2 * Copyright © 2006-2011 Intel Corporation
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 * Eric Anholt <eric@anholt.net>
21 #include <linux/i2c.h>
24 #include "framebuffer.h"
26 #include "psb_intel_drv.h"
27 #include "psb_intel_reg.h"
28 #include "gma_display.h"
30 #include "cdv_device.h"
32 static bool cdv_intel_find_dp_pll(const struct gma_limit_t
*limit
,
33 struct drm_crtc
*crtc
, int target
,
34 int refclk
, struct gma_clock_t
*best_clock
);
37 #define CDV_LIMIT_SINGLE_LVDS_96 0
38 #define CDV_LIMIT_SINGLE_LVDS_100 1
39 #define CDV_LIMIT_DAC_HDMI_27 2
40 #define CDV_LIMIT_DAC_HDMI_96 3
41 #define CDV_LIMIT_DP_27 4
42 #define CDV_LIMIT_DP_100 5
44 static const struct gma_limit_t cdv_intel_limits
[] = {
45 { /* CDV_SINGLE_LVDS_96MHz */
46 .dot
= {.min
= 20000, .max
= 115500},
47 .vco
= {.min
= 1800000, .max
= 3600000},
48 .n
= {.min
= 2, .max
= 6},
49 .m
= {.min
= 60, .max
= 160},
50 .m1
= {.min
= 0, .max
= 0},
51 .m2
= {.min
= 58, .max
= 158},
52 .p
= {.min
= 28, .max
= 140},
53 .p1
= {.min
= 2, .max
= 10},
54 .p2
= {.dot_limit
= 200000, .p2_slow
= 14, .p2_fast
= 14},
55 .find_pll
= gma_find_best_pll
,
57 { /* CDV_SINGLE_LVDS_100MHz */
58 .dot
= {.min
= 20000, .max
= 115500},
59 .vco
= {.min
= 1800000, .max
= 3600000},
60 .n
= {.min
= 2, .max
= 6},
61 .m
= {.min
= 60, .max
= 160},
62 .m1
= {.min
= 0, .max
= 0},
63 .m2
= {.min
= 58, .max
= 158},
64 .p
= {.min
= 28, .max
= 140},
65 .p1
= {.min
= 2, .max
= 10},
66 /* The single-channel range is 25-112Mhz, and dual-channel
67 * is 80-224Mhz. Prefer single channel as much as possible.
69 .p2
= {.dot_limit
= 200000, .p2_slow
= 14, .p2_fast
= 14},
70 .find_pll
= gma_find_best_pll
,
72 { /* CDV_DAC_HDMI_27MHz */
73 .dot
= {.min
= 20000, .max
= 400000},
74 .vco
= {.min
= 1809000, .max
= 3564000},
75 .n
= {.min
= 1, .max
= 1},
76 .m
= {.min
= 67, .max
= 132},
77 .m1
= {.min
= 0, .max
= 0},
78 .m2
= {.min
= 65, .max
= 130},
79 .p
= {.min
= 5, .max
= 90},
80 .p1
= {.min
= 1, .max
= 9},
81 .p2
= {.dot_limit
= 225000, .p2_slow
= 10, .p2_fast
= 5},
82 .find_pll
= gma_find_best_pll
,
84 { /* CDV_DAC_HDMI_96MHz */
85 .dot
= {.min
= 20000, .max
= 400000},
86 .vco
= {.min
= 1800000, .max
= 3600000},
87 .n
= {.min
= 2, .max
= 6},
88 .m
= {.min
= 60, .max
= 160},
89 .m1
= {.min
= 0, .max
= 0},
90 .m2
= {.min
= 58, .max
= 158},
91 .p
= {.min
= 5, .max
= 100},
92 .p1
= {.min
= 1, .max
= 10},
93 .p2
= {.dot_limit
= 225000, .p2_slow
= 10, .p2_fast
= 5},
94 .find_pll
= gma_find_best_pll
,
97 .dot
= {.min
= 160000, .max
= 272000},
98 .vco
= {.min
= 1809000, .max
= 3564000},
99 .n
= {.min
= 1, .max
= 1},
100 .m
= {.min
= 67, .max
= 132},
101 .m1
= {.min
= 0, .max
= 0},
102 .m2
= {.min
= 65, .max
= 130},
