2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
50 static void i915_gem_flush_free_objects(struct drm_i915_private
*i915
);
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object
*obj
)
57 if (!(obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_WRITE
))
60 return obj
->pin_global
; /* currently in use by HW, keep flushed */
64 insert_mappable_node(struct i915_ggtt
*ggtt
,
65 struct drm_mm_node
*node
, u32 size
)
67 memset(node
, 0, sizeof(*node
));
68 return drm_mm_insert_node_in_range(&ggtt
->vm
.mm
, node
,
69 size
, 0, I915_COLOR_UNEVICTABLE
,
70 0, ggtt
->mappable_end
,
75 remove_mappable_node(struct drm_mm_node
*node
)
77 drm_mm_remove_node(node
);
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private
*dev_priv
,
84 spin_lock(&dev_priv
->mm
.object_stat_lock
);
85 dev_priv
->mm
.object_count
++;
86 dev_priv
->mm
.object_memory
+= size
;
87 spin_unlock(&dev_priv
->mm
.object_stat_lock
);
90 static void i915_gem_info_remove_obj(struct drm_i915_private
*dev_priv
,
93 spin_lock(&dev_priv
->mm
.object_stat_lock
);
94 dev_priv
->mm
.object_count
--;
95 dev_priv
->mm
.object_memory
-= size
;
96 spin_unlock(&dev_priv
->mm
.object_stat_lock
);
100 i915_gem_wait_for_error(struct i915_gpu_error
*error
)
107 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 * userspace. If it takes that long something really bad is going on and
109 * we should simply try to bail out and fail as gracefully as possible.
111 ret
= wait_event_interruptible_timeout(error
->reset_queue
,
112 !i915_reset_backoff(error
),
115 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
117 } else if (ret
< 0) {
124 int i915_mutex_lock_interruptible(struct drm_device
*dev
)
126 struct drm_i915_private
*dev_priv
= to_i915(dev
);
129 ret
= i915_gem_wait_for_error(&dev_priv
->gpu_error
);
133 ret
= mutex_lock_interruptible(&dev
->struct_mutex
);
140 static u32
__i915_gem_park(struct drm_i915_private
*i915
)
144 lockdep_assert_held(&i915
->drm
.struct_mutex
);
145 GEM_BUG_ON(i915
->gt
.active_requests
);
146 GEM_BUG_ON(!list_empty(&i915
->gt
.active_rings
));
149 return I915_EPOCH_INVALID
;
151 GEM_BUG_ON(i915
->gt
.epoch
== I915_EPOCH_INVALID
);
154 * Be paranoid and flush a concurrent interrupt to make sure
155 * we don't reactivate any irq tasklets after parking.
157 * FIXME: Note that even though we have waited for execlists to be idle,
158 * there may still be an in-flight interrupt even though the CSB
159 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 * is completed before we continue, but it doesn't prevent the HW from
161 * raising a spurious interrupt later. To complete the shield we should
162 * coordinate disabling the CS irq with flushing the interrupts.
164 synchronize_irq(i915
->drm
.irq
);
166 intel_engines_park(i915
);
167 i915_timelines_park(i915
);
169 i915_pmu_gt_parked(i915
);
170 i915_vma_parked(i915
);
172 i915
->gt
.awake
= false;
174 if (INTEL_GEN(i915
) >= 6)
177 if (NEEDS_RC6_CTX_CORRUPTION_WA(i915
)) {
178 i915_rc6_ctx_wa_check(i915
);
179 intel_uncore_forcewake_put(i915
, FORCEWAKE_ALL
);
182 intel_display_power_put(i915
, POWER_DOMAIN_GT_IRQ
);
184 intel_runtime_pm_put(i915
);
186 return i915
->gt
.epoch
;
189 void i915_gem_park(struct drm_i915_private
*i915
)
193 lockdep_assert_held(&i915
->drm
.struct_mutex
);
194 GEM_BUG_ON(i915
->gt
.active_requests
);
199 /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
200 mod_delayed_work(i915
->wq
, &i915
->gt
.idle_work
, msecs_to_jiffies(100));
203 void i915_gem_unpark(struct drm_i915_private
*i915
)
207 lockdep_assert_held(&i915
->drm
.struct_mutex
);
208 GEM_BUG_ON(!i915
->gt
.active_requests
);
213 intel_runtime_pm_get_noresume(i915
);
216 * It seems that the DMC likes to transition between the DC states a lot
217 * when there are no connected displays (no active power domains) during
218 * command submission.
