root->fs_info->fsid,
3258 (unsigned long)btrfs_header_fsid(split),
3259 BTRFS_FSID_SIZE);
3260 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3261 (unsigned long)btrfs_header_chunk_tree_uuid(split),
3262 BTRFS_UUID_SIZE);
3264 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3265 copy_extent_buffer(split, c,
3266 btrfs_node_key_ptr_offset(0),
3267 btrfs_node_key_ptr_offset(mid),
3268 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3269 btrfs_set_header_nritems(split, c_nritems - mid);
3270 btrfs_set_header_nritems(c, mid);
3271 ret = 0;
3273 btrfs_mark_buffer_dirty(c);
3274 btrfs_mark_buffer_dirty(split);
3276 insert_ptr(trans, root, path, &disk_key, split->start,
3277 path->slots[level + 1] + 1, level + 1);
3279 if (path->slots[level] >= mid) {
3280 path->slots[level] -= mid;
3281 btrfs_tree_unlock(c);
3282 free_extent_buffer(c);
3283 path->nodes[level] = split;
3284 path->slots[level + 1] += 1;
3285 } else {
3286 btrfs_tree_unlock(split);
3287 free_extent_buffer(split);
3289 return ret;
3293 * how many bytes are required to store the items in a leaf. start
3294 * and nr indicate which items in the leaf to check. This totals up the
3295 * space used both by the item structs and the item data
3297 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3299 struct btrfs_item *start_item;
3300 struct btrfs_item *end_item;
3301 struct btrfs_map_token token;
3302 int data_len;
3303 int nritems = btrfs_header_nritems(l);
3304 int end = min(nritems, start + nr) - 1;
3306 if (!nr)
3307 return 0;
3308 btrfs_init_map_token(&token);
3309 start_item = btrfs_item_nr(l, start);
3310 end_item = btrfs_item_nr(l, end);
3311 data_len = btrfs_token_item_offset(l, start_item, &token) +
3312 btrfs_token_item_size(l, start_item, &token);
3313 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3314 data_len += sizeof(struct btrfs_item) * nr;
3315 WARN_ON(data_len < 0);
3316 return data_len;
3320 * The space between the end of the leaf items and
3321 * the start of the leaf data. IOW, how much room
3322 * the leaf has left for both items and data
3324 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3325 struct extent_buffer *leaf)
3327 int nritems = btrfs_header_nritems(leaf);
3328 int ret;
3329 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3330 if (ret < 0) {
3331 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3332 "used %d nritems %d\n",
3333 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3334 leaf_space_used(leaf, 0, nritems), nritems);
3336 return ret;
3340 * min slot controls the lowest index we're willing to push to the
3341 * right. We'll push up to and including min_slot, but no lower
3343 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3344 struct btrfs_root *root,
3345 struct btrfs_path *path,
3346 int data_size, int empty,
3347 struct extent_buffer *right,
3348 int free_space, u32 left_nritems,
3349 u32 min_slot)
3351 struct extent_buffer *left = path->nodes[0];
3352 struct extent_buffer *upper = path->nodes[1];
3353 struct btrfs_map_token token;
3354 struct btrfs_disk_key disk_key;
3355 int slot;
3356 u32 i;
3357 int push_space = 0;
3358 int push_items = 0;
3359 struct btrfs_item *item;
3360 u32 nr;
3361 u32 right_nritems;
3362 u32 data_end;
3363 u32 this_item_size;
3365 btrfs_init_map_token(&token);
3367 if (empty)
3368 nr = 0;
3369 else
3370 nr = max_t(u32, 1, min_slot);
3372 if (path->slots[0] >= left_nritems)
3373 push_space += data_size;
3375 slot = path->slots[1];
3376 i = left_nritems - 1;
3377 while (i >= nr) {
3378 item = btrfs_item_nr(left, i);
3380 if (!empty && push_items > 0) {
3381 if (path->slots[0] > i)
3382 break;
3383 if (path->slots[0] == i) {
3384 int space = btrfs_leaf_free_space(root, left);
3385 if (space + push_space * 2 > free_space)
3386 break;
3390 if (path->slots[0] == i)
3391 push_space += data_size;
3393 this_item_size = btrfs_item_size(left, item);
3394 if (this_item_size + sizeof(*item) + push_space > free_space)
3395 break;
3397 push_items++;
3398 push_space += this_item_size + sizeof(*item);
3399 if (i == 0)
3400 break;
3401 i--;
3404 if (push_items == 0)
3405 goto out_unlock;
3407 WARN_ON(!empty && push_items == left_nritems);
3409 /* push left to right */
3410 right_nritems = btrfs_header_nritems(right);
3412 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3413 push_space -= leaf_data_end(root, left);
3415 /* make room in the right data area */
3416 data_end = leaf_data_end(root, right);
3417 memmove_extent_buffer(right,
3418 btrfs_leaf_data(right) + data_end - push_space,
3419 btrfs_leaf_data(right) + data_end,
3420 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3422 /* copy from the left data area */
3423 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3424 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3425 btrfs_leaf_data(left) + leaf_data_end(root, left),
3426 push_space);
3428 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3429 btrfs_item_nr_offset(0),
3430 right_nritems * sizeof(struct btrfs_item));
3432 /* copy the items from left to right */
3433 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3434 btrfs_item_nr_offset(left_nritems - push_items),
3435 push_items * sizeof(struct btrfs_item));
3437 /* update the item pointers */
3438 right_nritems += push_items;
3439 btrfs_set_header_nritems(right, right_nritems);
3440 push_space = BTRFS_LEAF_DATA_SIZE(root);
3441 for (i = 0; i < right_nritems; i++) {
3442 item = btrfs_item_nr(right, i);
3443 push_space -= btrfs_token_item_size(right, item, &token);
3444 btrfs_set_token_item_offset(right, item, push_space, &token);
3447 left_nritems -= push_items;
3448 btrfs_set_header_nritems(left, left_nritems);
3450 if (left_nritems)
3451 btrfs_mark_buffer_dirty(left);
3452 else
3453 clean_tree_block(trans, root, left);
3455 btrfs_mark_buffer_dirty(right);
3457 btrfs_item_key(right, &disk_key, 0);
3458 btrfs_set_node_key(upper, &disk_key, slot + 1);
3459 btrfs_mark_buffer_dirty(upper);
3461 /* then fixup the leaf pointer in the path */
3462 if (path->slots[0] >= left_nritems) {
3463 path->slots[0] -= left_nritems;
3464 if (btrfs_header_nritems(path->nodes[0]) == 0)
3465 clean_tree_block(trans, root, path->nodes[0]);
3466 btrfs_tree_unlock(path->nodes[0]);
3467 free_extent_buffer(path->nodes[0]);
3468 path->nodes[0] = right;
3469 path->slots[1] += 1;
3470 } else {
3471 btrfs_tree_unlock(right);
3472 free_extent_buffer(right);
3474 return 0;
3476 out_unlock:
3477 btrfs_tree_unlock(right);
3478 free_extent_buffer(right);
3479 return 1;
3483 * push some data in the path leaf to the right, trying to free up at
3484 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3486 * returns 1 if the push failed because the other node didn't have enough
3487 * room, 0 if everything worked out and < 0 if there were major errors.
