1 // SPDX-License-Identifier: GPL-2.0
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
10 // Hash part based on omap-sham.c driver.
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha.h>
34 #include <crypto/internal/hash.h>
36 #define _SBF(s, v) ((v) << (s))
38 /* Feed control registers */
39 #define SSS_REG_FCINTSTAT 0x0000
40 #define SSS_FCINTSTAT_HPARTINT BIT(7)
41 #define SSS_FCINTSTAT_HDONEINT BIT(5)
42 #define SSS_FCINTSTAT_BRDMAINT BIT(3)
43 #define SSS_FCINTSTAT_BTDMAINT BIT(2)
44 #define SSS_FCINTSTAT_HRDMAINT BIT(1)
45 #define SSS_FCINTSTAT_PKDMAINT BIT(0)
47 #define SSS_REG_FCINTENSET 0x0004
48 #define SSS_FCINTENSET_HPARTINTENSET BIT(7)
49 #define SSS_FCINTENSET_HDONEINTENSET BIT(5)
50 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
51 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
52 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
53 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
55 #define SSS_REG_FCINTENCLR 0x0008
56 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
57 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
58 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
59 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
60 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
61 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
63 #define SSS_REG_FCINTPEND 0x000C
64 #define SSS_FCINTPEND_HPARTINTP BIT(7)
65 #define SSS_FCINTPEND_HDONEINTP BIT(5)
66 #define SSS_FCINTPEND_BRDMAINTP BIT(3)
67 #define SSS_FCINTPEND_BTDMAINTP BIT(2)
68 #define SSS_FCINTPEND_HRDMAINTP BIT(1)
69 #define SSS_FCINTPEND_PKDMAINTP BIT(0)
71 #define SSS_REG_FCFIFOSTAT 0x0010
72 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
73 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
74 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
75 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
76 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
77 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
78 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
79 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
81 #define SSS_REG_FCFIFOCTRL 0x0014
82 #define SSS_FCFIFOCTRL_DESSEL BIT(2)
83 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
84 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
85 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
86 #define SSS_HASHIN_MASK _SBF(0, 0x03)
88 #define SSS_REG_FCBRDMAS 0x0020
89 #define SSS_REG_FCBRDMAL 0x0024
90 #define SSS_REG_FCBRDMAC 0x0028
91 #define SSS_FCBRDMAC_BYTESWAP BIT(1)
92 #define SSS_FCBRDMAC_FLUSH BIT(0)
94 #define SSS_REG_FCBTDMAS 0x0030
95 #define SSS_REG_FCBTDMAL 0x0034
96 #define SSS_REG_FCBTDMAC 0x0038
97 #define SSS_FCBTDMAC_BYTESWAP BIT(1)
98 #define SSS_FCBTDMAC_FLUSH BIT(0)
100 #define SSS_REG_FCHRDMAS 0x0040
101 #define SSS_REG_FCHRDMAL 0x0044
102 #define SSS_REG_FCHRDMAC 0x0048
103 #define SSS_FCHRDMAC_BYTESWAP BIT(1)
104 #define SSS_FCHRDMAC_FLUSH BIT(0)
106 #define SSS_REG_FCPKDMAS 0x0050
107 #define SSS_REG_FCPKDMAL 0x0054
108 #define SSS_REG_FCPKDMAC 0x0058
109 #define SSS_FCPKDMAC_BYTESWAP BIT(3)
110 #define SSS_FCPKDMAC_DESCEND BIT(2)
111 #define SSS_FCPKDMAC_TRANSMIT BIT(1)
112 #define SSS_FCPKDMAC_FLUSH BIT(0)
114 #define SSS_REG_FCPKDMAO 0x005C
117 #define SSS_REG_AES_CONTROL 0x00
118 #define SSS_AES_BYTESWAP_DI BIT(11)
119 #define SSS_AES_BYTESWAP_DO BIT(10)
120 #define SSS_AES_BYTESWAP_IV BIT(9)
121 #define SSS_AES_BYTESWAP_CNT BIT(8)
122 #define SSS_AES_BYTESWAP_KEY BIT(7)
123 #define SSS_AES_KEY_CHANGE_MODE BIT(6)
124 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
125 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
126 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
127 #define SSS_AES_FIFO_MODE BIT(3)
128 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
129 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
130 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
131 #define SSS_AES_MODE_DECRYPT BIT(0)
133 #define SSS_REG_AES_STATUS 0x04
134 #define SSS_AES_BUSY BIT(2)
135 #define SSS_AES_INPUT_READY BIT(1)
136 #define SSS_AES_OUTPUT_READY BIT(0)
138 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
139 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
140 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
141 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
142 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
144 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
145 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
146 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
148 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
149 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
150 SSS_AES_REG(dev, reg))
152 /* HW engine modes */
153 #define FLAGS_AES_DECRYPT BIT(0)
154 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
155 #define FLAGS_AES_CBC _SBF(1, 0x01)
156 #define FLAGS_AES_CTR _SBF(1, 0x02)
158 #define AES_KEY_LEN 16
159 #define CRYPTO_QUEUE_LEN 1
162 #define SSS_REG_HASH_CTRL 0x00
164 #define SSS_HASH_USER_IV_EN BIT(5)
165 #define SSS_HASH_INIT_BIT BIT(4)
166 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
167 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
168 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
170 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
172 #define SSS_REG_HASH_CTRL_PAUSE 0x04
174 #define SSS_HASH_PAUSE BIT(0)
176 #define SSS_REG_HASH_CTRL_FIFO 0x08
178 #define SSS_HASH_FIFO_MODE_DMA BIT(0)
179 #define SSS_HASH_FIFO_MODE_CPU 0
181 #define SSS_REG_HASH_CTRL_SWAP 0x0C
183 #define SSS_HASH_BYTESWAP_DI BIT(3)
184 #define SSS_HASH_BYTESWAP_DO BIT(2)
185 #define SSS_HASH_BYTESWAP_IV BIT(1)
186 #define SSS_HASH_BYTESWAP_KEY BIT(0)
188 #define SSS_REG_HASH_STATUS 0x10
190 #define SSS_HASH_STATUS_MSG_DONE BIT(6)
191 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
192 #define SSS_HASH_STATUS_BUFFER_READY BIT(0)
194 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20
195 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
200 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
201 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
203 #define HASH_BLOCK_SIZE 64
204 #define HASH_REG_SIZEOF 4
205 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
210 * HASH bit numbers, used by device, setting in dev->hash_flags with
211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215 #define HASH_FLAGS_BUSY 0
216 #define HASH_FLAGS_FINAL 1
217 #define HASH_FLAGS_DMA_ACTIVE 2
218 #define HASH_FLAGS_OUTPUT_READY 3
219 #define HASH_FLAGS_DMA_READY 4
220 #define HASH_FLAGS_SGS_COPIED 5
221 #define HASH_FLAGS_SGS_ALLOCED 6
223 /* HASH HW constants */
224 #define BUFLEN HASH_BLOCK_SIZE
226 #define SSS_HASH_DMA_LEN_ALIGN 8
227 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
229 #define SSS_HASH_QUEUE_LENGTH 10
232 * struct samsung_aes_variant - platform specific SSS driver data
233 * @aes_offset: AES register offset from SSS module's base.
234 * @hash_offset: HASH register offset from SSS module's base.
236 * Specifies platform specific configuration of SSS module.
237 * Note: A structure for driver specific platform data is used for future
238 * expansion of its usage.
240 struct samsung_aes_variant
{
241 unsigned int aes_offset
;
242 unsigned int hash_offset
;
245 struct s5p_aes_reqctx
{
250 struct s5p_aes_dev
*dev
;
252 uint8_t aes_key
[AES_MAX_KEY_SIZE
];
253 uint8_t nonce
[CTR_RFC3686_NONCE_SIZE
];
258 * struct s5p_aes_dev - Crypto device state container
259 * @dev: Associated device
260 * @clk: Clock for accessing hardware
261 * @ioaddr: Mapped IO memory region
262 * @aes_ioaddr: Per-varian offset for AES block IO memory
263 * @irq_fc: Feed control interrupt line
264 * @req: Crypto request currently handled by the device
265 * @ctx: Configuration for currently handled crypto request
266 * @sg_src: Scatter list with source data for currently handled block
267 * in device. This is DMA-mapped into device.
268 * @sg_dst: Scatter list with destination data for currently handled block
269 * in device. This is DMA-mapped into device.
270 * @sg_src_cpy: In case of unaligned access, copied scatter list
272 * @sg_dst_cpy: In case of unaligned access, copied scatter list
273 * with destination data.
274 * @tasklet: New request scheduling jib
275 * @queue: Crypto queue
276 * @busy: Indicates whether the device is currently handling some request
277 * thus it uses some of the fields from this state, like:
278 * req, ctx, sg_src/dst (and copies). This essentially
279 * protects against concurrent access to these fields.