103 .p
= {.min
= 5, .max
= 90},
104 .p1
= {.min
= 1, .max
= 9},
105 .p2
= {.dot_limit
= 225000, .p2_slow
= 10, .p2_fast
= 10},
106 .find_pll
= cdv_intel_find_dp_pll
,
108 { /* CDV_DP_100MHz */
109 .dot
= {.min
= 160000, .max
= 272000},
110 .vco
= {.min
= 1800000, .max
= 3600000},
111 .n
= {.min
= 2, .max
= 6},
112 .m
= {.min
= 60, .max
= 164},
113 .m1
= {.min
= 0, .max
= 0},
114 .m2
= {.min
= 58, .max
= 162},
115 .p
= {.min
= 5, .max
= 100},
116 .p1
= {.min
= 1, .max
= 10},
117 .p2
= {.dot_limit
= 225000, .p2_slow
= 10, .p2_fast
= 10},
118 .find_pll
= cdv_intel_find_dp_pll
,
122 #define _wait_for(COND, MS, W) ({ \
123 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
126 if (time_after(jiffies, timeout__)) { \
127 ret__ = -ETIMEDOUT; \
130 if (W && !in_dbg_master()) \
136 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
139 int cdv_sb_read(struct drm_device
*dev
, u32 reg
, u32
*val
)
143 ret
= wait_for((REG_READ(SB_PCKT
) & SB_BUSY
) == 0, 1000);
145 DRM_ERROR("timeout waiting for SB to idle before read\n");
149 REG_WRITE(SB_ADDR
, reg
);
151 SET_FIELD(SB_OPCODE_READ
, SB_OPCODE
) |
152 SET_FIELD(SB_DEST_DPLL
, SB_DEST
) |
153 SET_FIELD(0xf, SB_BYTE_ENABLE
));
155 ret
= wait_for((REG_READ(SB_PCKT
) & SB_BUSY
) == 0, 1000);
157 DRM_ERROR("timeout waiting for SB to idle after read\n");
161 *val
= REG_READ(SB_DATA
);
166 int cdv_sb_write(struct drm_device
*dev
, u32 reg
, u32 val
)
169 static bool dpio_debug
= true;
173 if (cdv_sb_read(dev
, reg
, &temp
) == 0)
174 DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg
, temp
);
175 DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg
, val
);
178 ret
= wait_for((REG_READ(SB_PCKT
) & SB_BUSY
) == 0, 1000);
180 DRM_ERROR("timeout waiting for SB to idle before write\n");
184 REG_WRITE(SB_ADDR
, reg
);
185 REG_WRITE(SB_DATA
, val
);
187 SET_FIELD(SB_OPCODE_WRITE
, SB_OPCODE
) |
188 SET_FIELD(SB_DEST_DPLL
, SB_DEST
) |
189 SET_FIELD(0xf, SB_BYTE_ENABLE
));
191 ret
= wait_for((REG_READ(SB_PCKT
) & SB_BUSY
) == 0, 1000);
193 DRM_ERROR("timeout waiting for SB to idle after write\n");
198 if (cdv_sb_read(dev
, reg
, &temp
) == 0)
199 DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg
, temp
);
205 /* Reset the DPIO configuration register. The BIOS does this at every
208 void cdv_sb_reset(struct drm_device
*dev
)
211 REG_WRITE(DPIO_CFG
, 0);
213 REG_WRITE(DPIO_CFG
, DPIO_MODE_SELECT_0
| DPIO_CMN_RESET_N
);
216 /* Unlike most Intel display engines, on Cedarview the DPLL registers
217 * are behind this sideband bus. They must be programmed while the
218 * DPLL reference clock is on in the DPLL control register, but before
219 * the DPLL is enabled in the DPLL control register.