3489 * this will push starting from min_slot to the end of the leaf. It won't
3490 * push any slot lower than min_slot
3492 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3493 *root, struct btrfs_path *path,
3494 int min_data_size, int data_size,
3495 int empty, u32 min_slot)
3497 struct extent_buffer *left = path->nodes[0];
3498 struct extent_buffer *right;
3499 struct extent_buffer *upper;
3500 int slot;
3501 int free_space;
3502 u32 left_nritems;
3503 int ret;
3505 if (!path->nodes[1])
3506 return 1;
3508 slot = path->slots[1];
3509 upper = path->nodes[1];
3510 if (slot >= btrfs_header_nritems(upper) - 1)
3511 return 1;
3513 btrfs_assert_tree_locked(path->nodes[1]);
3515 right = read_node_slot(root, upper, slot + 1);
3516 if (right == NULL)
3517 return 1;
3519 btrfs_tree_lock(right);
3520 btrfs_set_lock_blocking(right);
3522 free_space = btrfs_leaf_free_space(root, right);
3523 if (free_space < data_size)
3524 goto out_unlock;
3526 /* cow and double check */
3527 ret = btrfs_cow_block(trans, root, right, upper,
3528 slot + 1, &right);
3529 if (ret)
3530 goto out_unlock;
3532 free_space = btrfs_leaf_free_space(root, right);
3533 if (free_space < data_size)
3534 goto out_unlock;
3536 left_nritems = btrfs_header_nritems(left);
3537 if (left_nritems == 0)
3538 goto out_unlock;
3540 return __push_leaf_right(trans, root, path, min_data_size, empty,
3541 right, free_space, left_nritems, min_slot);
3542 out_unlock:
3543 btrfs_tree_unlock(right);
3544 free_extent_buffer(right);
3545 return 1;
3549 * push some data in the path leaf to the left, trying to free up at
3550 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3552 * max_slot can put a limit on how far into the leaf we'll push items. The
3553 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3554 * items
3556 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3557 struct btrfs_root *root,
3558 struct btrfs_path *path, int data_size,
3559 int empty, struct extent_buffer *left,
3560 int free_space, u32 right_nritems,
3561 u32 max_slot)
3563 struct btrfs_disk_key disk_key;
3564 struct extent_buffer *right = path->nodes[0];
3565 int i;
3566 int push_space = 0;
3567 int push_items = 0;
3568 struct btrfs_item *item;
3569 u32 old_left_nritems;
3570 u32 nr;
3571 int ret = 0;
3572 u32 this_item_size;
3573 u32 old_left_item_size;
3574 struct btrfs_map_token token;
3576 btrfs_init_map_token(&token);
3578 if (empty)
3579 nr = min(right_nritems, max_slot);
3580 else
3581 nr = min(right_nritems - 1, max_slot);
3583 for (i = 0; i < nr; i++) {
3584 item = btrfs_item_nr(right, i);
3586 if (!empty && push_items > 0) {
3587 if (path->slots[0] < i)
3588 break;
3589 if (path->slots[0] == i) {
3590 int space = btrfs_leaf_free_space(root, right);
3591 if (space + push_space * 2 > free_space)
3592 break;
3596 if (path->slots[0] == i)
3597 push_space += data_size;
3599 this_item_size = btrfs_item_size(right, item);
3600 if (this_item_size + sizeof(*item) + push_space > free_space)
3601 break;
3603 push_items++;
3604 push_space += this_item_size + sizeof(*item);
3607 if (push_items == 0) {
3608 ret = 1;
3609 goto out;
3611 if (!empty && push_items == btrfs_header_nritems(right))
3612 WARN_ON(1);
3614 /* push data from right to left */
3615 copy_extent_buffer(left, right,
3616 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3617 btrfs_item_nr_offset(0),
3618 push_items * sizeof(struct btrfs_item));
3620 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3621 btrfs_item_offset_nr(right, push_items - 1);
3623 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3624 leaf_data_end(root, left) - push_space,
3625 btrfs_leaf_data(right) +
3626 btrfs_item_offset_nr(right, push_items - 1),
3627 push_space);
3628 old_left_nritems = btrfs_header_nritems(left);
3629 BUG_ON(old_left_nritems <= 0);
3631 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3632 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3633 u32 ioff;
3635 item = btrfs_item_nr(left, i);
3637 ioff = btrfs_token_item_offset(left, item, &token);
3638 btrfs_set_token_item_offset(left, item,
3639 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3640 &token);
3642 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3644 /* fixup right node */
3645 if (push_items > right_nritems)
3646 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3647 right_nritems);
3649 if (push_items < right_nritems) {
3650 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3651 leaf_data_end(root, right);
3652 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3653 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3654 btrfs_leaf_data(right) +
3655 leaf_data_end(root, right), push_space);
3657 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3658 btrfs_item_nr_offset(push_items),
3659 (btrfs_header_nritems(right) - push_items) *
3660 sizeof(struct btrfs_item));
3662 right_nritems -= push_items;
3663 btrfs_set_header_nritems(right, right_nritems);
3664 push_space = BTRFS_LEAF_DATA_SIZE(root);
3665 for (i = 0; i < right_nritems; i++) {
3666 item = btrfs_item_nr(right, i);
3668 push_space = push_space - btrfs_token_item_size(right,
3669 item, &token);
3670 btrfs_set_token_item_offset(right, item, push_space, &token);
3673 btrfs_mark_buffer_dirty(left);
3674 if (right_nritems)
3675 btrfs_mark_buffer_dirty(right);
3676 else
3677 clean_tree_block(trans, root, right);
3679 btrfs_item_key(right, &disk_key, 0);
3680 fixup_low_keys(trans, root, path, &disk_key, 1);
3682 /* then fixup the leaf pointer in the path */
3683 if (path->slots[0] < push_items) {
3684 path->slots[0] += old_left_nritems;
3685 btrfs_tree_unlock(path->nodes[0]);
3686 free_extent_buffer(path->nodes[0]);
3687 path->nodes[0] = left;
3688 path->slots[1] -= 1;
3689 } else {
3690 btrfs_tree_unlock(left);
3691 free_extent_buffer(left);
3692 path->slots[0] -= push_items;
3694 BUG_ON(path->slots[0] < 0);
3695 return ret;
3696 out:
3697 btrfs_tree_unlock(left);
3698 free_extent_buffer(left);
3699 return ret;
3703 * push some data in the path leaf to the left, trying to free up at
3704 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3706 * max_slot can put a limit on how far into the leaf we'll push items. The
3707 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3708 * items
3710 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3711 *root, struct btrfs_path *path, int min_data_size,
3712 int data_size, int empty, u32 max_slot)
3714 struct extent_buffer *right = path->nodes[0];
3715 struct extent_buffer *left;
3716 int slot;
3717 int free_space;
3718 u32 right_nritems;
3719 int ret = 0;
3721 slot = path->slots[1];
3722 if (slot == 0)
3723 return 1;
3724 if (!path->nodes[1])
3725 return 1;
3727 right_nritems = btrfs_header_nritems(right);
3728 if (right_nritems == 0)
3729 return 1;
3731 btrfs_assert_tree_locked(path->nodes[1]);
3733 left = read_node_slot(root, path->nodes[1], slot - 1);
3734 if (left == NULL)
3735 return 1;
3737 btrfs_tree_lock(left);
3738 btrfs_set_lock_blocking(left);
3740 free_space = btrfs_leaf_free_space(root, left);
3741 if (free_space < data_size) {
3742 ret = 1;
3743 goto out;
3746 /* cow and double check */
3747 ret = btrfs_cow_block(trans, root, left,
3748 path->nodes[1], slot - 1, &left);
3749 if (ret) {
3750 /* we hit -ENOSPC, but it isn't fatal here */
3751 if (ret == -ENOSPC)
3752 ret = 1;
3753 goto out;
3756 free_space = btrfs_leaf_free_space(root, left);
3757 if (free_space < data_size) {
3758 ret = 1;
3759 goto out;
3762 return __push_leaf_left(trans, root, path, min_data_size,
3763 empty, left, free_space, right_nritems,
3764 max_slot);
3765 out:
3766 btrfs_tree_unlock(left);
3767 free_extent_buffer(left);
3768 return ret;
3772 * split the path's leaf in two, making sure there is at least data_size
3773 * available for the resulting leaf level of the path.
3775 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3776 struct btrfs_root *root,
3777 struct btrfs_path *path,
3778 struct extent_buffer *l,
3779 struct extent_buffer *right,
3780 int slot, int mid, int nritems)
3782 int data_copy_size;
3783 int rt_data_off;
3784 int i;
3785 struct btrfs_disk_key disk_key;
3786 struct btrfs_map_token token;
3788 btrfs_init_map_token(&token);
3790 nritems = nritems - mid;
3791 btrfs_set_header_nritems(right, nritems);
3792 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3794 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3795 btrfs_item_nr_offset(mid),
3796 nritems * sizeof(struct btrfs_item));
3798 copy_extent_buffer(right, l,
3799 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3800 data_copy_size, btrfs_leaf_data(l) +
3801 leaf_data_end(root, l), data_copy_size);
3803 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3804 btrfs_item_end_nr(l, mid);
3806 for (i = 0; i < nritems; i++) {
3807 struct btrfs_item *item = btrfs_item_nr(right, i);
3808 u32 ioff;
3810 ioff = btrfs_token_item_offset(right, item, &token);
3811 btrfs_set_token_item_offset(right, item,
3812 ioff + rt_data_off, &token);
3815 btrfs_set_header_nritems(l, mid);
3816 btrfs_item_key(right, &disk_key, 0);
3817 insert_ptr(trans, root, path, &disk_key, right->start,
3818 path->slots[1] + 1, 1);
3820 btrfs_mark_buffer_dirty(right);
3821 btrfs_mark_buffer_dirty(l);
3822 BUG_ON(path->slots[0] != slot);
3824 if (mid <= slot) {
3825 btrfs_tree_unlock(path->nodes[0]);
3826 free_extent_buffer(path->nodes[0]);
3827 path->nodes[0] = right;
3828 path->slots[0] -= mid;
3829 path->slots[1] += 1;
3830 } else {
3831 btrfs_tree_unlock(right);
3832 free_extent_buffer(right);
3835 BUG_ON(path->slots[0] < 0);
3839 * double splits happen when we need to insert a big item in the middle
3840 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3841 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3842 * A B C
3844 * We avoid this by trying to push the items on either side of our target
3845 * into the adjacent leaves. If all goes well we can avoid the double split
3846 * completely.
3848 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3849 struct btrfs_root *root,
3850 struct btrfs_path *path,
3851 int data_size)
3853 int ret;
3854 int progress = 0;
3855 int slot;
3856 u32 nritems;
3858 slot = path->slots[0];
3861 * try to push all the items after our slot into the
3862 * right leaf
3864 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3865 if (ret < 0)
3866 return ret;
3868 if (ret == 0)
3869 progress++;
3871 nritems = btrfs_header_nritems(path->nodes[0]);
3873 * our goal is to get our slot at the start or end of a leaf. If
3874 * we've done so we're done
3876 if (path->slots[0] == 0 || path->slots[0] == nritems)
3877 return 0;
3879 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3880 return 0;
3882 /* try to push all the items before our slot into the next leaf */
3883 slot = path->slots[0];
3884 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3885 if (ret < 0)
3886 return ret;
3888 if (ret == 0)
3889 progress++;
3891 if (progress)
3892 return 0;
3893 return 1;
3897 * split the path's leaf in two, making sure there is at least data_size
3898 * available for the resulting leaf level of the path.