280 * @lock: Lock for protecting both access to device hardware registers
281 * and fields related to current request (including the busy field).
282 * @res: Resources for hash.
283 * @io_hash_base: Per-variant offset for HASH block IO memory.
284 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
286 * @hash_flags: Flags for current HASH op.
287 * @hash_queue: Async hash queue.
288 * @hash_tasklet: New HASH request scheduling job.
289 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
290 * @hash_req: Current request sending to SSS HASH block.
291 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
292 * @hash_sg_cnt: Counter for hash_sg_iter.
294 * @use_hash: true if HASH algs enabled
299 void __iomem
*ioaddr
;
300 void __iomem
*aes_ioaddr
;
303 struct ablkcipher_request
*req
;
304 struct s5p_aes_ctx
*ctx
;
305 struct scatterlist
*sg_src
;
306 struct scatterlist
*sg_dst
;
308 struct scatterlist
*sg_src_cpy
;
309 struct scatterlist
*sg_dst_cpy
;
311 struct tasklet_struct tasklet
;
312 struct crypto_queue queue
;
316 struct resource
*res
;
317 void __iomem
*io_hash_base
;
319 spinlock_t hash_lock
; /* protect hash_ vars */
320 unsigned long hash_flags
;
321 struct crypto_queue hash_queue
;
322 struct tasklet_struct hash_tasklet
;
325 struct ahash_request
*hash_req
;
326 struct scatterlist
*hash_sg_iter
;
327 unsigned int hash_sg_cnt
;
333 * struct s5p_hash_reqctx - HASH request context
334 * @dd: Associated device
335 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
336 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
337 * @digest: Digest message or IV for partial result
338 * @nregs: Number of HW registers for digest or IV read/write
339 * @engine: Bits for selecting type of HASH in SSS block
340 * @sg: sg for DMA transfer
341 * @sg_len: Length of sg for DMA transfer
342 * @sgl[]: sg for joining buffer and req->src scatterlist
343 * @skip: Skip offset in req->src for current op
344 * @total: Total number of bytes for current request
345 * @finup: Keep state for finup or final.
346 * @error: Keep track of error.
347 * @bufcnt: Number of bytes holded in buffer[]
348 * @buffer[]: For byte(s) from end of req->src in UPDATE op
350 struct s5p_hash_reqctx
{
351 struct s5p_aes_dev
*dd
;
355 u8 digest
[SHA256_DIGEST_SIZE
];
357 unsigned int nregs
; /* digest_size / sizeof(reg) */
360 struct scatterlist
*sg
;
362 struct scatterlist sgl
[2];
373 * struct s5p_hash_ctx - HASH transformation context
374 * @dd: Associated device
375 * @flags: Bits for algorithm HASH.
376 * @fallback: Software transformation for zero message or size < BUFLEN.
378 struct s5p_hash_ctx
{
379 struct s5p_aes_dev
*dd
;
381 struct crypto_shash
*fallback
;
384 static const struct samsung_aes_variant s5p_aes_data
= {
385 .aes_offset
= 0x4000,
386 .hash_offset
= 0x6000,
389 static const struct samsung_aes_variant exynos_aes_data
= {
391 .hash_offset
= 0x400,
394 static const struct of_device_id s5p_sss_dt_match
[] = {
396 .compatible
= "samsung,s5pv210-secss",
397 .data
= &s5p_aes_data
,
400 .compatible
= "samsung,exynos4210-secss",
401 .data
= &exynos_aes_data
,
405 MODULE_DEVICE_TABLE(of
, s5p_sss_dt_match
);
407 static inline const struct samsung_aes_variant
*find_s5p_sss_version
408 (const struct platform_device
*pdev
)
410 if (IS_ENABLED(CONFIG_OF
) && (pdev
->dev
.of_node
)) {
411 const struct of_device_id
*match
;
413 match
= of_match_node(s5p_sss_dt_match
,
415 return (const struct samsung_aes_variant
*)match
->data
;
417 return (const struct samsung_aes_variant
*)
418 platform_get_device_id(pdev
)->driver_data
;
421 static struct s5p_aes_dev
*s5p_dev
;
423 static void s5p_set_dma_indata(struct s5p_aes_dev
*dev
,
424 const struct scatterlist
*sg
)
426 SSS_WRITE(dev
, FCBRDMAS
, sg_dma_address(sg
));
427 SSS_WRITE(dev
, FCBRDMAL
, sg_dma_len(sg
));
430 static void s5p_set_dma_outdata(struct s5p_aes_dev
*dev
,
431 const struct scatterlist
*sg
)
433 SSS_WRITE(dev
, FCBTDMAS
, sg_dma_address(sg
));
434 SSS_WRITE(dev
, FCBTDMAL
, sg_dma_len(sg
));
437 static void s5p_free_sg_cpy(struct s5p_aes_dev
*dev
, struct scatterlist
**sg
)
444 len
= ALIGN(dev
->req
->nbytes
, AES_BLOCK_SIZE
);
445 free_pages((unsigned long)sg_virt(*sg
), get_order(len
));
451 static void s5p_sg_copy_buf(void *buf
, struct scatterlist
*sg
,
452 unsigned int nbytes
, int out
)
454 struct scatter_walk walk
;
459 scatterwalk_start(&walk
, sg
);
460 scatterwalk_copychunks(buf
, &walk
, nbytes
, out
);
461 scatterwalk_done(&walk
, out
, 0);
464 static void s5p_sg_done(struct s5p_aes_dev
*dev
)
466 if (dev
->sg_dst_cpy
) {
468 "Copying %d bytes of output data back to original place\n",
470 s5p_sg_copy_buf(sg_virt(dev
->sg_dst_cpy
), dev
->req
->dst
,
471 dev
->req
->nbytes
, 1);
473 s5p_free_sg_cpy(dev
, &dev
->sg_src_cpy
);
474 s5p_free_sg_cpy(dev
, &dev
->sg_dst_cpy
);
477 /* Calls the completion. Cannot be called with dev->lock hold. */
478 static void s5p_aes_complete(struct ablkcipher_request
*req
, int err
)
480 req
->base
.complete(&req
->base
, err
);
483 static void s5p_unset_outdata(struct s5p_aes_dev
*dev
)
485 dma_unmap_sg(dev
->dev
, dev
->sg_dst
, 1, DMA_FROM_DEVICE
);
488 static void s5p_unset_indata(struct s5p_aes_dev
*dev
)
490 dma_unmap_sg(dev
->dev
, dev
->sg_src
, 1, DMA_TO_DEVICE
);
493 static int s5p_make_sg_cpy(struct s5p_aes_dev
*dev
, struct scatterlist
*src
,
494 struct scatterlist
**dst
)
499 *dst
= kmalloc(sizeof(**dst
), GFP_ATOMIC
);
503 len
= ALIGN(dev
->req
->nbytes
, AES_BLOCK_SIZE
);
504 pages
= (void *)__get_free_pages(GFP_ATOMIC
, get_order(len
));
511 s5p_sg_copy_buf(pages
, src
, dev
->req
->nbytes
, 0);
513 sg_init_table(*dst
, 1);
514 sg_set_buf(*dst
, pages
, len
);
519 static int s5p_set_outdata(struct s5p_aes_dev
*dev
, struct scatterlist
*sg
)
528 err
= dma_map_sg(dev
->dev
, sg
, 1, DMA_FROM_DEVICE
);
541 static int s5p_set_indata(struct s5p_aes_dev
*dev
, struct scatterlist
*sg
)
550 err
= dma_map_sg(dev
->dev
, sg
, 1, DMA_TO_DEVICE
);
564 * Returns -ERRNO on error (mapping of new data failed).
565 * On success returns:
566 * - 0 if there is no more data,
567 * - 1 if new transmitting (output) data is ready and its address+length
568 * have to be written to device (by calling s5p_set_dma_outdata()).
570 static int s5p_aes_tx(struct s5p_aes_dev
*dev
)
574 s5p_unset_outdata(dev
);
576 if (!sg_is_last(dev
->sg_dst
)) {
577 ret
= s5p_set_outdata(dev
, sg_next(dev
->sg_dst
));
586 * Returns -ERRNO on error (mapping of new data failed).
587 * On success returns:
588 * - 0 if there is no more data,
589 * - 1 if new receiving (input) data is ready and its address+length
590 * have to be written to device (by calling s5p_set_dma_indata()).
