2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
24 #include "transaction.h"
25 #include "print-tree.h"
28 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
29 *root
, struct btrfs_path
*path
, int level
);
30 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
31 *root
, struct btrfs_key
*ins_key
,
32 struct btrfs_path
*path
, int data_size
, int extend
);
33 static int push_node_left(struct btrfs_trans_handle
*trans
,
34 struct btrfs_root
*root
, struct extent_buffer
*dst
,
35 struct extent_buffer
*src
, int empty
);
36 static int balance_node_right(struct btrfs_trans_handle
*trans
,
37 struct btrfs_root
*root
,
38 struct extent_buffer
*dst_buf
,
39 struct extent_buffer
*src_buf
);
40 static void del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
41 struct btrfs_path
*path
, int level
, int slot
);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
43 struct extent_buffer
*eb
);
44 struct extent_buffer
*read_old_tree_block(struct btrfs_root
*root
, u64 bytenr
,
45 u32 blocksize
, u64 parent_transid
,
47 struct extent_buffer
*btrfs_find_old_tree_block(struct btrfs_root
*root
,
48 u64 bytenr
, u32 blocksize
,
51 struct btrfs_path
*btrfs_alloc_path(void)
53 struct btrfs_path
*path
;
54 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
59 * set all locked nodes in the path to blocking locks. This should
60 * be done before scheduling
62 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
65 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
66 if (!p
->nodes
[i
] || !p
->locks
[i
])
68 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
69 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
70 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
71 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
72 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
77 * reset all the locked nodes in the patch to spinning locks.
79 * held is used to keep lockdep happy, when lockdep is enabled
80 * we set held to a blocking lock before we go around and
81 * retake all the spinlocks in the path. You can safely use NULL
84 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
85 struct extent_buffer
*held
, int held_rw
)
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 /* lockdep really cares that we take all of these spinlocks
91 * in the right order. If any of the locks in the path are not
92 * currently blocking, it is going to complain. So, make really
93 * really sure by forcing the path to blocking before we clear
97 btrfs_set_lock_blocking_rw(held
, held_rw
);
98 if (held_rw
== BTRFS_WRITE_LOCK
)
99 held_rw
= BTRFS_WRITE_LOCK_BLOCKING
;
100 else if (held_rw
== BTRFS_READ_LOCK
)
101 held_rw
= BTRFS_READ_LOCK_BLOCKING
;
103 btrfs_set_path_blocking(p
);
106 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
107 if (p
->nodes
[i
] && p
->locks
[i
]) {
108 btrfs_clear_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
109 if (p
->locks
[i
] == BTRFS_WRITE_LOCK_BLOCKING
)
110 p
->locks
[i
] = BTRFS_WRITE_LOCK
;
111 else if (p
->locks
[i
] == BTRFS_READ_LOCK_BLOCKING
)
112 p
->locks
[i
] = BTRFS_READ_LOCK
;
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 btrfs_clear_lock_blocking_rw(held
, held_rw
);
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path
*p
)
127 btrfs_release_path(p
);
128 kmem_cache_free(btrfs_path_cachep
, p
);
132 * path release drops references on the extent buffers in the path
133 * and it drops any locks held by this path
135 * It is safe to call this on paths that no locks or extent buffers held.
137 noinline
void btrfs_release_path(struct btrfs_path
*p
)
141 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
146 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
149 free_extent_buffer(p
->nodes
[i
]);
155 * safely gets a reference on the root node of a tree. A lock
156 * is not taken, so a concurrent writer may put a different node
157 * at the root of the tree. See btrfs_lock_root_node for the
160 * The extent buffer returned by this has a reference taken, so
161 * it won't disappear. It may stop being the root of the tree
162 * at any time because there are no locks held.
164 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
166 struct extent_buffer
*eb
;
170 eb
= rcu_dereference(root
->node
);
173 * RCU really hurts here, we could free up the root node because
174 * it was cow'ed but we may not get the new root node yet so do
175 * the inc_not_zero dance and if it doesn't work then
176 * synchronize_rcu and try again.
178 if (atomic_inc_not_zero(&eb
->refs
)) {
188 /* loop around taking references on and locking the root node of the
189 * tree until you end up with a lock on the root. A locked buffer
190 * is returned, with a reference held.
192 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
194 struct extent_buffer
*eb
;
197 eb
= btrfs_root_node(root
);
199 if (eb
== root
->node
)
201 btrfs_tree_unlock(eb
);
202 free_extent_buffer(eb
);
207 /* loop around taking references on and locking the root node of the
208 * tree until you end up with a lock on the root. A locked buffer
209 * is returned, with a reference held.
211 struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
213 struct extent_buffer
*eb
;
216 eb
= btrfs_root_node(root
);
217 btrfs_tree_read_lock(eb
);
218 if (eb
== root
->node
)
220 btrfs_tree_read_unlock(eb
);
221 free_extent_buffer(eb
);
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227 * put onto a simple dirty list. transaction.c walks this to make sure they
228 * get properly updated on disk.
230 static void add_root_to_dirty_list(struct btrfs_root
*root
)
232 spin_lock(&root
->fs_info
->trans_lock
);
233 if (root
->track_dirty
&& list_empty(&root
->dirty_list
)) {
234 list_add(&root
->dirty_list
,
235 &root
->fs_info
->dirty_cowonly_roots
);
237 spin_unlock(&root
->fs_info
->trans_lock
);
241 * used by snapshot creation to make a copy of a root for a tree with
242 * a given objectid. The buffer with the new root node is returned in
243 * cow_ret, and this func returns zero on success or a negative error code.
245 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
246 struct btrfs_root
*root
,
247 struct extent_buffer
*buf
,
248 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
250 struct extent_buffer
*cow
;
253 struct btrfs_disk_key disk_key
;
255 WARN_ON(root
->ref_cows
&& trans
->transid
!=
256 root
->fs_info
->running_transaction
->transid
);
257 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
259 level
= btrfs_header_level(buf
);
261 btrfs_item_key(buf
, &disk_key
, 0);
263 btrfs_node_key(buf
, &disk_key
, 0);
265 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, 0,
266 new_root_objectid
, &disk_key
, level
,
271 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
272 btrfs_set_header_bytenr(cow
, cow
->start
);
273 btrfs_set_header_generation(cow
, trans
->transid
);
274 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
275 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
276 BTRFS_HEADER_FLAG_RELOC
);
277 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
278 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
280 btrfs_set_header_owner(cow
, new_root_objectid
);
282 write_extent_buffer(cow
, root
->fs_info
->fsid
,
283 (unsigned long)btrfs_header_fsid(cow
),
286 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
287 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
288 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
290 ret
= btrfs_inc_ref(trans
, root
, cow
, 0, 1);
295 btrfs_mark_buffer_dirty(cow
);
304 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
305 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
307 MOD_LOG_ROOT_REPLACE
,
310 struct tree_mod_move
{
315 struct tree_mod_root
{
320 struct tree_mod_elem
{
322 u64 index
; /* shifted logical */
326 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
329 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
332 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 struct btrfs_disk_key key
;
336 /* this is used for op == MOD_LOG_MOVE_KEYS */
337 struct tree_mod_move move
;
339 /* this is used for op == MOD_LOG_ROOT_REPLACE */
340 struct tree_mod_root old_root
;
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info
*fs_info
)
345 read_lock(&fs_info
->tree_mod_log_lock
);
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info
*fs_info
)
350 read_unlock(&fs_info
->tree_mod_log_lock
);
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info
*fs_info
)
355 write_lock(&fs_info
->tree_mod_log_lock
);
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info
*fs_info
)
360 write_unlock(&fs_info
->tree_mod_log_lock
);
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
371 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
372 struct seq_list
*elem
)
376 tree_mod_log_write_lock(fs_info
);
377 spin_lock(&fs_info
->tree_mod_seq_lock
);
379 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
380 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
382 seq
= btrfs_inc_tree_mod_seq(fs_info
);
383 spin_unlock(&fs_info
->tree_mod_seq_lock
);
384 tree_mod_log_write_unlock(fs_info
);
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
390 struct seq_list
*elem
)
392 struct rb_root
*tm_root
;
393 struct rb_node
*node
;
394 struct rb_node
*next
;
395 struct seq_list
*cur_elem
;
396 struct tree_mod_elem
*tm
;
397 u64 min_seq
= (u64
)-1;
398 u64 seq_putting
= elem
->seq
;
403 spin_lock(&fs_info
->tree_mod_seq_lock
);
404 list_del(&elem
->list
);
407 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
408 if (cur_elem
->seq
< min_seq
) {
409 if (seq_putting
> cur_elem
->seq
) {
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
414 spin_unlock(&fs_info
->tree_mod_seq_lock
);
417 min_seq
= cur_elem
->seq
;
420 spin_unlock(&fs_info
->tree_mod_seq_lock
);
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
426 tree_mod_log_write_lock(fs_info
);
427 tm_root
= &fs_info
->tree_mod_log
;
428 for (node
= rb_first(tm_root
); node
; node
= next
) {
429 next
= rb_next(node
);
430 tm
= container_of(node
, struct tree_mod_elem
, node
);
431 if (tm
->seq
> min_seq
)
433 rb_erase(node
, tm_root
);
436 tree_mod_log_write_unlock(fs_info
);
440 * key order of the log:
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
448 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
450 struct rb_root
*tm_root
;
451 struct rb_node
**new;
452 struct rb_node
*parent
= NULL
;
453 struct tree_mod_elem
*cur
;
455 BUG_ON(!tm
|| !tm
->seq
);
457 tm_root
= &fs_info
->tree_mod_log
;
458 new = &tm_root
->rb_node
;
460 cur
= container_of(*new, struct tree_mod_elem
, node
);
462 if (cur
->index
< tm
->index
)
463 new = &((*new)->rb_left
);
464 else if (cur
->index
> tm
->index
)
465 new = &((*new)->rb_right
);
466 else if (cur
->seq
< tm
->seq
)
467 new = &((*new)->rb_left
);
468 else if (cur
->seq
> tm
->seq
)
469 new = &((*new)->rb_right
);
476 rb_link_node(&tm
->node
, parent
, new);
477 rb_insert_color(&tm
->node
, tm_root
);
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
487 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
488 struct extent_buffer
*eb
) {
490 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
492 if (eb
&& btrfs_header_level(eb
) == 0)
495 tree_mod_log_write_lock(fs_info
);
496 if (list_empty(&fs_info
->tree_mod_seq_list
)) {
498 * someone emptied the list while we were waiting for the lock.
499 * we must not add to the list when no blocker exists.
501 tree_mod_log_write_unlock(fs_info
);
509 * This allocates memory and gets a tree modification sequence number.
511 * Returns <0 on error.
512 * Returns >0 (the added sequence number) on success.
514 static inline int tree_mod_alloc(struct btrfs_fs_info
*fs_info
, gfp_t flags
,
515 struct tree_mod_elem
**tm_ret
)
517 struct tree_mod_elem
*tm
;
520 * once we switch from spin locks to something different, we should
521 * honor the flags parameter here.
523 tm
= *tm_ret
= kzalloc(sizeof(*tm
), GFP_ATOMIC
);
527 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
532 __tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
,
533 struct extent_buffer
*eb
, int slot
,
534 enum mod_log_op op
, gfp_t flags
)
537 struct tree_mod_elem
*tm
;
539 ret
= tree_mod_alloc(fs_info
, flags
, &tm
);
543 tm
->index
= eb
->start
>> PAGE_CACHE_SHIFT
;
544 if (op
!= MOD_LOG_KEY_ADD
) {
545 btrfs_node_key(eb
, &tm
->key
, slot
);
546 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
550 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
552 return __tree_mod_log_insert(fs_info
, tm
);
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info
*fs_info
,
557 struct extent_buffer
*eb
, int slot
,
558 enum mod_log_op op
, gfp_t flags
)
562 if (tree_mod_dont_log(fs_info
, eb
))
565 ret
= __tree_mod_log_insert_key(fs_info
, eb
, slot
, op
, flags
);
567 tree_mod_log_write_unlock(fs_info
);
572 tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
573 int slot
, enum mod_log_op op
)
575 return tree_mod_log_insert_key_mask(fs_info
, eb
, slot
, op
, GFP_NOFS
);
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info
*fs_info
,
580 struct extent_buffer
*eb
, int slot
,
583 return __tree_mod_log_insert_key(fs_info
, eb
, slot
, op
, GFP_NOFS
);
587 tree_mod_log_insert_move(struct btrfs_fs_info
*fs_info
,
588 struct extent_buffer
*eb
, int dst_slot
, int src_slot
,
589 int nr_items
, gfp_t flags
)
591 struct tree_mod_elem
*tm
;
595 if (tree_mod_dont_log(fs_info
, eb
))
599 * When we override something during the move, we log these removals.
600 * This can only happen when we move towards the beginning of the
601 * buffer, i.e. dst_slot < src_slot.
603 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
604 ret
= tree_mod_log_insert_key_locked(fs_info
, eb
, i
+ dst_slot
,
605 MOD_LOG_KEY_REMOVE_WHILE_MOVING
);
609 ret
= tree_mod_alloc(fs_info
, flags
, &tm
);
613 tm
->index
= eb
->start
>> PAGE_CACHE_SHIFT
;
615 tm
->move
.dst_slot
= dst_slot
;
616 tm
->move
.nr_items
= nr_items
;
617 tm
->op
= MOD_LOG_MOVE_KEYS
;
619 ret
= __tree_mod_log_insert(fs_info
, tm
);
621 tree_mod_log_write_unlock(fs_info
);
626 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
632 if (btrfs_header_level(eb
) == 0)
635 nritems
= btrfs_header_nritems(eb
);
636 for (i
= nritems
- 1; i
>= 0; i
--) {
637 ret
= tree_mod_log_insert_key_locked(fs_info
, eb
, i
,
638 MOD_LOG_KEY_REMOVE_WHILE_FREEING
);
644 tree_mod_log_insert_root(struct btrfs_fs_info
*fs_info
,
645 struct extent_buffer
*old_root
,
646 struct extent_buffer
*new_root
, gfp_t flags
)
648 struct tree_mod_elem
*tm
;
651 if (tree_mod_dont_log(fs_info
, NULL
))
654 ret
= tree_mod_alloc(fs_info
, flags
, &tm
);
658 tm
->index
= new_root
->start
>> PAGE_CACHE_SHIFT
;
659 tm
->old_root
.logical
= old_root
->start
;
660 tm
->old_root
.level
= btrfs_header_level(old_root
);
661 tm
->generation
= btrfs_header_generation(old_root
);
662 tm
->op
= MOD_LOG_ROOT_REPLACE
;
664 ret
= __tree_mod_log_insert(fs_info
, tm
);
666 tree_mod_log_write_unlock(fs_info
);
670 static struct tree_mod_elem
*
671 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
674 struct rb_root
*tm_root
;
675 struct rb_node
*node
;
676 struct tree_mod_elem
*cur
= NULL
;
677 struct tree_mod_elem
*found
= NULL
;
678 u64 index
= start
>> PAGE_CACHE_SHIFT
;
680 tree_mod_log_read_lock(fs_info
);
681 tm_root
= &fs_info
->tree_mod_log
;
682 node
= tm_root
->rb_node
;
684 cur
= container_of(node
, struct tree_mod_elem
, node
);
685 if (cur
->index
< index
) {
686 node
= node
->rb_left
;
687 } else if (cur
->index
> index
) {
688 node
= node
->rb_right
;
689 } else if (cur
->seq
< min_seq
) {
690 node
= node
->rb_left
;
691 } else if (!smallest
) {
692 /* we want the node with the highest seq */
694 BUG_ON(found
->seq
> cur
->seq
);
696 node
= node
->rb_left
;
697 } else if (cur
->seq
> min_seq
) {
698 /* we want the node with the smallest seq */
700 BUG_ON(found
->seq
< cur
->seq
);
702 node
= node
->rb_right
;
708 tree_mod_log_read_unlock(fs_info
);
714 * this returns the element from the log with the smallest time sequence
715 * value that's in the log (the oldest log item). any element with a time
716 * sequence lower than min_seq will be ignored.
718 static struct tree_mod_elem
*
719 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
722 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
726 * this returns the element from the log with the largest time sequence
727 * value that's in the log (the most recent log item). any element with
728 * a time sequence lower than min_seq will be ignored.
