2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
44 static struct kmem_cache
*btrfs_inode_defrag_cachep
;
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
51 struct rb_node rb_node
;
55 * transid where the defrag was added, we search for
56 * extents newer than this
63 /* last offset we were able to defrag */
66 /* if we've wrapped around back to zero once already */
70 static int __compare_inode_defrag(struct inode_defrag
*defrag1
,
71 struct inode_defrag
*defrag2
)
73 if (defrag1
->root
> defrag2
->root
)
75 else if (defrag1
->root
< defrag2
->root
)
77 else if (defrag1
->ino
> defrag2
->ino
)
79 else if (defrag1
->ino
< defrag2
->ino
)
85 /* pop a record for an inode into the defrag tree. The lock
86 * must be held already
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
91 * If an existing record is found the defrag item you
94 static int __btrfs_add_inode_defrag(struct inode
*inode
,
95 struct inode_defrag
*defrag
)
97 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
98 struct inode_defrag
*entry
;
100 struct rb_node
*parent
= NULL
;
103 p
= &root
->fs_info
->defrag_inodes
.rb_node
;
106 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
108 ret
= __compare_inode_defrag(defrag
, entry
);
110 p
= &parent
->rb_left
;
112 p
= &parent
->rb_right
;
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
118 if (defrag
->transid
< entry
->transid
)
119 entry
->transid
= defrag
->transid
;
120 if (defrag
->last_offset
> entry
->last_offset
)
121 entry
->last_offset
= defrag
->last_offset
;
125 set_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
126 rb_link_node(&defrag
->rb_node
, parent
, p
);
127 rb_insert_color(&defrag
->rb_node
, &root
->fs_info
->defrag_inodes
);
131 static inline int __need_auto_defrag(struct btrfs_root
*root
)
133 if (!btrfs_test_opt(root
, AUTO_DEFRAG
))
136 if (btrfs_fs_closing(root
->fs_info
))
143 * insert a defrag record for this inode if auto defrag is
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle
*trans
,
149 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
150 struct inode_defrag
*defrag
;
154 if (!__need_auto_defrag(root
))
157 if (test_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
))
161 transid
= trans
->transid
;
163 transid
= BTRFS_I(inode
)->root
->last_trans
;
165 defrag
= kmem_cache_zalloc(btrfs_inode_defrag_cachep
, GFP_NOFS
);
169 defrag
->ino
= btrfs_ino(inode
);
170 defrag
->transid
= transid
;
171 defrag
->root
= root
->root_key
.objectid
;
173 spin_lock(&root
->fs_info
->defrag_inodes_lock
);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
)) {
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
182 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
184 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
186 spin_unlock(&root
->fs_info
->defrag_inodes_lock
);
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
195 void btrfs_requeue_inode_defrag(struct inode
*inode
,
196 struct inode_defrag
*defrag
)
198 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
201 if (!__need_auto_defrag(root
))
205 * Here we don't check the IN_DEFRAG flag, because we need merge
208 spin_lock(&root
->fs_info
->defrag_inodes_lock
);
209 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
210 spin_unlock(&root
->fs_info
->defrag_inodes_lock
);
215 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
219 * pick the defragable inode that we want, if it doesn't exist, we will get
222 static struct inode_defrag
*
223 btrfs_pick_defrag_inode(struct btrfs_fs_info
*fs_info
, u64 root
, u64 ino
)
225 struct inode_defrag
*entry
= NULL
;
226 struct inode_defrag tmp
;
228 struct rb_node
*parent
= NULL
;
234 spin_lock(&fs_info
->defrag_inodes_lock
);
235 p
= fs_info
->defrag_inodes
.rb_node
;
238 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
240 ret
= __compare_inode_defrag(&tmp
, entry
);
244 p
= parent
->rb_right
;
249 if (parent
&& __compare_inode_defrag(&tmp
, entry
) > 0) {
250 parent
= rb_next(parent
);
252 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
258 rb_erase(parent
, &fs_info
->defrag_inodes
);
259 spin_unlock(&fs_info
->defrag_inodes_lock
);
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info
*fs_info
)
265 struct inode_defrag
*defrag
;
266 struct rb_node
*node
;
268 spin_lock(&fs_info
->defrag_inodes_lock
);
269 node
= rb_first(&fs_info
->defrag_inodes
);
271 rb_erase(node
, &fs_info
->defrag_inodes
);
272 defrag
= rb_entry(node
, struct inode_defrag
, rb_node
);
273 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
275 if (need_resched()) {
276 spin_unlock(&fs_info
->defrag_inodes_lock
);
278 spin_lock(&fs_info
->defrag_inodes_lock
);
281 node
= rb_first(&fs_info
->defrag_inodes
);
283 spin_unlock(&fs_info
->defrag_inodes_lock
);
286 #define BTRFS_DEFRAG_BATCH 1024
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info
*fs_info
,
289 struct inode_defrag
*defrag
)
291 struct btrfs_root
*inode_root
;
293 struct btrfs_key key
;
294 struct btrfs_ioctl_defrag_range_args range
;
300 key
.objectid
= defrag
->root
;
301 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
302 key
.offset
= (u64
)-1;
304 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
306 inode_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
307 if (IS_ERR(inode_root
)) {
308 ret
= PTR_ERR(inode_root
);
311 if (btrfs_root_refs(&inode_root
->root_item
) == 0) {
316 key
.objectid
= defrag
->ino
;
317 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
319 inode
= btrfs_iget(fs_info
->sb
, &key
, inode_root
, NULL
);
321 ret
= PTR_ERR(inode
);
324 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
326 /* do a chunk of defrag */
327 clear_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
328 memset(&range
, 0, sizeof(range
));
330 range
.start
= defrag
->last_offset
;
332 sb_start_write(fs_info
->sb
);
333 num_defrag
= btrfs_defrag_file(inode
, NULL
, &range
, defrag
->transid
,
335 sb_end_write(fs_info
->sb
);
337 * if we filled the whole defrag batch, there
338 * must be more work to do. Queue this defrag
341 if (num_defrag
== BTRFS_DEFRAG_BATCH
) {
342 defrag
->last_offset
= range
.start
;
343 btrfs_requeue_inode_defrag(inode
, defrag
);
344 } else if (defrag
->last_offset
&& !defrag
->cycled
) {
346 * we didn't fill our defrag batch, but
347 * we didn't start at zero. Make sure we loop
348 * around to the start of the file.
350 defrag
->last_offset
= 0;
352 btrfs_requeue_inode_defrag(inode
, defrag
);
354 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
360 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
361 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
366 * run through the list of inodes in the FS that need
369 int btrfs_run_defrag_inodes(struct btrfs_fs_info
*fs_info
)
371 struct inode_defrag
*defrag
;
373 u64 root_objectid
= 0;
375 atomic_inc(&fs_info
->defrag_running
);
377 /* Pause the auto defragger. */
378 if (test_bit(BTRFS_FS_STATE_REMOUNTING
,
382 if (!__need_auto_defrag(fs_info
->tree_root
))
385 /* find an inode to defrag */
386 defrag
= btrfs_pick_defrag_inode(fs_info
, root_objectid
,
389 if (root_objectid
|| first_ino
) {
398 first_ino
= defrag
->ino
+ 1;
399 root_objectid
= defrag
->root
;
401 __btrfs_run_defrag_inode(fs_info
, defrag
);
403 atomic_dec(&fs_info
->defrag_running
);
406 * during unmount, we use the transaction_wait queue to
407 * wait for the defragger to stop
409 wake_up(&fs_info
->transaction_wait
);
413 /* simple helper to fault in pages and copy. This should go away
414 * and be replaced with calls into generic code.