592 static int s5p_aes_rx(struct s5p_aes_dev
*dev
/*, bool *set_dma*/)
596 s5p_unset_indata(dev
);
598 if (!sg_is_last(dev
->sg_src
)) {
599 ret
= s5p_set_indata(dev
, sg_next(dev
->sg_src
));
607 static inline u32
s5p_hash_read(struct s5p_aes_dev
*dd
, u32 offset
)
609 return __raw_readl(dd
->io_hash_base
+ offset
);
612 static inline void s5p_hash_write(struct s5p_aes_dev
*dd
,
613 u32 offset
, u32 value
)
615 __raw_writel(value
, dd
->io_hash_base
+ offset
);
619 * s5p_set_dma_hashdata() - start DMA with sg
621 * @sg: scatterlist ready to DMA transmit
623 static void s5p_set_dma_hashdata(struct s5p_aes_dev
*dev
,
624 const struct scatterlist
*sg
)
627 SSS_WRITE(dev
, FCHRDMAS
, sg_dma_address(sg
));
628 SSS_WRITE(dev
, FCHRDMAL
, sg_dma_len(sg
)); /* DMA starts */
632 * s5p_hash_rx() - get next hash_sg_iter
636 * 2 if there is no more data and it is UPDATE op
637 * 1 if new receiving (input) data is ready and can be written to device
638 * 0 if there is no more data and it is FINAL op
640 static int s5p_hash_rx(struct s5p_aes_dev
*dev
)
642 if (dev
->hash_sg_cnt
> 0) {
643 dev
->hash_sg_iter
= sg_next(dev
->hash_sg_iter
);
647 set_bit(HASH_FLAGS_DMA_READY
, &dev
->hash_flags
);
648 if (test_bit(HASH_FLAGS_FINAL
, &dev
->hash_flags
))
654 static irqreturn_t
s5p_aes_interrupt(int irq
, void *dev_id
)
656 struct platform_device
*pdev
= dev_id
;
657 struct s5p_aes_dev
*dev
= platform_get_drvdata(pdev
);
658 struct ablkcipher_request
*req
;
669 spin_lock_irqsave(&dev
->lock
, flags
);
672 * Handle rx or tx interrupt. If there is still data (scatterlist did not
673 * reach end), then map next scatterlist entry.
674 * In case of such mapping error, s5p_aes_complete() should be called.
676 * If there is no more data in tx scatter list, call s5p_aes_complete()
677 * and schedule new tasklet.
679 * Handle hx interrupt. If there is still data map next entry.
681 status
= SSS_READ(dev
, FCINTSTAT
);
682 if (status
& SSS_FCINTSTAT_BRDMAINT
)
683 err_dma_rx
= s5p_aes_rx(dev
);
685 if (status
& SSS_FCINTSTAT_BTDMAINT
) {
686 if (sg_is_last(dev
->sg_dst
))
688 err_dma_tx
= s5p_aes_tx(dev
);
691 if (status
& SSS_FCINTSTAT_HRDMAINT
)
692 err_dma_hx
= s5p_hash_rx(dev
);
694 st_bits
= status
& (SSS_FCINTSTAT_BRDMAINT
| SSS_FCINTSTAT_BTDMAINT
|
695 SSS_FCINTSTAT_HRDMAINT
);
697 SSS_WRITE(dev
, FCINTPEND
, st_bits
);
699 /* clear HASH irq bits */
700 if (status
& (SSS_FCINTSTAT_HDONEINT
| SSS_FCINTSTAT_HPARTINT
)) {
701 /* cannot have both HPART and HDONE */
702 if (status
& SSS_FCINTSTAT_HPARTINT
)
703 st_bits
= SSS_HASH_STATUS_PARTIAL_DONE
;
705 if (status
& SSS_FCINTSTAT_HDONEINT
)
706 st_bits
= SSS_HASH_STATUS_MSG_DONE
;
708 set_bit(HASH_FLAGS_OUTPUT_READY
, &dev
->hash_flags
);
709 s5p_hash_write(dev
, SSS_REG_HASH_STATUS
, st_bits
);
711 /* when DONE or PART, do not handle HASH DMA */
715 if (err_dma_rx
< 0) {
719 if (err_dma_tx
< 0) {
727 s5p_set_dma_hashdata(dev
, dev
->hash_sg_iter
);
729 spin_unlock_irqrestore(&dev
->lock
, flags
);
731 s5p_aes_complete(dev
->req
, 0);
732 /* Device is still busy */
733 tasklet_schedule(&dev
->tasklet
);
736 * Writing length of DMA block (either receiving or
737 * transmitting) will start the operation immediately, so this
738 * should be done at the end (even after clearing pending
739 * interrupts to not miss the interrupt).
742 s5p_set_dma_outdata(dev
, dev
->sg_dst
);
744 s5p_set_dma_indata(dev
, dev
->sg_src
);
746 s5p_set_dma_hashdata(dev
, dev
->hash_sg_iter
);
748 spin_unlock_irqrestore(&dev
->lock
, flags
);
758 s5p_set_dma_hashdata(dev
, dev
->hash_sg_iter
);
760 spin_unlock_irqrestore(&dev
->lock
, flags
);
761 s5p_aes_complete(req
, err
);
765 * Note about else if:
766 * when hash_sg_iter reaches end and its UPDATE op,
767 * issue SSS_HASH_PAUSE and wait for HPART irq
770 tasklet_schedule(&dev
->hash_tasklet
);
771 else if (err_dma_hx
== 2)
772 s5p_hash_write(dev
, SSS_REG_HASH_CTRL_PAUSE
,
779 * s5p_hash_read_msg() - read message or IV from HW
780 * @req: AHASH request
782 static void s5p_hash_read_msg(struct ahash_request
*req
)
784 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
785 struct s5p_aes_dev
*dd
= ctx
->dd
;
786 u32
*hash
= (u32
*)ctx
->digest
;
789 for (i
= 0; i
< ctx
->nregs
; i
++)
790 hash
[i
] = s5p_hash_read(dd
, SSS_REG_HASH_OUT(i
));
794 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
796 * @ctx: request context
798 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev
*dd
,
799 const struct s5p_hash_reqctx
*ctx
)
801 const u32
*hash
= (const u32
*)ctx
->digest
;
804 for (i
= 0; i
< ctx
->nregs
; i
++)
805 s5p_hash_write(dd
, SSS_REG_HASH_IV(i
), hash
[i
]);
809 * s5p_hash_write_iv() - write IV for next partial/finup op.
810 * @req: AHASH request
812 static void s5p_hash_write_iv(struct ahash_request
*req
)
814 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
816 s5p_hash_write_ctx_iv(ctx
->dd
, ctx
);
820 * s5p_hash_copy_result() - copy digest into req->result
821 * @req: AHASH request
823 static void s5p_hash_copy_result(struct ahash_request
*req
)
825 const struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
830 memcpy(req
->result
, ctx
->digest
, ctx
->nregs
* HASH_REG_SIZEOF
);
834 * s5p_hash_dma_flush() - flush HASH DMA
837 static void s5p_hash_dma_flush(struct s5p_aes_dev
*dev
)
839 SSS_WRITE(dev
, FCHRDMAC
, SSS_FCHRDMAC_FLUSH
);
843 * s5p_hash_dma_enable() - enable DMA mode for HASH
846 * enable DMA mode for HASH
848 static void s5p_hash_dma_enable(struct s5p_aes_dev
*dev
)
850 s5p_hash_write(dev
, SSS_REG_HASH_CTRL_FIFO
, SSS_HASH_FIFO_MODE_DMA
);
854 * s5p_hash_irq_disable() - disable irq HASH signals
856 * @flags: bitfield with irq's to be disabled
858 static void s5p_hash_irq_disable(struct s5p_aes_dev
*dev
, u32 flags
)
860 SSS_WRITE(dev
, FCINTENCLR
, flags
);
864 * s5p_hash_irq_enable() - enable irq signals
866 * @flags: bitfield with irq's to be enabled
868 static void s5p_hash_irq_enable(struct s5p_aes_dev
*dev
, int flags
)
870 SSS_WRITE(dev
, FCINTENSET
, flags
);
874 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
876 * @hashflow: HASH stream flow with/without crypto AES/DES
878 static void s5p_hash_set_flow(struct s5p_aes_dev
*dev
, u32 hashflow
)
883 spin_lock_irqsave(&dev
->lock
, flags
);
885 flow
= SSS_READ(dev
, FCFIFOCTRL
);
886 flow
&= ~SSS_HASHIN_MASK
;
888 SSS_WRITE(dev
, FCFIFOCTRL
, flow
);
890 spin_unlock_irqrestore(&dev
->lock
, flags
);
894 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
896 * @hashflow: HASH stream flow with/without AES/DES
898 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
899 * enable HASH irq's HRDMA, HDONE, HPART
901 static void s5p_ahash_dma_init(struct s5p_aes_dev
*dev
, u32 hashflow
)
903 s5p_hash_irq_disable(dev
, SSS_FCINTENCLR_HRDMAINTENCLR
|
904 SSS_FCINTENCLR_HDONEINTENCLR
|
905 SSS_FCINTENCLR_HPARTINTENCLR
);
906 s5p_hash_dma_flush(dev
);
908 s5p_hash_dma_enable(dev
);
909 s5p_hash_set_flow(dev
, hashflow
& SSS_HASHIN_MASK
);
910 s5p_hash_irq_enable(dev
, SSS_FCINTENSET_HRDMAINTENSET
|
911 SSS_FCINTENSET_HDONEINTENSET
|
912 SSS_FCINTENSET_HPARTINTENSET
);
916 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
918 * @length: length for request
919 * @final: true if final op
921 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
922 * after previous updates, fill up IV words. For final, calculate and set
923 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
924 * length as 2^63 so it will be never reached and set to zero prelow and
927 * This function does not start DMA transfer.