220 * This activity has negative impact on the performance of the chip with
221 * huge latencies observed in the interrupt handler and elsewhere.
223 * Work around it by grabbing a GT IRQ power domain whilst there is any
224 * GT activity, preventing any DC state transitions.
226 intel_display_power_get(i915
, POWER_DOMAIN_GT_IRQ
);
228 if (NEEDS_RC6_CTX_CORRUPTION_WA(i915
))
229 intel_uncore_forcewake_get(i915
, FORCEWAKE_ALL
);
231 i915
->gt
.awake
= true;
232 if (unlikely(++i915
->gt
.epoch
== 0)) /* keep 0 as invalid */
235 intel_enable_gt_powersave(i915
);
236 i915_update_gfx_val(i915
);
237 if (INTEL_GEN(i915
) >= 6)
239 i915_pmu_gt_unparked(i915
);
241 intel_engines_unpark(i915
);
243 i915_queue_hangcheck(i915
);
245 queue_delayed_work(i915
->wq
,
246 &i915
->gt
.retire_work
,
247 round_jiffies_up_relative(HZ
));
251 i915_gem_get_aperture_ioctl(struct drm_device
*dev
, void *data
,
252 struct drm_file
*file
)
254 struct drm_i915_private
*dev_priv
= to_i915(dev
);
255 struct i915_ggtt
*ggtt
= &dev_priv
->ggtt
;
256 struct drm_i915_gem_get_aperture
*args
= data
;
257 struct i915_vma
*vma
;
260 pinned
= ggtt
->vm
.reserved
;
261 mutex_lock(&dev
->struct_mutex
);
262 list_for_each_entry(vma
, &ggtt
->vm
.active_list
, vm_link
)
263 if (i915_vma_is_pinned(vma
))
264 pinned
+= vma
->node
.size
;
265 list_for_each_entry(vma
, &ggtt
->vm
.inactive_list
, vm_link
)
266 if (i915_vma_is_pinned(vma
))
267 pinned
+= vma
->node
.size
;
268 mutex_unlock(&dev
->struct_mutex
);
270 args
->aper_size
= ggtt
->vm
.total
;
271 args
->aper_available_size
= args
->aper_size
- pinned
;
276 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object
*obj
)
278 struct address_space
*mapping
= obj
->base
.filp
->f_mapping
;
279 drm_dma_handle_t
*phys
;
281 struct scatterlist
*sg
;
286 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj
)))
289 /* Always aligning to the object size, allows a single allocation
290 * to handle all possible callers, and given typical object sizes,
291 * the alignment of the buddy allocation will naturally match.
293 phys
= drm_pci_alloc(obj
->base
.dev
,
294 roundup_pow_of_two(obj
->base
.size
),
295 roundup_pow_of_two(obj
->base
.size
));
300 for (i
= 0; i
< obj
->base
.size
/ PAGE_SIZE
; i
++) {
304 page
= shmem_read_mapping_page(mapping
, i
);
310 src
= kmap_atomic(page
);
311 memcpy(vaddr
, src
, PAGE_SIZE
);
312 drm_clflush_virt_range(vaddr
, PAGE_SIZE
);
319 i915_gem_chipset_flush(to_i915(obj
->base
.dev
));
321 st
= kmalloc(sizeof(*st
), GFP_KERNEL
);
327 if (sg_alloc_table(st
, 1, GFP_KERNEL
)) {
335 sg
->length
= obj
->base
.size
;
337 sg_dma_address(sg
) = phys
->busaddr
;
338 sg_dma_len(sg
) = obj
->base
.size
;
340 obj
->phys_handle
= phys
;
342 __i915_gem_object_set_pages(obj
, st
, sg
->length
);
347 drm_pci_free(obj
->base
.dev
, phys
);
352 static void __start_cpu_write(struct drm_i915_gem_object
*obj
)
354 obj
->read_domains
= I915_GEM_DOMAIN_CPU
;
355 obj
->write_domain
= I915_GEM_DOMAIN_CPU
;
356 if (cpu_write_needs_clflush(obj
))
357 obj
->cache_dirty
= true;
361 __i915_gem_object_release_shmem(struct drm_i915_gem_object
*obj
,
362 struct sg_table
*pages
,
365 GEM_BUG_ON(obj
->mm
.madv
== __I915_MADV_PURGED
);
367 if (obj
->mm
.madv
== I915_MADV_DONTNEED
)
368 obj
->mm
.dirty
= false;
371 (obj
->read_domains
& I915_GEM_DOMAIN_CPU
) == 0 &&