3900 * returns 0 if all went well and < 0 on failure.
3902 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3903 struct btrfs_root *root,
3904 struct btrfs_key *ins_key,
3905 struct btrfs_path *path, int data_size,
3906 int extend)
3908 struct btrfs_disk_key disk_key;
3909 struct extent_buffer *l;
3910 u32 nritems;
3911 int mid;
3912 int slot;
3913 struct extent_buffer *right;
3914 int ret = 0;
3915 int wret;
3916 int split;
3917 int num_doubles = 0;
3918 int tried_avoid_double = 0;
3920 l = path->nodes[0];
3921 slot = path->slots[0];
3922 if (extend && data_size + btrfs_item_size_nr(l, slot) +
3923 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3924 return -EOVERFLOW;
3926 /* first try to make some room by pushing left and right */
3927 if (data_size) {
3928 wret = push_leaf_right(trans, root, path, data_size,
3929 data_size, 0, 0);
3930 if (wret < 0)
3931 return wret;
3932 if (wret) {
3933 wret = push_leaf_left(trans, root, path, data_size,
3934 data_size, 0, (u32)-1);
3935 if (wret < 0)
3936 return wret;
3938 l = path->nodes[0];
3940 /* did the pushes work? */
3941 if (btrfs_leaf_free_space(root, l) >= data_size)
3942 return 0;
3945 if (!path->nodes[1]) {
3946 ret = insert_new_root(trans, root, path, 1);
3947 if (ret)
3948 return ret;
3950 again:
3951 split = 1;
3952 l = path->nodes[0];
3953 slot = path->slots[0];
3954 nritems = btrfs_header_nritems(l);
3955 mid = (nritems + 1) / 2;
3957 if (mid <= slot) {
3958 if (nritems == 1 ||
3959 leaf_space_used(l, mid, nritems - mid) + data_size >
3960 BTRFS_LEAF_DATA_SIZE(root)) {
3961 if (slot >= nritems) {
3962 split = 0;
3963 } else {
3964 mid = slot;
3965 if (mid != nritems &&
3966 leaf_space_used(l, mid, nritems - mid) +
3967 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3968 if (data_size && !tried_avoid_double)
3969 goto push_for_double;
3970 split = 2;
3974 } else {
3975 if (leaf_space_used(l, 0, mid) + data_size >
3976 BTRFS_LEAF_DATA_SIZE(root)) {
3977 if (!extend && data_size && slot == 0) {
3978 split = 0;
3979 } else if ((extend || !data_size) && slot == 0) {
3980 mid = 1;
3981 } else {
3982 mid = slot;
3983 if (mid != nritems &&
3984 leaf_space_used(l, mid, nritems - mid) +
3985 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3986 if (data_size && !tried_avoid_double)
3987 goto push_for_double;
3988 split = 2 ;
3994 if (split == 0)
3995 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3996 else
3997 btrfs_item_key(l, &disk_key, mid);
3999 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4000 root->root_key.objectid,
4001 &disk_key, 0, l->start, 0);
4002 if (IS_ERR(right))
4003 return PTR_ERR(right);
4005 root_add_used(root, root->leafsize);
4007 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4008 btrfs_set_header_bytenr(right, right->start);
4009 btrfs_set_header_generation(right, trans->transid);
4010 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4011 btrfs_set_header_owner(right, root->root_key.objectid);
4012 btrfs_set_header_level(right, 0);
4013 write_extent_buffer(right, root->fs_info->fsid,
4014 (unsigned long)btrfs_header_fsid(right),
4015 BTRFS_FSID_SIZE);
4017 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4018 (unsigned long)btrfs_header_chunk_tree_uuid(right),
4019 BTRFS_UUID_SIZE);
4021 if (split == 0) {
4022 if (mid <= slot) {
4023 btrfs_set_header_nritems(right, 0);
4024 insert_ptr(trans, root, path, &disk_key, right->start,
4025 path->slots[1] + 1, 1);
4026 btrfs_tree_unlock(path->nodes[0]);
4027 free_extent_buffer(path->nodes[0]);
4028 path->nodes[0] = right;
4029 path->slots[0] = 0;
4030 path->slots[1] += 1;
4031 } else {
4032 btrfs_set_header_nritems(right, 0);
4033 insert_ptr(trans, root, path, &disk_key, right->start,
4034 path->slots[1], 1);
4035 btrfs_tree_unlock(path->nodes[0]);
4036 free_extent_buffer(path->nodes[0]);
4037 path->nodes[0] = right;
4038 path->slots[0] = 0;
4039 if (path->slots[1] == 0)
4040 fixup_low_keys(trans, root, path,
4041 &disk_key, 1);
4043 btrfs_mark_buffer_dirty(right);
4044 return ret;
4047 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4049 if (split == 2) {
4050 BUG_ON(num_doubles != 0);
4051 num_doubles++;
4052 goto again;
4055 return 0;
4057 push_for_double:
4058 push_for_double_split(trans, root, path, data_size);
4059 tried_avoid_double = 1;
4060 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4061 return 0;
4062 goto again;
4065 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4066 struct btrfs_root *root,
4067 struct btrfs_path *path, int ins_len)
4069 struct btrfs_key key;
4070 struct extent_buffer *leaf;
4071 struct btrfs_file_extent_item *fi;
4072 u64 extent_len = 0;
4073 u32 item_size;
4074 int ret;
4076 leaf = path->nodes[0];
4077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4079 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4080 key.type != BTRFS_EXTENT_CSUM_KEY);
4082 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4083 return 0;
4085 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4086 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4087 fi = btrfs_item_ptr(leaf, path->slots[0],
4088 struct btrfs_file_extent_item);
4089 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4091 btrfs_release_path(path);
4093 path->keep_locks = 1;
4094 path->search_for_split = 1;
4095 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4096 path->search_for_split = 0;
4097 if (ret < 0)
4098 goto err;
4100 ret = -EAGAIN;
4101 leaf = path->nodes[0];
4102 /* if our item isn't there or got smaller, return now */
4103 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4104 goto err;
4106 /* the leaf has changed, it now has room. return now */
4107 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4108 goto err;
4110 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4111 fi = btrfs_item_ptr(leaf, path->slots[0],
4112 struct btrfs_file_extent_item);
4113 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4114 goto err;
4117 btrfs_set_path_blocking(path);
4118 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4119 if (ret)
4120 goto err;
4122 path->keep_locks = 0;
4123 btrfs_unlock_up_safe(path, 1);
4124 return 0;
4125 err:
4126 path->keep_locks = 0;
4127 return ret;
4130 static noinline int split_item(struct btrfs_trans_handle *trans,
4131 struct btrfs_root *root,
4132 struct btrfs_path *path,
4133 struct btrfs_key *new_key,
4134 unsigned long split_offset)
4136 struct extent_buffer *leaf;
4137 struct btrfs_item *item;
4138 struct btrfs_item *new_item;
4139 int slot;
4140 char *buf;
4141 u32 nritems;
4142 u32 item_size;
4143 u32 orig_offset;
4144 struct btrfs_disk_key disk_key;
4146 leaf = path->nodes[0];
4147 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4149 btrfs_set_path_blocking(path);
4151 item = btrfs_item_nr(leaf, path->slots[0]);
4152 orig_offset = btrfs_item_offset(leaf, item);
4153 item_size = btrfs_item_size(leaf, item);
4155 buf = kmalloc(item_size, GFP_NOFS);
4156 if (!buf)
4157 return -ENOMEM;
4159 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4160 path->slots[0]), item_size);
4162 slot = path->slots[0] + 1;
4163 nritems = btrfs_header_nritems(leaf);
4164 if (slot != nritems) {
4165 /* shift the items */
4166 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4167 btrfs_item_nr_offset(slot),
4168 (nritems - slot) * sizeof(struct btrfs_item));
4171 btrfs_cpu_key_to_disk(&disk_key, new_key);
4172 btrfs_set_item_key(leaf, &disk_key, slot);
4174 new_item = btrfs_item_nr(leaf, slot);
4176 btrfs_set_item_offset(leaf, new_item, orig_offset);
4177 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4179 btrfs_set_item_offset(leaf, item,
4180 orig_offset + item_size - split_offset);
4181 btrfs_set_item_size(leaf, item, split_offset);
4183 btrfs_set_header_nritems(leaf, nritems + 1);
4185 /* write the data for the start of the original item */
4186 write_extent_buffer(leaf, buf,
4187 btrfs_item_ptr_offset(leaf, path->slots[0]),
4188 split_offset);
4190 /* write the data for the new item */
4191 write_extent_buffer(leaf, buf + split_offset,
4192 btrfs_item_ptr_offset(leaf, slot),
4193 item_size - split_offset);
4194 btrfs_mark_buffer_dirty(leaf);
4196 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4197 kfree(buf);
4198 return 0;
4202 * This function splits a single item into two items,
4203 * giving 'new_key' to the new item and splitting the
4204 * old one at split_offset (from the start of the item).
4206 * The path may be released by this operation. After
4207 * the split, the path is pointing to the old item. The
4208 * new item is going to be in the same node as the old one.