929 static void s5p_hash_write_ctrl(struct s5p_aes_dev
*dd
, size_t length
,
932 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(dd
->hash_req
);
933 u32 prelow
, prehigh
, low
, high
;
934 u32 configflags
, swapflags
;
937 configflags
= ctx
->engine
| SSS_HASH_INIT_BIT
;
939 if (likely(ctx
->digcnt
)) {
940 s5p_hash_write_ctx_iv(dd
, ctx
);
941 configflags
|= SSS_HASH_USER_IV_EN
;
945 /* number of bytes for last part */
948 /* total number of bits prev hashed */
949 tmplen
= ctx
->digcnt
* 8;
950 prelow
= (u32
)tmplen
;
951 prehigh
= (u32
)(tmplen
>> 32);
959 swapflags
= SSS_HASH_BYTESWAP_DI
| SSS_HASH_BYTESWAP_DO
|
960 SSS_HASH_BYTESWAP_IV
| SSS_HASH_BYTESWAP_KEY
;
962 s5p_hash_write(dd
, SSS_REG_HASH_MSG_SIZE_LOW
, low
);
963 s5p_hash_write(dd
, SSS_REG_HASH_MSG_SIZE_HIGH
, high
);
964 s5p_hash_write(dd
, SSS_REG_HASH_PRE_MSG_SIZE_LOW
, prelow
);
965 s5p_hash_write(dd
, SSS_REG_HASH_PRE_MSG_SIZE_HIGH
, prehigh
);
967 s5p_hash_write(dd
, SSS_REG_HASH_CTRL_SWAP
, swapflags
);
968 s5p_hash_write(dd
, SSS_REG_HASH_CTRL
, configflags
);
972 * s5p_hash_xmit_dma() - start DMA hash processing
974 * @length: length for request
975 * @final: true if final op
977 * Update digcnt here, as it is needed for finup/final op.
979 static int s5p_hash_xmit_dma(struct s5p_aes_dev
*dd
, size_t length
,
982 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(dd
->hash_req
);
985 cnt
= dma_map_sg(dd
->dev
, ctx
->sg
, ctx
->sg_len
, DMA_TO_DEVICE
);
987 dev_err(dd
->dev
, "dma_map_sg error\n");
992 set_bit(HASH_FLAGS_DMA_ACTIVE
, &dd
->hash_flags
);
993 dd
->hash_sg_iter
= ctx
->sg
;
994 dd
->hash_sg_cnt
= cnt
;
995 s5p_hash_write_ctrl(dd
, length
, final
);
996 ctx
->digcnt
+= length
;
997 ctx
->total
-= length
;
999 /* catch last interrupt */
1001 set_bit(HASH_FLAGS_FINAL
, &dd
->hash_flags
);
1003 s5p_set_dma_hashdata(dd
, dd
->hash_sg_iter
); /* DMA starts */
1005 return -EINPROGRESS
;
1009 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1010 * @ctx: request context
1011 * @sg: source scatterlist request
1012 * @new_len: number of bytes to process from sg
1014 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1015 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1016 * with allocated buffer.
1018 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1020 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx
*ctx
,
1021 struct scatterlist
*sg
, unsigned int new_len
)
1023 unsigned int pages
, len
;
1026 len
= new_len
+ ctx
->bufcnt
;
1027 pages
= get_order(len
);
1029 buf
= (void *)__get_free_pages(GFP_ATOMIC
, pages
);
1031 dev_err(ctx
->dd
->dev
, "alloc pages for unaligned case.\n");
1037 memcpy(buf
, ctx
->dd
->xmit_buf
, ctx
->bufcnt
);
1039 scatterwalk_map_and_copy(buf
+ ctx
->bufcnt
, sg
, ctx
->skip
,
1041 sg_init_table(ctx
->sgl
, 1);
1042 sg_set_buf(ctx
->sgl
, buf
, len
);
1047 set_bit(HASH_FLAGS_SGS_COPIED
, &ctx
->dd
->hash_flags
);
1053 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1054 * @ctx: request context
1055 * @sg: source scatterlist request
1056 * @new_len: number of bytes to process from sg
1058 * Allocate new scatterlist table, copy data for HASH into it. If there was
1059 * xmit_buf filled, prepare it first, then copy page, length and offset from
1060 * source sg into it, adjusting begin and/or end for skip offset and
1063 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1064 * it after irq ends processing.
1066 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx
*ctx
,
1067 struct scatterlist
*sg
, unsigned int new_len
)
1069 unsigned int skip
= ctx
->skip
, n
= sg_nents(sg
);
1070 struct scatterlist
*tmp
;
1076 ctx
->sg
= kmalloc_array(n
, sizeof(*sg
), GFP_KERNEL
);
1082 sg_init_table(ctx
->sg
, n
);
1089 sg_set_buf(tmp
, ctx
->dd
->xmit_buf
, ctx
->bufcnt
);
1094 while (sg
&& skip
>= sg
->length
) {
1099 while (sg
&& new_len
) {
1100 len
= sg
->length
- skip
;
1105 sg_set_page(tmp
, sg_page(sg
), len
, sg
->offset
+ skip
);
1115 set_bit(HASH_FLAGS_SGS_ALLOCED
, &ctx
->dd
->hash_flags
);
1121 * s5p_hash_prepare_sgs() - prepare sg for processing
1122 * @ctx: request context
1123 * @sg: source scatterlist request
1124 * @nbytes: number of bytes to process from sg
1125 * @final: final flag
1127 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1128 * sg table have good aligned elements (list_ok). If one of this checks fails,
1129 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1130 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1131 * table and prepare sg elements.
1133 * For digest or finup all conditions can be good, and we may not need any
1136 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx
*ctx
,
1137 struct scatterlist
*sg
,
1138 unsigned int new_len
, bool final
)
1140 unsigned int skip
= ctx
->skip
, nbytes
= new_len
, n
= 0;
1141 bool aligned
= true, list_ok
= true;
1142 struct scatterlist
*sg_tmp
= sg
;
1144 if (!sg
|| !sg
->length
|| !new_len
)
1150 while (nbytes
> 0 && sg_tmp
) {
1152 if (skip
>= sg_tmp
->length
) {
1153 skip
-= sg_tmp
->length
;
1154 if (!sg_tmp
->length
) {
1159 if (!IS_ALIGNED(sg_tmp
->length
- skip
, BUFLEN
)) {
1164 if (nbytes
< sg_tmp
->length
- skip
) {
1169 nbytes
-= sg_tmp
->length
- skip
;
1173 sg_tmp
= sg_next(sg_tmp
);
1177 return s5p_hash_copy_sgs(ctx
, sg
, new_len
);
1179 return s5p_hash_copy_sg_lists(ctx
, sg
, new_len
);
1182 * Have aligned data from previous operation and/or current
1183 * Note: will enter here only if (digest or finup) and aligned
1187 sg_init_table(ctx
->sgl
, 2);
1188 sg_set_buf(ctx
->sgl
, ctx
->dd
->xmit_buf
, ctx
->bufcnt
);
1189 sg_chain(ctx
->sgl
, 2, sg
);
1201 * s5p_hash_prepare_request() - prepare request for processing
1202 * @req: AHASH request
1203 * @update: true if UPDATE op
1205 * Note 1: we can have update flag _and_ final flag at the same time.