416 static noinline
int btrfs_copy_from_user(loff_t pos
, int num_pages
,
418 struct page
**prepared_pages
,
422 size_t total_copied
= 0;
424 int offset
= pos
& (PAGE_CACHE_SIZE
- 1);
426 while (write_bytes
> 0) {
427 size_t count
= min_t(size_t,
428 PAGE_CACHE_SIZE
- offset
, write_bytes
);
429 struct page
*page
= prepared_pages
[pg
];
431 * Copy data from userspace to the current page
433 * Disable pagefault to avoid recursive lock since
434 * the pages are already locked
437 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
440 /* Flush processor's dcache for this page */
441 flush_dcache_page(page
);
444 * if we get a partial write, we can end up with
445 * partially up to date pages. These add
446 * a lot of complexity, so make sure they don't
447 * happen by forcing this copy to be retried.
449 * The rest of the btrfs_file_write code will fall
450 * back to page at a time copies after we return 0.
452 if (!PageUptodate(page
) && copied
< count
)
455 iov_iter_advance(i
, copied
);
456 write_bytes
-= copied
;
457 total_copied
+= copied
;
459 /* Return to btrfs_file_aio_write to fault page */
460 if (unlikely(copied
== 0))
463 if (unlikely(copied
< PAGE_CACHE_SIZE
- offset
)) {
474 * unlocks pages after btrfs_file_write is done with them
476 void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
479 for (i
= 0; i
< num_pages
; i
++) {
480 /* page checked is some magic around finding pages that
481 * have been modified without going through btrfs_set_page_dirty
484 ClearPageChecked(pages
[i
]);
485 unlock_page(pages
[i
]);
486 mark_page_accessed(pages
[i
]);
487 page_cache_release(pages
[i
]);
492 * after copy_from_user, pages need to be dirtied and we need to make
493 * sure holes are created between the current EOF and the start of
494 * any next extents (if required).
496 * this also makes the decision about creating an inline extent vs
497 * doing real data extents, marking pages dirty and delalloc as required.
499 int btrfs_dirty_pages(struct btrfs_root
*root
, struct inode
*inode
,
500 struct page
**pages
, size_t num_pages
,
501 loff_t pos
, size_t write_bytes
,
502 struct extent_state
**cached
)
508 u64 end_of_last_block
;
509 u64 end_pos
= pos
+ write_bytes
;
510 loff_t isize
= i_size_read(inode
);
512 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
513 num_bytes
= ALIGN(write_bytes
+ pos
- start_pos
, root
->sectorsize
);
515 end_of_last_block
= start_pos
+ num_bytes
- 1;
516 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
521 for (i
= 0; i
< num_pages
; i
++) {
522 struct page
*p
= pages
[i
];
529 * we've only changed i_size in ram, and we haven't updated
530 * the disk i_size. There is no need to log the inode
534 i_size_write(inode
, end_pos
);
539 * this drops all the extents in the cache that intersect the range
540 * [start, end]. Existing extents are split as required.
542 void btrfs_drop_extent_cache(struct inode
*inode
, u64 start
, u64 end
,
545 struct extent_map
*em
;
546 struct extent_map
*split
= NULL
;
547 struct extent_map
*split2
= NULL
;
548 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
549 u64 len
= end
- start
+ 1;
556 WARN_ON(end
< start
);
557 if (end
== (u64
)-1) {
565 split
= alloc_extent_map();
567 split2
= alloc_extent_map();
568 if (!split
|| !split2
)
571 write_lock(&em_tree
->lock
);
572 em
= lookup_extent_mapping(em_tree
, start
, len
);
574 write_unlock(&em_tree
->lock
);
578 gen
= em
->generation
;
579 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
580 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
582 write_unlock(&em_tree
->lock
);
585 start
= em
->start
+ em
->len
;
587 len
= start
+ len
- (em
->start
+ em
->len
);
589 write_unlock(&em_tree
->lock
);
592 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
593 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
594 remove_extent_mapping(em_tree
, em
);
598 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
600 split
->start
= em
->start
;
601 split
->len
= start
- em
->start
;
602 split
->orig_start
= em
->orig_start
;
603 split
->block_start
= em
->block_start
;
606 split
->block_len
= em
->block_len
;
608 split
->block_len
= split
->len
;
609 split
->orig_block_len
= max(split
->block_len
,
611 split
->generation
= gen
;
612 split
->bdev
= em
->bdev
;
613 split
->flags
= flags
;
614 split
->compress_type
= em
->compress_type
;
615 ret
= add_extent_mapping(em_tree
, split
);
616 BUG_ON(ret
); /* Logic error */
617 list_move(&split
->list
, &em_tree
->modified_extents
);
618 free_extent_map(split
);
622 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
623 testend
&& em
->start
+ em
->len
> start
+ len
) {
624 u64 diff
= start
+ len
- em
->start
;
626 split
->start
= start
+ len
;
627 split
->len
= em
->start
+ em
->len
- (start
+ len
);
628 split
->bdev
= em
->bdev
;
629 split
->flags
= flags
;
630 split
->compress_type
= em
->compress_type
;
631 split
->generation
= gen
;
632 split
->orig_block_len
= max(em
->block_len
,
636 split
->block_len
= em
->block_len
;
637 split
->block_start
= em
->block_start
;
638 split
->orig_start
= em
->orig_start
;
640 split
->block_len
= split
->len
;
641 split
->block_start
= em
->block_start
+ diff
;
642 split
->orig_start
= em
->orig_start
;
645 ret
= add_extent_mapping(em_tree
, split
);
646 BUG_ON(ret
); /* Logic error */
647 list_move(&split
->list
, &em_tree
->modified_extents
);
648 free_extent_map(split
);
652 write_unlock(&em_tree
->lock
);
656 /* once for the tree*/
660 free_extent_map(split
);
662 free_extent_map(split2
);
666 * this is very complex, but the basic idea is to drop all extents
667 * in the range start - end. hint_block is filled in with a block number
668 * that would be a good hint to the block allocator for this file.
670 * If an extent intersects the range but is not entirely inside the range
671 * it is either truncated or split. Anything entirely inside the range
672 * is deleted from the tree.