730 static struct tree_mod_elem
*
731 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
733 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
737 tree_mod_log_eb_copy(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
738 struct extent_buffer
*src
, unsigned long dst_offset
,
739 unsigned long src_offset
, int nr_items
)
744 if (tree_mod_dont_log(fs_info
, NULL
))
747 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0) {
748 tree_mod_log_write_unlock(fs_info
);
752 for (i
= 0; i
< nr_items
; i
++) {
753 ret
= tree_mod_log_insert_key_locked(fs_info
, src
,
757 ret
= tree_mod_log_insert_key_locked(fs_info
, dst
,
763 tree_mod_log_write_unlock(fs_info
);
767 tree_mod_log_eb_move(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
768 int dst_offset
, int src_offset
, int nr_items
)
771 ret
= tree_mod_log_insert_move(fs_info
, dst
, dst_offset
, src_offset
,
777 tree_mod_log_set_node_key(struct btrfs_fs_info
*fs_info
,
778 struct extent_buffer
*eb
, int slot
, int atomic
)
782 ret
= tree_mod_log_insert_key_mask(fs_info
, eb
, slot
,
784 atomic
? GFP_ATOMIC
: GFP_NOFS
);
789 tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
791 if (tree_mod_dont_log(fs_info
, eb
))
794 __tree_mod_log_free_eb(fs_info
, eb
);
796 tree_mod_log_write_unlock(fs_info
);
800 tree_mod_log_set_root_pointer(struct btrfs_root
*root
,
801 struct extent_buffer
*new_root_node
)
804 ret
= tree_mod_log_insert_root(root
->fs_info
, root
->node
,
805 new_root_node
, GFP_NOFS
);
810 * check if the tree block can be shared by multiple trees
812 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
813 struct extent_buffer
*buf
)
816 * Tree blocks not in refernece counted trees and tree roots
817 * are never shared. If a block was allocated after the last
818 * snapshot and the block was not allocated by tree relocation,
819 * we know the block is not shared.
821 if (root
->ref_cows
&&
822 buf
!= root
->node
&& buf
!= root
->commit_root
&&
823 (btrfs_header_generation(buf
) <=
824 btrfs_root_last_snapshot(&root
->root_item
) ||
825 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
827 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
828 if (root
->ref_cows
&&
829 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
835 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
836 struct btrfs_root
*root
,
837 struct extent_buffer
*buf
,
838 struct extent_buffer
*cow
,
848 * Backrefs update rules:
850 * Always use full backrefs for extent pointers in tree block
851 * allocated by tree relocation.
853 * If a shared tree block is no longer referenced by its owner
854 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
855 * use full backrefs for extent pointers in tree block.
857 * If a tree block is been relocating
858 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
859 * use full backrefs for extent pointers in tree block.
860 * The reason for this is some operations (such as drop tree)
861 * are only allowed for blocks use full backrefs.
864 if (btrfs_block_can_be_shared(root
, buf
)) {
865 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
866 buf
->len
, &refs
, &flags
);
871 btrfs_std_error(root
->fs_info
, ret
);
876 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
877 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
878 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
883 owner
= btrfs_header_owner(buf
);
884 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
885 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
888 if ((owner
== root
->root_key
.objectid
||
889 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
890 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
891 ret
= btrfs_inc_ref(trans
, root
, buf
, 1, 1);
892 BUG_ON(ret
); /* -ENOMEM */
894 if (root
->root_key
.objectid
==
895 BTRFS_TREE_RELOC_OBJECTID
) {
896 ret
= btrfs_dec_ref(trans
, root
, buf
, 0, 1);
897 BUG_ON(ret
); /* -ENOMEM */
898 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
899 BUG_ON(ret
); /* -ENOMEM */
901 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
904 if (root
->root_key
.objectid
==
905 BTRFS_TREE_RELOC_OBJECTID
)
906 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
908 ret
= btrfs_inc_ref(trans
, root
, cow
, 0, 1);
909 BUG_ON(ret
); /* -ENOMEM */
911 if (new_flags
!= 0) {
912 ret
= btrfs_set_disk_extent_flags(trans
, root
,
920 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
921 if (root
->root_key
.objectid
==
922 BTRFS_TREE_RELOC_OBJECTID
)
923 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
925 ret
= btrfs_inc_ref(trans
, root
, cow
, 0, 1);
926 BUG_ON(ret
); /* -ENOMEM */
927 ret
= btrfs_dec_ref(trans
, root
, buf
, 1, 1);
928 BUG_ON(ret
); /* -ENOMEM */
930 tree_mod_log_free_eb(root
->fs_info
, buf
);
931 clean_tree_block(trans
, root
, buf
);
938 * does the dirty work in cow of a single block. The parent block (if
939 * supplied) is updated to point to the new cow copy. The new buffer is marked
940 * dirty and returned locked. If you modify the block it needs to be marked
943 * search_start -- an allocation hint for the new block
945 * empty_size -- a hint that you plan on doing more cow. This is the size in
946 * bytes the allocator should try to find free next to the block it returns.
947 * This is just a hint and may be ignored by the allocator.
949 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
950 struct btrfs_root
*root
,
951 struct extent_buffer
*buf
,
952 struct extent_buffer
*parent
, int parent_slot
,
953 struct extent_buffer
**cow_ret
,
954 u64 search_start
, u64 empty_size
)
956 struct btrfs_disk_key disk_key
;
957 struct extent_buffer
*cow
;
966 btrfs_assert_tree_locked(buf
);
968 WARN_ON(root
->ref_cows
&& trans
->transid
!=
969 root
->fs_info
->running_transaction
->transid
);
970 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
972 level
= btrfs_header_level(buf
);
975 btrfs_item_key(buf
, &disk_key
, 0);
977 btrfs_node_key(buf
, &disk_key
, 0);
979 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
981 parent_start
= parent
->start
;
987 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, parent_start
,
988 root
->root_key
.objectid
, &disk_key
,
989 level
, search_start
, empty_size
);
993 /* cow is set to blocking by btrfs_init_new_buffer */
995 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
996 btrfs_set_header_bytenr(cow
, cow
->start
);
997 btrfs_set_header_generation(cow
, trans
->transid
);
998 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
999 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1000 BTRFS_HEADER_FLAG_RELOC
);
1001 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1002 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1004 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1006 write_extent_buffer(cow
, root
->fs_info
->fsid
,
1007 (unsigned long)btrfs_header_fsid(cow
),
1010 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1012 btrfs_abort_transaction(trans
, root
, ret
);
1017 btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1019 if (buf
== root
->node
) {
1020 WARN_ON(parent
&& parent
!= buf
);
1021 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1022 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1023 parent_start
= buf
->start
;
1027 extent_buffer_get(cow
);
1028 tree_mod_log_set_root_pointer(root
, cow
);
1029 rcu_assign_pointer(root
->node
, cow
);
1031 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1033 free_extent_buffer(buf
);
1034 add_root_to_dirty_list(root
);
1036 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1037 parent_start
= parent
->start
;
1041 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1042 tree_mod_log_insert_key(root
->fs_info
, parent
, parent_slot
,
1043 MOD_LOG_KEY_REPLACE
);
1044 btrfs_set_node_blockptr(parent
, parent_slot
,
1046 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1048 btrfs_mark_buffer_dirty(parent
);
1049 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1053 btrfs_tree_unlock(buf
);
1054 free_extent_buffer_stale(buf
);
1055 btrfs_mark_buffer_dirty(cow
);
1061 * returns the logical address of the oldest predecessor of the given root.
1062 * entries older than time_seq are ignored.
1064 static struct tree_mod_elem
*
1065 __tree_mod_log_oldest_root(struct btrfs_fs_info
*fs_info
,
1066 struct btrfs_root
*root
, u64 time_seq
)
1068 struct tree_mod_elem
*tm
;
1069 struct tree_mod_elem
*found
= NULL
;
1070 u64 root_logical
= root
->node
->start
;
1077 * the very last operation that's logged for a root is the replacement
1078 * operation (if it is replaced at all). this has the index of the *new*
1079 * root, making it the very first operation that's logged for this root.
1082 tm
= tree_mod_log_search_oldest(fs_info
, root_logical
,
1087 * if there are no tree operation for the oldest root, we simply
1088 * return it. this should only happen if that (old) root is at
1095 * if there's an operation that's not a root replacement, we
1096 * found the oldest version of our root. normally, we'll find a
1097 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1099 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1103 root_logical
= tm
->old_root
.logical
;
1104 BUG_ON(root_logical
== root
->node
->start
);
1108 /* if there's no old root to return, return what we found instead */
1116 * tm is a pointer to the first operation to rewind within eb. then, all
1117 * previous operations will be rewinded (until we reach something older than
1121 __tree_mod_log_rewind(struct extent_buffer
*eb
, u64 time_seq
,
1122 struct tree_mod_elem
*first_tm
)
1125 struct rb_node
*next
;
1126 struct tree_mod_elem
*tm
= first_tm
;
1127 unsigned long o_dst
;
1128 unsigned long o_src
;
1129 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1131 n
= btrfs_header_nritems(eb
);
1132 while (tm
&& tm
->seq
>= time_seq
) {
1134 * all the operations are recorded with the operator used for
1135 * the modification. as we're going backwards, we do the
1136 * opposite of each operation here.
1139 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1140 BUG_ON(tm
->slot
< n
);
1142 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1143 case MOD_LOG_KEY_REMOVE
:
1144 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1145 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1146 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1150 case MOD_LOG_KEY_REPLACE
:
1151 BUG_ON(tm
->slot
>= n
);
1152 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1153 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1154 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1157 case MOD_LOG_KEY_ADD
:
1158 /* if a move operation is needed it's in the log */
1161 case MOD_LOG_MOVE_KEYS
:
1162 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1163 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1164 memmove_extent_buffer(eb
, o_dst
, o_src
,
1165 tm
->move
.nr_items
* p_size
);
1167 case MOD_LOG_ROOT_REPLACE
:
1169 * this operation is special. for roots, this must be
1170 * handled explicitly before rewinding.
1171 * for non-roots, this operation may exist if the node
1172 * was a root: root A -> child B; then A gets empty and
1173 * B is promoted to the new root. in the mod log, we'll
1174 * have a root-replace operation for B, a tree block
1175 * that is no root. we simply ignore that operation.
1179 next
= rb_next(&tm
->node
);
1182 tm
= container_of(next
, struct tree_mod_elem
, node
);
1183 if (tm
->index
!= first_tm
->index
)
1186 btrfs_set_header_nritems(eb
, n
);
1189 static struct extent_buffer
*
1190 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1193 struct extent_buffer
*eb_rewin
;
1194 struct tree_mod_elem
*tm
;
1199 if (btrfs_header_level(eb
) == 0)
1202 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1206 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1207 BUG_ON(tm
->slot
!= 0);
1208 eb_rewin
= alloc_dummy_extent_buffer(eb
->start
,
1209 fs_info
->tree_root
->nodesize
);
1211 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1212 btrfs_set_header_backref_rev(eb_rewin
,
1213 btrfs_header_backref_rev(eb
));
1214 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1215 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1217 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1221 extent_buffer_get(eb_rewin
);
1222 free_extent_buffer(eb
);
1224 __tree_mod_log_rewind(eb_rewin
, time_seq
, tm
);
1225 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1226 BTRFS_NODEPTRS_PER_BLOCK(fs_info
->tree_root
));
1232 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1233 * value. If there are no changes, the current root->root_node is returned. If
1234 * anything changed in between, there's a fresh buffer allocated on which the
1235 * rewind operations are done. In any case, the returned buffer is read locked.
1236 * Returns NULL on error (with no locks held).
1238 static inline struct extent_buffer
*
1239 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1241 struct tree_mod_elem
*tm
;
1242 struct extent_buffer
*eb
;
1243 struct extent_buffer
*old
;
1244 struct tree_mod_root
*old_root
= NULL
;
1245 u64 old_generation
= 0;
1249 eb
= btrfs_read_lock_root_node(root
);
1250 tm
= __tree_mod_log_oldest_root(root
->fs_info
, root
, time_seq
);
1254 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1255 old_root
= &tm
->old_root
;
1256 old_generation
= tm
->generation
;
1257 logical
= old_root
->logical
;
1259 logical
= root
->node
->start
;
1262 tm
= tree_mod_log_search(root
->fs_info
, logical
, time_seq
);
1263 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1264 btrfs_tree_read_unlock(root
->node
);
1265 free_extent_buffer(root
->node
);
1266 blocksize
= btrfs_level_size(root
, old_root
->level
);
1267 old
= read_tree_block(root
, logical
, blocksize
, 0);
1269 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1273 eb
= btrfs_clone_extent_buffer(old
);
1274 free_extent_buffer(old
);
1276 } else if (old_root
) {
1277 btrfs_tree_read_unlock(root
->node
);
1278 free_extent_buffer(root
->node
);
1279 eb
= alloc_dummy_extent_buffer(logical
, root
->nodesize
);
1281 eb
= btrfs_clone_extent_buffer(root
->node
);
1282 btrfs_tree_read_unlock(root
->node
);
1283 free_extent_buffer(root
->node
);
1288 extent_buffer_get(eb
);
1289 btrfs_tree_read_lock(eb
);
1291 btrfs_set_header_bytenr(eb
, eb
->start
);
1292 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1293 btrfs_set_header_owner(eb
, root
->root_key
.objectid
);
1294 btrfs_set_header_level(eb
, old_root
->level
);
1295 btrfs_set_header_generation(eb
, old_generation
);
1298 __tree_mod_log_rewind(eb
, time_seq
, tm
);
1300 WARN_ON(btrfs_header_level(eb
) != 0);
1301 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(root
));
1306 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1308 struct tree_mod_elem
*tm
;
1311 tm
= __tree_mod_log_oldest_root(root
->fs_info
, root
, time_seq
);
1312 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1313 level
= tm
->old_root
.level
;
1316 level
= btrfs_header_level(root
->node
);
1323 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1324 struct btrfs_root
*root
,
1325 struct extent_buffer
*buf
)
1327 /* ensure we can see the force_cow */
1331 * We do not need to cow a block if
1332 * 1) this block is not created or changed in this transaction;
1333 * 2) this block does not belong to TREE_RELOC tree;
1334 * 3) the root is not forced COW.
1336 * What is forced COW:
1337 * when we create snapshot during commiting the transaction,
1338 * after we've finished coping src root, we must COW the shared
1339 * block to ensure the metadata consistency.
1341 if (btrfs_header_generation(buf
) == trans
->transid
&&
1342 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1343 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1344 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1351 * cows a single block, see __btrfs_cow_block for the real work.
1352 * This version of it has extra checks so that a block isn't cow'd more than
1353 * once per transaction, as long as it hasn't been written yet
1355 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1356 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1357 struct extent_buffer
*parent
, int parent_slot
,
1358 struct extent_buffer
**cow_ret
)
1363 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
1364 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1365 (unsigned long long)trans
->transid
,
1366 (unsigned long long)
1367 root
->fs_info
->running_transaction
->transid
);
1369 if (trans
->transid
!= root
->fs_info
->generation
)
1370 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1371 (unsigned long long)trans
->transid
,
1372 (unsigned long long)root
->fs_info
->generation
);
1374 if (!should_cow_block(trans
, root
, buf
)) {
1379 search_start
= buf
->start
& ~((u64
)(1024 * 1024 * 1024) - 1);
1382 btrfs_set_lock_blocking(parent
);
1383 btrfs_set_lock_blocking(buf
);
1385 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1386 parent_slot
, cow_ret
, search_start
, 0);
1388 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1394 * helper function for defrag to decide if two blocks pointed to by a
1395 * node are actually close by
1397 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1399 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1401 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1407 * compare two keys in a memcmp fashion
1409 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
1411 struct btrfs_key k1
;
1413 btrfs_disk_key_to_cpu(&k1
, disk
);
1415 return btrfs_comp_cpu_keys(&k1
, k2
);
1419 * same as comp_keys only with two btrfs_key's
1421 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
1423 if (k1
->objectid
> k2
->objectid
)
1425 if (k1
->objectid
< k2
->objectid
)
1427 if (k1
->type
> k2
->type
)
1429 if (k1
->type
< k2
->type
)
1431 if (k1
->offset
> k2
->offset
)
1433 if (k1
->offset
< k2
->offset
)
1439 * this is used by the defrag code to go through all the
1440 * leaves pointed to by a node and reallocate them so that
1441 * disk order is close to key order
1443 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1444 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1445 int start_slot
, u64
*last_ret
,
1446 struct btrfs_key
*progress
)
1448 struct extent_buffer
*cur
;
1451 u64 search_start
= *last_ret
;
1461 int progress_passed
= 0;
1462 struct btrfs_disk_key disk_key
;
1464 parent_level
= btrfs_header_level(parent
);
1466 WARN_ON(trans
->transaction
!= root
->fs_info
->running_transaction
);
1467 WARN_ON(trans
->transid
!= root
->fs_info
->generation
);
1469 parent_nritems
= btrfs_header_nritems(parent
);
1470 blocksize
= btrfs_level_size(root
, parent_level
- 1);
1471 end_slot
= parent_nritems
;
1473 if (parent_nritems
== 1)
1476 btrfs_set_lock_blocking(parent
);
1478 for (i
= start_slot
; i
< end_slot
; i
++) {
1481 btrfs_node_key(parent
, &disk_key
, i
);
1482 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1485 progress_passed
= 1;
1486 blocknr
= btrfs_node_blockptr(parent
, i
);
1487 gen
= btrfs_node_ptr_generation(parent
, i
);
1488 if (last_block
== 0)
1489 last_block
= blocknr
;
1492 other
= btrfs_node_blockptr(parent
, i
- 1);
1493 close
= close_blocks(blocknr
, other
, blocksize
);
1495 if (!close
&& i
< end_slot
- 2) {
1496 other
= btrfs_node_blockptr(parent
, i
+ 1);
1497 close
= close_blocks(blocknr
, other
, blocksize
);
1500 last_block
= blocknr
;
1504 cur
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
1506 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1509 if (!cur
|| !uptodate
) {
1511 cur
= read_tree_block(root
, blocknr
,
1515 } else if (!uptodate
) {
1516 err
= btrfs_read_buffer(cur
, gen
);
1518 free_extent_buffer(cur
);
1523 if (search_start
== 0)
1524 search_start
= last_block
;
1526 btrfs_tree_lock(cur
);
1527 btrfs_set_lock_blocking(cur
);
1528 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1531 (end_slot
- i
) * blocksize
));
1533 btrfs_tree_unlock(cur
);
1534 free_extent_buffer(cur
);
1537 search_start
= cur
->start
;
1538 last_block
= cur
->start
;
1539 *last_ret
= search_start
;
1540 btrfs_tree_unlock(cur
);
1541 free_extent_buffer(cur
);
1547 * The leaf data grows from end-to-front in the node.