1206 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1207 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1210 static int s5p_hash_prepare_request(struct ahash_request
*req
, bool update
)
1212 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1213 bool final
= ctx
->finup
;
1214 int xmit_len
, hash_later
, nbytes
;
1218 nbytes
= req
->nbytes
;
1222 ctx
->total
= nbytes
+ ctx
->bufcnt
;
1226 if (nbytes
&& (!IS_ALIGNED(ctx
->bufcnt
, BUFLEN
))) {
1227 /* bytes left from previous request, so fill up to BUFLEN */
1228 int len
= BUFLEN
- ctx
->bufcnt
% BUFLEN
;
1233 scatterwalk_map_and_copy(ctx
->buffer
+ ctx
->bufcnt
, req
->src
,
1243 memcpy(ctx
->dd
->xmit_buf
, ctx
->buffer
, ctx
->bufcnt
);
1245 xmit_len
= ctx
->total
;
1249 if (IS_ALIGNED(xmit_len
, BUFLEN
))
1252 xmit_len
-= xmit_len
& (BUFLEN
- 1);
1254 hash_later
= ctx
->total
- xmit_len
;
1255 /* copy hash_later bytes from end of req->src */
1256 /* previous bytes are in xmit_buf, so no overwrite */
1257 scatterwalk_map_and_copy(ctx
->buffer
, req
->src
,
1258 req
->nbytes
- hash_later
,
1262 if (xmit_len
> BUFLEN
) {
1263 ret
= s5p_hash_prepare_sgs(ctx
, req
->src
, nbytes
- hash_later
,
1268 /* have buffered data only */
1269 if (unlikely(!ctx
->bufcnt
)) {
1270 /* first update didn't fill up buffer */
1271 scatterwalk_map_and_copy(ctx
->dd
->xmit_buf
, req
->src
,
1275 sg_init_table(ctx
->sgl
, 1);
1276 sg_set_buf(ctx
->sgl
, ctx
->dd
->xmit_buf
, xmit_len
);
1282 ctx
->bufcnt
= hash_later
;
1284 ctx
->total
= xmit_len
;
1290 * s5p_hash_update_dma_stop() - unmap DMA
1293 * Unmap scatterlist ctx->sg.
1295 static void s5p_hash_update_dma_stop(struct s5p_aes_dev
*dd
)
1297 const struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(dd
->hash_req
);
1299 dma_unmap_sg(dd
->dev
, ctx
->sg
, ctx
->sg_len
, DMA_TO_DEVICE
);
1300 clear_bit(HASH_FLAGS_DMA_ACTIVE
, &dd
->hash_flags
);
1304 * s5p_hash_finish() - copy calculated digest to crypto layer
1305 * @req: AHASH request
1307 static void s5p_hash_finish(struct ahash_request
*req
)
1309 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1310 struct s5p_aes_dev
*dd
= ctx
->dd
;
1313 s5p_hash_copy_result(req
);
1315 dev_dbg(dd
->dev
, "hash_finish digcnt: %lld\n", ctx
->digcnt
);
1319 * s5p_hash_finish_req() - finish request
1320 * @req: AHASH request
1323 static void s5p_hash_finish_req(struct ahash_request
*req
, int err
)
1325 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1326 struct s5p_aes_dev
*dd
= ctx
->dd
;
1327 unsigned long flags
;
1329 if (test_bit(HASH_FLAGS_SGS_COPIED
, &dd
->hash_flags
))
1330 free_pages((unsigned long)sg_virt(ctx
->sg
),
1331 get_order(ctx
->sg
->length
));
1333 if (test_bit(HASH_FLAGS_SGS_ALLOCED
, &dd
->hash_flags
))
1337 dd
->hash_flags
&= ~(BIT(HASH_FLAGS_SGS_ALLOCED
) |
1338 BIT(HASH_FLAGS_SGS_COPIED
));
1340 if (!err
&& !ctx
->error
) {
1341 s5p_hash_read_msg(req
);
1342 if (test_bit(HASH_FLAGS_FINAL
, &dd
->hash_flags
))
1343 s5p_hash_finish(req
);
1348 spin_lock_irqsave(&dd
->hash_lock
, flags
);
1349 dd
->hash_flags
&= ~(BIT(HASH_FLAGS_BUSY
) | BIT(HASH_FLAGS_FINAL
) |
1350 BIT(HASH_FLAGS_DMA_READY
) |
1351 BIT(HASH_FLAGS_OUTPUT_READY
));
1352 spin_unlock_irqrestore(&dd
->hash_lock
, flags
);
1354 if (req
->base
.complete
)
1355 req
->base
.complete(&req
->base
, err
);
1359 * s5p_hash_handle_queue() - handle hash queue
1360 * @dd: device s5p_aes_dev
1361 * @req: AHASH request
1363 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1364 * device then processes the first request from the dd->queue
1366 * Returns: see s5p_hash_final below.
1368 static int s5p_hash_handle_queue(struct s5p_aes_dev
*dd
,
1369 struct ahash_request
*req
)
1371 struct crypto_async_request
*async_req
, *backlog
;
1372 struct s5p_hash_reqctx
*ctx
;
1373 unsigned long flags
;
1374 int err
= 0, ret
= 0;
1377 spin_lock_irqsave(&dd
->hash_lock
, flags
);
1379 ret
= ahash_enqueue_request(&dd
->hash_queue
, req
);
1381 if (test_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
)) {
1382 spin_unlock_irqrestore(&dd
->hash_lock
, flags
);
1386 backlog
= crypto_get_backlog(&dd
->hash_queue
);
1387 async_req
= crypto_dequeue_request(&dd
->hash_queue
);
1389 set_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
);
1391 spin_unlock_irqrestore(&dd
->hash_lock
, flags
);
1397 backlog
->complete(backlog
, -EINPROGRESS
);
1399 req
= ahash_request_cast(async_req
);
1401 ctx
= ahash_request_ctx(req
);
1403 err
= s5p_hash_prepare_request(req
, ctx
->op_update
);
1404 if (err
|| !ctx
->total
)
1407 dev_dbg(dd
->dev
, "handling new req, op_update: %u, nbytes: %d\n",
1408 ctx
->op_update
, req
->nbytes
);
1410 s5p_ahash_dma_init(dd
, SSS_HASHIN_INDEPENDENT
);
1412 s5p_hash_write_iv(req
); /* restore hash IV */
1414 if (ctx
->op_update
) { /* HASH_OP_UPDATE */
1415 err
= s5p_hash_xmit_dma(dd
, ctx
->total
, ctx
->finup
);
1416 if (err
!= -EINPROGRESS
&& ctx
->finup
&& !ctx
->error
)
1417 /* no final() after finup() */
1418 err
= s5p_hash_xmit_dma(dd
, ctx
->total
, true);
1419 } else { /* HASH_OP_FINAL */
1420 err
= s5p_hash_xmit_dma(dd
, ctx
->total
, true);
1423 if (err
!= -EINPROGRESS
) {
1424 /* hash_tasklet_cb will not finish it, so do it here */
1425 s5p_hash_finish_req(req
, err
);
1429 * Execute next request immediately if there is anything
1439 * s5p_hash_tasklet_cb() - hash tasklet
1440 * @data: ptr to s5p_aes_dev
1442 static void s5p_hash_tasklet_cb(unsigned long data
)
1444 struct s5p_aes_dev
*dd
= (struct s5p_aes_dev
*)data
;
1446 if (!test_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
)) {
1447 s5p_hash_handle_queue(dd
, NULL
);
1451 if (test_bit(HASH_FLAGS_DMA_READY
, &dd
->hash_flags
)) {
1452 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE
,
1454 s5p_hash_update_dma_stop(dd
);
1457 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY
,
1459 /* hash or semi-hash ready */
1460 clear_bit(HASH_FLAGS_DMA_READY
, &dd
->hash_flags
);
1468 /* finish curent request */
1469 s5p_hash_finish_req(dd
->hash_req
, 0);
1471 /* If we are not busy, process next req */
1472 if (!test_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
))
1473 s5p_hash_handle_queue(dd
, NULL
);
1477 * s5p_hash_enqueue() - enqueue request
1478 * @req: AHASH request
1479 * @op: operation UPDATE (true) or FINAL (false)
1481 * Returns: see s5p_hash_final below.
1483 static int s5p_hash_enqueue(struct ahash_request
*req
, bool op
)
1485 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1486 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(req
->base
.tfm
);
1488 ctx
->op_update
= op
;
1490 return s5p_hash_handle_queue(tctx
->dd
, req
);
1494 * s5p_hash_update() - process the hash input data
1495 * @req: AHASH request
1497 * If request will fit in buffer, copy it and return immediately
1498 * else enqueue it with OP_UPDATE.
1500 * Returns: see s5p_hash_final below.
1502 static int s5p_hash_update(struct ahash_request
*req
)
1504 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1509 if (ctx
->bufcnt
+ req
->nbytes
<= BUFLEN
) {
1510 scatterwalk_map_and_copy(ctx
->buffer
+ ctx
->bufcnt
, req
->src
,
1512 ctx
->bufcnt
+= req
->nbytes
;
1516 return s5p_hash_enqueue(req
, true); /* HASH_OP_UPDATE */
1520 * s5p_hash_shash_digest() - calculate shash digest
1521 * @tfm: crypto transformation
1524 * @len: length of data
1525 * @out: output buffer
1527 static int s5p_hash_shash_digest(struct crypto_shash
*tfm
, u32 flags
,
1528 const u8
*data
, unsigned int len
, u8
*out
)
1530 SHASH_DESC_ON_STACK(shash
, tfm
);
1533 shash
->flags
= flags
& ~CRYPTO_TFM_REQ_MAY_SLEEP
;
1535 return crypto_shash_digest(shash
, data
, len
, out
);
1539 * s5p_hash_final_shash() - calculate shash digest
1540 * @req: AHASH request
1542 static int s5p_hash_final_shash(struct ahash_request
*req
)
1544 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(req
->base
.tfm
);
1545 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1547 return s5p_hash_shash_digest(tctx
->fallback
, req
->base
.flags
,
1548 ctx
->buffer
, ctx
->bufcnt
, req
->result
);
1552 * s5p_hash_final() - close up hash and calculate digest
1553 * @req: AHASH request
1555 * Note: in final req->src do not have any data, and req->nbytes can be
1558 * If there were no input data processed yet and the buffered hash data is
1559 * less than BUFLEN (64) then calculate the final hash immediately by using
1560 * SW algorithm fallback.