674 int __btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
675 struct btrfs_root
*root
, struct inode
*inode
,
676 struct btrfs_path
*path
, u64 start
, u64 end
,
677 u64
*drop_end
, int drop_cache
)
679 struct extent_buffer
*leaf
;
680 struct btrfs_file_extent_item
*fi
;
681 struct btrfs_key key
;
682 struct btrfs_key new_key
;
683 u64 ino
= btrfs_ino(inode
);
684 u64 search_start
= start
;
687 u64 extent_offset
= 0;
694 int modify_tree
= -1;
695 int update_refs
= (root
->ref_cows
|| root
== root
->fs_info
->tree_root
);
699 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
701 if (start
>= BTRFS_I(inode
)->disk_i_size
)
706 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
707 search_start
, modify_tree
);
710 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
711 leaf
= path
->nodes
[0];
712 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
713 if (key
.objectid
== ino
&&
714 key
.type
== BTRFS_EXTENT_DATA_KEY
)
719 leaf
= path
->nodes
[0];
720 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
722 ret
= btrfs_next_leaf(root
, path
);
729 leaf
= path
->nodes
[0];
733 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
734 if (key
.objectid
> ino
||
735 key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
738 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
739 struct btrfs_file_extent_item
);
740 extent_type
= btrfs_file_extent_type(leaf
, fi
);
742 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
743 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
744 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
745 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
746 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
747 extent_end
= key
.offset
+
748 btrfs_file_extent_num_bytes(leaf
, fi
);
749 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
750 extent_end
= key
.offset
+
751 btrfs_file_extent_inline_len(leaf
, fi
);
754 extent_end
= search_start
;
757 if (extent_end
<= search_start
) {
763 search_start
= max(key
.offset
, start
);
764 if (recow
|| !modify_tree
) {
766 btrfs_release_path(path
);
771 * | - range to drop - |
772 * | -------- extent -------- |
774 if (start
> key
.offset
&& end
< extent_end
) {
776 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
778 memcpy(&new_key
, &key
, sizeof(new_key
));
779 new_key
.offset
= start
;
780 ret
= btrfs_duplicate_item(trans
, root
, path
,
782 if (ret
== -EAGAIN
) {
783 btrfs_release_path(path
);
789 leaf
= path
->nodes
[0];
790 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
791 struct btrfs_file_extent_item
);
792 btrfs_set_file_extent_num_bytes(leaf
, fi
,
795 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
796 struct btrfs_file_extent_item
);
798 extent_offset
+= start
- key
.offset
;
799 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
800 btrfs_set_file_extent_num_bytes(leaf
, fi
,
802 btrfs_mark_buffer_dirty(leaf
);
804 if (update_refs
&& disk_bytenr
> 0) {
805 ret
= btrfs_inc_extent_ref(trans
, root
,
806 disk_bytenr
, num_bytes
, 0,
807 root
->root_key
.objectid
,
809 start
- extent_offset
, 0);
810 BUG_ON(ret
); /* -ENOMEM */
815 * | ---- range to drop ----- |
816 * | -------- extent -------- |
818 if (start
<= key
.offset
&& end
< extent_end
) {
819 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
821 memcpy(&new_key
, &key
, sizeof(new_key
));
822 new_key
.offset
= end
;
823 btrfs_set_item_key_safe(trans
, root
, path
, &new_key
);
825 extent_offset
+= end
- key
.offset
;
826 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
827 btrfs_set_file_extent_num_bytes(leaf
, fi
,
829 btrfs_mark_buffer_dirty(leaf
);
830 if (update_refs
&& disk_bytenr
> 0)
831 inode_sub_bytes(inode
, end
- key
.offset
);
835 search_start
= extent_end
;
837 * | ---- range to drop ----- |
838 * | -------- extent -------- |
840 if (start
> key
.offset
&& end
>= extent_end
) {
842 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
844 btrfs_set_file_extent_num_bytes(leaf
, fi
,
846 btrfs_mark_buffer_dirty(leaf
);
847 if (update_refs
&& disk_bytenr
> 0)
848 inode_sub_bytes(inode
, extent_end
- start
);
849 if (end
== extent_end
)
857 * | ---- range to drop ----- |
858 * | ------ extent ------ |
860 if (start
<= key
.offset
&& end
>= extent_end
) {
862 del_slot
= path
->slots
[0];
865 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
870 extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
871 inode_sub_bytes(inode
,
872 extent_end
- key
.offset
);
873 extent_end
= ALIGN(extent_end
,
875 } else if (update_refs
&& disk_bytenr
> 0) {
876 ret
= btrfs_free_extent(trans
, root
,
877 disk_bytenr
, num_bytes
, 0,
878 root
->root_key
.objectid
,
879 key
.objectid
, key
.offset
-
881 BUG_ON(ret
); /* -ENOMEM */
882 inode_sub_bytes(inode
,
883 extent_end
- key
.offset
);
886 if (end
== extent_end
)
889 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
894 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
897 btrfs_abort_transaction(trans
, root
, ret
);
904 btrfs_release_path(path
);
911 if (!ret
&& del_nr
> 0) {
912 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
914 btrfs_abort_transaction(trans
, root
, ret
);
918 *drop_end
= found
? min(end
, extent_end
) : end
;
919 btrfs_release_path(path
);
923 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
924 struct btrfs_root
*root
, struct inode
*inode
, u64 start
,
925 u64 end
, int drop_cache
)
927 struct btrfs_path
*path
;
930 path
= btrfs_alloc_path();
933 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, start
, end
, NULL
,
935 btrfs_free_path(path
);
939 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
940 u64 objectid
, u64 bytenr
, u64 orig_offset
,
941 u64
*start
, u64
*end
)
943 struct btrfs_file_extent_item
*fi
;
944 struct btrfs_key key
;
947 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
950 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
951 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
954 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
955 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
956 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
957 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
958 btrfs_file_extent_compression(leaf
, fi
) ||
959 btrfs_file_extent_encryption(leaf
, fi
) ||
960 btrfs_file_extent_other_encoding(leaf
, fi
))
963 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
964 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
973 * Mark extent in the range start - end as written.