372 !(obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_READ
))
373 drm_clflush_sg(pages
);
375 __start_cpu_write(obj
);
379 i915_gem_object_put_pages_phys(struct drm_i915_gem_object
*obj
,
380 struct sg_table
*pages
)
382 __i915_gem_object_release_shmem(obj
, pages
, false);
385 struct address_space
*mapping
= obj
->base
.filp
->f_mapping
;
386 char *vaddr
= obj
->phys_handle
->vaddr
;
389 for (i
= 0; i
< obj
->base
.size
/ PAGE_SIZE
; i
++) {
393 page
= shmem_read_mapping_page(mapping
, i
);
397 dst
= kmap_atomic(page
);
398 drm_clflush_virt_range(vaddr
, PAGE_SIZE
);
399 memcpy(dst
, vaddr
, PAGE_SIZE
);
402 set_page_dirty(page
);
403 if (obj
->mm
.madv
== I915_MADV_WILLNEED
)
404 mark_page_accessed(page
);
408 obj
->mm
.dirty
= false;
411 sg_free_table(pages
);
414 drm_pci_free(obj
->base
.dev
, obj
->phys_handle
);
418 i915_gem_object_release_phys(struct drm_i915_gem_object
*obj
)
420 i915_gem_object_unpin_pages(obj
);
423 static const struct drm_i915_gem_object_ops i915_gem_phys_ops
= {
424 .get_pages
= i915_gem_object_get_pages_phys
,
425 .put_pages
= i915_gem_object_put_pages_phys
,
426 .release
= i915_gem_object_release_phys
,
429 static const struct drm_i915_gem_object_ops i915_gem_object_ops
;
431 int i915_gem_object_unbind(struct drm_i915_gem_object
*obj
)
433 struct i915_vma
*vma
;
434 LIST_HEAD(still_in_list
);
437 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
439 /* Closed vma are removed from the obj->vma_list - but they may
440 * still have an active binding on the object. To remove those we
441 * must wait for all rendering to complete to the object (as unbinding
442 * must anyway), and retire the requests.
444 ret
= i915_gem_object_set_to_cpu_domain(obj
, false);
448 while ((vma
= list_first_entry_or_null(&obj
->vma_list
,
451 list_move_tail(&vma
->obj_link
, &still_in_list
);
452 ret
= i915_vma_unbind(vma
);
456 list_splice(&still_in_list
, &obj
->vma_list
);
462 i915_gem_object_wait_fence(struct dma_fence
*fence
,
465 struct intel_rps_client
*rps_client
)
467 struct i915_request
*rq
;
469 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE
!= 0x1);
471 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT
, &fence
->flags
))
474 if (!dma_fence_is_i915(fence
))
475 return dma_fence_wait_timeout(fence
,
476 flags
& I915_WAIT_INTERRUPTIBLE
,
479 rq
= to_request(fence
);
480 if (i915_request_completed(rq
))
484 * This client is about to stall waiting for the GPU. In many cases
485 * this is undesirable and limits the throughput of the system, as
486 * many clients cannot continue processing user input/output whilst
487 * blocked. RPS autotuning may take tens of milliseconds to respond
488 * to the GPU load and thus incurs additional latency for the client.
489 * We can circumvent that by promoting the GPU frequency to maximum
490 * before we wait. This makes the GPU throttle up much more quickly
491 * (good for benchmarks and user experience, e.g. window animations),
492 * but at a cost of spending more power processing the workload
493 * (bad for battery). Not all clients even want their results
494 * immediately and for them we should just let the GPU select its own
495 * frequency to maximise efficiency. To prevent a single client from
496 * forcing the clocks too high for the whole system, we only allow
497 * each client to waitboost once in a busy period.