4210 * Note, the item being split must be smaller enough to live alone on
4211 * a tree block with room for one extra struct btrfs_item
4213 * This allows us to split the item in place, keeping a lock on the
4214 * leaf the entire time.
4216 int btrfs_split_item(struct btrfs_trans_handle *trans,
4217 struct btrfs_root *root,
4218 struct btrfs_path *path,
4219 struct btrfs_key *new_key,
4220 unsigned long split_offset)
4222 int ret;
4223 ret = setup_leaf_for_split(trans, root, path,
4224 sizeof(struct btrfs_item));
4225 if (ret)
4226 return ret;
4228 ret = split_item(trans, root, path, new_key, split_offset);
4229 return ret;
4233 * This function duplicate a item, giving 'new_key' to the new item.
4234 * It guarantees both items live in the same tree leaf and the new item
4235 * is contiguous with the original item.
4237 * This allows us to split file extent in place, keeping a lock on the
4238 * leaf the entire time.
4240 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4241 struct btrfs_root *root,
4242 struct btrfs_path *path,
4243 struct btrfs_key *new_key)
4245 struct extent_buffer *leaf;
4246 int ret;
4247 u32 item_size;
4249 leaf = path->nodes[0];
4250 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4251 ret = setup_leaf_for_split(trans, root, path,
4252 item_size + sizeof(struct btrfs_item));
4253 if (ret)
4254 return ret;
4256 path->slots[0]++;
4257 setup_items_for_insert(trans, root, path, new_key, &item_size,
4258 item_size, item_size +
4259 sizeof(struct btrfs_item), 1);
4260 leaf = path->nodes[0];
4261 memcpy_extent_buffer(leaf,
4262 btrfs_item_ptr_offset(leaf, path->slots[0]),
4263 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4264 item_size);
4265 return 0;
4269 * make the item pointed to by the path smaller. new_size indicates
4270 * how small to make it, and from_end tells us if we just chop bytes
4271 * off the end of the item or if we shift the item to chop bytes off
4272 * the front.
4274 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4275 struct btrfs_root *root,
4276 struct btrfs_path *path,
4277 u32 new_size, int from_end)
4279 int slot;
4280 struct extent_buffer *leaf;
4281 struct btrfs_item *item;
4282 u32 nritems;
4283 unsigned int data_end;
4284 unsigned int old_data_start;
4285 unsigned int old_size;
4286 unsigned int size_diff;
4287 int i;
4288 struct btrfs_map_token token;
4290 btrfs_init_map_token(&token);
4292 leaf = path->nodes[0];
4293 slot = path->slots[0];
4295 old_size = btrfs_item_size_nr(leaf, slot);
4296 if (old_size == new_size)
4297 return;
4299 nritems = btrfs_header_nritems(leaf);
4300 data_end = leaf_data_end(root, leaf);
4302 old_data_start = btrfs_item_offset_nr(leaf, slot);
4304 size_diff = old_size - new_size;
4306 BUG_ON(slot < 0);
4307 BUG_ON(slot >= nritems);
4310 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4312 /* first correct the data pointers */
4313 for (i = slot; i < nritems; i++) {
4314 u32 ioff;
4315 item = btrfs_item_nr(leaf, i);
4317 ioff = btrfs_token_item_offset(leaf, item, &token);
4318 btrfs_set_token_item_offset(leaf, item,
4319 ioff + size_diff, &token);
4322 /* shift the data */
4323 if (from_end) {
4324 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4325 data_end + size_diff, btrfs_leaf_data(leaf) +
4326 data_end, old_data_start + new_size - data_end);
4327 } else {
4328 struct btrfs_disk_key disk_key;
4329 u64 offset;
4331 btrfs_item_key(leaf, &disk_key, slot);
4333 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4334 unsigned long ptr;
4335 struct btrfs_file_extent_item *fi;
4337 fi = btrfs_item_ptr(leaf, slot,
4338 struct btrfs_file_extent_item);
4339 fi = (struct btrfs_file_extent_item *)(
4340 (unsigned long)fi - size_diff);
4342 if (btrfs_file_extent_type(leaf, fi) ==
4343 BTRFS_FILE_EXTENT_INLINE) {
4344 ptr = btrfs_item_ptr_offset(leaf, slot);
4345 memmove_extent_buffer(leaf, ptr,
4346 (unsigned long)fi,
4347 offsetof(struct btrfs_file_extent_item,
4348 disk_bytenr));
4352 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4353 data_end + size_diff, btrfs_leaf_data(leaf) +
4354 data_end, old_data_start - data_end);
4356 offset = btrfs_disk_key_offset(&disk_key);
4357 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4358 btrfs_set_item_key(leaf, &disk_key, slot);
4359 if (slot == 0)
4360 fixup_low_keys(trans, root, path, &disk_key, 1);
4363 item = btrfs_item_nr(leaf, slot);
4364 btrfs_set_item_size(leaf, item, new_size);
4365 btrfs_mark_buffer_dirty(leaf);
4367 if (btrfs_leaf_free_space(root, leaf) < 0) {
4368 btrfs_print_leaf(root, leaf);
4369 BUG();
4374 * make the item pointed to by the path bigger, data_size is the new size.
4376 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4377 struct btrfs_root *root, struct btrfs_path *path,
4378 u32 data_size)
4380 int slot;
4381 struct extent_buffer *leaf;
4382 struct btrfs_item *item;
4383 u32 nritems;
4384 unsigned int data_end;
4385 unsigned int old_data;
4386 unsigned int old_size;
4387 int i;
4388 struct btrfs_map_token token;
4390 btrfs_init_map_token(&token);
4392 leaf = path->nodes[0];
4394 nritems = btrfs_header_nritems(leaf);
4395 data_end = leaf_data_end(root, leaf);
4397 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4398 btrfs_print_leaf(root, leaf);
4399 BUG();
4401 slot = path->slots[0];
4402 old_data = btrfs_item_end_nr(leaf, slot);
4404 BUG_ON(slot < 0);
4405 if (slot >= nritems) {
4406 btrfs_print_leaf(root, leaf);
4407 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4408 slot, nritems);
4409 BUG_ON(1);
4413 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4415 /* first correct the data pointers */
4416 for (i = slot; i < nritems; i++) {
4417 u32 ioff;
4418 item = btrfs_item_nr(leaf, i);
4420 ioff = btrfs_token_item_offset(leaf, item, &token);
4421 btrfs_set_token_item_offset(leaf, item,
4422 ioff - data_size, &token);
4425 /* shift the data */
4426 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4427 data_end - data_size, btrfs_leaf_data(leaf) +
4428 data_end, old_data - data_end);
4430 data_end = old_data;
4431 old_size = btrfs_item_size_nr(leaf, slot);
4432 item = btrfs_item_nr(leaf, slot);
4433 btrfs_set_item_size(leaf, item, old_size + data_size);
4434 btrfs_mark_buffer_dirty(leaf);
4436 if (btrfs_leaf_free_space(root, leaf) < 0) {
4437 btrfs_print_leaf(root, leaf);
4438 BUG();
4443 * this is a helper for btrfs_insert_empty_items, the main goal here is
4444 * to save stack depth by doing the bulk of the work in a function
4445 * that doesn't call btrfs_search_slot
4447 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4448 struct btrfs_root *root, struct btrfs_path *path,
4449 struct btrfs_key *cpu_key, u32 *data_size,
4450 u32 total_data, u32 total_size, int nr)
4452 struct btrfs_item *item;
4453 int i;
4454 u32 nritems;
4455 unsigned int data_end;
4456 struct btrfs_disk_key disk_key;
4457 struct extent_buffer *leaf;
4458 int slot;
4459 struct btrfs_map_token token;
4461 btrfs_init_map_token(&token);
4463 leaf = path->nodes[0];
4464 slot = path->slots[0];
4466 nritems = btrfs_header_nritems(leaf);
4467 data_end = leaf_data_end(root, leaf);
4469 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4470 btrfs_print_leaf(root, leaf);
4471 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4472 total_size, btrfs_leaf_free_space(root, leaf));
4473 BUG();
4476 if (slot != nritems) {
4477 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4479 if (old_data < data_end) {
4480 btrfs_print_leaf(root, leaf);
4481 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4482 slot, old_data, data_end);
4483 BUG_ON(1);
4486 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4488 /* first correct the data pointers */
4489 for (i = slot; i < nritems; i++) {
4490 u32 ioff;
4492 item = btrfs_item_nr(leaf, i);
4493 ioff = btrfs_token_item_offset(leaf, item, &token);
4494 btrfs_set_token_item_offset(leaf, item,
4495 ioff - total_data, &token);
4497 /* shift the items */
4498 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4499 btrfs_item_nr_offset(slot),
4500 (nritems - slot) * sizeof(struct btrfs_item));
4502 /* shift the data */
4503 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4504 data_end - total_data, btrfs_leaf_data(leaf) +
4505 data_end, old_data - data_end);
4506 data_end = old_data;
4509 /* setup the item for the new data */
4510 for (i = 0; i < nr; i++) {
4511 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4512 btrfs_set_item_key(leaf, &disk_key, slot + i);
4513 item = btrfs_item_nr(leaf, slot + i);
4514 btrfs_set_token_item_offset(leaf, item,
4515 data_end - data_size[i], &token);
4516 data_end -= data_size[i];
4517 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4520 btrfs_set_header_nritems(leaf, nritems + nr);
4522 if (slot == 0) {
4523 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4524 fixup_low_keys(trans, root, path, &disk_key, 1);
4526 btrfs_unlock_up_safe(path, 1);
4527 btrfs_mark_buffer_dirty(leaf);
4529 if (btrfs_leaf_free_space(root, leaf) < 0) {
4530 btrfs_print_leaf(root, leaf);
4531 BUG();
4536 * Given a key and some data, insert items into the tree.