1548 * this returns the address of the start of the last item,
1549 * which is the stop of the leaf data stack
1551 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
1552 struct extent_buffer
*leaf
)
1554 u32 nr
= btrfs_header_nritems(leaf
);
1556 return BTRFS_LEAF_DATA_SIZE(root
);
1557 return btrfs_item_offset_nr(leaf
, nr
- 1);
1562 * search for key in the extent_buffer. The items start at offset p,
1563 * and they are item_size apart. There are 'max' items in p.
1565 * the slot in the array is returned via slot, and it points to
1566 * the place where you would insert key if it is not found in
1569 * slot may point to max if the key is bigger than all of the keys
1571 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1573 int item_size
, struct btrfs_key
*key
,
1580 struct btrfs_disk_key
*tmp
= NULL
;
1581 struct btrfs_disk_key unaligned
;
1582 unsigned long offset
;
1584 unsigned long map_start
= 0;
1585 unsigned long map_len
= 0;
1588 while (low
< high
) {
1589 mid
= (low
+ high
) / 2;
1590 offset
= p
+ mid
* item_size
;
1592 if (!kaddr
|| offset
< map_start
||
1593 (offset
+ sizeof(struct btrfs_disk_key
)) >
1594 map_start
+ map_len
) {
1596 err
= map_private_extent_buffer(eb
, offset
,
1597 sizeof(struct btrfs_disk_key
),
1598 &kaddr
, &map_start
, &map_len
);
1601 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1604 read_extent_buffer(eb
, &unaligned
,
1605 offset
, sizeof(unaligned
));
1610 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1613 ret
= comp_keys(tmp
, key
);
1629 * simple bin_search frontend that does the right thing for
1632 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1633 int level
, int *slot
)
1636 return generic_bin_search(eb
,
1637 offsetof(struct btrfs_leaf
, items
),
1638 sizeof(struct btrfs_item
),
1639 key
, btrfs_header_nritems(eb
),
1642 return generic_bin_search(eb
,
1643 offsetof(struct btrfs_node
, ptrs
),
1644 sizeof(struct btrfs_key_ptr
),
1645 key
, btrfs_header_nritems(eb
),
1649 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1650 int level
, int *slot
)
1652 return bin_search(eb
, key
, level
, slot
);
1655 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1657 spin_lock(&root
->accounting_lock
);
1658 btrfs_set_root_used(&root
->root_item
,
1659 btrfs_root_used(&root
->root_item
) + size
);
1660 spin_unlock(&root
->accounting_lock
);
1663 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1665 spin_lock(&root
->accounting_lock
);
1666 btrfs_set_root_used(&root
->root_item
,
1667 btrfs_root_used(&root
->root_item
) - size
);
1668 spin_unlock(&root
->accounting_lock
);
1671 /* given a node and slot number, this reads the blocks it points to. The
1672 * extent buffer is returned with a reference taken (but unlocked).
1673 * NULL is returned on error.
1675 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
1676 struct extent_buffer
*parent
, int slot
)
1678 int level
= btrfs_header_level(parent
);
1681 if (slot
>= btrfs_header_nritems(parent
))
1686 return read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
1687 btrfs_level_size(root
, level
- 1),
1688 btrfs_node_ptr_generation(parent
, slot
));
1692 * node level balancing, used to make sure nodes are in proper order for
1693 * item deletion. We balance from the top down, so we have to make sure
1694 * that a deletion won't leave an node completely empty later on.
1696 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1697 struct btrfs_root
*root
,
1698 struct btrfs_path
*path
, int level
)
1700 struct extent_buffer
*right
= NULL
;
1701 struct extent_buffer
*mid
;
1702 struct extent_buffer
*left
= NULL
;
1703 struct extent_buffer
*parent
= NULL
;
1707 int orig_slot
= path
->slots
[level
];
1713 mid
= path
->nodes
[level
];
1715 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1716 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1717 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1719 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1721 if (level
< BTRFS_MAX_LEVEL
- 1) {
1722 parent
= path
->nodes
[level
+ 1];
1723 pslot
= path
->slots
[level
+ 1];
1727 * deal with the case where there is only one pointer in the root
1728 * by promoting the node below to a root
1731 struct extent_buffer
*child
;
1733 if (btrfs_header_nritems(mid
) != 1)
1736 /* promote the child to a root */
1737 child
= read_node_slot(root
, mid
, 0);
1740 btrfs_std_error(root
->fs_info
, ret
);
1744 btrfs_tree_lock(child
);
1745 btrfs_set_lock_blocking(child
);
1746 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1748 btrfs_tree_unlock(child
);
1749 free_extent_buffer(child
);
1753 tree_mod_log_free_eb(root
->fs_info
, root
->node
);
1754 tree_mod_log_set_root_pointer(root
, child
);
1755 rcu_assign_pointer(root
->node
, child
);
1757 add_root_to_dirty_list(root
);
1758 btrfs_tree_unlock(child
);
1760 path
->locks
[level
] = 0;
1761 path
->nodes
[level
] = NULL
;
1762 clean_tree_block(trans
, root
, mid
);
1763 btrfs_tree_unlock(mid
);
1764 /* once for the path */
1765 free_extent_buffer(mid
);
1767 root_sub_used(root
, mid
->len
);
1768 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1769 /* once for the root ptr */
1770 free_extent_buffer_stale(mid
);
1773 if (btrfs_header_nritems(mid
) >
1774 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
1777 left
= read_node_slot(root
, parent
, pslot
- 1);
1779 btrfs_tree_lock(left
);
1780 btrfs_set_lock_blocking(left
);
1781 wret
= btrfs_cow_block(trans
, root
, left
,
1782 parent
, pslot
- 1, &left
);
1788 right
= read_node_slot(root
, parent
, pslot
+ 1);
1790 btrfs_tree_lock(right
);
1791 btrfs_set_lock_blocking(right
);
1792 wret
= btrfs_cow_block(trans
, root
, right
,
1793 parent
, pslot
+ 1, &right
);
1800 /* first, try to make some room in the middle buffer */
1802 orig_slot
+= btrfs_header_nritems(left
);
1803 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1809 * then try to empty the right most buffer into the middle
1812 wret
= push_node_left(trans
, root
, mid
, right
, 1);
1813 if (wret
< 0 && wret
!= -ENOSPC
)
1815 if (btrfs_header_nritems(right
) == 0) {
1816 clean_tree_block(trans
, root
, right
);
1817 btrfs_tree_unlock(right
);
1818 del_ptr(trans
, root
, path
, level
+ 1, pslot
+ 1);
1819 root_sub_used(root
, right
->len
);
1820 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
1821 free_extent_buffer_stale(right
);
1824 struct btrfs_disk_key right_key
;
1825 btrfs_node_key(right
, &right_key
, 0);
1826 tree_mod_log_set_node_key(root
->fs_info
, parent
,
1828 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1829 btrfs_mark_buffer_dirty(parent
);
1832 if (btrfs_header_nritems(mid
) == 1) {
1834 * we're not allowed to leave a node with one item in the
1835 * tree during a delete. A deletion from lower in the tree
1836 * could try to delete the only pointer in this node.
1837 * So, pull some keys from the left.
1838 * There has to be a left pointer at this point because
1839 * otherwise we would have pulled some pointers from the
1844 btrfs_std_error(root
->fs_info
, ret
);
1847 wret
= balance_node_right(trans
, root
, mid
, left
);
1853 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1859 if (btrfs_header_nritems(mid
) == 0) {
1860 clean_tree_block(trans
, root
, mid
);
1861 btrfs_tree_unlock(mid
);
1862 del_ptr(trans
, root
, path
, level
+ 1, pslot
);
1863 root_sub_used(root
, mid
->len
);
1864 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1865 free_extent_buffer_stale(mid
);
1868 /* update the parent key to reflect our changes */
1869 struct btrfs_disk_key mid_key
;
1870 btrfs_node_key(mid
, &mid_key
, 0);
1871 tree_mod_log_set_node_key(root
->fs_info
, parent
,
1873 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1874 btrfs_mark_buffer_dirty(parent
);
1877 /* update the path */
1879 if (btrfs_header_nritems(left
) > orig_slot
) {
1880 extent_buffer_get(left
);
1881 /* left was locked after cow */
1882 path
->nodes
[level
] = left
;
1883 path
->slots
[level
+ 1] -= 1;
1884 path
->slots
[level
] = orig_slot
;
1886 btrfs_tree_unlock(mid
);
1887 free_extent_buffer(mid
);
1890 orig_slot
-= btrfs_header_nritems(left
);
1891 path
->slots
[level
] = orig_slot
;
1894 /* double check we haven't messed things up */
1896 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
1900 btrfs_tree_unlock(right
);
1901 free_extent_buffer(right
);
1904 if (path
->nodes
[level
] != left
)
1905 btrfs_tree_unlock(left
);
1906 free_extent_buffer(left
);
1911 /* Node balancing for insertion. Here we only split or push nodes around
1912 * when they are completely full. This is also done top down, so we
1913 * have to be pessimistic.
1915 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
1916 struct btrfs_root
*root
,
1917 struct btrfs_path
*path
, int level
)
1919 struct extent_buffer
*right
= NULL
;
1920 struct extent_buffer
*mid
;
1921 struct extent_buffer
*left
= NULL
;
1922 struct extent_buffer
*parent
= NULL
;
1926 int orig_slot
= path
->slots
[level
];
1931 mid
= path
->nodes
[level
];
1932 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1934 if (level
< BTRFS_MAX_LEVEL
- 1) {
1935 parent
= path
->nodes
[level
+ 1];
1936 pslot
= path
->slots
[level
+ 1];
1942 left
= read_node_slot(root
, parent
, pslot
- 1);
1944 /* first, try to make some room in the middle buffer */
1948 btrfs_tree_lock(left
);
1949 btrfs_set_lock_blocking(left
);
1951 left_nr
= btrfs_header_nritems(left
);
1952 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1955 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
1960 wret
= push_node_left(trans
, root
,
1967 struct btrfs_disk_key disk_key
;
1968 orig_slot
+= left_nr
;
1969 btrfs_node_key(mid
, &disk_key
, 0);
1970 tree_mod_log_set_node_key(root
->fs_info
, parent
,
1972 btrfs_set_node_key(parent
, &disk_key
, pslot
);
1973 btrfs_mark_buffer_dirty(parent
);
1974 if (btrfs_header_nritems(left
) > orig_slot
) {
1975 path
->nodes
[level
] = left
;
1976 path
->slots
[level
+ 1] -= 1;
1977 path
->slots
[level
] = orig_slot
;
1978 btrfs_tree_unlock(mid
);
1979 free_extent_buffer(mid
);
1982 btrfs_header_nritems(left
);
1983 path
->slots
[level
] = orig_slot
;
1984 btrfs_tree_unlock(left
);
1985 free_extent_buffer(left
);
1989 btrfs_tree_unlock(left
);
1990 free_extent_buffer(left
);
1992 right
= read_node_slot(root
, parent
, pslot
+ 1);
1995 * then try to empty the right most buffer into the middle
2000 btrfs_tree_lock(right
);
2001 btrfs_set_lock_blocking(right
);
2003 right_nr
= btrfs_header_nritems(right
);
2004 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2007 ret
= btrfs_cow_block(trans
, root
, right
,
2013 wret
= balance_node_right(trans
, root
,
2020 struct btrfs_disk_key disk_key
;
2022 btrfs_node_key(right
, &disk_key
, 0);
2023 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2025 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2026 btrfs_mark_buffer_dirty(parent
);
2028 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2029 path
->nodes
[level
] = right
;
2030 path
->slots
[level
+ 1] += 1;
2031 path
->slots
[level
] = orig_slot
-
2032 btrfs_header_nritems(mid
);
2033 btrfs_tree_unlock(mid
);
2034 free_extent_buffer(mid
);
2036 btrfs_tree_unlock(right
);
2037 free_extent_buffer(right
);
2041 btrfs_tree_unlock(right
);
2042 free_extent_buffer(right
);
2048 * readahead one full node of leaves, finding things that are close
2049 * to the block in 'slot', and triggering ra on them.
2051 static void reada_for_search(struct btrfs_root
*root
,
2052 struct btrfs_path
*path
,
2053 int level
, int slot
, u64 objectid
)
2055 struct extent_buffer
*node
;
2056 struct btrfs_disk_key disk_key
;
2062 int direction
= path
->reada
;
2063 struct extent_buffer
*eb
;
2071 if (!path
->nodes
[level
])
2074 node
= path
->nodes
[level
];
2076 search
= btrfs_node_blockptr(node
, slot
);
2077 blocksize
= btrfs_level_size(root
, level
- 1);
2078 eb
= btrfs_find_tree_block(root
, search
, blocksize
);
2080 free_extent_buffer(eb
);
2086 nritems
= btrfs_header_nritems(node
);
2090 if (direction
< 0) {
2094 } else if (direction
> 0) {
2099 if (path
->reada
< 0 && objectid
) {
2100 btrfs_node_key(node
, &disk_key
, nr
);
2101 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2104 search
= btrfs_node_blockptr(node
, nr
);
2105 if ((search
<= target
&& target
- search
<= 65536) ||
2106 (search
> target
&& search
- target
<= 65536)) {
2107 gen
= btrfs_node_ptr_generation(node
, nr
);
2108 readahead_tree_block(root
, search
, blocksize
, gen
);
2112 if ((nread
> 65536 || nscan
> 32))
2118 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2121 static noinline
int reada_for_balance(struct btrfs_root
*root
,
2122 struct btrfs_path
*path
, int level
)
2126 struct extent_buffer
*parent
;
2127 struct extent_buffer
*eb
;
2134 parent
= path
->nodes
[level
+ 1];
2138 nritems
= btrfs_header_nritems(parent
);
2139 slot
= path
->slots
[level
+ 1];
2140 blocksize
= btrfs_level_size(root
, level
);
2143 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2144 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2145 eb
= btrfs_find_tree_block(root
, block1
, blocksize
);
2147 * if we get -eagain from btrfs_buffer_uptodate, we
2148 * don't want to return eagain here. That will loop
2151 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2153 free_extent_buffer(eb
);
2155 if (slot
+ 1 < nritems
) {
2156 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2157 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2158 eb
= btrfs_find_tree_block(root
, block2
, blocksize
);
2159 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2161 free_extent_buffer(eb
);
2163 if (block1
|| block2
) {
2166 /* release the whole path */
2167 btrfs_release_path(path
);
2169 /* read the blocks */
2171 readahead_tree_block(root
, block1
, blocksize
, 0);
2173 readahead_tree_block(root
, block2
, blocksize
, 0);
2176 eb
= read_tree_block(root
, block1
, blocksize
, 0);
2177 free_extent_buffer(eb
);
2180 eb
= read_tree_block(root
, block2
, blocksize
, 0);
2181 free_extent_buffer(eb
);
2189 * when we walk down the tree, it is usually safe to unlock the higher layers
2190 * in the tree. The exceptions are when our path goes through slot 0, because
2191 * operations on the tree might require changing key pointers higher up in the
2194 * callers might also have set path->keep_locks, which tells this code to keep
2195 * the lock if the path points to the last slot in the block. This is part of
2196 * walking through the tree, and selecting the next slot in the higher block.
2198 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2199 * if lowest_unlock is 1, level 0 won't be unlocked
2201 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2202 int lowest_unlock
, int min_write_lock_level
,
2203 int *write_lock_level
)
2206 int skip_level
= level
;
2208 struct extent_buffer
*t
;
2210 if (path
->really_keep_locks
)
2213 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2214 if (!path
->nodes
[i
])
2216 if (!path
->locks
[i
])
2218 if (!no_skips
&& path
->slots
[i
] == 0) {
2222 if (!no_skips
&& path
->keep_locks
) {
2225 nritems
= btrfs_header_nritems(t
);
2226 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2231 if (skip_level
< i
&& i
>= lowest_unlock
)
2235 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
2236 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2238 if (write_lock_level
&&
2239 i
> min_write_lock_level
&&
2240 i
<= *write_lock_level
) {
2241 *write_lock_level
= i
- 1;
2248 * This releases any locks held in the path starting at level and
2249 * going all the way up to the root.