222 cdv_dpll_set_clock_cdv(struct drm_device
*dev
, struct drm_crtc
*crtc
,
223 struct gma_clock_t
*clock
, bool is_lvds
, u32 ddi_select
)
225 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
226 int pipe
= gma_crtc
->pipe
;
229 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
230 int ref_sfr
= (pipe
== 0) ? SB_REF_DPLLA
: SB_REF_DPLLB
;
232 u32 lane_reg
, lane_value
;
236 REG_WRITE(dpll_reg
, DPLL_SYNCLOCK_ENABLE
| DPLL_VGA_MODE_DIS
);
240 /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
241 ref_value
= 0x68A701;
243 cdv_sb_write(dev
, SB_REF_SFR(pipe
), ref_value
);
245 /* We don't know what the other fields of these regs are, so
246 * leave them in place.
249 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
250 * for the pipe A/B. Display spec 1.06 has wrong definition.
251 * Correct definition is like below:
253 * refclka mean use clock from same PLL
255 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
257 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
260 ret
= cdv_sb_read(dev
, ref_sfr
, &ref_value
);
263 ref_value
&= ~(REF_CLK_MASK
);
265 /* use DPLL_A for pipeB on CRT/HDMI */
266 if (pipe
== 1 && !is_lvds
&& !(ddi_select
& DP_MASK
)) {
267 DRM_DEBUG_KMS("use DPLLA for pipe B\n");
268 ref_value
|= REF_CLK_DPLLA
;
270 DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
271 ref_value
|= REF_CLK_DPLL
;
273 ret
= cdv_sb_write(dev
, ref_sfr
, ref_value
);
277 ret
= cdv_sb_read(dev
, SB_M(pipe
), &m
);
280 m
&= ~SB_M_DIVIDER_MASK
;
281 m
|= ((clock
->m2
) << SB_M_DIVIDER_SHIFT
);
282 ret
= cdv_sb_write(dev
, SB_M(pipe
), m
);
286 ret
= cdv_sb_read(dev
, SB_N_VCO(pipe
), &n_vco
);
290 /* Follow the BIOS to program the N_DIVIDER REG */
293 n_vco
&= ~(SB_N_VCO_SEL_MASK
|
297 n_vco
|= ((clock
->n
) << SB_N_DIVIDER_SHIFT
);
299 if (clock
->vco
< 2250000) {
300 n_vco
|= (2 << SB_N_CB_TUNE_SHIFT
);
301 n_vco
|= (0 << SB_N_VCO_SEL_SHIFT
);
302 } else if (clock
->vco
< 2750000) {
303 n_vco
|= (1 << SB_N_CB_TUNE_SHIFT
);
304 n_vco
|= (1 << SB_N_VCO_SEL_SHIFT
);
305 } else if (clock
->vco
< 3300000) {
306 n_vco
|= (0 << SB_N_CB_TUNE_SHIFT
);
307 n_vco
|= (2 << SB_N_VCO_SEL_SHIFT
);
309 n_vco
|= (0 << SB_N_CB_TUNE_SHIFT
);
310 n_vco
|= (3 << SB_N_VCO_SEL_SHIFT
);
313 ret
= cdv_sb_write(dev
, SB_N_VCO(pipe
), n_vco
);
317 ret
= cdv_sb_read(dev
, SB_P(pipe
), &p
);
320 p
&= ~(SB_P2_DIVIDER_MASK
| SB_P1_DIVIDER_MASK
);
321 p
|= SET_FIELD(clock
->p1
, SB_P1_DIVIDER
);
324 p
|= SET_FIELD(SB_P2_5
, SB_P2_DIVIDER
);
327 p
|= SET_FIELD(SB_P2_10
, SB_P2_DIVIDER
);
330 p
|= SET_FIELD(SB_P2_14
, SB_P2_DIVIDER
);
333 p
|= SET_FIELD(SB_P2_7
, SB_P2_DIVIDER
);
336 DRM_ERROR("Bad P2 clock: %d\n", clock
->p2
);
339 ret
= cdv_sb_write(dev
, SB_P(pipe
), p
);
344 if ((ddi_select
& DDI_MASK
) == DDI0_SELECT
) {
345 lane_reg
= PSB_LANE0
;
346 cdv_sb_read(dev
, lane_reg
, &lane_value
);
347 lane_value
&= ~(LANE_PLL_MASK
);
348 lane_value
|= LANE_PLL_ENABLE
| LANE_PLL_PIPE(pipe
);
349 cdv_sb_write(dev
, lane_reg
, lane_value
);
351 lane_reg