1562 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1563 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1564 * previous update op, so there are always some buffered bytes in ctx->buffer,
1565 * which means that ctx->bufcnt!=0
1568 * 0 if the request has been processed immediately,
1569 * -EINPROGRESS if the operation has been queued for later execution or is set
1570 * to processing by HW,
1571 * -EBUSY if queue is full and request should be resubmitted later,
1572 * other negative values denotes an error.
1574 static int s5p_hash_final(struct ahash_request
*req
)
1576 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1580 return -EINVAL
; /* uncompleted hash is not needed */
1582 if (!ctx
->digcnt
&& ctx
->bufcnt
< BUFLEN
)
1583 return s5p_hash_final_shash(req
);
1585 return s5p_hash_enqueue(req
, false); /* HASH_OP_FINAL */
1589 * s5p_hash_finup() - process last req->src and calculate digest
1590 * @req: AHASH request containing the last update data
1592 * Return values: see s5p_hash_final above.
1594 static int s5p_hash_finup(struct ahash_request
*req
)
1596 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1601 err1
= s5p_hash_update(req
);
1602 if (err1
== -EINPROGRESS
|| err1
== -EBUSY
)
1606 * final() has to be always called to cleanup resources even if
1607 * update() failed, except EINPROGRESS or calculate digest for small
1610 err2
= s5p_hash_final(req
);
1612 return err1
?: err2
;
1616 * s5p_hash_init() - initialize AHASH request contex
1617 * @req: AHASH request
1619 * Init async hash request context.
1621 static int s5p_hash_init(struct ahash_request
*req
)
1623 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1624 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1625 struct s5p_hash_ctx
*tctx
= crypto_ahash_ctx(tfm
);
1635 dev_dbg(tctx
->dd
->dev
, "init: digest size: %d\n",
1636 crypto_ahash_digestsize(tfm
));
1638 switch (crypto_ahash_digestsize(tfm
)) {
1639 case MD5_DIGEST_SIZE
:
1640 ctx
->engine
= SSS_HASH_ENGINE_MD5
;
1641 ctx
->nregs
= HASH_MD5_MAX_REG
;
1643 case SHA1_DIGEST_SIZE
:
1644 ctx
->engine
= SSS_HASH_ENGINE_SHA1
;
1645 ctx
->nregs
= HASH_SHA1_MAX_REG
;
1647 case SHA256_DIGEST_SIZE
:
1648 ctx
->engine
= SSS_HASH_ENGINE_SHA256
;
1649 ctx
->nregs
= HASH_SHA256_MAX_REG
;
1660 * s5p_hash_digest - calculate digest from req->src
1661 * @req: AHASH request
1663 * Return values: see s5p_hash_final above.
1665 static int s5p_hash_digest(struct ahash_request
*req
)
1667 return s5p_hash_init(req
) ?: s5p_hash_finup(req
);
1671 * s5p_hash_cra_init_alg - init crypto alg transformation
1672 * @tfm: crypto transformation
1674 static int s5p_hash_cra_init_alg(struct crypto_tfm
*tfm
)
1676 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(tfm
);
1677 const char *alg_name
= crypto_tfm_alg_name(tfm
);
1680 /* Allocate a fallback and abort if it failed. */
1681 tctx
->fallback
= crypto_alloc_shash(alg_name
, 0,
1682 CRYPTO_ALG_NEED_FALLBACK
);
1683 if (IS_ERR(tctx
->fallback
)) {
1684 pr_err("fallback alloc fails for '%s'\n", alg_name
);
1685 return PTR_ERR(tctx
->fallback
);
1688 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
1689 sizeof(struct s5p_hash_reqctx
) + BUFLEN
);
1695 * s5p_hash_cra_init - init crypto tfm
1696 * @tfm: crypto transformation
1698 static int s5p_hash_cra_init(struct crypto_tfm
*tfm
)
1700 return s5p_hash_cra_init_alg(tfm
);
1704 * s5p_hash_cra_exit - exit crypto tfm
1705 * @tfm: crypto transformation
1707 * free allocated fallback
1709 static void s5p_hash_cra_exit(struct crypto_tfm
*tfm
)
1711 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(tfm
);
1713 crypto_free_shash(tctx
->fallback
);
1714 tctx
->fallback
= NULL
;
1718 * s5p_hash_export - export hash state
1719 * @req: AHASH request
1720 * @out: buffer for exported state
1722 static int s5p_hash_export(struct ahash_request
*req
, void *out
)
1724 const struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1726 memcpy(out
, ctx
, sizeof(*ctx
) + ctx
->bufcnt
);
1732 * s5p_hash_import - import hash state
1733 * @req: AHASH request
1734 * @in: buffer with state to be imported from
1736 static int s5p_hash_import(struct ahash_request
*req
, const void *in
)
1738 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1739 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1740 struct s5p_hash_ctx
*tctx
= crypto_ahash_ctx(tfm
);
1741 const struct s5p_hash_reqctx
*ctx_in
= in
;
1743 memcpy(ctx
, in
, sizeof(*ctx
) + BUFLEN
);
1744 if (ctx_in
->bufcnt
> BUFLEN
) {
1755 static struct ahash_alg algs_sha1_md5_sha256
[] = {
1757 .init
= s5p_hash_init
,
1758 .update
= s5p_hash_update
,
1759 .final
= s5p_hash_final
,
1760 .finup
= s5p_hash_finup
,
1761 .digest
= s5p_hash_digest
,
1762 .export
= s5p_hash_export
,
1763 .import
= s5p_hash_import
,
1764 .halg
.statesize
= sizeof(struct s5p_hash_reqctx
) + BUFLEN
,
1765 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
1768 .cra_driver_name
= "exynos-sha1",
1769 .cra_priority
= 100,
1770 .cra_flags
= CRYPTO_ALG_KERN_DRIVER_ONLY
|
1772 CRYPTO_ALG_NEED_FALLBACK
,
1773 .cra_blocksize
= HASH_BLOCK_SIZE
,
1774 .cra_ctxsize
= sizeof(struct s5p_hash_ctx
),
1775 .cra_alignmask
= SSS_HASH_DMA_ALIGN_MASK
,
1776 .cra_module
= THIS_MODULE
,
1777 .cra_init
= s5p_hash_cra_init
,
1778 .cra_exit
= s5p_hash_cra_exit
,
1782 .init
= s5p_hash_init
,
1783 .update
= s5p_hash_update
,
1784 .final
= s5p_hash_final
,
1785 .finup
= s5p_hash_finup
,
1786 .digest
= s5p_hash_digest
,
1787 .export
= s5p_hash_export
,
1788 .import
= s5p_hash_import
,
1789 .halg
.statesize
= sizeof(struct s5p_hash_reqctx
) + BUFLEN
,
1790 .halg
.digestsize
= MD5_DIGEST_SIZE
,
1793 .cra_driver_name
= "exynos-md5",
1794 .cra_priority
= 100,
1795 .cra_flags
= CRYPTO_ALG_KERN_DRIVER_ONLY
|
1797 CRYPTO_ALG_NEED_FALLBACK
,
1798 .cra_blocksize
= HASH_BLOCK_SIZE
,
1799 .cra_ctxsize
= sizeof(struct s5p_hash_ctx
),
1800 .cra_alignmask
= SSS_HASH_DMA_ALIGN_MASK
,
1801 .cra_module
= THIS_MODULE
,
1802 .cra_init
= s5p_hash_cra_init
,
1803 .cra_exit
= s5p_hash_cra_exit
,
1807 .init
= s5p_hash_init
,
1808 .update
= s5p_hash_update
,
1809 .final
= s5p_hash_final
,
1810 .finup
= s5p_hash_finup