975 * This changes extent type from 'pre-allocated' to 'regular'. If only
976 * part of extent is marked as written, the extent will be split into
979 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
980 struct inode
*inode
, u64 start
, u64 end
)
982 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
983 struct extent_buffer
*leaf
;
984 struct btrfs_path
*path
;
985 struct btrfs_file_extent_item
*fi
;
986 struct btrfs_key key
;
987 struct btrfs_key new_key
;
999 u64 ino
= btrfs_ino(inode
);
1001 path
= btrfs_alloc_path();
1008 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1011 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1014 if (ret
> 0 && path
->slots
[0] > 0)
1017 leaf
= path
->nodes
[0];
1018 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1019 BUG_ON(key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
);
1020 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1021 struct btrfs_file_extent_item
);
1022 BUG_ON(btrfs_file_extent_type(leaf
, fi
) !=
1023 BTRFS_FILE_EXTENT_PREALLOC
);
1024 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1025 BUG_ON(key
.offset
> start
|| extent_end
< end
);
1027 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1028 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1029 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
1030 memcpy(&new_key
, &key
, sizeof(new_key
));
1032 if (start
== key
.offset
&& end
< extent_end
) {
1035 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1036 ino
, bytenr
, orig_offset
,
1037 &other_start
, &other_end
)) {
1038 new_key
.offset
= end
;
1039 btrfs_set_item_key_safe(trans
, root
, path
, &new_key
);
1040 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1041 struct btrfs_file_extent_item
);
1042 btrfs_set_file_extent_generation(leaf
, fi
,
1044 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1046 btrfs_set_file_extent_offset(leaf
, fi
,
1048 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1049 struct btrfs_file_extent_item
);
1050 btrfs_set_file_extent_generation(leaf
, fi
,
1052 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1054 btrfs_mark_buffer_dirty(leaf
);
1059 if (start
> key
.offset
&& end
== extent_end
) {
1062 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1063 ino
, bytenr
, orig_offset
,
1064 &other_start
, &other_end
)) {
1065 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1066 struct btrfs_file_extent_item
);
1067 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1068 start
- key
.offset
);
1069 btrfs_set_file_extent_generation(leaf
, fi
,
1072 new_key
.offset
= start
;
1073 btrfs_set_item_key_safe(trans
, root
, path
, &new_key
);
1075 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1076 struct btrfs_file_extent_item
);
1077 btrfs_set_file_extent_generation(leaf
, fi
,
1079 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1081 btrfs_set_file_extent_offset(leaf
, fi
,
1082 start
- orig_offset
);
1083 btrfs_mark_buffer_dirty(leaf
);
1088 while (start
> key
.offset
|| end
< extent_end
) {
1089 if (key
.offset
== start
)
1092 new_key
.offset
= split
;
1093 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
1094 if (ret
== -EAGAIN
) {
1095 btrfs_release_path(path
);
1099 btrfs_abort_transaction(trans
, root
, ret
);
1103 leaf
= path
->nodes
[0];
1104 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1105 struct btrfs_file_extent_item
);
1106 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1107 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1108 split
- key
.offset
);
1110 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1111 struct btrfs_file_extent_item
);
1113 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1114 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
1115 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1116 extent_end
- split
);
1117 btrfs_mark_buffer_dirty(leaf
);
1119 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
, 0,
1120 root
->root_key
.objectid
,
1121 ino
, orig_offset
, 0);
1122 BUG_ON(ret
); /* -ENOMEM */
1124 if (split
== start
) {
1127 BUG_ON(start
!= key
.offset
);
1136 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1137 ino
, bytenr
, orig_offset
,
1138 &other_start
, &other_end
)) {
1140 btrfs_release_path(path
);
1143 extent_end
= other_end
;
1144 del_slot
= path
->slots
[0] + 1;
1146 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1147 0, root
->root_key
.objectid
,
1148 ino
, orig_offset
, 0);
1149 BUG_ON(ret
); /* -ENOMEM */
1153 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1154 ino
, bytenr
, orig_offset
,
1155 &other_start
, &other_end
)) {
1157 btrfs_release_path(path
);
1160 key
.offset
= other_start
;
1161 del_slot
= path
->slots
[0];
1163 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1164 0, root
->root_key
.objectid
,
1165 ino
, orig_offset
, 0);
1166 BUG_ON(ret
); /* -ENOMEM */
1169 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1170 struct btrfs_file_extent_item
);
1171 btrfs_set_file_extent_type(leaf
, fi
,
1172 BTRFS_FILE_EXTENT_REG
);
1173 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1174 btrfs_mark_buffer_dirty(leaf
);
1176 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
1177 struct btrfs_file_extent_item
);
1178 btrfs_set_file_extent_type(leaf
, fi
,
1179 BTRFS_FILE_EXTENT_REG
);
1180 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1181 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1182 extent_end
- key
.offset
);
1183 btrfs_mark_buffer_dirty(leaf
);
1185 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1187 btrfs_abort_transaction(trans
, root
, ret
);
1192 btrfs_free_path(path
);
1197 * on error we return an unlocked page and the error value
1198 * on success we return a locked page and 0
1200 static int prepare_uptodate_page(struct page
*page
, u64 pos
,
1201 bool force_uptodate
)
1205 if (((pos
& (PAGE_CACHE_SIZE
- 1)) || force_uptodate
) &&
1206 !PageUptodate(page
)) {
1207 ret
= btrfs_readpage(NULL
, page
);
1211 if (!PageUptodate(page
)) {
1220 * this gets pages into the page cache and locks them down, it also properly
1221 * waits for data=ordered extents to finish before allowing the pages to be
1224 static noinline
int prepare_pages(struct btrfs_root
*root
, struct file
*file
,
1225 struct page
**pages
, size_t num_pages
,
1226 loff_t pos
, unsigned long first_index
,
1227 size_t write_bytes
, bool force_uptodate
)
1229 struct extent_state
*cached_state
= NULL
;
1231 unsigned long index
= pos
>> PAGE_CACHE_SHIFT
;
1232 struct inode
*inode
= file_inode(file
);
1233 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1239 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
1240 last_pos
= ((u64
)index
+ num_pages
) << PAGE_CACHE_SHIFT
;
1243 for (i
= 0; i
< num_pages
; i
++) {
1244 pages
[i
] = find_or_create_page(inode
->i_mapping
, index
+ i
,
1245 mask
| __GFP_WRITE
);
1253 err
= prepare_uptodate_page(pages
[i
], pos
,
1255 if (i
== num_pages
- 1)
1256 err
= prepare_uptodate_page(pages
[i
],
1257 pos
+ write_bytes
, false);
1259 page_cache_release(pages
[i
]);
1263 wait_on_page_writeback(pages
[i
]);
1266 if (start_pos
< inode
->i_size
) {
1267 struct btrfs_ordered_extent
*ordered
;
1268 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1269 start_pos
, last_pos
- 1, 0, &cached_state
);
1270 ordered
= btrfs_lookup_first_ordered_extent(inode
,
1273 ordered
->file_offset
+ ordered
->len
> start_pos
&&
1274 ordered
->file_offset
< last_pos
) {
1275 btrfs_put_ordered_extent(ordered
);
1276 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1277 start_pos
, last_pos
- 1,
1278 &cached_state
, GFP_NOFS
);
1279 for (i
= 0; i
< num_pages
; i
++) {
1280 unlock_page(pages
[i
]);
1281 page_cache_release(pages
[i
]);
1283 btrfs_wait_ordered_range(inode
, start_pos
,
1284 last_pos
- start_pos
);