2251 * btrfs_search_slot will keep the lock held on higher nodes in a few
2252 * corner cases, such as COW of the block at slot zero in the node. This
2253 * ignores those rules, and it should only be called when there are no
2254 * more updates to be done higher up in the tree.
2256 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2260 if (path
->keep_locks
|| path
->really_keep_locks
)
2263 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2264 if (!path
->nodes
[i
])
2266 if (!path
->locks
[i
])
2268 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2274 * helper function for btrfs_search_slot. The goal is to find a block
2275 * in cache without setting the path to blocking. If we find the block
2276 * we return zero and the path is unchanged.
2278 * If we can't find the block, we set the path blocking and do some
2279 * reada. -EAGAIN is returned and the search must be repeated.
2282 read_block_for_search(struct btrfs_trans_handle
*trans
,
2283 struct btrfs_root
*root
, struct btrfs_path
*p
,
2284 struct extent_buffer
**eb_ret
, int level
, int slot
,
2285 struct btrfs_key
*key
, u64 time_seq
)
2290 struct extent_buffer
*b
= *eb_ret
;
2291 struct extent_buffer
*tmp
;
2294 blocknr
= btrfs_node_blockptr(b
, slot
);
2295 gen
= btrfs_node_ptr_generation(b
, slot
);
2296 blocksize
= btrfs_level_size(root
, level
- 1);
2298 tmp
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
2300 /* first we do an atomic uptodate check */
2301 if (btrfs_buffer_uptodate(tmp
, 0, 1) > 0) {
2302 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2304 * we found an up to date block without
2311 /* the pages were up to date, but we failed
2312 * the generation number check. Do a full
2313 * read for the generation number that is correct.
2314 * We must do this without dropping locks so
2315 * we can trust our generation number
2317 free_extent_buffer(tmp
);
2318 btrfs_set_path_blocking(p
);
2320 /* now we're allowed to do a blocking uptodate check */
2321 tmp
= read_tree_block(root
, blocknr
, blocksize
, gen
);
2322 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
, 0) > 0) {
2326 free_extent_buffer(tmp
);
2327 btrfs_release_path(p
);
2333 * reduce lock contention at high levels
2334 * of the btree by dropping locks before
2335 * we read. Don't release the lock on the current
2336 * level because we need to walk this node to figure
2337 * out which blocks to read.
2339 btrfs_unlock_up_safe(p
, level
+ 1);
2340 btrfs_set_path_blocking(p
);
2342 free_extent_buffer(tmp
);
2344 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
2346 btrfs_release_path(p
);
2349 tmp
= read_tree_block(root
, blocknr
, blocksize
, 0);
2352 * If the read above didn't mark this buffer up to date,
2353 * it will never end up being up to date. Set ret to EIO now
2354 * and give up so that our caller doesn't loop forever
2357 if (!btrfs_buffer_uptodate(tmp
, 0, 0))
2359 free_extent_buffer(tmp
);
2365 * helper function for btrfs_search_slot. This does all of the checks
2366 * for node-level blocks and does any balancing required based on
2369 * If no extra work was required, zero is returned. If we had to
2370 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2374 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2375 struct btrfs_root
*root
, struct btrfs_path
*p
,
2376 struct extent_buffer
*b
, int level
, int ins_len
,
2377 int *write_lock_level
)
2380 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2381 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
2384 if (*write_lock_level
< level
+ 1) {
2385 *write_lock_level
= level
+ 1;
2386 btrfs_release_path(p
);
2390 sret
= reada_for_balance(root
, p
, level
);
2394 btrfs_set_path_blocking(p
);
2395 sret
= split_node(trans
, root
, p
, level
);
2396 btrfs_clear_path_blocking(p
, NULL
, 0);
2403 b
= p
->nodes
[level
];
2404 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2405 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
2408 if (*write_lock_level
< level
+ 1) {
2409 *write_lock_level
= level
+ 1;
2410 btrfs_release_path(p
);
2414 sret
= reada_for_balance(root
, p
, level
);
2418 btrfs_set_path_blocking(p
);
2419 sret
= balance_level(trans
, root
, p
, level
);
2420 btrfs_clear_path_blocking(p
, NULL
, 0);
2426 b
= p
->nodes
[level
];
2428 btrfs_release_path(p
);
2431 BUG_ON(btrfs_header_nritems(b
) == 1);
2442 * look for key in the tree. path is filled in with nodes along the way
2443 * if key is found, we return zero and you can find the item in the leaf
2444 * level of the path (level 0)
2446 * If the key isn't found, the path points to the slot where it should
2447 * be inserted, and 1 is returned. If there are other errors during the
2448 * search a negative error number is returned.
2450 * if ins_len > 0, nodes and leaves will be split as we walk down the
2451 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2454 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
2455 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
2458 struct extent_buffer
*b
;
2463 int lowest_unlock
= 1;
2465 /* everything at write_lock_level or lower must be write locked */
2466 int write_lock_level
= 0;
2467 u8 lowest_level
= 0;
2468 int min_write_lock_level
;
2470 lowest_level
= p
->lowest_level
;
2471 WARN_ON(lowest_level
&& ins_len
> 0);
2472 WARN_ON(p
->nodes
[0] != NULL
);
2477 /* when we are removing items, we might have to go up to level
2478 * two as we update tree pointers Make sure we keep write
2479 * for those levels as well
2481 write_lock_level
= 2;
2482 } else if (ins_len
> 0) {
2484 * for inserting items, make sure we have a write lock on
2485 * level 1 so we can update keys
2487 write_lock_level
= 1;
2491 write_lock_level
= -1;
2493 if (cow
&& (p
->really_keep_locks
|| p
->keep_locks
|| p
->lowest_level
))
2494 write_lock_level
= BTRFS_MAX_LEVEL
;
2496 min_write_lock_level
= write_lock_level
;
2500 * we try very hard to do read locks on the root
2502 root_lock
= BTRFS_READ_LOCK
;
2504 if (p
->search_commit_root
) {
2506 * the commit roots are read only
2507 * so we always do read locks
2509 b
= root
->commit_root
;
2510 extent_buffer_get(b
);
2511 level
= btrfs_header_level(b
);
2512 if (!p
->skip_locking
)
2513 btrfs_tree_read_lock(b
);
2515 if (p
->skip_locking
) {
2516 b
= btrfs_root_node(root
);
2517 level
= btrfs_header_level(b
);
2519 /* we don't know the level of the root node
2520 * until we actually have it read locked
2522 b
= btrfs_read_lock_root_node(root
);
2523 level
= btrfs_header_level(b
);
2524 if (level
<= write_lock_level
) {
2525 /* whoops, must trade for write lock */
2526 btrfs_tree_read_unlock(b
);
2527 free_extent_buffer(b
);
2528 b
= btrfs_lock_root_node(root
);
2529 root_lock
= BTRFS_WRITE_LOCK
;
2531 /* the level might have changed, check again */
2532 level
= btrfs_header_level(b
);
2536 p
->nodes
[level
] = b
;
2537 if (!p
->skip_locking
)
2538 p
->locks
[level
] = root_lock
;
2541 level
= btrfs_header_level(b
);
2544 * setup the path here so we can release it under lock
2545 * contention with the cow code
2549 * if we don't really need to cow this block
2550 * then we don't want to set the path blocking,
2551 * so we test it here
2553 if (!should_cow_block(trans
, root
, b
))
2556 btrfs_set_path_blocking(p
);
2559 * must have write locks on this node and the
2562 if (level
> write_lock_level
||
2563 (level
+ 1 > write_lock_level
&&
2564 level
+ 1 < BTRFS_MAX_LEVEL
&&
2565 p
->nodes
[level
+ 1])) {
2566 write_lock_level
= level
+ 1;
2567 btrfs_release_path(p
);
2571 err
= btrfs_cow_block(trans
, root
, b
,
2572 p
->nodes
[level
+ 1],
2573 p
->slots
[level
+ 1], &b
);
2580 BUG_ON(!cow
&& ins_len
);
2582 p
->nodes
[level
] = b
;
2583 btrfs_clear_path_blocking(p
, NULL
, 0);
2586 * we have a lock on b and as long as we aren't changing
2587 * the tree, there is no way to for the items in b to change.
2588 * It is safe to drop the lock on our parent before we
2589 * go through the expensive btree search on b.
2591 * If cow is true, then we might be changing slot zero,
2592 * which may require changing the parent. So, we can't
2593 * drop the lock until after we know which slot we're
2597 btrfs_unlock_up_safe(p
, level
+ 1);
2599 ret
= bin_search(b
, key
, level
, &slot
);
2603 if (ret
&& slot
> 0) {
2607 p
->slots
[level
] = slot
;
2608 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2609 ins_len
, &write_lock_level
);
2616 b
= p
->nodes
[level
];
2617 slot
= p
->slots
[level
];
2620 * slot 0 is special, if we change the key
2621 * we have to update the parent pointer
2622 * which means we must have a write lock
2625 if (slot
== 0 && cow
&&
2626 write_lock_level
< level
+ 1) {
2627 write_lock_level
= level
+ 1;
2628 btrfs_release_path(p
);
2632 unlock_up(p
, level
, lowest_unlock
,
2633 min_write_lock_level
, &write_lock_level
);
2635 if (level
== lowest_level
) {
2641 err
= read_block_for_search(trans
, root
, p
,
2642 &b
, level
, slot
, key
, 0);
2650 if (!p
->skip_locking
) {
2651 level
= btrfs_header_level(b
);
2652 if (level
<= write_lock_level
) {
2653 err
= btrfs_try_tree_write_lock(b
);
2655 btrfs_set_path_blocking(p
);
2657 btrfs_clear_path_blocking(p
, b
,
2660 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2662 err
= btrfs_try_tree_read_lock(b
);
2664 btrfs_set_path_blocking(p
);
2665 btrfs_tree_read_lock(b
);
2666 btrfs_clear_path_blocking(p
, b
,
2669 p
->locks
[level
] = BTRFS_READ_LOCK
;
2671 p
->nodes
[level
] = b
;
2674 p
->slots
[level
] = slot
;
2676 btrfs_leaf_free_space(root
, b
) < ins_len
) {
2677 if (write_lock_level
< 1) {
2678 write_lock_level
= 1;
2679 btrfs_release_path(p
);
2683 btrfs_set_path_blocking(p
);
2684 err
= split_leaf(trans
, root
, key
,
2685 p
, ins_len
, ret
== 0);
2686 btrfs_clear_path_blocking(p
, NULL
, 0);
2694 if (!p
->search_for_split
)
2695 unlock_up(p
, level
, lowest_unlock
,
2696 min_write_lock_level
, &write_lock_level
);
2703 * we don't really know what they plan on doing with the path
2704 * from here on, so for now just mark it as blocking
2706 if (!p
->leave_spinning
)
2707 btrfs_set_path_blocking(p
);
2709 btrfs_release_path(p
);
2714 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2715 * current state of the tree together with the operations recorded in the tree
2716 * modification log to search for the key in a previous version of this tree, as
2717 * denoted by the time_seq parameter.
2719 * Naturally, there is no support for insert, delete or cow operations.
2721 * The resulting path and return value will be set up as if we called
2722 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2724 int btrfs_search_old_slot(struct btrfs_root
*root
, struct btrfs_key
*key
,
2725 struct btrfs_path
*p
, u64 time_seq
)
2727 struct extent_buffer
*b
;
2732 int lowest_unlock
= 1;
2733 u8 lowest_level
= 0;
2735 lowest_level
= p
->lowest_level
;
2736 WARN_ON(p
->nodes
[0] != NULL
);
2738 if (p
->search_commit_root
) {
2740 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2744 b
= get_old_root(root
, time_seq
);
2745 level
= btrfs_header_level(b
);
2746 p
->locks
[level
] = BTRFS_READ_LOCK
;
2749 level
= btrfs_header_level(b
);
2750 p
->nodes
[level
] = b
;
2751 btrfs_clear_path_blocking(p
, NULL
, 0);
2754 * we have a lock on b and as long as we aren't changing
2755 * the tree, there is no way to for the items in b to change.
2756 * It is safe to drop the lock on our parent before we
2757 * go through the expensive btree search on b.
2759 btrfs_unlock_up_safe(p
, level
+ 1);
2761 ret
= bin_search(b
, key
, level
, &slot
);
2765 if (ret
&& slot
> 0) {
2769 p
->slots
[level
] = slot
;
2770 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2772 if (level
== lowest_level
) {
2778 err
= read_block_for_search(NULL
, root
, p
, &b
, level
,
2779 slot
, key
, time_seq
);
2787 level
= btrfs_header_level(b
);
2788 err
= btrfs_try_tree_read_lock(b
);
2790 btrfs_set_path_blocking(p
);
2791 btrfs_tree_read_lock(b
);
2792 btrfs_clear_path_blocking(p
, b
,
2795 p
->locks
[level
] = BTRFS_READ_LOCK
;
2796 p
->nodes
[level
] = b
;
2797 b
= tree_mod_log_rewind(root
->fs_info
, b
, time_seq
);
2798 if (b
!= p
->nodes
[level
]) {
2799 btrfs_tree_unlock_rw(p
->nodes
[level
],
2801 p
->locks
[level
] = 0;
2802 p
->nodes
[level
] = b
;
2805 p
->slots
[level
] = slot
;
2806 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2812 if (!p
->leave_spinning
)
2813 btrfs_set_path_blocking(p
);
2815 btrfs_release_path(p
);
2821 * helper to use instead of search slot if no exact match is needed but
2822 * instead the next or previous item should be returned.
2823 * When find_higher is true, the next higher item is returned, the next lower
2825 * When return_any and find_higher are both true, and no higher item is found,
2826 * return the next lower instead.
2827 * When return_any is true and find_higher is false, and no lower item is found,
2828 * return the next higher instead.
2829 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2832 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
2833 struct btrfs_key
*key
, struct btrfs_path
*p
,
2834 int find_higher
, int return_any
)
2837 struct extent_buffer
*leaf
;
2840 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2844 * a return value of 1 means the path is at the position where the
2845 * item should be inserted. Normally this is the next bigger item,
2846 * but in case the previous item is the last in a leaf, path points
2847 * to the first free slot in the previous leaf, i.e. at an invalid
2853 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2854 ret
= btrfs_next_leaf(root
, p
);
2860 * no higher item found, return the next
2865 btrfs_release_path(p
);
2869 if (p
->slots
[0] == 0) {
2870 ret
= btrfs_prev_leaf(root
, p
);
2874 p
->slots
[0] = btrfs_header_nritems(leaf
) - 1;
2880 * no lower item found, return the next
2885 btrfs_release_path(p
);
2895 * adjust the pointers going up the tree, starting at level
2896 * making sure the right key of each node is points to 'key'.
2897 * This is used after shifting pointers to the left, so it stops
2898 * fixing up pointers when a given leaf/node is not in slot 0 of the
2902 static void fixup_low_keys(struct btrfs_trans_handle
*trans
,
2903 struct btrfs_root
*root
, struct btrfs_path
*path
,
2904 struct btrfs_disk_key
*key
, int level
)
2907 struct extent_buffer
*t
;
2909 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2910 int tslot
= path
->slots
[i
];
2911 if (!path
->nodes
[i
])
2914 tree_mod_log_set_node_key(root
->fs_info
, t
, tslot
, 1);
2915 btrfs_set_node_key(t
, key
, tslot
);
2916 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
2925 * This function isn't completely safe. It's the caller's responsibility
2926 * that the new key won't break the order
2928 void btrfs_set_item_key_safe(struct btrfs_trans_handle
*trans
,
2929 struct btrfs_root
*root
, struct btrfs_path
*path
,
2930 struct btrfs_key
*new_key
)
2932 struct btrfs_disk_key disk_key
;
2933 struct extent_buffer
*eb
;
2936 eb
= path
->nodes
[0];
2937 slot
= path
->slots
[0];
2939 btrfs_item_key(eb
, &disk_key
, slot
- 1);
2940 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
2942 if (slot
< btrfs_header_nritems(eb
) - 1) {
2943 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
2944 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
2947 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
2948 btrfs_set_item_key(eb
, &disk_key
, slot
);
2949 btrfs_mark_buffer_dirty(eb
);
2951 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
2955 * try to push data from one node into the next node left in the
2958 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2959 * error, and > 0 if there was no room in the left hand block.