,
1811 .digest
= s5p_hash_digest
,
1812 .export
= s5p_hash_export
,
1813 .import
= s5p_hash_import
,
1814 .halg
.statesize
= sizeof(struct s5p_hash_reqctx
) + BUFLEN
,
1815 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
1817 .cra_name
= "sha256",
1818 .cra_driver_name
= "exynos-sha256",
1819 .cra_priority
= 100,
1820 .cra_flags
= CRYPTO_ALG_KERN_DRIVER_ONLY
|
1822 CRYPTO_ALG_NEED_FALLBACK
,
1823 .cra_blocksize
= HASH_BLOCK_SIZE
,
1824 .cra_ctxsize
= sizeof(struct s5p_hash_ctx
),
1825 .cra_alignmask
= SSS_HASH_DMA_ALIGN_MASK
,
1826 .cra_module
= THIS_MODULE
,
1827 .cra_init
= s5p_hash_cra_init
,
1828 .cra_exit
= s5p_hash_cra_exit
,
1834 static void s5p_set_aes(struct s5p_aes_dev
*dev
,
1835 const uint8_t *key
, const uint8_t *iv
,
1836 unsigned int keylen
)
1838 void __iomem
*keystart
;
1841 memcpy_toio(dev
->aes_ioaddr
+ SSS_REG_AES_IV_DATA(0), iv
, 0x10);
1843 if (keylen
== AES_KEYSIZE_256
)
1844 keystart
= dev
->aes_ioaddr
+ SSS_REG_AES_KEY_DATA(0);
1845 else if (keylen
== AES_KEYSIZE_192
)
1846 keystart
= dev
->aes_ioaddr
+ SSS_REG_AES_KEY_DATA(2);
1848 keystart
= dev
->aes_ioaddr
+ SSS_REG_AES_KEY_DATA(4);
1850 memcpy_toio(keystart
, key
, keylen
);
1853 static bool s5p_is_sg_aligned(struct scatterlist
*sg
)
1856 if (!IS_ALIGNED(sg
->length
, AES_BLOCK_SIZE
))
1864 static int s5p_set_indata_start(struct s5p_aes_dev
*dev
,
1865 struct ablkcipher_request
*req
)
1867 struct scatterlist
*sg
;
1870 dev
->sg_src_cpy
= NULL
;
1872 if (!s5p_is_sg_aligned(sg
)) {
1874 "At least one unaligned source scatter list, making a copy\n");
1875 err
= s5p_make_sg_cpy(dev
, sg
, &dev
->sg_src_cpy
);
1879 sg
= dev
->sg_src_cpy
;
1882 err
= s5p_set_indata(dev
, sg
);
1884 s5p_free_sg_cpy(dev
, &dev
->sg_src_cpy
);
1891 static int s5p_set_outdata_start(struct s5p_aes_dev
*dev
,
1892 struct ablkcipher_request
*req
)
1894 struct scatterlist
*sg
;
1897 dev
->sg_dst_cpy
= NULL
;
1899 if (!s5p_is_sg_aligned(sg
)) {
1901 "At least one unaligned dest scatter list, making a copy\n");
1902 err
= s5p_make_sg_cpy(dev
, sg
, &dev
->sg_dst_cpy
);
1906 sg
= dev
->sg_dst_cpy
;
1909 err
= s5p_set_outdata(dev
, sg
);
1911 s5p_free_sg_cpy(dev
, &dev
->sg_dst_cpy
);
1918 static void s5p_aes_crypt_start(struct s5p_aes_dev
*dev
, unsigned long mode
)
1920 struct ablkcipher_request
*req
= dev
->req
;
1921 uint32_t aes_control
;
1922 unsigned long flags
;
1926 aes_control
= SSS_AES_KEY_CHANGE_MODE
;
1927 if (mode
& FLAGS_AES_DECRYPT
)
1928 aes_control
|= SSS_AES_MODE_DECRYPT
;
1930 if ((mode
& FLAGS_AES_MODE_MASK
) == FLAGS_AES_CBC
) {
1931 aes_control
|= SSS_AES_CHAIN_MODE_CBC
;
1933 } else if ((mode
& FLAGS_AES_MODE_MASK
) == FLAGS_AES_CTR
) {
1934 aes_control
|= SSS_AES_CHAIN_MODE_CTR
;
1937 iv
= NULL
; /* AES_ECB */
1940 if (dev
->ctx
->keylen
== AES_KEYSIZE_192
)
1941 aes_control
|= SSS_AES_KEY_SIZE_192
;
1942 else if (dev
->ctx
->keylen
== AES_KEYSIZE_256
)
1943 aes_control
|= SSS_AES_KEY_SIZE_256
;
1945 aes_control
|= SSS_AES_FIFO_MODE
;
1947 /* as a variant it is possible to use byte swapping on DMA side */
1948 aes_control
|= SSS_AES_BYTESWAP_DI
1949 | SSS_AES_BYTESWAP_DO
1950 | SSS_AES_BYTESWAP_IV
1951 | SSS_AES_BYTESWAP_KEY
1952 | SSS_AES_BYTESWAP_CNT
;
1954 spin_lock_irqsave(&dev
->lock
, flags
);
1956 SSS_WRITE(dev
, FCINTENCLR
,
1957 SSS_FCINTENCLR_BTDMAINTENCLR
| SSS_FCINTENCLR_BRDMAINTENCLR
);
1958 SSS_WRITE(dev
, FCFIFOCTRL
, 0x00);
1960 err
= s5p_set_indata_start(dev
, req
);
1964 err
= s5p_set_outdata_start(dev
, req
);
1968 SSS_AES_WRITE(dev
, AES_CONTROL
, aes_control
);
1969 s5p_set_aes(dev
, dev
->ctx
->aes_key
, iv
, dev
->ctx
->keylen
);
1971 s5p_set_dma_indata(dev
, dev
->sg_src
);
1972 s5p_set_dma_outdata(dev
, dev
->sg_dst
);
1974 SSS_WRITE(dev
, FCINTENSET
,
1975 SSS_FCINTENSET_BTDMAINTENSET
| SSS_FCINTENSET_BRDMAINTENSET
);
1977 spin_unlock_irqrestore(&dev
->lock
, flags
);
1982 s5p_unset_indata(dev
);
1987 spin_unlock_irqrestore(&dev
->lock
, flags
);
1988 s5p_aes_complete(req
, err
);
1991 static void s5p_tasklet_cb(unsigned long data
)
1993 struct s5p_aes_dev
*dev
= (struct s5p_aes_dev
*)data
;
1994 struct crypto_async_request
*async_req
, *backlog
;
1995 struct s5p_aes_reqctx
*reqctx
;
1996 unsigned long flags
;
1998 spin_lock_irqsave(&dev
->lock
, flags
);
1999 backlog
= crypto_get_backlog(&dev
->queue
);
2000 async_req
= crypto_dequeue_request(&dev
->queue
);
2004 spin_unlock_irqrestore(&dev
->lock
, flags
);
2007 spin_unlock_irqrestore(&dev
->lock
, flags
);
2010 backlog
->complete(backlog
, -EINPROGRESS
);
2012 dev
->req
= ablkcipher_request_cast(async_req
);
2013 dev
->ctx
= crypto_tfm_ctx(dev
->req
->base
.tfm
);
2014 reqctx
= ablkcipher_request_ctx(dev
->req
);
2016 s5p_aes_crypt_start(dev
, reqctx
->mode
);
2019 static int s5p_aes_handle_req(struct s5p_aes_dev
*dev
,
2020 struct ablkcipher_request
*req
)
2022 unsigned long flags
;
2025 spin_lock_irqsave(&dev
->lock
, flags
);
2026 err
= ablkcipher_enqueue_request(&dev
->queue
, req
);
2028 spin_unlock_irqrestore(&dev
->lock
, flags
);
2033 spin_unlock_irqrestore(&dev
->lock
, flags
);
2035 tasklet_schedule(&dev
->tasklet
);
2041 static int s5p_aes_crypt(struct ablkcipher_request
*req
, unsigned long mode
)
2043 struct crypto_ablkcipher
*tfm
= crypto_ablkcipher_reqtfm(req
);
2044 struct s5p_aes_reqctx
*reqctx
= ablkcipher_request_ctx(req
);
2045 struct s5p_aes_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
2046 struct s5p_aes_dev
*dev
= ctx
->dev
;
2048 if (!IS_ALIGNED(req
->nbytes
, AES_BLOCK_SIZE
)) {
2049 dev_err(dev
->dev
, "request size is not exact amount of AES blocks\n");
2053 reqctx
->mode
= mode
;
2055 return s5p_aes_handle_req(dev
, req
);
2058 static int s5p_aes_setkey(struct crypto_ablkcipher
*cipher
,
2059 const uint8_t *key
, unsigned int keylen
)
2061 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
2062 struct s5p_aes_ctx
*ctx
= crypto_tfm_ctx(tfm
);
2064 if (keylen
!= AES_KEYSIZE_128
&&
2065 keylen
!= AES_KEYSIZE_192
&&
2066 keylen
!= AES_KEYSIZE_256
)
2069 memcpy(ctx
->aes_key
, key
, keylen
);
2070 ctx
->keylen
= keylen
;
2075 static int s5p_aes_ecb_encrypt(struct ablkcipher_request
*req
)
2077 return s5p_aes_crypt(req