1288 btrfs_put_ordered_extent(ordered
);
1290 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start_pos
,
1291 last_pos
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1292 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
1293 0, 0, &cached_state
, GFP_NOFS
);
1294 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1295 start_pos
, last_pos
- 1, &cached_state
,
1298 for (i
= 0; i
< num_pages
; i
++) {
1299 if (clear_page_dirty_for_io(pages
[i
]))
1300 account_page_redirty(pages
[i
]);
1301 set_page_extent_mapped(pages
[i
]);
1302 WARN_ON(!PageLocked(pages
[i
]));
1306 while (faili
>= 0) {
1307 unlock_page(pages
[faili
]);
1308 page_cache_release(pages
[faili
]);
1315 static noinline ssize_t
__btrfs_buffered_write(struct file
*file
,
1319 struct inode
*inode
= file_inode(file
);
1320 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1321 struct page
**pages
= NULL
;
1322 unsigned long first_index
;
1323 size_t num_written
= 0;
1326 bool force_page_uptodate
= false;
1328 nrptrs
= min((iov_iter_count(i
) + PAGE_CACHE_SIZE
- 1) /
1329 PAGE_CACHE_SIZE
, PAGE_CACHE_SIZE
/
1330 (sizeof(struct page
*)));
1331 nrptrs
= min(nrptrs
, current
->nr_dirtied_pause
- current
->nr_dirtied
);
1332 nrptrs
= max(nrptrs
, 8);
1333 pages
= kmalloc(nrptrs
* sizeof(struct page
*), GFP_KERNEL
);
1337 first_index
= pos
>> PAGE_CACHE_SHIFT
;
1339 while (iov_iter_count(i
) > 0) {
1340 size_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1341 size_t write_bytes
= min(iov_iter_count(i
),
1342 nrptrs
* (size_t)PAGE_CACHE_SIZE
-
1344 size_t num_pages
= (write_bytes
+ offset
+
1345 PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1349 WARN_ON(num_pages
> nrptrs
);
1352 * Fault pages before locking them in prepare_pages
1353 * to avoid recursive lock
1355 if (unlikely(iov_iter_fault_in_readable(i
, write_bytes
))) {
1360 ret
= btrfs_delalloc_reserve_space(inode
,
1361 num_pages
<< PAGE_CACHE_SHIFT
);
1366 * This is going to setup the pages array with the number of
1367 * pages we want, so we don't really need to worry about the
1368 * contents of pages from loop to loop
1370 ret
= prepare_pages(root
, file
, pages
, num_pages
,
1371 pos
, first_index
, write_bytes
,
1372 force_page_uptodate
);
1374 btrfs_delalloc_release_space(inode
,
1375 num_pages
<< PAGE_CACHE_SHIFT
);
1379 copied
= btrfs_copy_from_user(pos
, num_pages
,
1380 write_bytes
, pages
, i
);
1383 * if we have trouble faulting in the pages, fall
1384 * back to one page at a time
1386 if (copied
< write_bytes
)
1390 force_page_uptodate
= true;
1393 force_page_uptodate
= false;
1394 dirty_pages
= (copied
+ offset
+
1395 PAGE_CACHE_SIZE
- 1) >>
1400 * If we had a short copy we need to release the excess delaloc
1401 * bytes we reserved. We need to increment outstanding_extents
1402 * because btrfs_delalloc_release_space will decrement it, but
1403 * we still have an outstanding extent for the chunk we actually
1406 if (num_pages
> dirty_pages
) {
1408 spin_lock(&BTRFS_I(inode
)->lock
);
1409 BTRFS_I(inode
)->outstanding_extents
++;
1410 spin_unlock(&BTRFS_I(inode
)->lock
);
1412 btrfs_delalloc_release_space(inode
,
1413 (num_pages
- dirty_pages
) <<
1418 ret
= btrfs_dirty_pages(root
, inode
, pages
,
1419 dirty_pages
, pos
, copied
,
1422 btrfs_delalloc_release_space(inode
,
1423 dirty_pages
<< PAGE_CACHE_SHIFT
);
1424 btrfs_drop_pages(pages
, num_pages
);
1429 btrfs_drop_pages(pages
, num_pages
);
1433 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1434 if (dirty_pages
< (root
->leafsize
>> PAGE_CACHE_SHIFT
) + 1)
1435 btrfs_btree_balance_dirty(root
);
1438 num_written
+= copied
;
1443 return num_written
? num_written
: ret
;
1446 static ssize_t
__btrfs_direct_write(struct kiocb
*iocb
,
1447 const struct iovec
*iov
,
1448 unsigned long nr_segs
, loff_t pos
,
1449 loff_t
*ppos
, size_t count
, size_t ocount
)
1451 struct file
*file
= iocb
->ki_filp
;
1454 ssize_t written_buffered
;
1458 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
, ppos
,
1461 if (written
< 0 || written
== count
)
1466 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
1467 written_buffered
= __btrfs_buffered_write(file
, &i
, pos
);
1468 if (written_buffered
< 0) {
1469 err
= written_buffered
;
1472 endbyte
= pos
+ written_buffered
- 1;
1473 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
1476 written
+= written_buffered
;
1477 *ppos
= pos
+ written_buffered
;
1478 invalidate_mapping_pages(file
->f_mapping
, pos
>> PAGE_CACHE_SHIFT
,
1479 endbyte
>> PAGE_CACHE_SHIFT
);
1481 return written
? written
: err
;
1484 static void update_time_for_write(struct inode
*inode
)
1486 struct timespec now
;
1488 if (IS_NOCMTIME(inode
))
1491 now
= current_fs_time(inode
->i_sb
);
1492 if (!timespec_equal(&inode
->i_mtime
, &now
))
1493 inode
->i_mtime
= now
;
1495 if (!timespec_equal(&inode
->i_ctime
, &now
))
1496 inode
->i_ctime
= now
;
1498 if (IS_I_VERSION(inode
))
1499 inode_inc_iversion(inode
);
1502 static ssize_t
btrfs_file_aio_write(struct kiocb
*iocb
,
1503 const struct iovec
*iov
,
1504 unsigned long nr_segs
, loff_t pos
)
1506 struct file
*file
= iocb
->ki_filp
;
1507 struct inode
*inode
= file_inode(file
);
1508 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1509 loff_t
*ppos
= &iocb
->ki_pos
;
1511 ssize_t num_written
= 0;
1513 size_t count
, ocount
;
1514 bool sync
= (file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
);
1516 sb_start_write(inode
->i_sb
);
1518 mutex_lock(&inode
->i_mutex
);
1520 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
1522 mutex_unlock(&inode
->i_mutex
);
1527 current
->backing_dev_info
= inode
->i_mapping
->backing_dev_info
;
1528 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
1530 mutex_unlock(&inode
->i_mutex
);
1535 mutex_unlock(&inode
->i_mutex
);
1539 err
= file_remove_suid(file
);
1541 mutex_unlock(&inode
->i_mutex
);
1546 * If BTRFS flips readonly due to some impossible error
1547 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1548 * although we have opened a file as writable, we have
1549 * to stop this write operation to ensure FS consistency.
1551 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
1552 mutex_unlock(&inode
->i_mutex
);
1558 * We reserve space for updating the inode when we reserve space for the
1559 * extent we are going to write, so we will enospc out there. We don't
1560 * need to start yet another transaction to update the inode as we will
1561 * update the inode when we finish writing whatever data we write.
1563 update_time_for_write(inode
);
1565 start_pos
= round_down(pos
, root
->sectorsize
);
1566 if (start_pos
> i_size_read(inode
)) {
1567 err
= btrfs_cont_expand(inode
, i_size_read(inode
), start_pos
);
1569 mutex_unlock(&inode
->i_mutex
);
1575 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1577 if (unlikely(file
->f_flags
& O_DIRECT
)) {
1578 num_written
= __btrfs_direct_write(iocb
, iov
, nr_segs
,
1579 pos
, ppos
, count
, ocount
);
1583 iov_iter_init(&i
, iov
, nr_segs
, count
, num_written
);
1585 num_written
= __btrfs_buffered_write(file
, &i
, pos
);
1586 if (num_written
> 0)
1587 *ppos
= pos
+ num_written
;
1590 mutex_unlock(&inode
->i_mutex
);
1593 * we want to make sure fsync finds this change
1594 * but we haven't joined a transaction running right now.
1596 * Later on, someone is sure to update the inode and get the
1597 * real transid recorded.
1599 * We set last_trans now to the fs_info generation + 1,
1600 * this will either be one more than the running transaction
1601 * or the generation used for the next transaction if there isn't
1602 * one running right now.
1604 * We also have to set last_sub_trans to the current log transid,
1605 * otherwise subsequent syncs to a file that's been synced in this
1606 * transaction will appear to have already occured.