2961 static int push_node_left(struct btrfs_trans_handle
*trans
,
2962 struct btrfs_root
*root
, struct extent_buffer
*dst
,
2963 struct extent_buffer
*src
, int empty
)
2970 src_nritems
= btrfs_header_nritems(src
);
2971 dst_nritems
= btrfs_header_nritems(dst
);
2972 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
2973 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
2974 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
2976 if (!empty
&& src_nritems
<= 8)
2979 if (push_items
<= 0)
2983 push_items
= min(src_nritems
, push_items
);
2984 if (push_items
< src_nritems
) {
2985 /* leave at least 8 pointers in the node if
2986 * we aren't going to empty it
2988 if (src_nritems
- push_items
< 8) {
2989 if (push_items
<= 8)
2995 push_items
= min(src_nritems
- 8, push_items
);
2997 tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, dst_nritems
, 0,
2999 copy_extent_buffer(dst
, src
,
3000 btrfs_node_key_ptr_offset(dst_nritems
),
3001 btrfs_node_key_ptr_offset(0),
3002 push_items
* sizeof(struct btrfs_key_ptr
));
3004 if (push_items
< src_nritems
) {
3006 * don't call tree_mod_log_eb_move here, key removal was already
3007 * fully logged by tree_mod_log_eb_copy above.
3009 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3010 btrfs_node_key_ptr_offset(push_items
),
3011 (src_nritems
- push_items
) *
3012 sizeof(struct btrfs_key_ptr
));
3014 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3015 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3016 btrfs_mark_buffer_dirty(src
);
3017 btrfs_mark_buffer_dirty(dst
);
3023 * try to push data from one node into the next node right in the
3026 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3027 * error, and > 0 if there was no room in the right hand block.
3029 * this will only push up to 1/2 the contents of the left node over
3031 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3032 struct btrfs_root
*root
,
3033 struct extent_buffer
*dst
,
3034 struct extent_buffer
*src
)
3042 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3043 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3045 src_nritems
= btrfs_header_nritems(src
);
3046 dst_nritems
= btrfs_header_nritems(dst
);
3047 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3048 if (push_items
<= 0)
3051 if (src_nritems
< 4)
3054 max_push
= src_nritems
/ 2 + 1;
3055 /* don't try to empty the node */
3056 if (max_push
>= src_nritems
)
3059 if (max_push
< push_items
)
3060 push_items
= max_push
;
3062 tree_mod_log_eb_move(root
->fs_info
, dst
, push_items
, 0, dst_nritems
);
3063 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3064 btrfs_node_key_ptr_offset(0),
3066 sizeof(struct btrfs_key_ptr
));
3068 tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, 0,
3069 src_nritems
- push_items
, push_items
);
3070 copy_extent_buffer(dst
, src
,
3071 btrfs_node_key_ptr_offset(0),
3072 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3073 push_items
* sizeof(struct btrfs_key_ptr
));
3075 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3076 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3078 btrfs_mark_buffer_dirty(src
);
3079 btrfs_mark_buffer_dirty(dst
);
3085 * helper function to insert a new root level in the tree.
3086 * A new node is allocated, and a single item is inserted to
3087 * point to the existing root
3089 * returns zero on success or < 0 on failure.
3091 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3092 struct btrfs_root
*root
,
3093 struct btrfs_path
*path
, int level
)
3096 struct extent_buffer
*lower
;
3097 struct extent_buffer
*c
;
3098 struct extent_buffer
*old
;
3099 struct btrfs_disk_key lower_key
;
3101 BUG_ON(path
->nodes
[level
]);
3102 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3104 lower
= path
->nodes
[level
-1];
3106 btrfs_item_key(lower
, &lower_key
, 0);
3108 btrfs_node_key(lower
, &lower_key
, 0);
3110 c
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
3111 root
->root_key
.objectid
, &lower_key
,
3112 level
, root
->node
->start
, 0);
3116 root_add_used(root
, root
->nodesize
);
3118 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
3119 btrfs_set_header_nritems(c
, 1);
3120 btrfs_set_header_level(c
, level
);
3121 btrfs_set_header_bytenr(c
, c
->start
);
3122 btrfs_set_header_generation(c
, trans
->transid
);
3123 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
3124 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
3126 write_extent_buffer(c
, root
->fs_info
->fsid
,
3127 (unsigned long)btrfs_header_fsid(c
),
3130 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
3131 (unsigned long)btrfs_header_chunk_tree_uuid(c
),
3134 btrfs_set_node_key(c
, &lower_key
, 0);
3135 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3136 lower_gen
= btrfs_header_generation(lower
);
3137 WARN_ON(lower_gen
!= trans
->transid
);
3139 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3141 btrfs_mark_buffer_dirty(c
);
3144 tree_mod_log_set_root_pointer(root
, c
);
3145 rcu_assign_pointer(root
->node
, c
);
3147 /* the super has an extra ref to root->node */
3148 free_extent_buffer(old
);
3150 add_root_to_dirty_list(root
);
3151 extent_buffer_get(c
);
3152 path
->nodes
[level
] = c
;
3153 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
3154 path
->slots
[level
] = 0;
3159 * worker function to insert a single pointer in a node.
3160 * the node should have enough room for the pointer already
3162 * slot and level indicate where you want the key to go, and
3163 * blocknr is the block the key points to.
3165 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3166 struct btrfs_root
*root
, struct btrfs_path
*path
,
3167 struct btrfs_disk_key
*key
, u64 bytenr
,
3168 int slot
, int level
)
3170 struct extent_buffer
*lower
;
3174 BUG_ON(!path
->nodes
[level
]);
3175 btrfs_assert_tree_locked(path
->nodes
[level
]);
3176 lower
= path
->nodes
[level
];
3177 nritems
= btrfs_header_nritems(lower
);
3178 BUG_ON(slot
> nritems
);
3179 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
));
3180 if (slot
!= nritems
) {
3182 tree_mod_log_eb_move(root
->fs_info
, lower
, slot
+ 1,
3183 slot
, nritems
- slot
);
3184 memmove_extent_buffer(lower
,
3185 btrfs_node_key_ptr_offset(slot
+ 1),
3186 btrfs_node_key_ptr_offset(slot
),
3187 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3190 ret
= tree_mod_log_insert_key(root
->fs_info
, lower
, slot
,
3194 btrfs_set_node_key(lower
, key
, slot
);
3195 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3196 WARN_ON(trans
->transid
== 0);
3197 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3198 btrfs_set_header_nritems(lower
, nritems
+ 1);
3199 btrfs_mark_buffer_dirty(lower
);
3203 * split the node at the specified level in path in two.
3204 * The path is corrected to point to the appropriate node after the split
3206 * Before splitting this tries to make some room in the node by pushing
3207 * left and right, if either one works, it returns right away.
3209 * returns 0 on success and < 0 on failure
3211 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3212 struct btrfs_root
*root
,
3213 struct btrfs_path
*path
, int level
)
3215 struct extent_buffer
*c
;
3216 struct extent_buffer
*split
;
3217 struct btrfs_disk_key disk_key
;
3222 c
= path
->nodes
[level
];
3223 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3224 if (c
== root
->node
) {
3225 /* trying to split the root, lets make a new one */
3226 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3230 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3231 c
= path
->nodes
[level
];
3232 if (!ret
&& btrfs_header_nritems(c
) <
3233 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
3239 c_nritems
= btrfs_header_nritems(c
);
3240 mid
= (c_nritems
+ 1) / 2;
3241 btrfs_node_key(c
, &disk_key
, mid
);
3243 split
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
3244 root
->root_key
.objectid
,
3245 &disk_key
, level
, c
->start
, 0);
3247 return PTR_ERR(split
);
3249 root_add_used(root
, root
->nodesize
);
3251 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
3252 btrfs_set_header_level(split
, btrfs_header_level(c
));
3253 btrfs_set_header_bytenr(split
, split
->start
);
3254 btrfs_set_header_generation(split
, trans
->transid
);
3255 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
3256 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
3257 write_extent_buffer(split
, root
->fs_info
->fsid
,
3258 (unsigned long)btrfs_header_fsid(split
),
3260 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
3261 (unsigned long)btrfs_header_chunk_tree_uuid(split
),
3264 tree_mod_log_eb_copy(root
->fs_info
, split
, c
, 0, mid
, c_nritems
- mid
);
3265 copy_extent_buffer(split
, c
,
3266 btrfs_node_key_ptr_offset(0),
3267 btrfs_node_key_ptr_offset(mid
),
3268 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3269 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3270 btrfs_set_header_nritems(c
, mid
);
3273 btrfs_mark_buffer_dirty(c
);
3274 btrfs_mark_buffer_dirty(split
);
3276 insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
3277 path
->slots
[level
+ 1] + 1, level
+ 1);
3279 if (path
->slots
[level
] >= mid
) {
3280 path
->slots
[level
] -= mid
;
3281 btrfs_tree_unlock(c
);
3282 free_extent_buffer(c
);
3283 path
->nodes
[level
] = split
;
3284 path
->slots
[level
+ 1] += 1;
3286 btrfs_tree_unlock(split
);
3287 free_extent_buffer(split
);
3293 * how many bytes are required to store the items in a leaf. start
3294 * and nr indicate which items in the leaf to check. This totals up the
3295 * space used both by the item structs and the item data
3297 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3299 struct btrfs_item
*start_item
;
3300 struct btrfs_item
*end_item
;
3301 struct btrfs_map_token token
;
3303 int nritems
= btrfs_header_nritems(l
);
3304 int end
= min(nritems
, start
+ nr
) - 1;
3308 btrfs_init_map_token(&token
);
3309 start_item
= btrfs_item_nr(l
, start
);
3310 end_item
= btrfs_item_nr(l
, end
);
3311 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3312 btrfs_token_item_size(l
, start_item
, &token
);
3313 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3314 data_len
+= sizeof(struct btrfs_item
) * nr
;
3315 WARN_ON(data_len
< 0);
3320 * The space between the end of the leaf items and
3321 * the start of the leaf data. IOW, how much room
3322 * the leaf has left for both items and data
3324 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
3325 struct extent_buffer
*leaf
)
3327 int nritems
= btrfs_header_nritems(leaf
);
3329 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
3331 printk(KERN_CRIT
"leaf free space ret %d, leaf data size %lu, "
3332 "used %d nritems %d\n",
3333 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
3334 leaf_space_used(leaf
, 0, nritems
), nritems
);
3340 * min slot controls the lowest index we're willing to push to the
3341 * right. We'll push up to and including min_slot, but no lower
3343 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
3344 struct btrfs_root
*root
,
3345 struct btrfs_path
*path
,
3346 int data_size
, int empty
,
3347 struct extent_buffer
*right
,
3348 int free_space
, u32 left_nritems
,
3351 struct extent_buffer
*left
= path
->nodes
[0];
3352 struct extent_buffer
*upper
= path
->nodes
[1];
3353 struct btrfs_map_token token
;
3354 struct btrfs_disk_key disk_key
;
3359 struct btrfs_item
*item
;
3365 btrfs_init_map_token(&token
);
3370 nr
= max_t(u32
, 1, min_slot
);
3372 if (path
->slots
[0] >= left_nritems
)
3373 push_space
+= data_size
;
3375 slot
= path
->slots
[1];
3376 i
= left_nritems
- 1;
3378 item
= btrfs_item_nr(left
, i
);
3380 if (!empty
&& push_items
> 0) {
3381 if (path
->slots
[0] > i
)
3383 if (path
->slots
[0] == i
) {
3384 int space
= btrfs_leaf_free_space(root
, left
);
3385 if (space
+ push_space
* 2 > free_space
)
3390 if (path
->slots
[0] == i
)
3391 push_space
+= data_size
;
3393 this_item_size
= btrfs_item_size(left
, item
);
3394 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3398 push_space
+= this_item_size
+ sizeof(*item
);
3404 if (push_items
== 0)
3407 WARN_ON(!empty
&& push_items
== left_nritems
);
3409 /* push left to right */
3410 right_nritems
= btrfs_header_nritems(right
);
3412 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3413 push_space
-= leaf_data_end(root
, left
);
3415 /* make room in the right data area */
3416 data_end
= leaf_data_end(root
, right
);
3417 memmove_extent_buffer(right
,
3418 btrfs_leaf_data(right
) + data_end
- push_space
,
3419 btrfs_leaf_data(right
) + data_end
,
3420 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
3422 /* copy from the left data area */
3423 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
3424 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3425 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
3428 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3429 btrfs_item_nr_offset(0),
3430 right_nritems
* sizeof(struct btrfs_item
));
3432 /* copy the items from left to right */
3433 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3434 btrfs_item_nr_offset(left_nritems
- push_items
),
3435 push_items
* sizeof(struct btrfs_item
));
3437 /* update the item pointers */
3438 right_nritems
+= push_items
;
3439 btrfs_set_header_nritems(right
, right_nritems
);
3440 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3441 for (i
= 0; i
< right_nritems
; i
++) {
3442 item
= btrfs_item_nr(right
, i
);
3443 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3444 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3447 left_nritems
-= push_items
;
3448 btrfs_set_header_nritems(left
, left_nritems
);
3451 btrfs_mark_buffer_dirty(left
);
3453 clean_tree_block(trans
, root
, left
);
3455 btrfs_mark_buffer_dirty(right
);
3457 btrfs_item_key(right
, &disk_key
, 0);
3458 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3459 btrfs_mark_buffer_dirty(upper
);
3461 /* then fixup the leaf pointer in the path */
3462 if (path
->slots
[0] >= left_nritems
) {
3463 path
->slots
[0] -= left_nritems
;
3464 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3465 clean_tree_block(trans
, root
, path
->nodes
[0]);
3466 btrfs_tree_unlock(path
->nodes
[0]);
3467 free_extent_buffer(path
->nodes
[0]);
3468 path
->nodes
[0] = right
;
3469 path
->slots
[1] += 1;
3471 btrfs_tree_unlock(right
);
3472 free_extent_buffer(right
);
3477 btrfs_tree_unlock(right
);
3478 free_extent_buffer(right
);
3483 * push some data in the path leaf to the right, trying to free up at
3484 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3486 * returns 1 if the push failed because the other node didn't have enough
3487 * room, 0 if everything worked out and < 0 if there were major errors.