4537 * This does all the path init required, making room in the tree if needed.
4539 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4540 struct btrfs_root *root,
4541 struct btrfs_path *path,
4542 struct btrfs_key *cpu_key, u32 *data_size,
4543 int nr)
4545 int ret = 0;
4546 int slot;
4547 int i;
4548 u32 total_size = 0;
4549 u32 total_data = 0;
4551 for (i = 0; i < nr; i++)
4552 total_data += data_size[i];
4554 total_size = total_data + (nr * sizeof(struct btrfs_item));
4555 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4556 if (ret == 0)
4557 return -EEXIST;
4558 if (ret < 0)
4559 return ret;
4561 slot = path->slots[0];
4562 BUG_ON(slot < 0);
4564 setup_items_for_insert(trans, root, path, cpu_key, data_size,
4565 total_data, total_size, nr);
4566 return 0;
4570 * Given a key and some data, insert an item into the tree.
4571 * This does all the path init required, making room in the tree if needed.
4573 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4574 *root, struct btrfs_key *cpu_key, void *data, u32
4575 data_size)
4577 int ret = 0;
4578 struct btrfs_path *path;
4579 struct extent_buffer *leaf;
4580 unsigned long ptr;
4582 path = btrfs_alloc_path();
4583 if (!path)
4584 return -ENOMEM;
4585 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4586 if (!ret) {
4587 leaf = path->nodes[0];
4588 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4589 write_extent_buffer(leaf, data, ptr, data_size);
4590 btrfs_mark_buffer_dirty(leaf);
4592 btrfs_free_path(path);
4593 return ret;
4597 * delete the pointer from a given node.
4599 * the tree should have been previously balanced so the deletion does not
4600 * empty a node.
4602 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4603 struct btrfs_path *path, int level, int slot)
4605 struct extent_buffer *parent = path->nodes[level];
4606 u32 nritems;
4607 int ret;
4609 nritems = btrfs_header_nritems(parent);
4610 if (slot != nritems - 1) {
4611 if (level)
4612 tree_mod_log_eb_move(root->fs_info, parent, slot,
4613 slot + 1, nritems - slot - 1);
4614 memmove_extent_buffer(parent,
4615 btrfs_node_key_ptr_offset(slot),
4616 btrfs_node_key_ptr_offset(slot + 1),
4617 sizeof(struct btrfs_key_ptr) *
4618 (nritems - slot - 1));
4619 } else if (level) {
4620 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4621 MOD_LOG_KEY_REMOVE);
4622 BUG_ON(ret < 0);
4625 nritems--;
4626 btrfs_set_header_nritems(parent, nritems);
4627 if (nritems == 0 && parent == root->node) {
4628 BUG_ON(btrfs_header_level(root->node) != 1);
4629 /* just turn the root into a leaf and break */
4630 btrfs_set_header_level(root->node, 0);
4631 } else if (slot == 0) {
4632 struct btrfs_disk_key disk_key;
4634 btrfs_node_key(parent, &disk_key, 0);
4635 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4637 btrfs_mark_buffer_dirty(parent);
4641 * a helper function to delete the leaf pointed to by path->slots[1] and
4642 * path->nodes[1].
4644 * This deletes the pointer in path->nodes[1] and frees the leaf
4645 * block extent. zero is returned if it all worked out, < 0 otherwise.
4647 * The path must have already been setup for deleting the leaf, including
4648 * all the proper balancing. path->nodes[1] must be locked.
4650 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4651 struct btrfs_root *root,
4652 struct btrfs_path *path,
4653 struct extent_buffer *leaf)
4655 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4656 del_ptr(trans, root, path, 1, path->slots[1]);
4659 * btrfs_free_extent is expensive, we want to make sure we
4660 * aren't holding any locks when we call it
4662 btrfs_unlock_up_safe(path, 0);
4664 root_sub_used(root, leaf->len);
4666 extent_buffer_get(leaf);
4667 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4668 free_extent_buffer_stale(leaf);
4671 * delete the item at the leaf level in path. If that empties
4672 * the leaf, remove it from the tree
4674 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4675 struct btrfs_path *path, int slot, int nr)
4677 struct extent_buffer *leaf;
4678 struct btrfs_item *item;
4679 int last_off;
4680 int dsize = 0;
4681 int ret = 0;
4682 int wret;
4683 int i;
4684 u32 nritems;
4685 struct btrfs_map_token token;
4687 btrfs_init_map_token(&token);
4689 leaf = path->nodes[0];
4690 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4692 for (i = 0; i < nr; i++)
4693 dsize += btrfs_item_size_nr(leaf, slot + i);
4695 nritems = btrfs_header_nritems(leaf);
4697 if (slot + nr != nritems) {
4698 int data_end = leaf_data_end(root, leaf);
4700 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4701 data_end + dsize,
4702 btrfs_leaf_data(leaf) + data_end,
4703 last_off - data_end);
4705 for (i = slot + nr; i < nritems; i++) {
4706 u32 ioff;
4708 item = btrfs_item_nr(leaf, i);
4709 ioff = btrfs_token_item_offset(leaf, item, &token);
4710 btrfs_set_token_item_offset(leaf, item,
4711 ioff + dsize, &token);
4714 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4715 btrfs_item_nr_offset(slot + nr),
4716 sizeof(struct btrfs_item) *
4717 (nritems - slot - nr));
4719 btrfs_set_header_nritems(leaf, nritems - nr);
4720 nritems -= nr;
4722 /* delete the leaf if we've emptied it */
4723 if (nritems == 0) {
4724 if (leaf == root->node) {
4725 btrfs_set_header_level(leaf, 0);
4726 } else {
4727 btrfs_set_path_blocking(path);
4728 clean_tree_block(trans, root, leaf);
4729 btrfs_del_leaf(trans, root, path, leaf);
4731 } else {
4732 int used = leaf_space_used(leaf, 0, nritems);
4733 if (slot == 0) {
4734 struct btrfs_disk_key disk_key;
4736 btrfs_item_key(leaf, &disk_key, 0);
4737 fixup_low_keys(trans, root, path, &disk_key, 1);
4740 /* delete the leaf if it is mostly empty */
4741 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4742 /* push_leaf_left fixes the path.
4743 * make sure the path still points to our leaf
4744 * for possible call to del_ptr below
4746 slot = path->slots[1];
4747 extent_buffer_get(leaf);
4749 btrfs_set_path_blocking(path);
4750 wret = push_leaf_left(trans, root, path, 1, 1,
4751 1, (u32)-1);
4752 if (wret < 0 && wret != -ENOSPC)
4753 ret = wret;
4755 if (path->nodes[0] == leaf &&
4756 btrfs_header_nritems(leaf)) {
4757 wret = push_leaf_right(trans, root, path, 1,
4758 1, 1, 0);
4759 if (wret < 0 && wret != -ENOSPC)
4760 ret = wret;
4763 if (btrfs_header_nritems(leaf) == 0) {
4764 path->slots[1] = slot;
4765 btrfs_del_leaf(trans, root, path, leaf);
4766 free_extent_buffer(leaf);
4767 ret = 0;
4768 } else {
4769 /* if we're still in the path, make sure
4770 * we're dirty. Otherwise, one of the
4771 * push_leaf functions must have already
4772 * dirtied this buffer
4774 if (path->nodes[0] == leaf)
4775 btrfs_mark_buffer_dirty(leaf);
4776 free_extent_buffer(leaf);
4778 } else {
4779 btrfs_mark_buffer_dirty(leaf);
4782 return ret;
4786 * search the tree again to find a leaf with lesser keys
4787 * returns 0 if it found something or 1 if there are no lesser leaves.
4788 * returns < 0 on io errors.
4790 * This may release the path, and so you may lose any locks held at the
4791 * time you call it.
4793 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4795 struct btrfs_key key;
4796 struct btrfs_disk_key found_key;
4797 int ret;
4799 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4801 if (key.offset > 0)
4802 key.offset--;
4803 else if (key.type > 0)
4804 key.type--;
4805 else if (key.objectid > 0)
4806 key.objectid--;
4807 else
4808 return 1;
4810 btrfs_release_path(path);
4811 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4812 if (ret < 0)
4813 return ret;
4814 btrfs_item_key(path->nodes[0], &found_key, 0);
4815 ret = comp_keys(&found_key, &key);
4816 if (ret < 0)
4817 return 0;
4818 return 1;
4822 * A helper function to walk down the tree starting at min_key, and looking
4823 * for nodes or leaves that are have a minimum transaction id.
4824 * This is used by the btree defrag code, and tree logging
4826 * This does not cow, but it does stuff the starting key it finds back
4827 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4828 * key and get a writable path.
4830 * This does lock as it descends, and path->keep_locks should be set
4831 * to 1 by the caller.