= PSB_LANE1
;
352 cdv_sb_read(dev
, lane_reg
, &lane_value
);
353 lane_value
&= ~(LANE_PLL_MASK
);
354 lane_value
|= LANE_PLL_ENABLE
| LANE_PLL_PIPE(pipe
);
355 cdv_sb_write(dev
, lane_reg
, lane_value
);
357 lane_reg
= PSB_LANE2
;
358 cdv_sb_read(dev
, lane_reg
, &lane_value
);
359 lane_value
&= ~(LANE_PLL_MASK
);
360 lane_value
|= LANE_PLL_ENABLE
| LANE_PLL_PIPE(pipe
);
361 cdv_sb_write(dev
, lane_reg
, lane_value
);
363 lane_reg
= PSB_LANE3
;
364 cdv_sb_read(dev
, lane_reg
, &lane_value
);
365 lane_value
&= ~(LANE_PLL_MASK
);
366 lane_value
|= LANE_PLL_ENABLE
| LANE_PLL_PIPE(pipe
);
367 cdv_sb_write(dev
, lane_reg
, lane_value
);
373 static const struct gma_limit_t
*cdv_intel_limit(struct drm_crtc
*crtc
,
376 const struct gma_limit_t
*limit
;
377 if (gma_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
379 * Now only single-channel LVDS is supported on CDV. If it is
380 * incorrect, please add the dual-channel LVDS.
383 limit
= &cdv_intel_limits
[CDV_LIMIT_SINGLE_LVDS_96
];
385 limit
= &cdv_intel_limits
[CDV_LIMIT_SINGLE_LVDS_100
];
386 } else if (gma_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
) ||
387 gma_pipe_has_type(crtc
, INTEL_OUTPUT_EDP
)) {
389 limit
= &cdv_intel_limits
[CDV_LIMIT_DP_27
];
391 limit
= &cdv_intel_limits
[CDV_LIMIT_DP_100
];
394 limit
= &cdv_intel_limits
[CDV_LIMIT_DAC_HDMI_27
];
396 limit
= &cdv_intel_limits
[CDV_LIMIT_DAC_HDMI_96
];
401 /* m1 is reserved as 0 in CDV, n is a ring counter */
402 static void cdv_intel_clock(int refclk
, struct gma_clock_t
*clock
)
404 clock
->m
= clock
->m2
+ 2;
405 clock
->p
= clock
->p1
* clock
->p2
;
406 clock
->vco
= (refclk
* clock
->m
) / clock
->n
;
407 clock
->dot
= clock
->vco
/ clock
->p
;
410 static bool cdv_intel_find_dp_pll(const struct gma_limit_t
*limit
,
411 struct drm_crtc
*crtc
, int target
,
413 struct gma_clock_t
*best_clock
)
415 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
416 struct gma_clock_t clock
;
420 if (target
< 200000) {
436 if (target
< 200000) {
455 gma_crtc
->clock_funcs
->clock(refclk
, &clock
);
456 memcpy(best_clock
, &clock
, sizeof(struct gma_clock_t
));
460 #define FIFO_PIPEA (1 << 0)
461 #define FIFO_PIPEB (1 << 1)
463 static bool cdv_intel_pipe_enabled(struct drm_device
*dev
, int pipe
)
465 struct drm_crtc
*crtc
;
466 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
467 struct gma_crtc
*gma_crtc
= NULL
;
469 crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
470 gma_crtc
= to_gma_crtc(crtc
);
472 if (crtc
->primary
->fb
== NULL
|| !gma_crtc
->active
)
477 void cdv_disable_sr(struct drm_device
*dev
)
479 if (REG_READ(FW_BLC_SELF
) & FW_BLC_SELF_EN
) {
481 /* Disable self-refresh before adjust WM */
482 REG_WRITE(FW_BLC_SELF
, (REG_READ(FW_BLC_SELF
) & ~FW_BLC_SELF_EN
));
483 REG_READ(FW_BLC_SELF
);
485 gma_wait_for_vblank(dev
);
487 /* Cedarview workaround to write ovelay plane, which force to leave
490 REG_WRITE(OV_OVADD
, 0/*dev_priv->ovl_offset*/);
493 gma_wait_for_vblank(dev
);
498 void cdv_update_wm(struct drm_device