499 if (rps_client
&& !i915_request_started(rq
)) {
500 if (INTEL_GEN(rq
->i915
) >= 6)
501 gen6_rps_boost(rq
, rps_client
);
504 timeout
= i915_request_wait(rq
, flags
, timeout
);
507 if (flags
& I915_WAIT_LOCKED
&& i915_request_completed(rq
))
508 i915_request_retire_upto(rq
);
514 i915_gem_object_wait_reservation(struct reservation_object
*resv
,
517 struct intel_rps_client
*rps_client
)
519 unsigned int seq
= __read_seqcount_begin(&resv
->seq
);
520 struct dma_fence
*excl
;
521 bool prune_fences
= false;
523 if (flags
& I915_WAIT_ALL
) {
524 struct dma_fence
**shared
;
525 unsigned int count
, i
;
528 ret
= reservation_object_get_fences_rcu(resv
,
529 &excl
, &count
, &shared
);
533 for (i
= 0; i
< count
; i
++) {
534 timeout
= i915_gem_object_wait_fence(shared
[i
],
540 dma_fence_put(shared
[i
]);
543 for (; i
< count
; i
++)
544 dma_fence_put(shared
[i
]);
548 * If both shared fences and an exclusive fence exist,
549 * then by construction the shared fences must be later
550 * than the exclusive fence. If we successfully wait for
551 * all the shared fences, we know that the exclusive fence
552 * must all be signaled. If all the shared fences are
553 * signaled, we can prune the array and recover the
554 * floating references on the fences/requests.
556 prune_fences
= count
&& timeout
>= 0;
558 excl
= reservation_object_get_excl_rcu(resv
);
561 if (excl
&& timeout
>= 0)
562 timeout
= i915_gem_object_wait_fence(excl
, flags
, timeout
,
568 * Opportunistically prune the fences iff we know they have *all* been
569 * signaled and that the reservation object has not been changed (i.e.
570 * no new fences have been added).
572 if (prune_fences
&& !__read_seqcount_retry(&resv
->seq
, seq
)) {
573 if (reservation_object_trylock(resv
)) {
574 if (!__read_seqcount_retry(&resv
->seq
, seq
))
575 reservation_object_add_excl_fence(resv
, NULL
);
576 reservation_object_unlock(resv
);
583 static void __fence_set_priority(struct dma_fence
*fence
,
584 const struct i915_sched_attr
*attr
)
586 struct i915_request
*rq
;
587 struct intel_engine_cs
*engine
;
589 if (dma_fence_is_signaled(fence
) || !dma_fence_is_i915(fence
))
592 rq
= to_request(fence
);
596 rcu_read_lock(); /* RCU serialisation for set-wedged protection */
597 if (engine
->schedule
)
598 engine
->schedule(rq
, attr
);
600 local_bh_enable(); /* kick the tasklets if queues were reprioritised */
603 static void fence_set_priority(struct dma_fence
*fence
,
604 const struct i915_sched_attr
*attr
)
606 /* Recurse once into a fence-array */
607 if (dma_fence_is_array(fence
)) {
608 struct dma_fence_array
*array
= to_dma_fence_array(fence
);
611 for (i
= 0; i
< array
->num_fences
; i
++)
612 __fence_set_priority(array
->fences
[i
], attr
);
614 __fence_set_priority(fence
, attr
);
619 i915_gem_object_wait_priority(struct drm_i915_gem_object
*obj
,
621 const struct i915_sched_attr
*attr
)
623 struct dma_fence
*excl
;
625 if (flags
& I915_WAIT_ALL
) {
626 struct dma_fence
**shared
;
627 unsigned int count
, i
;
630 ret
= reservation_object_get_fences_rcu(obj
->resv
,
631 &excl
, &count
, &shared
);
635 for (i
= 0; i
< count
; i
++) {
636 fence_set_priority(shared
[i
], attr
);
637 dma_fence_put(shared
[i
]);
642 excl
= reservation_object_get_excl_rcu(obj
->resv
);
646 fence_set_priority(excl
, attr
);
653 * Waits for rendering to the object to be completed
654 * @obj: i915 gem object
655 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
656 * @timeout: how long to wait
657 * @rps_client: client (user process) to charge for any waitboosting
660 i915_gem_object_wait(struct drm_i915_gem_object
*obj
,
663 struct intel_rps_client
*rps_client
)
666 #if IS_ENABLED(CONFIG_LOCKDEP)
667 GEM_BUG_ON(debug_locks
&&
668 !!lockdep_is_held(&obj
->base
.dev