4833 * This honors path->lowest_level to prevent descent past a given level
4834 * of the tree.
4836 * min_trans indicates the oldest transaction that you are interested
4837 * in walking through. Any nodes or leaves older than min_trans are
4838 * skipped over (without reading them).
4840 * returns zero if something useful was found, < 0 on error and 1 if there
4841 * was nothing in the tree that matched the search criteria.
4843 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4844 struct btrfs_key *max_key,
4845 struct btrfs_path *path,
4846 u64 min_trans)
4848 struct extent_buffer *cur;
4849 struct btrfs_key found_key;
4850 int slot;
4851 int sret;
4852 u32 nritems;
4853 int level;
4854 int ret = 1;
4856 WARN_ON(!path->keep_locks);
4857 again:
4858 cur = btrfs_read_lock_root_node(root);
4859 level = btrfs_header_level(cur);
4860 WARN_ON(path->nodes[level]);
4861 path->nodes[level] = cur;
4862 path->locks[level] = BTRFS_READ_LOCK;
4864 if (btrfs_header_generation(cur) < min_trans) {
4865 ret = 1;
4866 goto out;
4868 while (1) {
4869 nritems = btrfs_header_nritems(cur);
4870 level = btrfs_header_level(cur);
4871 sret = bin_search(cur, min_key, level, &slot);
4873 /* at the lowest level, we're done, setup the path and exit */
4874 if (level == path->lowest_level) {
4875 if (slot >= nritems)
4876 goto find_next_key;
4877 ret = 0;
4878 path->slots[level] = slot;
4879 btrfs_item_key_to_cpu(cur, &found_key, slot);
4880 goto out;
4882 if (sret && slot > 0)
4883 slot--;
4885 * check this node pointer against the min_trans parameters.
4886 * If it is too old, old, skip to the next one.
4888 while (slot < nritems) {
4889 u64 blockptr;
4890 u64 gen;
4892 blockptr = btrfs_node_blockptr(cur, slot);
4893 gen = btrfs_node_ptr_generation(cur, slot);
4894 if (gen < min_trans) {
4895 slot++;
4896 continue;
4898 break;
4900 find_next_key:
4902 * we didn't find a candidate key in this node, walk forward
4903 * and find another one
4905 if (slot >= nritems) {
4906 path->slots[level] = slot;
4907 btrfs_set_path_blocking(path);
4908 sret = btrfs_find_next_key(root, path, min_key, level,
4909 min_trans);
4910 if (sret == 0) {
4911 btrfs_release_path(path);
4912 goto again;
4913 } else {
4914 goto out;
4917 /* save our key for returning back */
4918 btrfs_node_key_to_cpu(cur, &found_key, slot);
4919 path->slots[level] = slot;
4920 if (level == path->lowest_level) {
4921 ret = 0;
4922 unlock_up(path, level, 1, 0, NULL);
4923 goto out;
4925 btrfs_set_path_blocking(path);
4926 cur = read_node_slot(root, cur, slot);
4927 BUG_ON(!cur); /* -ENOMEM */
4929 btrfs_tree_read_lock(cur);
4931 path->locks[level - 1] = BTRFS_READ_LOCK;
4932 path->nodes[level - 1] = cur;
4933 unlock_up(path, level, 1, 0, NULL);
4934 btrfs_clear_path_blocking(path, NULL, 0);
4936 out:
4937 if (ret == 0)
4938 memcpy(min_key, &found_key, sizeof(found_key));
4939 btrfs_set_path_blocking(path);
4940 return ret;
4943 static void tree_move_down(struct btrfs_root *root,
4944 struct btrfs_path *path,
4945 int *level, int root_level)
4947 BUG_ON(*level == 0);
4948 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4949 path->slots[*level]);
4950 path->slots[*level - 1] = 0;
4951 (*level)--;
4954 static int tree_move_next_or_upnext(struct btrfs_root *root,
4955 struct btrfs_path *path,
4956 int *level, int root_level)
4958 int ret = 0;
4959 int nritems;
4960 nritems = btrfs_header_nritems(path->nodes[*level]);
4962 path->slots[*level]++;
4964 while (path->slots[*level] >= nritems) {
4965 if (*level == root_level)
4966 return -1;
4968 /* move upnext */
4969 path->slots[*level] = 0;
4970 free_extent_buffer(path->nodes[*level]);
4971 path->nodes[*level] = NULL;
4972 (*level)++;
4973 path->slots[*level]++;
4975 nritems = btrfs_header_nritems(path->nodes[*level]);
4976 ret = 1;
4978 return ret;
4982 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4983 * or down.
4985 static int tree_advance(struct btrfs_root *root,
4986 struct btrfs_path *path,
4987 int *level, int root_level,
4988 int allow_down,
4989 struct btrfs_key *key)
4991 int ret;
4993 if (*level == 0 || !allow_down) {
4994 ret = tree_move_next_or_upnext(root, path, level, root_level);
4995 } else {
4996 tree_move_down(root, path, level, root_level);
4997 ret = 0;
4999 if (ret >= 0) {
5000 if (*level == 0)
5001 btrfs_item_key_to_cpu(path->nodes[*level], key,
5002 path->slots[*level]);
5003 else
5004 btrfs_node_key_to_cpu(path->nodes[*level], key,
5005 path->slots[*level]);
5007 return ret;
5010 static int tree_compare_item(struct btrfs_root *left_root,
5011 struct btrfs_path *left_path,
5012 struct btrfs_path *right_path,
5013 char *tmp_buf)
5015 int cmp;
5016 int len1, len2;
5017 unsigned long off1, off2;
5019 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5020 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5021 if (len1 != len2)
5022 return 1;
5024 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5025 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5026 right_path->slots[0]);
5028 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5030 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5031 if (cmp)
5032 return 1;
5033 return 0;
5036 #define ADVANCE 1
5037 #define ADVANCE_ONLY_NEXT -1
5040 * This function compares two trees and calls the provided callback for
5041 * every changed/new/deleted item it finds.
5042 * If shared tree blocks are encountered, whole subtrees are skipped, making
5043 * the compare pretty fast on snapshotted subvolumes.
5045 * This currently works on commit roots only. As commit roots are read only,
5046 * we don't do any locking. The commit roots are protected with transactions.
5047 * Transactions are ended and rejoined when a commit is tried in between.
5049 * This function checks for modifications done to the trees while comparing.
5050 * If it detects a change, it aborts immediately.
5052 int btrfs_compare_trees(struct btrfs_root *left_root,
5053 struct btrfs_root *right_root,
5054 btrfs_changed_cb_t changed_cb, void *ctx)
5056 int ret;
5057 int cmp;
5058 struct btrfs_trans_handle *trans = NULL;
5059 struct btrfs_path *left_path = NULL;
5060 struct btrfs_path *right_path = NULL;
5061 struct btrfs_key left_key;
5062 struct btrfs_key right_key;
5063 char *tmp_buf = NULL;
5064 int left_root_level;
5065 int right_root_level;
5066 int left_level;
5067 int right_level;
5068 int left_end_reached;
5069 int right_end_reached;
5070 int advance_left;
5071 int advance_right;
5072 u64 left_blockptr;
5073 u64 right_blockptr;
5074 u64 left_start_ctransid;
5075 u64 right_start_ctransid;
5076 u64 ctransid;
5078 left_path = btrfs_alloc_path();
5079 if (!left_path) {
5080 ret = -ENOMEM;
5081 goto out;
5083 right_path = btrfs_alloc_path();
5084 if (!right_path) {
5085 ret = -ENOMEM;
5086 goto out;
5089 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5090 if (!tmp_buf) {
5091 ret = -ENOMEM;
5092 goto out;
5095 left_path->search_commit_root = 1;
5096 left_path->skip_locking = 1;
5097 right_path->search_commit_root = 1;
5098 right_path->skip_locking = 1;
5100 spin_lock(&left_root->root_item_lock);
5101 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5102 spin_unlock(&left_root->root_item_lock);
5104 spin_lock(&right_root->root_item_lock);
5105 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5106 spin_unlock(&right_root->root_item_lock);
5108 trans = btrfs_join_transaction(left_root);
5109 if (IS_ERR(trans)) {
5110 ret = PTR_ERR(trans);
5111 trans = NULL;
5112 goto out;
5116 * Strategy: Go to the first items of both trees. Then do
5118 * If both trees are at level 0
5119 * Compare keys of current items
5120 * If left < right treat left item as new, advance left tree
5121 * and repeat
5122 * If left > right treat right item as deleted, advance right tree
5123 * and repeat
5124 * If left == right do deep compare of items, treat as changed if
5125 * needed, advance both trees and repeat
5126 * If both trees are at the same level but not at level 0
5127 * Compare keys of current nodes/leafs
5128 * If left < right advance left tree and repeat
5129 * If left > right advance right tree and repeat
5130 * If left == right compare blockptrs of the next nodes/leafs
5131 * If they match advance both trees but stay at the same level
5132 * and repeat
5133 * If they don't match advance both trees while allowing to go
5134 * deeper and repeat
5135 * If tree levels are different
5136 * Advance the tree that needs it and repeat
5138 * Advancing a tree means:
5139 * If we are at level 0, try to go to the next slot. If that's not
5140 * possible, go one level up and repeat. Stop when we found a level
5141 * where we could go to the next slot. We may at this point be on a
5142 * node or a leaf.