*dev
, struct drm_crtc
*crtc
)
500 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
501 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
503 /* Is only one pipe enabled? */
504 if (cdv_intel_pipe_enabled(dev
, 0) ^ cdv_intel_pipe_enabled(dev
, 1)) {
507 fw
= REG_READ(DSPFW1
);
508 fw
&= ~DSP_FIFO_SR_WM_MASK
;
509 fw
|= (0x7e << DSP_FIFO_SR_WM_SHIFT
);
510 fw
&= ~CURSOR_B_FIFO_WM_MASK
;
511 fw
|= (0x4 << CURSOR_B_FIFO_WM_SHIFT
);
512 REG_WRITE(DSPFW1
, fw
);
514 fw
= REG_READ(DSPFW2
);
515 fw
&= ~CURSOR_A_FIFO_WM_MASK
;
516 fw
|= (0x6 << CURSOR_A_FIFO_WM_SHIFT
);
517 fw
&= ~DSP_PLANE_C_FIFO_WM_MASK
;
518 fw
|= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT
);
519 REG_WRITE(DSPFW2
, fw
);
521 REG_WRITE(DSPFW3
, 0x36000000);
525 /* Is pipe b lvds ? */
526 if (gma_crtc
->pipe
== 1 &&
527 gma_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
528 REG_WRITE(DSPFW5
, 0x00040330);
530 fw
= (3 << DSP_PLANE_B_FIFO_WM1_SHIFT
) |
531 (4 << DSP_PLANE_A_FIFO_WM1_SHIFT
) |
532 (3 << CURSOR_B_FIFO_WM1_SHIFT
) |
533 (4 << CURSOR_FIFO_SR_WM1_SHIFT
);
534 REG_WRITE(DSPFW5
, fw
);
537 REG_WRITE(DSPFW6
, 0x10);
539 gma_wait_for_vblank(dev
);
541 /* enable self-refresh for single pipe active */
542 REG_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
543 REG_READ(FW_BLC_SELF
);
544 gma_wait_for_vblank(dev
);
548 /* HW team suggested values... */
549 REG_WRITE(DSPFW1
, 0x3f880808);
550 REG_WRITE(DSPFW2
, 0x0b020202);
551 REG_WRITE(DSPFW3
, 0x24000000);
552 REG_WRITE(DSPFW4
, 0x08030202);
553 REG_WRITE(DSPFW5
, 0x01010101);
554 REG_WRITE(DSPFW6
, 0x1d0);
556 gma_wait_for_vblank(dev
);
558 dev_priv
->ops
->disable_sr(dev
);
563 * Return the pipe currently connected to the panel fitter,
564 * or -1 if the panel fitter is not present or not in use
566 static int cdv_intel_panel_fitter_pipe(struct drm_device
*dev
)
570 pfit_control
= REG_READ(PFIT_CONTROL
);
572 /* See if the panel fitter is in use */
573 if ((pfit_control
& PFIT_ENABLE
) == 0)
575 return (pfit_control
>> 29) & 0x3;
578 static int cdv_intel_crtc_mode_set(struct drm_crtc
*crtc
,
579 struct drm_display_mode
*mode
,
580 struct drm_display_mode
*adjusted_mode
,
582 struct drm_framebuffer
*old_fb
)
584 struct drm_device
*dev
= crtc
->dev
;
585 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
586 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
587 int pipe
= gma_crtc
->pipe
;
588 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
590 struct gma_clock_t clock
;
591 u32 dpll
= 0, dspcntr
, pipeconf
;
593 bool is_crt
= false, is_lvds
= false, is_tv
= false;
594 bool is_hdmi
= false, is_dp
= false;
595 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
596 struct drm_connector
*connector
;
597 const struct gma_limit_t
*limit
;
601 list_for_each_entry(connector
, &mode_config
->connector_list
, head
) {
602 struct gma_encoder
*gma_encoder
=
603 gma_attached_encoder(connector
);
605 if (!connector
->encoder
606 || connector
->encoder
->crtc
!= crtc
)
609 ddi_select
= gma_encoder