, 0);
2080 static int s5p_aes_ecb_decrypt(struct ablkcipher_request
*req
)
2082 return s5p_aes_crypt(req
, FLAGS_AES_DECRYPT
);
2085 static int s5p_aes_cbc_encrypt(struct ablkcipher_request
*req
)
2087 return s5p_aes_crypt(req
, FLAGS_AES_CBC
);
2090 static int s5p_aes_cbc_decrypt(struct ablkcipher_request
*req
)
2092 return s5p_aes_crypt(req
, FLAGS_AES_DECRYPT
| FLAGS_AES_CBC
);
2095 static int s5p_aes_cra_init(struct crypto_tfm
*tfm
)
2097 struct s5p_aes_ctx
*ctx
= crypto_tfm_ctx(tfm
);
2100 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct s5p_aes_reqctx
);
2105 static struct crypto_alg algs
[] = {
2107 .cra_name
= "ecb(aes)",
2108 .cra_driver_name
= "ecb-aes-s5p",
2109 .cra_priority
= 100,
2110 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
2112 CRYPTO_ALG_KERN_DRIVER_ONLY
,
2113 .cra_blocksize
= AES_BLOCK_SIZE
,
2114 .cra_ctxsize
= sizeof(struct s5p_aes_ctx
),
2115 .cra_alignmask
= 0x0f,
2116 .cra_type
= &crypto_ablkcipher_type
,
2117 .cra_module
= THIS_MODULE
,
2118 .cra_init
= s5p_aes_cra_init
,
2119 .cra_u
.ablkcipher
= {
2120 .min_keysize
= AES_MIN_KEY_SIZE
,
2121 .max_keysize
= AES_MAX_KEY_SIZE
,
2122 .setkey
= s5p_aes_setkey
,
2123 .encrypt
= s5p_aes_ecb_encrypt
,
2124 .decrypt
= s5p_aes_ecb_decrypt
,
2128 .cra_name
= "cbc(aes)",
2129 .cra_driver_name
= "cbc-aes-s5p",
2130 .cra_priority
= 100,
2131 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
2133 CRYPTO_ALG_KERN_DRIVER_ONLY
,
2134 .cra_blocksize
= AES_BLOCK_SIZE
,
2135 .cra_ctxsize
= sizeof(struct s5p_aes_ctx
),
2136 .cra_alignmask
= 0x0f,
2137 .cra_type
= &crypto_ablkcipher_type
,
2138 .cra_module
= THIS_MODULE
,
2139 .cra_init
= s5p_aes_cra_init
,
2140 .cra_u
.ablkcipher
= {
2141 .min_keysize
= AES_MIN_KEY_SIZE
,
2142 .max_keysize
= AES_MAX_KEY_SIZE
,
2143 .ivsize
= AES_BLOCK_SIZE
,
2144 .setkey
= s5p_aes_setkey
,
2145 .encrypt
= s5p_aes_cbc_encrypt
,
2146 .decrypt
= s5p_aes_cbc_decrypt
,
2151 static int s5p_aes_probe(struct platform_device
*pdev
)
2153 struct device
*dev
= &pdev
->dev
;
2154 int i
, j
, err
= -ENODEV
;
2155 const struct samsung_aes_variant
*variant
;
2156 struct s5p_aes_dev
*pdata
;
2157 struct resource
*res
;
2158 unsigned int hash_i
;
2163 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
2167 variant
= find_s5p_sss_version(pdev
);
2168 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2171 * Note: HASH and PRNG uses the same registers in secss, avoid
2172 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2173 * is enabled in config. We need larger size for HASH registers in
2174 * secss, current describe only AES/DES
2176 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH
)) {
2177 if (variant
== &exynos_aes_data
) {
2179 pdata
->use_hash
= true;
2184 pdata
->ioaddr
= devm_ioremap_resource(&pdev
->dev
, res
);
2185 if (IS_ERR(pdata
->ioaddr
)) {
2186 if (!pdata
->use_hash
)
2187 return PTR_ERR(pdata
->ioaddr
);
2188 /* try AES without HASH */
2190 pdata
->use_hash
= false;
2191 pdata
->ioaddr
= devm_ioremap_resource(&pdev
->dev
, res
);
2192 if (IS_ERR(pdata
->ioaddr
))
2193 return PTR_ERR(pdata
->ioaddr
);
2196 pdata
->clk
= devm_clk_get(dev
, "secss");
2197 if (IS_ERR(pdata
->clk
)) {
2198 dev_err(dev
, "failed to find secss clock source\n");
2202 err
= clk_prepare_enable(pdata
->clk
);
2204 dev_err(dev
, "Enabling SSS clk failed, err %d\n", err
);
2208 spin_lock_init(&pdata
->lock
);
2209 spin_lock_init(&pdata
->hash_lock
);
2211 pdata
->aes_ioaddr
= pdata
->ioaddr
+ variant
->aes_offset
;
2212 pdata
->io_hash_base
= pdata
->ioaddr
+ variant
->hash_offset
;
2214 pdata
->irq_fc
= platform_get_irq(pdev
, 0);
2215 if (pdata
->irq_fc
< 0) {
2216 err
= pdata
->irq_fc
;
2217 dev_warn(dev
, "feed control interrupt is not available.\n");
2220 err
= devm_request_threaded_irq(dev
, pdata
->irq_fc
, NULL
,
2221 s5p_aes_interrupt
, IRQF_ONESHOT
,
2224 dev_warn(dev
, "feed control interrupt is not available.\n");
2228 pdata
->busy
= false;
2230 platform_set_drvdata(pdev
, pdata
);
2233 tasklet_init(&pdata
->tasklet
, s5p_tasklet_cb
, (unsigned long)pdata
);
2234 crypto_init_queue(&pdata
->queue
, CRYPTO_QUEUE_LEN
);
2236 for (i
= 0; i
< ARRAY_SIZE(algs
); i
++) {
2237 err
= crypto_register_alg(&algs
[i
]);
2242 if (pdata
->use_hash
) {
2243 tasklet_init(&pdata
->hash_tasklet
, s5p_hash_tasklet_cb
,
2244 (unsigned long)pdata
);
2245 crypto_init_queue(&pdata
->hash_queue
, SSS_HASH_QUEUE_LENGTH
);
2247 for (hash_i
= 0; hash_i
< ARRAY_SIZE(algs_sha1_md5_sha256
);
2249 struct ahash_alg
*alg
;
2251 alg
= &algs_sha1_md5_sha256
[hash_i
];
2252 err
= crypto_register_ahash(alg
);
2254 dev_err(dev
, "can't register '%s': %d\n",
2255 alg
->halg
.base
.cra_driver_name
, err
);
2261 dev_info(dev
, "s5p-sss driver registered\n");
2266 for (j
= hash_i
- 1; j
>= 0; j
--)
2267 crypto_unregister_ahash(&algs_sha1_md5_sha256
[j
]);
2269 tasklet_kill(&pdata
->hash_tasklet
);
2273 if (i
< ARRAY_SIZE(algs
))
2274 dev_err(dev
, "can't register '%s': %d\n", algs
[i
].cra_name
,
2277 for (j
= 0; j
< i
; j
++)
2278 crypto_unregister_alg(&algs
[j
]);
2280 tasklet_kill(&pdata
->tasklet
);
2283 clk_disable_unprepare(pdata
->clk
);
2290 static int s5p_aes_remove(struct platform_device
*pdev
)
2292 struct s5p_aes_dev
*pdata
= platform_get_drvdata(pdev
);
2298 for (i
= 0; i
< ARRAY_SIZE(algs
); i
++)
2299 crypto_unregister_alg(&algs
[i
]);
2301 tasklet_kill(&pdata
->tasklet
);
2302 if (pdata
->use_hash
) {
2303 for (i
= ARRAY_SIZE(algs_sha1_md5_sha256
) - 1; i
>= 0; i
--)
2304 crypto_unregister_ahash(&algs_sha1_md5_sha256
[i
]);
2306 pdata
->res
->end
-= 0x300;
2307 tasklet_kill(&pdata
->hash_tasklet
);
2308 pdata
->use_hash
= false;
2311 clk_disable_unprepare(pdata
->clk
);
2317 static struct platform_driver s5p_aes_crypto
= {
2318 .probe
= s5p_aes_probe
,
2319 .remove
= s5p_aes_remove
,
2321 .name
= "s5p-secss",
2322 .of_match_table
= s5p_sss_dt_match
,
2326 module_platform_driver(s5p_aes_crypto
);
2328 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2329 MODULE_LICENSE("GPL v2");
2330 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2331 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");