staging:iio:accel:adis16220 move to info_mask_(shared_by_type/separate)
[linux/fpc-iii.git] / fs / btrfs / ulist.c
blobddc61cad008002eb2a06af77a4d10595376b37e1
1 /*
2 * Copyright (C) 2011 STRATO AG
3 * written by Arne Jansen <sensille@gmx.net>
4 * Distributed under the GNU GPL license version 2.
5 */
7 #include <linux/slab.h>
8 #include <linux/export.h>
9 #include "ulist.h"
12 * ulist is a generic data structure to hold a collection of unique u64
13 * values. The only operations it supports is adding to the list and
14 * enumerating it.
15 * It is possible to store an auxiliary value along with the key.
17 * The implementation is preliminary and can probably be sped up
18 * significantly. A first step would be to store the values in an rbtree
19 * as soon as ULIST_SIZE is exceeded.
21 * A sample usage for ulists is the enumeration of directed graphs without
22 * visiting a node twice. The pseudo-code could look like this:
24 * ulist = ulist_alloc();
25 * ulist_add(ulist, root);
26 * ULIST_ITER_INIT(&uiter);
28 * while ((elem = ulist_next(ulist, &uiter)) {
29 * for (all child nodes n in elem)
30 * ulist_add(ulist, n);
31 * do something useful with the node;
32 * }
33 * ulist_free(ulist);
35 * This assumes the graph nodes are adressable by u64. This stems from the
36 * usage for tree enumeration in btrfs, where the logical addresses are
37 * 64 bit.
39 * It is also useful for tree enumeration which could be done elegantly
40 * recursively, but is not possible due to kernel stack limitations. The
41 * loop would be similar to the above.
44 /**
45 * ulist_init - freshly initialize a ulist
46 * @ulist: the ulist to initialize
48 * Note: don't use this function to init an already used ulist, use
49 * ulist_reinit instead.
51 void ulist_init(struct ulist *ulist)
53 ulist->nnodes = 0;
54 ulist->nodes = ulist->int_nodes;
55 ulist->nodes_alloced = ULIST_SIZE;
57 EXPORT_SYMBOL(ulist_init);
59 /**
60 * ulist_fini - free up additionally allocated memory for the ulist
61 * @ulist: the ulist from which to free the additional memory
63 * This is useful in cases where the base 'struct ulist' has been statically
64 * allocated.
66 void ulist_fini(struct ulist *ulist)
69 * The first ULIST_SIZE elements are stored inline in struct ulist.
70 * Only if more elements are alocated they need to be freed.
72 if (ulist->nodes_alloced > ULIST_SIZE)
73 kfree(ulist->nodes);
74 ulist->nodes_alloced = 0; /* in case ulist_fini is called twice */
76 EXPORT_SYMBOL(ulist_fini);
78 /**
79 * ulist_reinit - prepare a ulist for reuse
80 * @ulist: ulist to be reused
82 * Free up all additional memory allocated for the list elements and reinit
83 * the ulist.
85 void ulist_reinit(struct ulist *ulist)
87 ulist_fini(ulist);
88 ulist_init(ulist);
90 EXPORT_SYMBOL(ulist_reinit);
92 /**
93 * ulist_alloc - dynamically allocate a ulist
94 * @gfp_mask: allocation flags to for base allocation
96 * The allocated ulist will be returned in an initialized state.
98 struct ulist *ulist_alloc(gfp_t gfp_mask)
100 struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
102 if (!ulist)
103 return NULL;
105 ulist_init(ulist);
107 return ulist;
109 EXPORT_SYMBOL(ulist_alloc);
112 * ulist_free - free dynamically allocated ulist
113 * @ulist: ulist to free
115 * It is not necessary to call ulist_fini before.
117 void ulist_free(struct ulist *ulist)
119 if (!ulist)
120 return;
121 ulist_fini(ulist);
122 kfree(ulist);
124 EXPORT_SYMBOL(ulist_free);
127 * ulist_add - add an element to the ulist
128 * @ulist: ulist to add the element to
129 * @val: value to add to ulist
130 * @aux: auxiliary value to store along with val
131 * @gfp_mask: flags to use for allocation
133 * Note: locking must be provided by the caller. In case of rwlocks write
134 * locking is needed
136 * Add an element to a ulist. The @val will only be added if it doesn't
137 * already exist. If it is added, the auxiliary value @aux is stored along with
138 * it. In case @val already exists in the ulist, @aux is ignored, even if
139 * it differs from the already stored value.
141 * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
142 * inserted.
143 * In case of allocation failure -ENOMEM is returned and the ulist stays
144 * unaltered.
146 int ulist_add(struct ulist *ulist, u64 val, u64 aux, gfp_t gfp_mask)
148 return ulist_add_merge(ulist, val, aux, NULL, gfp_mask);
151 int ulist_add_merge(struct ulist *ulist, u64 val, u64 aux,
152 u64 *old_aux, gfp_t gfp_mask)
154 int i;
156 for (i = 0; i < ulist->nnodes; ++i) {
157 if (ulist->nodes[i].val == val) {
158 if (old_aux)
159 *old_aux = ulist->nodes[i].aux;
160 return 0;
164 if (ulist->nnodes >= ulist->nodes_alloced) {
165 u64 new_alloced = ulist->nodes_alloced + 128;
166 struct ulist_node *new_nodes;
167 void *old = NULL;
170 * if nodes_alloced == ULIST_SIZE no memory has been allocated
171 * yet, so pass NULL to krealloc
173 if (ulist->nodes_alloced > ULIST_SIZE)
174 old = ulist->nodes;
176 new_nodes = krealloc(old, sizeof(*new_nodes) * new_alloced,
177 gfp_mask);
178 if (!new_nodes)
179 return -ENOMEM;
181 if (!old)
182 memcpy(new_nodes, ulist->int_nodes,
183 sizeof(ulist->int_nodes));
185 ulist->nodes = new_nodes;
186 ulist->nodes_alloced = new_alloced;
188 ulist->nodes[ulist->nnodes].val = val;
189 ulist->nodes[ulist->nnodes].aux = aux;
190 ++ulist->nnodes;
192 return 1;
194 EXPORT_SYMBOL(ulist_add);
197 * ulist_next - iterate ulist
198 * @ulist: ulist to iterate
199 * @uiter: iterator variable, initialized with ULIST_ITER_INIT(&iterator)
201 * Note: locking must be provided by the caller. In case of rwlocks only read
202 * locking is needed
204 * This function is used to iterate an ulist.
205 * It returns the next element from the ulist or %NULL when the
206 * end is reached. No guarantee is made with respect to the order in which
207 * the elements are returned. They might neither be returned in order of
208 * addition nor in ascending order.
209 * It is allowed to call ulist_add during an enumeration. Newly added items
210 * are guaranteed to show up in the running enumeration.
212 struct ulist_node *ulist_next(struct ulist *ulist, struct ulist_iterator *uiter)
214 if (ulist->nnodes == 0)
215 return NULL;
216 if (uiter->i < 0 || uiter->i >= ulist->nnodes)
217 return NULL;
219 return &ulist->nodes[uiter->i++];
221 EXPORT_SYMBOL(ulist_next);