1608 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
1609 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
1610 if (num_written
> 0 || num_written
== -EIOCBQUEUED
) {
1611 err
= generic_write_sync(file
, pos
, num_written
);
1612 if (err
< 0 && num_written
> 0)
1617 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1619 sb_end_write(inode
->i_sb
);
1620 current
->backing_dev_info
= NULL
;
1621 return num_written
? num_written
: err
;
1624 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1627 * ordered_data_close is set by settattr when we are about to truncate
1628 * a file from a non-zero size to a zero size. This tries to
1629 * flush down new bytes that may have been written if the
1630 * application were using truncate to replace a file in place.
1632 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
1633 &BTRFS_I(inode
)->runtime_flags
)) {
1634 struct btrfs_trans_handle
*trans
;
1635 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1638 * We need to block on a committing transaction to keep us from
1639 * throwing a ordered operation on to the list and causing
1640 * something like sync to deadlock trying to flush out this
1643 trans
= btrfs_start_transaction(root
, 0);
1645 return PTR_ERR(trans
);
1646 btrfs_add_ordered_operation(trans
, BTRFS_I(inode
)->root
, inode
);
1647 btrfs_end_transaction(trans
, root
);
1648 if (inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
1649 filemap_flush(inode
->i_mapping
);
1651 if (filp
->private_data
)
1652 btrfs_ioctl_trans_end(filp
);
1657 * fsync call for both files and directories. This logs the inode into
1658 * the tree log instead of forcing full commits whenever possible.
1660 * It needs to call filemap_fdatawait so that all ordered extent updates are
1661 * in the metadata btree are up to date for copying to the log.
1663 * It drops the inode mutex before doing the tree log commit. This is an
1664 * important optimization for directories because holding the mutex prevents
1665 * new operations on the dir while we write to disk.
1667 int btrfs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1669 struct dentry
*dentry
= file
->f_path
.dentry
;
1670 struct inode
*inode
= dentry
->d_inode
;
1671 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1673 struct btrfs_trans_handle
*trans
;
1676 trace_btrfs_sync_file(file
, datasync
);
1679 * We write the dirty pages in the range and wait until they complete
1680 * out of the ->i_mutex. If so, we can flush the dirty pages by
1681 * multi-task, and make the performance up. See
1682 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1684 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1685 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
1686 if (!ret
&& test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1687 &BTRFS_I(inode
)->runtime_flags
))
1688 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
1689 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1693 mutex_lock(&inode
->i_mutex
);
1696 * We flush the dirty pages again to avoid some dirty pages in the
1699 atomic_inc(&root
->log_batch
);
1700 full_sync
= test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1701 &BTRFS_I(inode
)->runtime_flags
);
1703 btrfs_wait_ordered_range(inode
, start
, end
- start
+ 1);
1704 atomic_inc(&root
->log_batch
);
1707 * check the transaction that last modified this inode
1708 * and see if its already been committed
1710 if (!BTRFS_I(inode
)->last_trans
) {
1711 mutex_unlock(&inode
->i_mutex
);
1716 * if the last transaction that changed this file was before
1717 * the current transaction, we can bail out now without any
1721 if (btrfs_inode_in_log(inode
, root
->fs_info
->generation
) ||
1722 BTRFS_I(inode
)->last_trans
<=
1723 root
->fs_info
->last_trans_committed
) {
1724 BTRFS_I(inode
)->last_trans
= 0;
1727 * We'v had everything committed since the last time we were
1728 * modified so clear this flag in case it was set for whatever
1729 * reason, it's no longer relevant.
1731 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1732 &BTRFS_I(inode
)->runtime_flags
);
1733 mutex_unlock(&inode
->i_mutex
);
1738 * ok we haven't committed the transaction yet, lets do a commit
1740 if (file
->private_data
)
1741 btrfs_ioctl_trans_end(file
);
1743 trans
= btrfs_start_transaction(root
, 0);
1744 if (IS_ERR(trans
)) {
1745 ret
= PTR_ERR(trans
);
1746 mutex_unlock(&inode
->i_mutex
);
1750 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
);
1752 mutex_unlock(&inode
->i_mutex
);
1756 /* we've logged all the items and now have a consistent
1757 * version of the file in the log. It is possible that
1758 * someone will come in and modify the file, but that's
1759 * fine because the log is consistent on disk, and we
1760 * have references to all of the file's extents
1762 * It is possible that someone will come in and log the
1763 * file again, but that will end up using the synchronization
1764 * inside btrfs_sync_log to keep things safe.
1766 mutex_unlock(&inode
->i_mutex
);
1768 if (ret
!= BTRFS_NO_LOG_SYNC
) {
1771 * If we didn't already wait for ordered extents we need
1775 btrfs_wait_ordered_range(inode
, start
,
1777 ret
= btrfs_commit_transaction(trans
, root
);
1779 ret
= btrfs_sync_log(trans
, root
);
1781 ret
= btrfs_end_transaction(trans
, root
);
1784 btrfs_wait_ordered_range(inode
, start
,
1787 ret
= btrfs_commit_transaction(trans
, root
);
1791 ret
= btrfs_end_transaction(trans
, root
);
1794 return ret
> 0 ? -EIO
: ret
;
1797 static const struct vm_operations_struct btrfs_file_vm_ops
= {
1798 .fault
= filemap_fault
,
1799 .page_mkwrite
= btrfs_page_mkwrite
,
1800 .remap_pages
= generic_file_remap_pages
,
1803 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1805 struct address_space
*mapping
= filp
->f_mapping
;
1807 if (!mapping
->a_ops
->readpage
)
1810 file_accessed(filp
);
1811 vma
->vm_ops
= &btrfs_file_vm_ops
;
1816 static int hole_mergeable(struct inode
*inode
, struct extent_buffer
*leaf
,
1817 int slot
, u64 start
, u64 end
)
1819 struct btrfs_file_extent_item
*fi
;
1820 struct btrfs_key key
;
1822 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
1825 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1826 if (key
.objectid
!= btrfs_ino(inode
) ||
1827 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1830 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
1832 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
1835 if (btrfs_file_extent_disk_bytenr(leaf
, fi
))
1838 if (key
.offset
== end
)
1840 if (key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
) == start
)
1845 static int fill_holes(struct btrfs_trans_handle
*trans
, struct inode
*inode
,
1846 struct btrfs_path
*path
, u64 offset
, u64 end
)
1848 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1849 struct extent_buffer
*leaf
;
1850 struct btrfs_file_extent_item
*fi
;
1851 struct extent_map
*hole_em
;
1852 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1853 struct btrfs_key key
;
1856 key
.objectid
= btrfs_ino(inode
);
1857 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1858 key
.offset
= offset
;
1861 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1866 leaf
= path
->nodes
[0];