3489 * this will push starting from min_slot to the end of the leaf. It won't
3490 * push any slot lower than min_slot
3492 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3493 *root
, struct btrfs_path
*path
,
3494 int min_data_size
, int data_size
,
3495 int empty
, u32 min_slot
)
3497 struct extent_buffer
*left
= path
->nodes
[0];
3498 struct extent_buffer
*right
;
3499 struct extent_buffer
*upper
;
3505 if (!path
->nodes
[1])
3508 slot
= path
->slots
[1];
3509 upper
= path
->nodes
[1];
3510 if (slot
>= btrfs_header_nritems(upper
) - 1)
3513 btrfs_assert_tree_locked(path
->nodes
[1]);
3515 right
= read_node_slot(root
, upper
, slot
+ 1);
3519 btrfs_tree_lock(right
);
3520 btrfs_set_lock_blocking(right
);
3522 free_space
= btrfs_leaf_free_space(root
, right
);
3523 if (free_space
< data_size
)
3526 /* cow and double check */
3527 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3532 free_space
= btrfs_leaf_free_space(root
, right
);
3533 if (free_space
< data_size
)
3536 left_nritems
= btrfs_header_nritems(left
);
3537 if (left_nritems
== 0)
3540 return __push_leaf_right(trans
, root
, path
, min_data_size
, empty
,
3541 right
, free_space
, left_nritems
, min_slot
);
3543 btrfs_tree_unlock(right
);
3544 free_extent_buffer(right
);
3549 * push some data in the path leaf to the left, trying to free up at
3550 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3552 * max_slot can put a limit on how far into the leaf we'll push items. The
3553 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3556 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
3557 struct btrfs_root
*root
,
3558 struct btrfs_path
*path
, int data_size
,
3559 int empty
, struct extent_buffer
*left
,
3560 int free_space
, u32 right_nritems
,
3563 struct btrfs_disk_key disk_key
;
3564 struct extent_buffer
*right
= path
->nodes
[0];
3568 struct btrfs_item
*item
;
3569 u32 old_left_nritems
;
3573 u32 old_left_item_size
;
3574 struct btrfs_map_token token
;
3576 btrfs_init_map_token(&token
);
3579 nr
= min(right_nritems
, max_slot
);
3581 nr
= min(right_nritems
- 1, max_slot
);
3583 for (i
= 0; i
< nr
; i
++) {
3584 item
= btrfs_item_nr(right
, i
);
3586 if (!empty
&& push_items
> 0) {
3587 if (path
->slots
[0] < i
)
3589 if (path
->slots
[0] == i
) {
3590 int space
= btrfs_leaf_free_space(root
, right
);
3591 if (space
+ push_space
* 2 > free_space
)
3596 if (path
->slots
[0] == i
)
3597 push_space
+= data_size
;
3599 this_item_size
= btrfs_item_size(right
, item
);
3600 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3604 push_space
+= this_item_size
+ sizeof(*item
);
3607 if (push_items
== 0) {
3611 if (!empty
&& push_items
== btrfs_header_nritems(right
))
3614 /* push data from right to left */
3615 copy_extent_buffer(left
, right
,
3616 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3617 btrfs_item_nr_offset(0),
3618 push_items
* sizeof(struct btrfs_item
));
3620 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
3621 btrfs_item_offset_nr(right
, push_items
- 1);
3623 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
3624 leaf_data_end(root
, left
) - push_space
,
3625 btrfs_leaf_data(right
) +
3626 btrfs_item_offset_nr(right
, push_items
- 1),
3628 old_left_nritems
= btrfs_header_nritems(left
);
3629 BUG_ON(old_left_nritems
<= 0);
3631 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3632 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3635 item
= btrfs_item_nr(left
, i
);
3637 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3638 btrfs_set_token_item_offset(left
, item
,
3639 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
),
3642 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3644 /* fixup right node */
3645 if (push_items
> right_nritems
)
3646 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3649 if (push_items
< right_nritems
) {
3650 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3651 leaf_data_end(root
, right
);
3652 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
3653 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3654 btrfs_leaf_data(right
) +
3655 leaf_data_end(root
, right
), push_space
);
3657 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3658 btrfs_item_nr_offset(push_items
),
3659 (btrfs_header_nritems(right
) - push_items
) *
3660 sizeof(struct btrfs_item
));
3662 right_nritems
-= push_items
;
3663 btrfs_set_header_nritems(right
, right_nritems
);
3664 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3665 for (i
= 0; i
< right_nritems
; i
++) {
3666 item
= btrfs_item_nr(right
, i
);
3668 push_space
= push_space
- btrfs_token_item_size(right
,
3670 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3673 btrfs_mark_buffer_dirty(left
);
3675 btrfs_mark_buffer_dirty(right
);
3677 clean_tree_block(trans
, root
, right
);
3679 btrfs_item_key(right
, &disk_key
, 0);
3680 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3682 /* then fixup the leaf pointer in the path */
3683 if (path
->slots
[0] < push_items
) {
3684 path
->slots
[0] += old_left_nritems
;
3685 btrfs_tree_unlock(path
->nodes
[0]);
3686 free_extent_buffer(path
->nodes
[0]);
3687 path
->nodes
[0] = left
;
3688 path
->slots
[1] -= 1;
3690 btrfs_tree_unlock(left
);
3691 free_extent_buffer(left
);
3692 path
->slots
[0] -= push_items
;
3694 BUG_ON(path
->slots
[0] < 0);
3697 btrfs_tree_unlock(left
);
3698 free_extent_buffer(left
);
3703 * push some data in the path leaf to the left, trying to free up at
3704 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3706 * max_slot can put a limit on how far into the leaf we'll push items. The
3707 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3710 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3711 *root
, struct btrfs_path
*path
, int min_data_size
,
3712 int data_size
, int empty
, u32 max_slot
)
3714 struct extent_buffer
*right
= path
->nodes
[0];
3715 struct extent_buffer
*left
;
3721 slot
= path
->slots
[1];
3724 if (!path
->nodes
[1])
3727 right_nritems
= btrfs_header_nritems(right
);
3728 if (right_nritems
== 0)
3731 btrfs_assert_tree_locked(path
->nodes
[1]);
3733 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
3737 btrfs_tree_lock(left
);
3738 btrfs_set_lock_blocking(left
);
3740 free_space
= btrfs_leaf_free_space(root
, left
);
3741 if (free_space
< data_size
) {
3746 /* cow and double check */
3747 ret
= btrfs_cow_block(trans
, root
, left
,
3748 path
->nodes
[1], slot
- 1, &left
);
3750 /* we hit -ENOSPC, but it isn't fatal here */
3756 free_space
= btrfs_leaf_free_space(root
, left
);
3757 if (free_space
< data_size
) {
3762 return __push_leaf_left(trans
, root
, path
, min_data_size
,
3763 empty
, left
, free_space
, right_nritems
,
3766 btrfs_tree_unlock(left
);
3767 free_extent_buffer(left
);
3772 * split the path's leaf in two, making sure there is at least data_size
3773 * available for the resulting leaf level of the path.
3775 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
3776 struct btrfs_root
*root
,
3777 struct btrfs_path
*path
,
3778 struct extent_buffer
*l
,
3779 struct extent_buffer
*right
,
3780 int slot
, int mid
, int nritems
)
3785 struct btrfs_disk_key disk_key
;
3786 struct btrfs_map_token token
;
3788 btrfs_init_map_token(&token
);
3790 nritems
= nritems
- mid
;
3791 btrfs_set_header_nritems(right
, nritems
);
3792 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
3794 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
3795 btrfs_item_nr_offset(mid
),
3796 nritems
* sizeof(struct btrfs_item
));
3798 copy_extent_buffer(right
, l
,
3799 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
3800 data_copy_size
, btrfs_leaf_data(l
) +
3801 leaf_data_end(root
, l
), data_copy_size
);
3803 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
3804 btrfs_item_end_nr(l
, mid
);
3806 for (i
= 0; i
< nritems
; i
++) {
3807 struct btrfs_item
*item
= btrfs_item_nr(right
, i
);
3810 ioff
= btrfs_token_item_offset(right
, item
, &token
);
3811 btrfs_set_token_item_offset(right
, item
,
3812 ioff
+ rt_data_off
, &token
);
3815 btrfs_set_header_nritems(l
, mid
);
3816 btrfs_item_key(right
, &disk_key
, 0);
3817 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
3818 path
->slots
[1] + 1, 1);
3820 btrfs_mark_buffer_dirty(right
);
3821 btrfs_mark_buffer_dirty(l
);
3822 BUG_ON(path
->slots
[0] != slot
);
3825 btrfs_tree_unlock(path
->nodes
[0]);
3826 free_extent_buffer(path
->nodes
[0]);
3827 path
->nodes
[0] = right
;
3828 path
->slots
[0] -= mid
;
3829 path
->slots
[1] += 1;
3831 btrfs_tree_unlock(right
);
3832 free_extent_buffer(right
);
3835 BUG_ON(path
->slots
[0] < 0);
3839 * double splits happen when we need to insert a big item in the middle
3840 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3841 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3844 * We avoid this by trying to push the items on either side of our target
3845 * into the adjacent leaves. If all goes well we can avoid the double split
3848 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
3849 struct btrfs_root
*root
,
3850 struct btrfs_path
*path
,
3858 slot
= path
->slots
[0];
3861 * try to push all the items after our slot into the
3864 ret
= push_leaf_right(trans
, root
, path
, 1, data_size
, 0, slot
);
3871 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3873 * our goal is to get our slot at the start or end of a leaf. If
3874 * we've done so we're done
3876 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
3879 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
3882 /* try to push all the items before our slot into the next leaf */
3883 slot
= path
->slots
[0];
3884 ret
= push_leaf_left(trans
, root
, path
, 1, data_size
, 0, slot
);
3897 * split the path's leaf in two, making sure there is at least data_size
3898 * available for the resulting leaf level of the path.
3900 * returns 0 if all went well and < 0 on failure.
3902 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
3903 struct btrfs_root
*root
,
3904 struct btrfs_key
*ins_key
,
3905 struct btrfs_path
*path
, int data_size
,
3908 struct btrfs_disk_key disk_key
;
3909 struct extent_buffer
*l
;
3913 struct extent_buffer
*right
;
3917 int num_doubles
= 0;
3918 int tried_avoid_double
= 0;
3921 slot
= path
->slots
[0];
3922 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
3923 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
3926 /* first try to make some room by pushing left and right */
3928 wret
= push_leaf_right(trans
, root
, path
, data_size
,
3933 wret
= push_leaf_left(trans
, root
, path
, data_size
,
3934 data_size
, 0, (u32
)-1);
3940 /* did the pushes work? */
3941 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
3945 if (!path
->nodes
[1]) {
3946 ret
= insert_new_root(trans
, root
, path
, 1);
3953 slot
= path
->slots
[0];
3954 nritems
= btrfs_header_nritems(l
);
3955 mid
= (nritems
+ 1) / 2;
3959 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
3960 BTRFS_LEAF_DATA_SIZE(root
)) {
3961 if (slot
>= nritems
) {
3965 if (mid
!= nritems
&&
3966 leaf_space_used(l
, mid
, nritems
- mid
) +
3967 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
3968 if (data_size
&& !tried_avoid_double
)
3969 goto push_for_double
;
3975 if (leaf_space_used(l
, 0, mid
) + data_size
>
3976 BTRFS_LEAF_DATA_SIZE(root
)) {
3977 if (!extend
&& data_size
&& slot
== 0) {
3979 } else if ((extend
|| !data_size
) && slot
== 0) {
3983 if (mid
!= nritems
&&
3984 leaf_space_used(l
, mid
, nritems
- mid
) +
3985 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
3986 if (data_size
&& !tried_avoid_double
)
3987 goto push_for_double
;
3995 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
3997 btrfs_item_key(l
, &disk_key
, mid
);
3999 right
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
4000 root
->root_key
.objectid
,
4001 &disk_key
, 0, l
->start
, 0);
4003 return PTR_ERR(right
);
4005 root_add_used(root
, root
->leafsize
);
4007 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
4008 btrfs_set_header_bytenr(right
, right
->start
);
4009 btrfs_set_header_generation(right
, trans
->transid
);
4010 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
4011 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
4012 btrfs_set_header_level(right
, 0);
4013 write_extent_buffer(right
, root
->fs_info
->fsid
,
4014 (unsigned long)btrfs_header_fsid(right
),
4017 write_extent_buffer(right
, root
->fs_info
->chunk_tree_uuid
,
4018 (unsigned long)btrfs_header_chunk_tree_uuid(right
),
4023 btrfs_set_header_nritems(right
, 0);
4024 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4025 path
->slots
[1] + 1, 1);
4026 btrfs_tree_unlock(path
->nodes
[0]);
4027 free_extent_buffer(path
->nodes
[0]);
4028 path
->nodes
[0] = right
;
4030 path
->slots
[1] += 1;
4032 btrfs_set_header_nritems(right
, 0);
4033 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4035 btrfs_tree_unlock(path
->nodes
[0]);
4036 free_extent_buffer(path
->nodes
[0]);
4037 path
->nodes
[0] = right
;
4039 if (path
->slots
[1] == 0)
4040 fixup_low_keys(trans
, root
, path
,
4043 btrfs_mark_buffer_dirty(right
);
4047 copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
4050 BUG_ON(num_doubles
!= 0);
4058 push_for_double_split(trans
, root
, path
, data_size
);
4059 tried_avoid_double
= 1;
4060 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4065 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4066 struct btrfs_root
*root
,
4067 struct btrfs_path
*path
, int ins_len
)
4069 struct btrfs_key key
;
4070 struct extent_buffer
*leaf
;
4071 struct btrfs_file_extent_item
*fi
;
4076 leaf
= path
->nodes
[0];
4077 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4079 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4080 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4082 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
4085 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4086 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4087 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4088 struct btrfs_file_extent_item
);
4089 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4091 btrfs_release_path(path
);
4093 path
->keep_locks
= 1;
4094 path
->search_for_split
= 1;
4095 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4096 path
->search_for_split
= 0;
4101 leaf
= path
->nodes
[0];
4102 /* if our item isn't there or got smaller, return now */
4103 if (ret
> 0 || item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4106 /* the leaf has changed, it now has room. return now */
4107 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= ins_len
)
4110 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4111 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4112 struct btrfs_file_extent_item
);
4113 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4117 btrfs_set_path_blocking(path
);
4118 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4122 path
->keep_locks
= 0;
4123 btrfs_unlock_up_safe(path
, 1);
4126 path
->keep_locks
= 0;
4130 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
4131 struct btrfs_root
*root
,
4132 struct btrfs_path
*path
,
4133 struct btrfs_key
*new_key
,
4134 unsigned long split_offset
)
4136 struct extent_buffer
*leaf
;
4137 struct btrfs_item
*item
;
4138 struct btrfs_item
*new_item
;
4144 struct btrfs_disk_key disk_key
;
4146 leaf
= path
->nodes
[0];
4147 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
4149 btrfs_set_path_blocking(path
);
4151 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
4152 orig_offset
= btrfs_item_offset(leaf
, item
);
4153 item_size
= btrfs_item_size(leaf
, item
);
4155 buf
= kmalloc(item_size
, GFP_NOFS
);
4159 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4160 path
->slots
[0]), item_size
);
4162 slot
= path
->slots
[0] + 1;
4163 nritems
= btrfs_header_nritems(leaf
);
4164 if (slot
!= nritems
) {
4165 /* shift the items */
4166 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4167 btrfs_item_nr_offset(slot
),
4168 (nritems
- slot
) * sizeof(struct btrfs_item
));
4171 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4172 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4174 new_item
= btrfs_item_nr(leaf
, slot
);
4176 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4177 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4179 btrfs_set_item_offset(leaf
, item
,
4180 orig_offset
+ item_size
- split_offset
);
4181 btrfs_set_item_size(leaf
, item
, split_offset
);
4183 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4185 /* write the data for the start of the original item */
4186 write_extent_buffer(leaf
, buf
,
4187 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4190 /* write the data for the new item */
4191 write_extent_buffer(leaf
, buf
+ split_offset
,
4192 btrfs_item_ptr_offset(leaf
, slot
),
4193 item_size
- split_offset
);
4194 btrfs_mark_buffer_dirty(leaf
);
4196 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
4202 * This function splits a single item into two items,
4203 * giving 'new_key' to the new item and splitting the
4204 * old one at split_offset (from the start of the item).
4206 * The path may be released by this operation. After
4207 * the split, the path is pointing to the old item. The
4208 * new item is going to be in the same node as the old one.
4210 * Note, the item being split must be smaller enough to live alone on
4211 * a tree block with room for one extra struct btrfs_item
4213 * This allows us to split the item in place, keeping a lock on the
4214 * leaf the entire time.
4216 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4217 struct btrfs_root
*root
,
4218 struct btrfs_path
*path
,
4219 struct btrfs_key
*new_key
,
4220 unsigned long split_offset
)
4223 ret
= setup_leaf_for_split(trans
, root
, path
,
4224 sizeof(struct btrfs_item
));
4228 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
4233 * This function duplicate a item, giving 'new_key' to the new item.
4234 * It guarantees both items live in the same tree leaf and the new item
4235 * is contiguous with the original item.
4237 * This allows us to split file extent in place, keeping a lock on the
4238 * leaf the entire time.
4240 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4241 struct btrfs_root
*root
,
4242 struct btrfs_path
*path
,
4243 struct btrfs_key
*new_key
)
4245 struct extent_buffer
*leaf
;
4249 leaf
= path
->nodes
[0];
4250 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4251 ret
= setup_leaf_for_split(trans
, root
, path
,
4252 item_size
+ sizeof(struct btrfs_item
));
4257 setup_items_for_insert(trans
, root
, path
, new_key
, &item_size
,
4258 item_size
, item_size
+
4259 sizeof(struct btrfs_item
), 1);
4260 leaf
= path
->nodes
[0];
4261 memcpy_extent_buffer(leaf
,
4262 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4263 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4269 * make the item pointed to by the path smaller. new_size indicates
4270 * how small to make it, and from_end tells us if we just chop bytes
4271 * off the end of the item or if we shift the item to chop bytes off
4274 void btrfs_truncate_item(struct btrfs_trans_handle
*trans
,
4275 struct btrfs_root
*root
,
4276 struct btrfs_path
*path
,
4277 u32 new_size
, int from_end
)
4280 struct extent_buffer
*leaf
;
4281 struct btrfs_item
*item
;
4283 unsigned int data_end
;
4284 unsigned int old_data_start
;
4285 unsigned int old_size
;
4286 unsigned int size_diff
;
4288 struct btrfs_map_token token
;
4290 btrfs_init_map_token(&token
);
4292 leaf
= path
->nodes
[0];
4293 slot
= path
->slots
[0];
4295 old_size
= btrfs_item_size_nr(leaf
, slot
);
4296 if (old_size
== new_size
)
4299 nritems
= btrfs_header_nritems(leaf
);
4300 data_end
= leaf_data_end(root
, leaf
);
4302 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4304 size_diff
= old_size
- new_size
;
4307 BUG_ON(slot
>= nritems
);
4310 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4312 /* first correct the data pointers */
4313 for (i
= slot
; i
< nritems
; i
++) {
4315 item
= btrfs_item_nr(leaf
, i
);
4317 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4318 btrfs_set_token_item_offset(leaf
, item
,
4319 ioff
+ size_diff
, &token
);
4322 /* shift the data */
4324 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4325 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4326 data_end
, old_data_start
+ new_size
- data_end
);
4328 struct btrfs_disk_key disk_key
;
4331 btrfs_item_key(leaf
, &disk_key
, slot
);
4333 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4335 struct btrfs_file_extent_item
*fi
;
4337 fi
= btrfs_item_ptr(leaf
, slot
,
4338 struct btrfs_file_extent_item
);
4339 fi
= (struct btrfs_file_extent_item
*)(
4340 (unsigned long)fi
- size_diff
);
4342 if (btrfs_file_extent_type(leaf
, fi
) ==
4343 BTRFS_FILE_EXTENT_INLINE
) {
4344 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4345 memmove_extent_buffer(leaf
, ptr
,
4347 offsetof(struct btrfs_file_extent_item
,
4352 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4353 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4354 data_end
, old_data_start
- data_end
);
4356 offset
= btrfs_disk_key_offset(&disk_key
);
4357 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4358 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4360 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4363 item
= btrfs_item_nr(leaf
, slot
);
4364 btrfs_set_item_size(leaf
, item
, new_size
);
4365 btrfs_mark_buffer_dirty(leaf
);
4367 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4368 btrfs_print_leaf(root
, leaf
);
4374 * make the item pointed to by the path bigger, data_size is the new size.