->ddi_select
;
610 switch (gma_encoder
->type
) {
611 case INTEL_OUTPUT_LVDS
:
614 case INTEL_OUTPUT_TVOUT
:
617 case INTEL_OUTPUT_ANALOG
:
620 case INTEL_OUTPUT_HDMI
:
623 case INTEL_OUTPUT_DISPLAYPORT
:
626 case INTEL_OUTPUT_EDP
:
630 DRM_ERROR("invalid output type.\n");
635 if (dev_priv
->dplla_96mhz
)
636 /* low-end sku, 96/100 mhz */
639 /* high-end sku, 27/100 mhz */
641 if (is_dp
|| is_edp
) {
643 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
644 * unnecessary to consider it for DP/eDP.
645 * On the high-end SKU, it will use the 27/100M reference clk
646 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
647 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
648 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
656 if (is_lvds
&& dev_priv
->lvds_use_ssc
) {
657 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
658 DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv
->lvds_ssc_freq
);
661 drm_mode_debug_printmodeline(adjusted_mode
);
663 limit
= gma_crtc
->clock_funcs
->limit(crtc
, refclk
);
665 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
,
668 DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
669 adjusted_mode
->clock
, clock
.dot
);
673 dpll
= DPLL_VGA_MODE_DIS
;
675 /* XXX: just matching BIOS for now */
676 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
679 /* dpll |= PLL_REF_INPUT_DREFCLK; */
681 if (is_dp
|| is_edp
) {
682 cdv_intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
684 REG_WRITE(PIPE_GMCH_DATA_M(pipe
), 0);
685 REG_WRITE(PIPE_GMCH_DATA_N(pipe
), 0);
686 REG_WRITE(PIPE_DP_LINK_M(pipe
), 0);
687 REG_WRITE(PIPE_DP_LINK_N(pipe
), 0);
690 dpll
|= DPLL_SYNCLOCK_ENABLE
;
692 dpll |= DPLLB_MODE_LVDS;
694 dpll |= DPLLB_MODE_DAC_SERIAL; */
695 /* dpll |= (2 << 11); */
698 pipeconf
= REG_READ(map
->conf
);
700 pipeconf
&= ~(PIPE_BPC_MASK
);
702 switch (dev_priv
->edp
.bpp
) {
704 pipeconf
|= PIPE_8BPC
;
707 pipeconf
|= PIPE_6BPC
;
710 pipeconf
|= PIPE_10BPC
;
713 pipeconf
|= PIPE_8BPC
;
716 } else if (is_lvds
) {
717 /* the BPC will be 6 if it is 18-bit LVDS panel */
718 if ((REG_READ(LVDS
) & LVDS_A3_POWER_MASK
) == LVDS_A3_POWER_UP
)
719 pipeconf
|= PIPE_8BPC
;
721 pipeconf
|= PIPE_6BPC
;
723 pipeconf
|= PIPE_8BPC
;
725 /* Set up the display plane register */
726 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
729 dspcntr
|= DISPPLANE_SEL_PIPE_A
;
731 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
733 dspcntr
|= DISPLAY_PLANE_ENABLE
;
734 pipeconf
|= PIPEACONF_ENABLE
;
736 REG_WRITE(map
->dpll
, dpll
| DPLL_VGA_MODE_DIS
| DPLL_SYNCLOCK_ENABLE
);
739 cdv_dpll_set_clock_cdv(dev
, crtc
, &clock
, is_lvds
, ddi_select
);
744 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
745 * This is an exception to the general rule that mode_set doesn't turn
749 u32 lvds
= REG_READ(LVDS
);
752 LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
|
754 /* Set the B0-B3 data pairs corresponding to
755 * whether we're going to
756 * set the DPLLs for dual-channel mode or not.