1867 if (hole_mergeable(inode
, leaf
, path
->slots
[0]-1, offset
, end
)) {
1871 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1872 struct btrfs_file_extent_item
);
1873 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) +
1875 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1876 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
1877 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1878 btrfs_mark_buffer_dirty(leaf
);
1882 if (hole_mergeable(inode
, leaf
, path
->slots
[0]+1, offset
, end
)) {
1886 key
.offset
= offset
;
1887 btrfs_set_item_key_safe(trans
, root
, path
, &key
);
1888 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1889 struct btrfs_file_extent_item
);
1890 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) + end
-
1892 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1893 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
1894 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1895 btrfs_mark_buffer_dirty(leaf
);
1898 btrfs_release_path(path
);
1900 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
1901 0, 0, end
- offset
, 0, end
- offset
,
1907 btrfs_release_path(path
);
1909 hole_em
= alloc_extent_map();
1911 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
1912 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1913 &BTRFS_I(inode
)->runtime_flags
);
1915 hole_em
->start
= offset
;
1916 hole_em
->len
= end
- offset
;
1917 hole_em
->orig_start
= offset
;
1919 hole_em
->block_start
= EXTENT_MAP_HOLE
;
1920 hole_em
->block_len
= 0;
1921 hole_em
->orig_block_len
= 0;
1922 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1923 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
1924 hole_em
->generation
= trans
->transid
;
1927 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
1928 write_lock(&em_tree
->lock
);
1929 ret
= add_extent_mapping(em_tree
, hole_em
);
1931 list_move(&hole_em
->list
,
1932 &em_tree
->modified_extents
);
1933 write_unlock(&em_tree
->lock
);
1934 } while (ret
== -EEXIST
);
1935 free_extent_map(hole_em
);
1937 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
1938 &BTRFS_I(inode
)->runtime_flags
);
1944 static int btrfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
1946 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1947 struct extent_state
*cached_state
= NULL
;
1948 struct btrfs_path
*path
;
1949 struct btrfs_block_rsv
*rsv
;
1950 struct btrfs_trans_handle
*trans
;
1951 u64 lockstart
= round_up(offset
, BTRFS_I(inode
)->root
->sectorsize
);
1952 u64 lockend
= round_down(offset
+ len
,
1953 BTRFS_I(inode
)->root
->sectorsize
) - 1;
1954 u64 cur_offset
= lockstart
;
1955 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
1959 bool same_page
= ((offset
>> PAGE_CACHE_SHIFT
) ==
1960 ((offset
+ len
- 1) >> PAGE_CACHE_SHIFT
));
1962 btrfs_wait_ordered_range(inode
, offset
, len
);
1964 mutex_lock(&inode
->i_mutex
);
1966 * We needn't truncate any page which is beyond the end of the file
1967 * because we are sure there is no data there.
1970 * Only do this if we are in the same page and we aren't doing the
1973 if (same_page
&& len
< PAGE_CACHE_SIZE
) {
1974 if (offset
< round_up(inode
->i_size
, PAGE_CACHE_SIZE
))
1975 ret
= btrfs_truncate_page(inode
, offset
, len
, 0);
1976 mutex_unlock(&inode
->i_mutex
);
1980 /* zero back part of the first page */
1981 if (offset
< round_up(inode
->i_size
, PAGE_CACHE_SIZE
)) {
1982 ret
= btrfs_truncate_page(inode
, offset
, 0, 0);
1984 mutex_unlock(&inode
->i_mutex
);
1989 /* zero the front end of the last page */
1990 if (offset
+ len
< round_up(inode
->i_size
, PAGE_CACHE_SIZE
)) {
1991 ret
= btrfs_truncate_page(inode
, offset
+ len
, 0, 1);
1993 mutex_unlock(&inode
->i_mutex
);
1998 if (lockend
< lockstart
) {
1999 mutex_unlock(&inode
->i_mutex
);
2004 struct btrfs_ordered_extent
*ordered
;
2006 truncate_pagecache_range(inode
, lockstart
, lockend
);
2008 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2010 ordered
= btrfs_lookup_first_ordered_extent(inode
, lockend
);
2013 * We need to make sure we have no ordered extents in this range
2014 * and nobody raced in and read a page in this range, if we did
2015 * we need to try again.
2018 (ordered
->file_offset
+ ordered
->len
< lockstart
||
2019 ordered
->file_offset
> lockend
)) &&
2020 !test_range_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
2021 lockend
, EXTENT_UPTODATE
, 0,
2024 btrfs_put_ordered_extent(ordered
);
2028 btrfs_put_ordered_extent(ordered
);
2029 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
2030 lockend
, &cached_state
, GFP_NOFS
);
2031 btrfs_wait_ordered_range(inode
, lockstart
,
2032 lockend
- lockstart
+ 1);
2035 path
= btrfs_alloc_path();
2041 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
2046 rsv
->size
= btrfs_calc_trunc_metadata_size(root
, 1);
2050 * 1 - update the inode
2051 * 1 - removing the extents in the range
2052 * 1 - adding the hole extent
2054 trans
= btrfs_start_transaction(root
, 3);
2055 if (IS_ERR(trans
)) {
2056 err
= PTR_ERR(trans
);
2060 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
2063 trans
->block_rsv
= rsv
;
2065 while (cur_offset
< lockend
) {
2066 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
2067 cur_offset
, lockend
+ 1,
2072 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2074 ret
= fill_holes(trans
, inode
, path
, cur_offset
, drop_end
);
2080 cur_offset
= drop_end
;
2082 ret
= btrfs_update_inode(trans
, root
, inode
);
2088 btrfs_end_transaction(trans
, root
);
2089 btrfs_btree_balance_dirty(root
);
2091 trans
= btrfs_start_transaction(root
, 3);
2092 if (IS_ERR(trans
)) {
2093 ret
= PTR_ERR(trans
);
2098 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
2100 BUG_ON(ret
); /* shouldn't happen */
2101 trans
->block_rsv
= rsv
;
2109 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2110 ret
= fill_holes(trans
, inode
, path
, cur_offset
, drop_end
);
2120 inode_inc_iversion(inode
);
2121 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2123 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2124 ret
= btrfs_update_inode(trans
, root
, inode
);
2125 btrfs_end_transaction(trans
, root
);
2126 btrfs_btree_balance_dirty(root
);
2128 btrfs_free_path(path
);
2129 btrfs_free_block_rsv(root
, rsv
);
2131 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2132 &cached_state
, GFP_NOFS
);
2133 mutex_unlock(&inode
->i_mutex
);
2139 static long btrfs_fallocate(struct file
*file
, int mode
,
2140 loff_t offset
, loff_t len
)
2142 struct inode
*inode
= file_inode(file
);
2143 struct extent_state
*cached_state
= NULL
;
2150 struct extent_map
*em
;
2151 int blocksize
= BTRFS_I(inode
)->root
->sectorsize
;
2154 alloc_start
= round_down(offset
, blocksize
);
2155 alloc_end
= round_up(offset
+ len
, blocksize
);
2157 /* Make sure we aren't being give some crap mode */
2158 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2161 if (mode
& FALLOC_FL_PUNCH_HOLE
)
2162 return btrfs_punch_hole(inode
, offset
, len
);
2165 * Make sure we have enough space before we do the
2168 ret
= btrfs_check_data_free_space(inode
, alloc_end
- alloc_start
);
2173 * wait for ordered IO before we have any locks. We'll loop again
2174 * below with the locks held.