4376 void btrfs_extend_item(struct btrfs_trans_handle
*trans
,
4377 struct btrfs_root
*root
, struct btrfs_path
*path
,
4381 struct extent_buffer
*leaf
;
4382 struct btrfs_item
*item
;
4384 unsigned int data_end
;
4385 unsigned int old_data
;
4386 unsigned int old_size
;
4388 struct btrfs_map_token token
;
4390 btrfs_init_map_token(&token
);
4392 leaf
= path
->nodes
[0];
4394 nritems
= btrfs_header_nritems(leaf
);
4395 data_end
= leaf_data_end(root
, leaf
);
4397 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
4398 btrfs_print_leaf(root
, leaf
);
4401 slot
= path
->slots
[0];
4402 old_data
= btrfs_item_end_nr(leaf
, slot
);
4405 if (slot
>= nritems
) {
4406 btrfs_print_leaf(root
, leaf
);
4407 printk(KERN_CRIT
"slot %d too large, nritems %d\n",
4413 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4415 /* first correct the data pointers */
4416 for (i
= slot
; i
< nritems
; i
++) {
4418 item
= btrfs_item_nr(leaf
, i
);
4420 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4421 btrfs_set_token_item_offset(leaf
, item
,
4422 ioff
- data_size
, &token
);
4425 /* shift the data */
4426 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4427 data_end
- data_size
, btrfs_leaf_data(leaf
) +
4428 data_end
, old_data
- data_end
);
4430 data_end
= old_data
;
4431 old_size
= btrfs_item_size_nr(leaf
, slot
);
4432 item
= btrfs_item_nr(leaf
, slot
);
4433 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4434 btrfs_mark_buffer_dirty(leaf
);
4436 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4437 btrfs_print_leaf(root
, leaf
);
4443 * this is a helper for btrfs_insert_empty_items, the main goal here is
4444 * to save stack depth by doing the bulk of the work in a function
4445 * that doesn't call btrfs_search_slot
4447 void setup_items_for_insert(struct btrfs_trans_handle
*trans
,
4448 struct btrfs_root
*root
, struct btrfs_path
*path
,
4449 struct btrfs_key
*cpu_key
, u32
*data_size
,
4450 u32 total_data
, u32 total_size
, int nr
)
4452 struct btrfs_item
*item
;
4455 unsigned int data_end
;
4456 struct btrfs_disk_key disk_key
;
4457 struct extent_buffer
*leaf
;
4459 struct btrfs_map_token token
;
4461 btrfs_init_map_token(&token
);
4463 leaf
= path
->nodes
[0];
4464 slot
= path
->slots
[0];
4466 nritems
= btrfs_header_nritems(leaf
);
4467 data_end
= leaf_data_end(root
, leaf
);
4469 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
4470 btrfs_print_leaf(root
, leaf
);
4471 printk(KERN_CRIT
"not enough freespace need %u have %d\n",
4472 total_size
, btrfs_leaf_free_space(root
, leaf
));
4476 if (slot
!= nritems
) {
4477 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4479 if (old_data
< data_end
) {
4480 btrfs_print_leaf(root
, leaf
);
4481 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
4482 slot
, old_data
, data_end
);
4486 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4488 /* first correct the data pointers */
4489 for (i
= slot
; i
< nritems
; i
++) {
4492 item
= btrfs_item_nr(leaf
, i
);
4493 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4494 btrfs_set_token_item_offset(leaf
, item
,
4495 ioff
- total_data
, &token
);
4497 /* shift the items */
4498 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4499 btrfs_item_nr_offset(slot
),
4500 (nritems
- slot
) * sizeof(struct btrfs_item
));
4502 /* shift the data */
4503 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4504 data_end
- total_data
, btrfs_leaf_data(leaf
) +
4505 data_end
, old_data
- data_end
);
4506 data_end
= old_data
;
4509 /* setup the item for the new data */
4510 for (i
= 0; i
< nr
; i
++) {
4511 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4512 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4513 item
= btrfs_item_nr(leaf
, slot
+ i
);
4514 btrfs_set_token_item_offset(leaf
, item
,
4515 data_end
- data_size
[i
], &token
);
4516 data_end
-= data_size
[i
];
4517 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4520 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4523 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4524 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4526 btrfs_unlock_up_safe(path
, 1);
4527 btrfs_mark_buffer_dirty(leaf
);
4529 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4530 btrfs_print_leaf(root
, leaf
);
4536 * Given a key and some data, insert items into the tree.
4537 * This does all the path init required, making room in the tree if needed.
4539 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4540 struct btrfs_root
*root
,
4541 struct btrfs_path
*path
,
4542 struct btrfs_key
*cpu_key
, u32
*data_size
,
4551 for (i
= 0; i
< nr
; i
++)
4552 total_data
+= data_size
[i
];
4554 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4555 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4561 slot
= path
->slots
[0];
4564 setup_items_for_insert(trans
, root
, path
, cpu_key
, data_size
,
4565 total_data
, total_size
, nr
);
4570 * Given a key and some data, insert an item into the tree.
4571 * This does all the path init required, making room in the tree if needed.
4573 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
4574 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
4578 struct btrfs_path
*path
;
4579 struct extent_buffer
*leaf
;
4582 path
= btrfs_alloc_path();
4585 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4587 leaf
= path
->nodes
[0];
4588 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4589 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4590 btrfs_mark_buffer_dirty(leaf
);
4592 btrfs_free_path(path
);
4597 * delete the pointer from a given node.
4599 * the tree should have been previously balanced so the deletion does not
4602 static void del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4603 struct btrfs_path
*path
, int level
, int slot
)
4605 struct extent_buffer
*parent
= path
->nodes
[level
];
4609 nritems
= btrfs_header_nritems(parent
);
4610 if (slot
!= nritems
- 1) {
4612 tree_mod_log_eb_move(root
->fs_info
, parent
, slot
,
4613 slot
+ 1, nritems
- slot
- 1);
4614 memmove_extent_buffer(parent
,
4615 btrfs_node_key_ptr_offset(slot
),
4616 btrfs_node_key_ptr_offset(slot
+ 1),
4617 sizeof(struct btrfs_key_ptr
) *
4618 (nritems
- slot
- 1));
4620 ret
= tree_mod_log_insert_key(root
->fs_info
, parent
, slot
,
4621 MOD_LOG_KEY_REMOVE
);
4626 btrfs_set_header_nritems(parent
, nritems
);
4627 if (nritems
== 0 && parent
== root
->node
) {
4628 BUG_ON(btrfs_header_level(root
->node
) != 1);
4629 /* just turn the root into a leaf and break */
4630 btrfs_set_header_level(root
->node
, 0);
4631 } else if (slot
== 0) {
4632 struct btrfs_disk_key disk_key
;
4634 btrfs_node_key(parent
, &disk_key
, 0);
4635 fixup_low_keys(trans
, root
, path
, &disk_key
, level
+ 1);
4637 btrfs_mark_buffer_dirty(parent
);
4641 * a helper function to delete the leaf pointed to by path->slots[1] and
4644 * This deletes the pointer in path->nodes[1] and frees the leaf
4645 * block extent. zero is returned if it all worked out, < 0 otherwise.
4647 * The path must have already been setup for deleting the leaf, including
4648 * all the proper balancing. path->nodes[1] must be locked.
4650 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4651 struct btrfs_root
*root
,
4652 struct btrfs_path
*path
,
4653 struct extent_buffer
*leaf
)
4655 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4656 del_ptr(trans
, root
, path
, 1, path
->slots
[1]);
4659 * btrfs_free_extent is expensive, we want to make sure we
4660 * aren't holding any locks when we call it
4662 btrfs_unlock_up_safe(path
, 0);
4664 root_sub_used(root
, leaf
->len
);
4666 extent_buffer_get(leaf
);
4667 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4668 free_extent_buffer_stale(leaf
);
4671 * delete the item at the leaf level in path. If that empties
4672 * the leaf, remove it from the tree
4674 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4675 struct btrfs_path
*path
, int slot
, int nr
)
4677 struct extent_buffer
*leaf
;
4678 struct btrfs_item
*item
;
4685 struct btrfs_map_token token
;
4687 btrfs_init_map_token(&token
);
4689 leaf
= path
->nodes
[0];
4690 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4692 for (i
= 0; i
< nr
; i
++)
4693 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4695 nritems
= btrfs_header_nritems(leaf
);
4697 if (slot
+ nr
!= nritems
) {
4698 int data_end
= leaf_data_end(root
, leaf
);
4700 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4702 btrfs_leaf_data(leaf
) + data_end
,
4703 last_off
- data_end
);
4705 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4708 item
= btrfs_item_nr(leaf
, i
);
4709 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4710 btrfs_set_token_item_offset(leaf
, item
,
4711 ioff
+ dsize
, &token
);
4714 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
4715 btrfs_item_nr_offset(slot
+ nr
),
4716 sizeof(struct btrfs_item
) *
4717 (nritems
- slot
- nr
));
4719 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4722 /* delete the leaf if we've emptied it */
4724 if (leaf
== root
->node
) {
4725 btrfs_set_header_level(leaf
, 0);
4727 btrfs_set_path_blocking(path
);
4728 clean_tree_block(trans
, root
, leaf
);
4729 btrfs_del_leaf(trans
, root
, path
, leaf
);
4732 int used
= leaf_space_used(leaf
, 0, nritems
);
4734 struct btrfs_disk_key disk_key
;
4736 btrfs_item_key(leaf
, &disk_key
, 0);
4737 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4740 /* delete the leaf if it is mostly empty */
4741 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
4742 /* push_leaf_left fixes the path.
4743 * make sure the path still points to our leaf
4744 * for possible call to del_ptr below
4746 slot
= path
->slots
[1];
4747 extent_buffer_get(leaf
);
4749 btrfs_set_path_blocking(path
);
4750 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
4752 if (wret
< 0 && wret
!= -ENOSPC
)
4755 if (path
->nodes
[0] == leaf
&&
4756 btrfs_header_nritems(leaf
)) {
4757 wret
= push_leaf_right(trans
, root
, path
, 1,
4759 if (wret
< 0 && wret
!= -ENOSPC
)
4763 if (btrfs_header_nritems(leaf
) == 0) {
4764 path
->slots
[1] = slot
;
4765 btrfs_del_leaf(trans
, root
, path
, leaf
);
4766 free_extent_buffer(leaf
);
4769 /* if we're still in the path, make sure
4770 * we're dirty. Otherwise, one of the
4771 * push_leaf functions must have already
4772 * dirtied this buffer
4774 if (path
->nodes
[0] == leaf
)
4775 btrfs_mark_buffer_dirty(leaf
);
4776 free_extent_buffer(leaf
);
4779 btrfs_mark_buffer_dirty(leaf
);
4786 * search the tree again to find a leaf with lesser keys
4787 * returns 0 if it found something or 1 if there are no lesser leaves.
4788 * returns < 0 on io errors.
4790 * This may release the path, and so you may lose any locks held at the
4793 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
4795 struct btrfs_key key
;
4796 struct btrfs_disk_key found_key
;
4799 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
4803 else if (key
.type
> 0)
4805 else if (key
.objectid
> 0)
4810 btrfs_release_path(path
);
4811 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4814 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
4815 ret
= comp_keys(&found_key
, &key
);
4822 * A helper function to walk down the tree starting at min_key, and looking
4823 * for nodes or leaves that are have a minimum transaction id.
4824 * This is used by the btree defrag code, and tree logging
4826 * This does not cow, but it does stuff the starting key it finds back
4827 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4828 * key and get a writable path.
4830 * This does lock as it descends, and path->keep_locks should be set
4831 * to 1 by the caller.
4833 * This honors path->lowest_level to prevent descent past a given level
4836 * min_trans indicates the oldest transaction that you are interested
4837 * in walking through. Any nodes or leaves older than min_trans are
4838 * skipped over (without reading them).
4840 * returns zero if something useful was found, < 0 on error and 1 if there
4841 * was nothing in the tree that matched the search criteria.
4843 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
4844 struct btrfs_key
*max_key
,
4845 struct btrfs_path
*path
,
4848 struct extent_buffer
*cur
;
4849 struct btrfs_key found_key
;
4856 WARN_ON(!path
->keep_locks
);
4858 cur
= btrfs_read_lock_root_node(root
);
4859 level
= btrfs_header_level(cur
);
4860 WARN_ON(path
->nodes
[level
]);
4861 path
->nodes
[level
] = cur
;
4862 path
->locks
[level
] = BTRFS_READ_LOCK
;
4864 if (btrfs_header_generation(cur
) < min_trans
) {
4869 nritems
= btrfs_header_nritems(cur
);
4870 level
= btrfs_header_level(cur
);
4871 sret
= bin_search(cur
, min_key
, level
, &slot
);
4873 /* at the lowest level, we're done, setup the path and exit */
4874 if (level
== path
->lowest_level
) {
4875 if (slot
>= nritems
)
4878 path
->slots
[level
] = slot
;
4879 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
4882 if (sret
&& slot
> 0)
4885 * check this node pointer against the min_trans parameters.
4886 * If it is too old, old, skip to the next one.
4888 while (slot
< nritems
) {
4892 blockptr
= btrfs_node_blockptr(cur
, slot
);
4893 gen
= btrfs_node_ptr_generation(cur
, slot
);
4894 if (gen
< min_trans
) {
4902 * we didn't find a candidate key in this node, walk forward
4903 * and find another one
4905 if (slot
>= nritems
) {
4906 path
->slots
[level
] = slot
;
4907 btrfs_set_path_blocking(path
);
4908 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
4911 btrfs_release_path(path
);
4917 /* save our key for returning back */
4918 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
4919 path
->slots
[level
] = slot
;
4920 if (level
== path
->lowest_level
) {
4922 unlock_up(path
, level
, 1, 0, NULL
);
4925 btrfs_set_path_blocking(path
);
4926 cur
= read_node_slot(root
, cur
, slot
);
4927 BUG_ON(!cur
); /* -ENOMEM */
4929 btrfs_tree_read_lock(cur
);
4931 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
4932 path
->nodes
[level
- 1] = cur
;
4933 unlock_up(path
, level
, 1, 0, NULL
);
4934 btrfs_clear_path_blocking(path
, NULL
, 0);
4938 memcpy(min_key
, &found_key
, sizeof(found_key
));
4939 btrfs_set_path_blocking(path
);
4943 static void tree_move_down(struct btrfs_root
*root
,
4944 struct btrfs_path
*path
,
4945 int *level
, int root_level
)
4947 BUG_ON(*level
== 0);
4948 path
->nodes
[*level
- 1] = read_node_slot(root
, path
->nodes
[*level
],
4949 path
->slots
[*level
]);
4950 path
->slots
[*level
- 1] = 0;
4954 static int tree_move_next_or_upnext(struct btrfs_root
*root
,
4955 struct btrfs_path
*path
,
4956 int *level
, int root_level
)
4960 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
4962 path
->slots
[*level
]++;
4964 while (path
->slots
[*level
] >= nritems
) {
4965 if (*level
== root_level
)
4969 path
->slots
[*level
] = 0;
4970 free_extent_buffer(path
->nodes
[*level
]);
4971 path
->nodes
[*level
] = NULL
;
4973 path
->slots
[*level
]++;
4975 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
4982 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4985 static int tree_advance(struct btrfs_root
*root
,
4986 struct btrfs_path
*path
,
4987 int *level
, int root_level
,
4989 struct btrfs_key
*key
)
4993 if (*level
== 0 || !allow_down
) {
4994 ret
= tree_move_next_or_upnext(root
, path
, level
, root_level
);
4996 tree_move_down(root
, path
, level
, root_level
);
5001 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5002 path
->slots
[*level
]);
5004 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5005 path
->slots
[*level
]);
5010 static int tree_compare_item(struct btrfs_root
*left_root
,
5011 struct btrfs_path
*left_path
,
5012 struct btrfs_path
*right_path
,
5017 unsigned long off1
, off2
;
5019 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5020 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5024 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5025 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5026 right_path
->slots
[0]);
5028 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5030 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5037 #define ADVANCE_ONLY_NEXT -1
5040 * This function compares two trees and calls the provided callback for
5041 * every changed/new/deleted item it finds.
5042 * If shared tree blocks are encountered, whole subtrees are skipped, making
5043 * the compare pretty fast on snapshotted subvolumes.
5045 * This currently works on commit roots only. As commit roots are read only,
5046 * we don't do any locking. The commit roots are protected with transactions.
5047 * Transactions are ended and rejoined when a commit is tried in between.