759 lvds
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
761 lvds
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
763 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
764 * appropriately here, but we need to look more
765 * thoroughly into how panels behave in the two modes.
768 REG_WRITE(LVDS
, lvds
);
772 dpll
|= DPLL_VCO_ENABLE
;
774 /* Disable the panel fitter if it was on our pipe */
775 if (cdv_intel_panel_fitter_pipe(dev
) == pipe
)
776 REG_WRITE(PFIT_CONTROL
, 0);
778 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
779 drm_mode_debug_printmodeline(mode
);
782 (REG_READ(map
->dpll
) & ~DPLL_LOCK
) | DPLL_VCO_ENABLE
);
784 /* Wait for the clocks to stabilize. */
785 udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */
787 if (!(REG_READ(map
->dpll
) & DPLL_LOCK
)) {
788 dev_err(dev
->dev
, "Failed to get DPLL lock\n");
793 int sdvo_pixel_multiply
= adjusted_mode
->clock
/ mode
->clock
;
794 REG_WRITE(map
->dpll_md
, (0 << DPLL_MD_UDI_DIVIDER_SHIFT
) | ((sdvo_pixel_multiply
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
));
797 REG_WRITE(map
->htotal
, (adjusted_mode
->crtc_hdisplay
- 1) |
798 ((adjusted_mode
->crtc_htotal
- 1) << 16));
799 REG_WRITE(map
->hblank
, (adjusted_mode
->crtc_hblank_start
- 1) |
800 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
801 REG_WRITE(map
->hsync
, (adjusted_mode
->crtc_hsync_start
- 1) |
802 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
803 REG_WRITE(map
->vtotal
, (adjusted_mode
->crtc_vdisplay
- 1) |
804 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
805 REG_WRITE(map
->vblank
, (adjusted_mode
->crtc_vblank_start
- 1) |
806 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
807 REG_WRITE(map
->vsync
, (adjusted_mode
->crtc_vsync_start
- 1) |
808 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
809 /* pipesrc and dspsize control the size that is scaled from,
810 * which should always be the user's requested size.