5144 * If we are not at level 0 and not on shared tree blocks, go one
5145 * level deeper.
5147 * If we are not at level 0 and on shared tree blocks, go one slot to
5148 * the right if possible or go up and right.
5151 left_level = btrfs_header_level(left_root->commit_root);
5152 left_root_level = left_level;
5153 left_path->nodes[left_level] = left_root->commit_root;
5154 extent_buffer_get(left_path->nodes[left_level]);
5156 right_level = btrfs_header_level(right_root->commit_root);
5157 right_root_level = right_level;
5158 right_path->nodes[right_level] = right_root->commit_root;
5159 extent_buffer_get(right_path->nodes[right_level]);
5161 if (left_level == 0)
5162 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5163 &left_key, left_path->slots[left_level]);
5164 else
5165 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5166 &left_key, left_path->slots[left_level]);
5167 if (right_level == 0)
5168 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5169 &right_key, right_path->slots[right_level]);
5170 else
5171 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5172 &right_key, right_path->slots[right_level]);
5174 left_end_reached = right_end_reached = 0;
5175 advance_left = advance_right = 0;
5177 while (1) {
5179 * We need to make sure the transaction does not get committed
5180 * while we do anything on commit roots. This means, we need to
5181 * join and leave transactions for every item that we process.
5183 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5184 btrfs_release_path(left_path);
5185 btrfs_release_path(right_path);
5187 ret = btrfs_end_transaction(trans, left_root);
5188 trans = NULL;
5189 if (ret < 0)
5190 goto out;
5192 /* now rejoin the transaction */
5193 if (!trans) {
5194 trans = btrfs_join_transaction(left_root);
5195 if (IS_ERR(trans)) {
5196 ret = PTR_ERR(trans);
5197 trans = NULL;
5198 goto out;
5201 spin_lock(&left_root->root_item_lock);
5202 ctransid = btrfs_root_ctransid(&left_root->root_item);
5203 spin_unlock(&left_root->root_item_lock);
5204 if (ctransid != left_start_ctransid)
5205 left_start_ctransid = 0;
5207 spin_lock(&right_root->root_item_lock);
5208 ctransid = btrfs_root_ctransid(&right_root->root_item);
5209 spin_unlock(&right_root->root_item_lock);
5210 if (ctransid != right_start_ctransid)
5211 right_start_ctransid = 0;
5213 if (!left_start_ctransid || !right_start_ctransid) {
5214 WARN(1, KERN_WARNING
5215 "btrfs: btrfs_compare_tree detected "
5216 "a change in one of the trees while "
5217 "iterating. This is probably a "
5218 "bug.\n");
5219 ret = -EIO;
5220 goto out;
5224 * the commit root may have changed, so start again
5225 * where we stopped
5227 left_path->lowest_level = left_level;
5228 right_path->lowest_level = right_level;
5229 ret = btrfs_search_slot(NULL, left_root,
5230 &left_key, left_path, 0, 0);
5231 if (ret < 0)
5232 goto out;
5233 ret = btrfs_search_slot(NULL, right_root,
5234 &right_key, right_path, 0, 0);
5235 if (ret < 0)
5236 goto out;
5239 if (advance_left && !left_end_reached) {
5240 ret = tree_advance(left_root, left_path, &left_level,
5241 left_root_level,
5242 advance_left != ADVANCE_ONLY_NEXT,
5243 &left_key);
5244 if (ret < 0)
5245 left_end_reached = ADVANCE;
5246 advance_left = 0;
5248 if (advance_right && !right_end_reached) {
5249 ret = tree_advance(right_root, right_path, &right_level,
5250 right_root_level,
5251 advance_right != ADVANCE_ONLY_NEXT,
5252 &right_key);
5253 if (ret < 0)
5254 right_end_reached = ADVANCE;
5255 advance_right = 0;
5258 if (left_end_reached && right_end_reached) {
5259 ret = 0;
5260 goto out;
5261 } else if (left_end_reached) {
5262 if (right_level == 0) {
5263 ret = changed_cb(left_root, right_root,
5264 left_path, right_path,
5265 &right_key,
5266 BTRFS_COMPARE_TREE_DELETED,
5267 ctx);
5268 if (ret < 0)
5269 goto out;
5271 advance_right = ADVANCE;
5272 continue;
5273 } else if (right_end_reached) {
5274 if (left_level == 0) {
5275 ret = changed_cb(left_root, right_root,
5276 left_path, right_path,
5277 &left_key,
5278 BTRFS_COMPARE_TREE_NEW,
5279 ctx);
5280 if (ret < 0)
5281 goto out;
5283 advance_left = ADVANCE;
5284 continue;
5287 if (left_level == 0 && right_level == 0) {
5288 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5289 if (cmp < 0) {
5290 ret = changed_cb(left_root, right_root,
5291 left_path, right_path,
5292 &left_key,
5293 BTRFS_COMPARE_TREE_NEW,
5294 ctx);
5295 if (ret < 0)
5296 goto out;
5297 advance_left = ADVANCE;
5298 } else if (cmp > 0) {
5299 ret = changed_cb(left_root, right_root,
5300 left_path, right_path,
5301 &right_key,
5302 BTRFS_COMPARE_TREE_DELETED,
5303 ctx);
5304 if (ret < 0)
5305 goto out;
5306 advance_right = ADVANCE;
5307 } else {
5308 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5309 ret = tree_compare_item(left_root, left_path,
5310 right_path, tmp_buf);
5311 if (ret) {
5312 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5313 ret = changed_cb(left_root, right_root,
5314 left_path, right_path,
5315 &left_key,
5316 BTRFS_COMPARE_TREE_CHANGED,
5317 ctx);
5318 if (ret < 0)
5319 goto out;
5321 advance_left = ADVANCE;
5322 advance_right = ADVANCE;
5324 } else if (left_level == right_level) {
5325 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5326 if (cmp < 0) {
5327 advance_left = ADVANCE;
5328 } else if (cmp > 0) {
5329 advance_right = ADVANCE;
5330 } else {
5331 left_blockptr = btrfs_node_blockptr(
5332 left_path->nodes[left_level],
5333 left_path->slots[left_level]);
5334 right_blockptr = btrfs_node_blockptr(
5335 right_path->nodes[right_level],
5336 right_path->slots[right_level]);
5337 if (left_blockptr == right_blockptr) {
5339 * As we're on a shared block, don't
5340 * allow to go deeper.
5342 advance_left = ADVANCE_ONLY_NEXT;
5343 advance_right = ADVANCE_ONLY_NEXT;
5344 } else {
5345 advance_left = ADVANCE;
5346 advance_right = ADVANCE;
5349 } else if (left_level < right_level) {
5350 advance_right = ADVANCE;
5351 } else {
5352 advance_left = ADVANCE;
5356 out:
5357 btrfs_free_path(left_path);
5358 btrfs_free_path(right_path);
5359 kfree(tmp_buf);
5361 if (trans) {
5362 if (!ret)
5363 ret = btrfs_end_transaction(trans, left_root);
5364 else
5365 btrfs_end_transaction(trans, left_root);
5368 return ret;
5372 * this is similar to btrfs_next_leaf, but does not try to preserve
5373 * and fixup the path. It looks for and returns the next key in the
5374 * tree based on the current path and the min_trans parameters.
5376 * 0 is returned if another key is found, < 0 if there are any errors
5377 * and 1 is returned if there are no higher keys in the tree
5379 * path->keep_locks should be set to 1 on the search made before
5380 * calling this function.
5382 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5383 struct btrfs_key *key, int level, u64 min_trans)
5385 int slot;
5386 struct extent_buffer *c;
5388 WARN_ON(!path->keep_locks);
5389 while (level < BTRFS_MAX_LEVEL) {
5390 if (!path->nodes[level])
5391 return 1;
5393 slot = path->slots[level] + 1;
5394 c = path->nodes[level];
5395 next:
5396 if (slot >= btrfs_header_nritems(c)) {
5397 int ret;
5398 int orig_lowest;
5399 struct btrfs_key cur_key;
5400 if (level + 1 >= BTRFS_MAX_LEVEL ||
5401 !path->nodes[level + 1])
5402 return 1;
5404 if (path->locks[level + 1]) {
5405 level++;
5406 continue;
5409 slot = btrfs_header_nritems(c) - 1;
5410 if (level == 0)
5411 btrfs_item_key_to_cpu(c, &cur_key, slot);
5412 else
5413 btrfs_node_key_to_cpu(c, &cur_key, slot);
5415 orig_lowest = path->lowest_level;
5416 btrfs_release_path(path);
5417 path->lowest_level = level;
5418 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5419 0, 0);
5420 path->lowest_level = orig_lowest;
5421 if (ret < 0)
5422 return ret;
5424 c = path->nodes[level];
5425 slot = path->slots[level];
5426 if (ret == 0)
5427 slot++;
5428 goto next;
5431 if (level == 0)
5432 btrfs_item_key_to_cpu(c, key, slot);
5433 else {
5434 u64 gen = btrfs_node_ptr_generation(c, slot);
5436 if (gen < min_trans) {
5437 slot++;
5438 goto next;
5440 btrfs_node_key_to_cpu(c, key, slot);
5442 return 0;
5444 return 1;
5448 * search the tree again to find a leaf with greater keys
5449 * returns 0 if it found something or 1 if there are no greater leaves.