2176 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
2178 mutex_lock(&inode
->i_mutex
);
2179 ret
= inode_newsize_ok(inode
, alloc_end
);
2183 if (alloc_start
> inode
->i_size
) {
2184 ret
= btrfs_cont_expand(inode
, i_size_read(inode
),
2190 locked_end
= alloc_end
- 1;
2192 struct btrfs_ordered_extent
*ordered
;
2194 /* the extent lock is ordered inside the running
2197 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
2198 locked_end
, 0, &cached_state
);
2199 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2202 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
2203 ordered
->file_offset
< alloc_end
) {
2204 btrfs_put_ordered_extent(ordered
);
2205 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
2206 alloc_start
, locked_end
,
2207 &cached_state
, GFP_NOFS
);
2209 * we can't wait on the range with the transaction
2210 * running or with the extent lock held
2212 btrfs_wait_ordered_range(inode
, alloc_start
,
2213 alloc_end
- alloc_start
);
2216 btrfs_put_ordered_extent(ordered
);
2221 cur_offset
= alloc_start
;
2225 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
2226 alloc_end
- cur_offset
, 0);
2227 if (IS_ERR_OR_NULL(em
)) {
2234 last_byte
= min(extent_map_end(em
), alloc_end
);
2235 actual_end
= min_t(u64
, extent_map_end(em
), offset
+ len
);
2236 last_byte
= ALIGN(last_byte
, blocksize
);
2238 if (em
->block_start
== EXTENT_MAP_HOLE
||
2239 (cur_offset
>= inode
->i_size
&&
2240 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
2241 ret
= btrfs_prealloc_file_range(inode
, mode
, cur_offset
,
2242 last_byte
- cur_offset
,
2243 1 << inode
->i_blkbits
,
2248 free_extent_map(em
);
2251 } else if (actual_end
> inode
->i_size
&&
2252 !(mode
& FALLOC_FL_KEEP_SIZE
)) {
2254 * We didn't need to allocate any more space, but we
2255 * still extended the size of the file so we need to
2258 inode
->i_ctime
= CURRENT_TIME
;
2259 i_size_write(inode
, actual_end
);
2260 btrfs_ordered_update_i_size(inode
, actual_end
, NULL
);
2262 free_extent_map(em
);
2264 cur_offset
= last_byte
;
2265 if (cur_offset
>= alloc_end
) {
2270 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
2271 &cached_state
, GFP_NOFS
);
2273 mutex_unlock(&inode
->i_mutex
);
2274 /* Let go of our reservation. */
2275 btrfs_free_reserved_data_space(inode
, alloc_end
- alloc_start
);
2279 static int find_desired_extent(struct inode
*inode
, loff_t
*offset
, int whence
)
2281 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2282 struct extent_map
*em
;
2283 struct extent_state
*cached_state
= NULL
;
2284 u64 lockstart
= *offset
;
2285 u64 lockend
= i_size_read(inode
);
2286 u64 start
= *offset
;
2287 u64 orig_start
= *offset
;
2288 u64 len
= i_size_read(inode
);
2292 lockend
= max_t(u64
, root
->sectorsize
, lockend
);
2293 if (lockend
<= lockstart
)
2294 lockend
= lockstart
+ root
->sectorsize
;
2297 len
= lockend
- lockstart
+ 1;
2299 len
= max_t(u64
, len
, root
->sectorsize
);
2300 if (inode
->i_size
== 0)
2303 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
, 0,
2307 * Delalloc is such a pain. If we have a hole and we have pending
2308 * delalloc for a portion of the hole we will get back a hole that
2309 * exists for the entire range since it hasn't been actually written
2310 * yet. So to take care of this case we need to look for an extent just
2311 * before the position we want in case there is outstanding delalloc
2314 if (whence
== SEEK_HOLE
&& start
!= 0) {
2315 if (start
<= root
->sectorsize
)
2316 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, 0,
2317 root
->sectorsize
, 0);
2319 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0,
2320 start
- root
->sectorsize
,
2321 root
->sectorsize
, 0);
2326 last_end
= em
->start
+ em
->len
;
2327 if (em
->block_start
== EXTENT_MAP_DELALLOC
)
2328 last_end
= min_t(u64
, last_end
, inode
->i_size
);
2329 free_extent_map(em
);
2333 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, start
, len
, 0);
2339 if (em
->block_start
== EXTENT_MAP_HOLE
) {
2340 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
2341 if (last_end
<= orig_start
) {
2342 free_extent_map(em
);
2348 if (whence
== SEEK_HOLE
) {
2350 free_extent_map(em
);
2354 if (whence
== SEEK_DATA
) {
2355 if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
2356 if (start
>= inode
->i_size
) {
2357 free_extent_map(em
);
2363 if (!test_bit(EXTENT_FLAG_PREALLOC
,
2366 free_extent_map(em
);
2372 start
= em
->start
+ em
->len
;
2373 last_end
= em
->start
+ em
->len
;
2375 if (em
->block_start
== EXTENT_MAP_DELALLOC
)
2376 last_end
= min_t(u64
, last_end
, inode
->i_size
);
2378 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
2379 free_extent_map(em
);
2383 free_extent_map(em
);
2387 *offset
= min(*offset
, inode
->i_size
);
2389 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2390 &cached_state
, GFP_NOFS
);
2394 static loff_t
btrfs_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2396 struct inode
*inode
= file
->f_mapping
->host
;
2399 mutex_lock(&inode
->i_mutex
);
2403 offset
= generic_file_llseek(file
, offset
, whence
);
2407 if (offset
>= i_size_read(inode
)) {
2408 mutex_unlock(&inode
->i_mutex
);
2412 ret
= find_desired_extent(inode
, &offset
, whence
);
2414 mutex_unlock(&inode
->i_mutex
);
2419 if (offset
< 0 && !(file
->f_mode
& FMODE_UNSIGNED_OFFSET
)) {
2423 if (offset
> inode
->i_sb
->s_maxbytes
) {
2428 /* Special lock needed here? */
2429 if (offset
!= file
->f_pos
) {
2430 file
->f_pos
= offset
;
2431 file
->f_version
= 0;
2434 mutex_unlock(&inode
->i_mutex
);
2438 const struct file_operations btrfs_file_operations
= {
2439 .llseek
= btrfs_file_llseek
,
2440 .read
= do_sync_read
,
2441 .write
= do_sync_write
,
2442 .aio_read
= generic_file_aio_read
,
2443 .splice_read
= generic_file_splice_read
,
2444 .aio_write
= btrfs_file_aio_write
,
2445 .mmap
= btrfs_file_mmap
,
2446 .open
= generic_file_open
,
2447 .release
= btrfs_release_file
,
2448 .fsync
= btrfs_sync_file
,
2449 .fallocate
= btrfs_fallocate
,
2450 .unlocked_ioctl
= btrfs_ioctl
,
2451 #ifdef CONFIG_COMPAT
2452 .compat_ioctl
= btrfs_ioctl
,
2456 void btrfs_auto_defrag_exit(void)
2458 if (btrfs_inode_defrag_cachep
)
2459 kmem_cache_destroy(btrfs_inode_defrag_cachep
);
2462 int btrfs_auto_defrag_init(void)
2464 btrfs_inode_defrag_cachep
= kmem_cache_create("btrfs_inode_defrag",
2465 sizeof(struct inode_defrag
), 0,
2466 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
2468 if (!btrfs_inode_defrag_cachep
)