813 ((mode
->vdisplay
- 1) << 16) | (mode
->hdisplay
- 1));
814 REG_WRITE(map
->pos
, 0);
816 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
817 REG_WRITE(map
->conf
, pipeconf
);
820 gma_wait_for_vblank(dev
);
822 REG_WRITE(map
->cntr
, dspcntr
);
824 /* Flush the plane changes */
826 const struct drm_crtc_helper_funcs
*crtc_funcs
=
827 crtc
->helper_private
;
828 crtc_funcs
->mode_set_base(crtc
, x
, y
, old_fb
);
831 gma_wait_for_vblank(dev
);
836 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
838 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
840 static void i8xx_clock(int refclk
, struct gma_clock_t
*clock
)
842 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
843 clock
->p
= clock
->p1
* clock
->p2
;
844 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
845 clock
->dot
= clock
->vco
/ clock
->p
;
848 /* Returns the clock of the currently programmed mode of the given pipe. */
849 static int cdv_intel_crtc_clock_get(struct drm_device
*dev
,
850 struct drm_crtc
*crtc
)
852 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
853 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
854 int pipe
= gma_crtc
->pipe
;
855 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
858 struct gma_clock_t clock
;
860 struct psb_pipe
*p
= &dev_priv
->regs
.pipe
[pipe
];
862 if (gma_power_begin(dev
, false)) {
863 dpll
= REG_READ(map
->dpll
);
864 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
865 fp
= REG_READ(map
->fp0
);
867 fp
= REG_READ(map
->fp1
);
868 is_lvds
= (pipe
== 1) && (REG_READ(LVDS
) & LVDS_PORT_EN
);
872 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
877 is_lvds
= (pipe
== 1) &&
878 (dev_priv
->regs
.psb
.saveLVDS
& LVDS_PORT_EN
);
881 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
882 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
883 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
888 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
889 DPLL_FPA01_P1_POST_DIV_SHIFT
);
892 dev_err(dev
->dev
, "PLL %d\n", dpll
);
896 if ((dpll
& PLL_REF_INPUT_MASK
) ==
897 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
898 /* XXX: might not be 66MHz */
899 i8xx_clock(66000, &clock
);
901 i8xx_clock(48000, &clock
);
903 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
908 DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
909 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
911 if (dpll
& PLL_P2_DIVIDE_BY_4
)
916 i8xx_clock(48000, &clock
);
919 /* XXX: It would be nice to validate the clocks, but we can't reuse
920 * i830PllIsValid() because it relies on the xf86_config connector
921 * configuration being accurate, which it isn't necessarily.
927 /** Returns the currently programmed mode of the given pipe. */
928 struct drm_display_mode
*cdv_intel_crtc_mode_get(struct drm_device
*dev
,
929 struct drm_crtc
*crtc
)
931 struct gma_crtc
*gma_crtc
= to_gma_crtc(crtc
);
932 int pipe
= gma_crtc
->pipe
;
933 struct drm_psb_private
*dev_priv
= dev
->dev_private
;
934 struct psb_pipe
*p
= &dev_priv
->regs
.pipe
[pipe
];
935 const struct psb_offset
*map
= &dev_priv
->regmap
[pipe
];
936 struct drm_display_mode
*mode
;
942 if (gma_power_begin(dev
, false)) {
943 htot
= REG_READ(map
->htotal
);
944 hsync
= REG_READ(map
->hsync
);
945 vtot
= REG_READ(map
->vtotal
);
946 vsync
= REG_READ(map
->vsync
);
955 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
959 mode
->clock
= cdv_intel_crtc_clock_get(dev
, crtc
);
960 mode
->hdisplay
= (htot
& 0xffff) + 1;
961 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
962 mode
->hsync_start
= (hsync
& 0xffff) + 1;
963 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
964 mode
->vdisplay
= (vtot
& 0xffff) + 1;
965 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
966 mode
->vsync_start
= (vsync
& 0xffff) + 1;
967 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
969 drm_mode_set_name(mode
);
970 drm_mode_set_crtcinfo(mode
, 0);
975 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs
= {
976 .dpms
= gma_crtc_dpms
,
977 .mode_set
= cdv_intel_crtc_mode_set
,
978 .mode_set_base
= gma_pipe_set_base
,
979 .prepare
= gma_crtc_prepare
,
980 .commit
= gma_crtc_commit
,
981 .disable
= gma_crtc_disable
,
984 const struct drm_crtc_funcs cdv_intel_crtc_funcs
= {
985 .cursor_set
= gma_crtc_cursor_set
,
986 .cursor_move
= gma_crtc_cursor_move
,
987 .gamma_set
= gma_crtc_gamma_set
,
988 .set_config
= gma_crtc_set_config
,
989 .destroy
= gma_crtc_destroy
,
992 const struct gma_clock_funcs cdv_clock_funcs
= {
993 .clock
= cdv_intel_clock
,
994 .limit
= cdv_intel_limit
,
995 .pll_is_valid
= gma_pll_is_valid
,