5450 * returns < 0 on io errors.
5452 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5454 return btrfs_next_old_leaf(root, path, 0);
5457 /* Release the path up to but not including the given level */
5458 static void btrfs_release_level(struct btrfs_path *path, int level)
5460 int i;
5462 for (i = 0; i < level; i++) {
5463 path->slots[i] = 0;
5464 if (!path->nodes[i])
5465 continue;
5466 if (path->locks[i]) {
5467 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
5468 path->locks[i] = 0;
5470 free_extent_buffer(path->nodes[i]);
5471 path->nodes[i] = NULL;
5476 * This function assumes 2 things
5478 * 1) You are using path->keep_locks
5479 * 2) You are not inserting items.
5481 * If either of these are not true do not use this function. If you need a next
5482 * leaf with either of these not being true then this function can be easily
5483 * adapted to do that, but at the moment these are the limitations.
5485 int btrfs_next_leaf_write(struct btrfs_trans_handle *trans,
5486 struct btrfs_root *root, struct btrfs_path *path,
5487 int del)
5489 struct extent_buffer *b;
5490 struct btrfs_key key;
5491 u32 nritems;
5492 int level = 1;
5493 int slot;
5494 int ret = 1;
5495 int write_lock_level = BTRFS_MAX_LEVEL;
5496 int ins_len = del ? -1 : 0;
5498 WARN_ON(!(path->keep_locks || path->really_keep_locks));
5500 nritems = btrfs_header_nritems(path->nodes[0]);
5501 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5503 while (path->nodes[level]) {
5504 nritems = btrfs_header_nritems(path->nodes[level]);
5505 if (!(path->locks[level] & BTRFS_WRITE_LOCK)) {
5506 search:
5507 btrfs_release_path(path);
5508 ret = btrfs_search_slot(trans, root, &key, path,
5509 ins_len, 1);
5510 if (ret < 0)
5511 goto out;
5512 level = 1;
5513 continue;
5516 if (path->slots[level] >= nritems - 1) {
5517 level++;
5518 continue;
5521 btrfs_release_level(path, level);
5522 break;
5525 if (!path->nodes[level]) {
5526 ret = 1;
5527 goto out;
5530 path->slots[level]++;
5531 b = path->nodes[level];
5533 while (b) {
5534 level = btrfs_header_level(b);
5536 if (!should_cow_block(trans, root, b))
5537 goto cow_done;
5539 btrfs_set_path_blocking(path);
5540 ret = btrfs_cow_block(trans, root, b,
5541 path->nodes[level + 1],
5542 path->slots[level + 1], &b);
5543 if (ret)
5544 goto out;
5545 cow_done:
5546 path->nodes[level] = b;
5547 btrfs_clear_path_blocking(path, NULL, 0);
5548 if (level != 0) {
5549 ret = setup_nodes_for_search(trans, root, path, b,
5550 level, ins_len,
5551 &write_lock_level);
5552 if (ret == -EAGAIN)
5553 goto search;
5554 if (ret)
5555 goto out;
5557 b = path->nodes[level];
5558 slot = path->slots[level];
5560 ret = read_block_for_search(trans, root, path,
5561 &b, level, slot, &key, 0);
5562 if (ret == -EAGAIN)
5563 goto search;
5564 if (ret)
5565 goto out;
5566 level = btrfs_header_level(b);
5567 if (!btrfs_try_tree_write_lock(b)) {
5568 btrfs_set_path_blocking(path);
5569 btrfs_tree_lock(b);
5570 btrfs_clear_path_blocking(path, b,
5571 BTRFS_WRITE_LOCK);
5573 path->locks[level] = BTRFS_WRITE_LOCK;
5574 path->nodes[level] = b;
5575 path->slots[level] = 0;
5576 } else {
5577 path->slots[level] = 0;
5578 ret = 0;
5579 break;
5583 out:
5584 if (ret)
5585 btrfs_release_path(path);
5587 return ret;
5590 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5591 u64 time_seq)
5593 int slot;
5594 int level;
5595 struct extent_buffer *c;
5596 struct extent_buffer *next;
5597 struct btrfs_key key;
5598 u32 nritems;
5599 int ret;
5600 int old_spinning = path->leave_spinning;
5601 int next_rw_lock = 0;
5603 nritems = btrfs_header_nritems(path->nodes[0]);
5604 if (nritems == 0)
5605 return 1;
5607 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5608 again:
5609 level = 1;
5610 next = NULL;
5611 next_rw_lock = 0;
5612 btrfs_release_path(path);
5614 path->keep_locks = 1;
5615 path->leave_spinning = 1;
5617 if (time_seq)
5618 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5619 else
5620 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5621 path->keep_locks = 0;
5623 if (ret < 0)
5624 return ret;
5626 nritems = btrfs_header_nritems(path->nodes[0]);
5628 * by releasing the path above we dropped all our locks. A balance
5629 * could have added more items next to the key that used to be
5630 * at the very end of the block. So, check again here and
5631 * advance the path if there are now more items available.
5633 if (nritems > 0 && path->slots[0] < nritems - 1) {
5634 if (ret == 0)
5635 path->slots[0]++;
5636 ret = 0;
5637 goto done;
5640 while (level < BTRFS_MAX_LEVEL) {
5641 if (!path->nodes[level]) {
5642 ret = 1;
5643 goto done;
5646 slot = path->slots[level] + 1;
5647 c = path->nodes[level];
5648 if (slot >= btrfs_header_nritems(c)) {
5649 level++;
5650 if (level == BTRFS_MAX_LEVEL) {
5651 ret = 1;
5652 goto done;
5654 continue;
5657 if (next) {
5658 btrfs_tree_unlock_rw(next, next_rw_lock);
5659 free_extent_buffer(next);
5662 next = c;
5663 next_rw_lock = path->locks[level];
5664 ret = read_block_for_search(NULL, root, path, &next, level,
5665 slot, &key, 0);
5666 if (ret == -EAGAIN)
5667 goto again;
5669 if (ret < 0) {
5670 btrfs_release_path(path);
5671 goto done;
5674 if (!path->skip_locking) {
5675 ret = btrfs_try_tree_read_lock(next);
5676 if (!ret && time_seq) {
5678 * If we don't get the lock, we may be racing
5679 * with push_leaf_left, holding that lock while
5680 * itself waiting for the leaf we've currently
5681 * locked. To solve this situation, we give up
5682 * on our lock and cycle.
5684 free_extent_buffer(next);
5685 btrfs_release_path(path);
5686 cond_resched();
5687 goto again;
5689 if (!ret) {
5690 btrfs_set_path_blocking(path);
5691 btrfs_tree_read_lock(next);
5692 btrfs_clear_path_blocking(path, next,
5693 BTRFS_READ_LOCK);
5695 next_rw_lock = BTRFS_READ_LOCK;
5697 break;
5699 path->slots[level] = slot;
5700 while (1) {
5701 level--;
5702 c = path->nodes[level];
5703 if (path->locks[level])
5704 btrfs_tree_unlock_rw(c, path->locks[level]);
5706 free_extent_buffer(c);
5707 path->nodes[level] = next;
5708 path->slots[level] = 0;
5709 if (!path->skip_locking)
5710 path->locks[level] = next_rw_lock;
5711 if (!level)
5712 break;
5714 ret = read_block_for_search(NULL, root, path, &next, level,
5715 0, &key, 0);
5716 if (ret == -EAGAIN)
5717 goto again;
5719 if (ret < 0) {
5720 btrfs_release_path(path);
5721 goto done;
5724 if (!path->skip_locking) {
5725 ret = btrfs_try_tree_read_lock(next);
5726 if (!ret) {
5727 btrfs_set_path_blocking(path);
5728 btrfs_tree_read_lock(next);
5729 btrfs_clear_path_blocking(path, next,
5730 BTRFS_READ_LOCK);
5732 next_rw_lock = BTRFS_READ_LOCK;
5735 ret = 0;
5736 done:
5737 unlock_up(path, 0, 1, 0, NULL);
5738 path->leave_spinning = old_spinning;
5739 if (!old_spinning)
5740 btrfs_set_path_blocking(path);
5742 return ret;
5746 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5747 * searching until it gets past min_objectid or finds an item of 'type'
5749 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5751 int btrfs_previous_item(struct btrfs_root *root,
5752 struct btrfs_path *path, u64 min_objectid,
5753 int type)
5755 struct btrfs_key found_key;
5756 struct extent_buffer *leaf;
5757 u32 nritems;
5758 int ret;
5760 while (1) {
5761 if (path->slots[0] == 0) {
5762 btrfs_set_path_blocking(path);
5763 ret = btrfs_prev_leaf(root, path);
5764 if (ret != 0)
5765 return ret;
5766 } else {
5767 path->slots[0]--;
5769 leaf = path->nodes[0];
5770 nritems = btrfs_header_nritems(leaf);
5771 if (nritems == 0)
5772 return 1;
5773 if (path->slots[0] == nritems)
5774 path->slots[0]--;
5776 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5777 if (found_key.objectid < min_objectid)
5778 break;
5779 if (found_key.type == type)
5780 return 0;
5781 if (found_key.objectid == min_objectid &&
5782 found_key.type < type)
5783 break;
5785 return 1;