5049 * This function checks for modifications done to the trees while comparing.
5050 * If it detects a change, it aborts immediately.
5052 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5053 struct btrfs_root
*right_root
,
5054 btrfs_changed_cb_t changed_cb
, void *ctx
)
5058 struct btrfs_trans_handle
*trans
= NULL
;
5059 struct btrfs_path
*left_path
= NULL
;
5060 struct btrfs_path
*right_path
= NULL
;
5061 struct btrfs_key left_key
;
5062 struct btrfs_key right_key
;
5063 char *tmp_buf
= NULL
;
5064 int left_root_level
;
5065 int right_root_level
;
5068 int left_end_reached
;
5069 int right_end_reached
;
5074 u64 left_start_ctransid
;
5075 u64 right_start_ctransid
;
5078 left_path
= btrfs_alloc_path();
5083 right_path
= btrfs_alloc_path();
5089 tmp_buf
= kmalloc(left_root
->leafsize
, GFP_NOFS
);
5095 left_path
->search_commit_root
= 1;
5096 left_path
->skip_locking
= 1;
5097 right_path
->search_commit_root
= 1;
5098 right_path
->skip_locking
= 1;
5100 spin_lock(&left_root
->root_item_lock
);
5101 left_start_ctransid
= btrfs_root_ctransid(&left_root
->root_item
);
5102 spin_unlock(&left_root
->root_item_lock
);
5104 spin_lock(&right_root
->root_item_lock
);
5105 right_start_ctransid
= btrfs_root_ctransid(&right_root
->root_item
);
5106 spin_unlock(&right_root
->root_item_lock
);
5108 trans
= btrfs_join_transaction(left_root
);
5109 if (IS_ERR(trans
)) {
5110 ret
= PTR_ERR(trans
);
5116 * Strategy: Go to the first items of both trees. Then do
5118 * If both trees are at level 0
5119 * Compare keys of current items
5120 * If left < right treat left item as new, advance left tree
5122 * If left > right treat right item as deleted, advance right tree
5124 * If left == right do deep compare of items, treat as changed if
5125 * needed, advance both trees and repeat
5126 * If both trees are at the same level but not at level 0
5127 * Compare keys of current nodes/leafs
5128 * If left < right advance left tree and repeat
5129 * If left > right advance right tree and repeat
5130 * If left == right compare blockptrs of the next nodes/leafs
5131 * If they match advance both trees but stay at the same level
5133 * If they don't match advance both trees while allowing to go
5135 * If tree levels are different
5136 * Advance the tree that needs it and repeat
5138 * Advancing a tree means:
5139 * If we are at level 0, try to go to the next slot. If that's not
5140 * possible, go one level up and repeat. Stop when we found a level
5141 * where we could go to the next slot. We may at this point be on a
5144 * If we are not at level 0 and not on shared tree blocks, go one
5147 * If we are not at level 0 and on shared tree blocks, go one slot to
5148 * the right if possible or go up and right.
5151 left_level
= btrfs_header_level(left_root
->commit_root
);
5152 left_root_level
= left_level
;
5153 left_path
->nodes
[left_level
] = left_root
->commit_root
;
5154 extent_buffer_get(left_path
->nodes
[left_level
]);
5156 right_level
= btrfs_header_level(right_root
->commit_root
);
5157 right_root_level
= right_level
;
5158 right_path
->nodes
[right_level
] = right_root
->commit_root
;
5159 extent_buffer_get(right_path
->nodes
[right_level
]);
5161 if (left_level
== 0)
5162 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5163 &left_key
, left_path
->slots
[left_level
]);
5165 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5166 &left_key
, left_path
->slots
[left_level
]);
5167 if (right_level
== 0)
5168 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5169 &right_key
, right_path
->slots
[right_level
]);
5171 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5172 &right_key
, right_path
->slots
[right_level
]);
5174 left_end_reached
= right_end_reached
= 0;
5175 advance_left
= advance_right
= 0;
5179 * We need to make sure the transaction does not get committed
5180 * while we do anything on commit roots. This means, we need to
5181 * join and leave transactions for every item that we process.
5183 if (trans
&& btrfs_should_end_transaction(trans
, left_root
)) {
5184 btrfs_release_path(left_path
);
5185 btrfs_release_path(right_path
);
5187 ret
= btrfs_end_transaction(trans
, left_root
);
5192 /* now rejoin the transaction */
5194 trans
= btrfs_join_transaction(left_root
);
5195 if (IS_ERR(trans
)) {
5196 ret
= PTR_ERR(trans
);
5201 spin_lock(&left_root
->root_item_lock
);
5202 ctransid
= btrfs_root_ctransid(&left_root
->root_item
);
5203 spin_unlock(&left_root
->root_item_lock
);
5204 if (ctransid
!= left_start_ctransid
)
5205 left_start_ctransid
= 0;
5207 spin_lock(&right_root
->root_item_lock
);
5208 ctransid
= btrfs_root_ctransid(&right_root
->root_item
);
5209 spin_unlock(&right_root
->root_item_lock
);
5210 if (ctransid
!= right_start_ctransid
)
5211 right_start_ctransid
= 0;
5213 if (!left_start_ctransid
|| !right_start_ctransid
) {
5214 WARN(1, KERN_WARNING
5215 "btrfs: btrfs_compare_tree detected "
5216 "a change in one of the trees while "
5217 "iterating. This is probably a "
5224 * the commit root may have changed, so start again
5227 left_path
->lowest_level
= left_level
;
5228 right_path
->lowest_level
= right_level
;
5229 ret
= btrfs_search_slot(NULL
, left_root
,
5230 &left_key
, left_path
, 0, 0);
5233 ret
= btrfs_search_slot(NULL
, right_root
,
5234 &right_key
, right_path
, 0, 0);
5239 if (advance_left
&& !left_end_reached
) {
5240 ret
= tree_advance(left_root
, left_path
, &left_level
,
5242 advance_left
!= ADVANCE_ONLY_NEXT
,
5245 left_end_reached
= ADVANCE
;
5248 if (advance_right
&& !right_end_reached
) {
5249 ret
= tree_advance(right_root
, right_path
, &right_level
,
5251 advance_right
!= ADVANCE_ONLY_NEXT
,
5254 right_end_reached
= ADVANCE
;
5258 if (left_end_reached
&& right_end_reached
) {
5261 } else if (left_end_reached
) {
5262 if (right_level
== 0) {
5263 ret
= changed_cb(left_root
, right_root
,
5264 left_path
, right_path
,
5266 BTRFS_COMPARE_TREE_DELETED
,
5271 advance_right
= ADVANCE
;
5273 } else if (right_end_reached
) {
5274 if (left_level
== 0) {
5275 ret
= changed_cb(left_root
, right_root
,
5276 left_path
, right_path
,
5278 BTRFS_COMPARE_TREE_NEW
,
5283 advance_left
= ADVANCE
;
5287 if (left_level
== 0 && right_level
== 0) {
5288 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5290 ret
= changed_cb(left_root
, right_root
,
5291 left_path
, right_path
,
5293 BTRFS_COMPARE_TREE_NEW
,
5297 advance_left
= ADVANCE
;
5298 } else if (cmp
> 0) {
5299 ret
= changed_cb(left_root
, right_root
,
5300 left_path
, right_path
,
5302 BTRFS_COMPARE_TREE_DELETED
,
5306 advance_right
= ADVANCE
;
5308 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5309 ret
= tree_compare_item(left_root
, left_path
,
5310 right_path
, tmp_buf
);
5312 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5313 ret
= changed_cb(left_root
, right_root
,
5314 left_path
, right_path
,
5316 BTRFS_COMPARE_TREE_CHANGED
,
5321 advance_left
= ADVANCE
;
5322 advance_right
= ADVANCE
;
5324 } else if (left_level
== right_level
) {
5325 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5327 advance_left
= ADVANCE
;
5328 } else if (cmp
> 0) {
5329 advance_right
= ADVANCE
;
5331 left_blockptr
= btrfs_node_blockptr(
5332 left_path
->nodes
[left_level
],
5333 left_path
->slots
[left_level
]);
5334 right_blockptr
= btrfs_node_blockptr(
5335 right_path
->nodes
[right_level
],
5336 right_path
->slots
[right_level
]);
5337 if (left_blockptr
== right_blockptr
) {
5339 * As we're on a shared block, don't
5340 * allow to go deeper.
5342 advance_left
= ADVANCE_ONLY_NEXT
;
5343 advance_right
= ADVANCE_ONLY_NEXT
;
5345 advance_left
= ADVANCE
;
5346 advance_right
= ADVANCE
;
5349 } else if (left_level
< right_level
) {
5350 advance_right
= ADVANCE
;
5352 advance_left
= ADVANCE
;
5357 btrfs_free_path(left_path
);
5358 btrfs_free_path(right_path
);
5363 ret
= btrfs_end_transaction(trans
, left_root
);
5365 btrfs_end_transaction(trans
, left_root
);
5372 * this is similar to btrfs_next_leaf, but does not try to preserve
5373 * and fixup the path. It looks for and returns the next key in the
5374 * tree based on the current path and the min_trans parameters.
5376 * 0 is returned if another key is found, < 0 if there are any errors
5377 * and 1 is returned if there are no higher keys in the tree
5379 * path->keep_locks should be set to 1 on the search made before
5380 * calling this function.
5382 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5383 struct btrfs_key
*key
, int level
, u64 min_trans
)
5386 struct extent_buffer
*c
;
5388 WARN_ON(!path
->keep_locks
);
5389 while (level
< BTRFS_MAX_LEVEL
) {
5390 if (!path
->nodes
[level
])
5393 slot
= path
->slots
[level
] + 1;
5394 c
= path
->nodes
[level
];
5396 if (slot
>= btrfs_header_nritems(c
)) {
5399 struct btrfs_key cur_key
;
5400 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5401 !path
->nodes
[level
+ 1])
5404 if (path
->locks
[level
+ 1]) {
5409 slot
= btrfs_header_nritems(c
) - 1;
5411 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5413 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5415 orig_lowest
= path
->lowest_level
;
5416 btrfs_release_path(path
);
5417 path
->lowest_level
= level
;
5418 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5420 path
->lowest_level
= orig_lowest
;
5424 c
= path
->nodes
[level
];
5425 slot
= path
->slots
[level
];
5432 btrfs_item_key_to_cpu(c
, key
, slot
);
5434 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5436 if (gen
< min_trans
) {
5440 btrfs_node_key_to_cpu(c
, key
, slot
);
5448 * search the tree again to find a leaf with greater keys
5449 * returns 0 if it found something or 1 if there are no greater leaves.
5450 * returns < 0 on io errors.
5452 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5454 return btrfs_next_old_leaf(root
, path
, 0);
5457 /* Release the path up to but not including the given level */
5458 static void btrfs_release_level(struct btrfs_path
*path
, int level
)
5462 for (i
= 0; i
< level
; i
++) {
5464 if (!path
->nodes
[i
])
5466 if (path
->locks
[i
]) {
5467 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
5470 free_extent_buffer(path
->nodes
[i
]);
5471 path
->nodes
[i
] = NULL
;
5476 * This function assumes 2 things
5478 * 1) You are using path->keep_locks
5479 * 2) You are not inserting items.
5481 * If either of these are not true do not use this function. If you need a next
5482 * leaf with either of these not being true then this function can be easily
5483 * adapted to do that, but at the moment these are the limitations.
5485 int btrfs_next_leaf_write(struct btrfs_trans_handle
*trans
,
5486 struct btrfs_root
*root
, struct btrfs_path
*path
,
5489 struct extent_buffer
*b
;
5490 struct btrfs_key key
;
5495 int write_lock_level
= BTRFS_MAX_LEVEL
;
5496 int ins_len
= del
? -1 : 0;
5498 WARN_ON(!(path
->keep_locks
|| path
->really_keep_locks
));
5500 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5501 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5503 while (path
->nodes
[level
]) {
5504 nritems
= btrfs_header_nritems(path
->nodes
[level
]);
5505 if (!(path
->locks
[level
] & BTRFS_WRITE_LOCK
)) {
5507 btrfs_release_path(path
);
5508 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
5516 if (path
->slots
[level
] >= nritems
- 1) {
5521 btrfs_release_level(path
, level
);
5525 if (!path
->nodes
[level
]) {
5530 path
->slots
[level
]++;
5531 b
= path
->nodes
[level
];
5534 level
= btrfs_header_level(b
);
5536 if (!should_cow_block(trans
, root
, b
))
5539 btrfs_set_path_blocking(path
);
5540 ret
= btrfs_cow_block(trans
, root
, b
,
5541 path
->nodes
[level
+ 1],
5542 path
->slots
[level
+ 1], &b
);
5546 path
->nodes
[level
] = b
;
5547 btrfs_clear_path_blocking(path
, NULL
, 0);
5549 ret
= setup_nodes_for_search(trans
, root
, path
, b
,
5557 b
= path
->nodes
[level
];
5558 slot
= path
->slots
[level
];
5560 ret
= read_block_for_search(trans
, root
, path
,
5561 &b
, level
, slot
, &key
, 0);
5566 level
= btrfs_header_level(b
);
5567 if (!btrfs_try_tree_write_lock(b
)) {
5568 btrfs_set_path_blocking(path
);
5570 btrfs_clear_path_blocking(path
, b
,
5573 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
5574 path
->nodes
[level
] = b
;
5575 path
->slots
[level
] = 0;
5577 path
->slots
[level
] = 0;
5585 btrfs_release_path(path
);
5590 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5595 struct extent_buffer
*c
;
5596 struct extent_buffer
*next
;
5597 struct btrfs_key key
;
5600 int old_spinning
= path
->leave_spinning
;
5601 int next_rw_lock
= 0;
5603 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5607 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5612 btrfs_release_path(path
);
5614 path
->keep_locks
= 1;
5615 path
->leave_spinning
= 1;
5618 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5620 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5621 path
->keep_locks
= 0;
5626 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5628 * by releasing the path above we dropped all our locks. A balance
5629 * could have added more items next to the key that used to be
5630 * at the very end of the block. So, check again here and
5631 * advance the path if there are now more items available.
5633 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5640 while (level
< BTRFS_MAX_LEVEL
) {
5641 if (!path
->nodes
[level
]) {
5646 slot
= path
->slots
[level
] + 1;
5647 c
= path
->nodes
[level
];
5648 if (slot
>= btrfs_header_nritems(c
)) {
5650 if (level
== BTRFS_MAX_LEVEL
) {
5658 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5659 free_extent_buffer(next
);
5663 next_rw_lock
= path
->locks
[level
];
5664 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5670 btrfs_release_path(path
);
5674 if (!path
->skip_locking
) {
5675 ret
= btrfs_try_tree_read_lock(next
);
5676 if (!ret
&& time_seq
) {
5678 * If we don't get the lock, we may be racing
5679 * with push_leaf_left, holding that lock while
5680 * itself waiting for the leaf we've currently
5681 * locked. To solve this situation, we give up
5682 * on our lock and cycle.
5684 free_extent_buffer(next
);
5685 btrfs_release_path(path
);
5690 btrfs_set_path_blocking(path
);
5691 btrfs_tree_read_lock(next
);
5692 btrfs_clear_path_blocking(path
, next
,
5695 next_rw_lock
= BTRFS_READ_LOCK
;
5699 path
->slots
[level
] = slot
;
5702 c
= path
->nodes
[level
];
5703 if (path
->locks
[level
])
5704 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5706 free_extent_buffer(c
);
5707 path
->nodes
[level
] = next
;
5708 path
->slots
[level
] = 0;
5709 if (!path
->skip_locking
)
5710 path
->locks
[level
] = next_rw_lock
;
5714 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5720 btrfs_release_path(path
);
5724 if (!path
->skip_locking
) {
5725 ret
= btrfs_try_tree_read_lock(next
);
5727 btrfs_set_path_blocking(path
);
5728 btrfs_tree_read_lock(next
);
5729 btrfs_clear_path_blocking(path
, next
,
5732 next_rw_lock
= BTRFS_READ_LOCK
;
5737 unlock_up(path
, 0, 1, 0, NULL
);
5738 path
->leave_spinning
= old_spinning
;
5740 btrfs_set_path_blocking(path
);
5746 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5747 * searching until it gets past min_objectid or finds an item of 'type'
5749 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5751 int btrfs_previous_item(struct btrfs_root
*root
,
5752 struct btrfs_path
*path
, u64 min_objectid
,
5755 struct btrfs_key found_key
;
5756 struct extent_buffer
*leaf
;
5761 if (path
->slots
[0] == 0) {
5762 btrfs_set_path_blocking(path
);
5763 ret
= btrfs_prev_leaf(root
, path
);
5769 leaf
= path
->nodes
[0];
5770 nritems
= btrfs_header_nritems(leaf
);
5773 if (path
->slots
[0] == nritems
)
5776 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5777 if (found_key
.objectid
< min_objectid
)
5779 if (found_key
.type
== type
)
5781 if (found_key
.objectid
== min_objectid
&&
5782 found_key
.type
< type
)