->struct_mutex
) !=
669 !!(flags
& I915_WAIT_LOCKED
));
671 GEM_BUG_ON(timeout
< 0);
673 timeout
= i915_gem_object_wait_reservation(obj
->resv
,
676 return timeout
< 0 ? timeout
: 0;
679 static struct intel_rps_client
*to_rps_client(struct drm_file
*file
)
681 struct drm_i915_file_private
*fpriv
= file
->driver_priv
;
683 return &fpriv
->rps_client
;
687 i915_gem_phys_pwrite(struct drm_i915_gem_object
*obj
,
688 struct drm_i915_gem_pwrite
*args
,
689 struct drm_file
*file
)
691 void *vaddr
= obj
->phys_handle
->vaddr
+ args
->offset
;
692 char __user
*user_data
= u64_to_user_ptr(args
->data_ptr
);
694 /* We manually control the domain here and pretend that it
695 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
697 intel_fb_obj_invalidate(obj
, ORIGIN_CPU
);
698 if (copy_from_user(vaddr
, user_data
, args
->size
))
701 drm_clflush_virt_range(vaddr
, args
->size
);
702 i915_gem_chipset_flush(to_i915(obj
->base
.dev
));
704 intel_fb_obj_flush(obj
, ORIGIN_CPU
);
708 void *i915_gem_object_alloc(struct drm_i915_private
*dev_priv
)
710 return kmem_cache_zalloc(dev_priv
->objects
, GFP_KERNEL
);
713 void i915_gem_object_free(struct drm_i915_gem_object
*obj
)
715 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
716 kmem_cache_free(dev_priv
->objects
, obj
);
720 i915_gem_create(struct drm_file
*file
,
721 struct drm_i915_private
*dev_priv
,
725 struct drm_i915_gem_object
*obj
;
729 size
= roundup(size
, PAGE_SIZE
);
733 /* Allocate the new object */
734 obj
= i915_gem_object_create(dev_priv
, size
);
738 ret
= drm_gem_handle_create(file
, &obj
->base
, &handle
);
739 /* drop reference from allocate - handle holds it now */
740 i915_gem_object_put(obj
);
749 i915_gem_dumb_create(struct drm_file
*file
,
750 struct drm_device
*dev
,
751 struct drm_mode_create_dumb
*args
)
753 /* have to work out size/pitch and return them */
754 args
->pitch
= ALIGN(args
->width
* DIV_ROUND_UP(args
->bpp
, 8), 64);
755 args
->size
= args
->pitch
* args
->height
;
756 return i915_gem_create(file
, to_i915(dev
),
757 args
->size
, &args
->handle
);
760 static bool gpu_write_needs_clflush(struct drm_i915_gem_object
*obj
)
762 return !(obj
->cache_level
== I915_CACHE_NONE
||
763 obj
->cache_level
== I915_CACHE_WT
);
767 * Creates a new mm object and returns a handle to it.
768 * @dev: drm device pointer
769 * @data: ioctl data blob
770 * @file: drm file pointer
773 i915_gem_create_ioctl(struct drm_device
*dev
, void *data
,
774 struct drm_file
*file
)
776 struct drm_i915_private
*dev_priv
= to_i915(dev
);
777 struct drm_i915_gem_create
*args
= data
;
779 i915_gem_flush_free_objects(dev_priv
);
781 return i915_gem_create(file
, dev_priv
,
782 args
->size
, &args
->handle
);
785 static inline enum fb_op_origin
786 fb_write_origin(struct drm_i915_gem_object
*obj
, unsigned int domain
)
788 return (domain
== I915_GEM_DOMAIN_GTT
?
789 obj
->frontbuffer_ggtt_origin
: ORIGIN_CPU
);
792 void i915_gem_flush_ggtt_writes(struct drm_i915_private
*dev_priv
)
795 * No actual flushing is required for the GTT write domain for reads
796 * from the GTT domain. Writes to it "immediately" go to main memory
797 * as far as we know, so there's no chipset flush. It also doesn't
798 * land in the GPU render cache.
800 * However, we do have to enforce the order so that all writes through
801 * the GTT land before any writes to the device, such as updates to
804 * We also have to wait a bit for the writes to land from the GTT.
805 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
806 * timing. This issue has only been observed when switching quickly
807 * between GTT writes and CPU reads from inside the kernel on recent hw,
808 * and it appears to only affect discrete GTT blocks (i.e. on LLC
809 * system agents we cannot reproduce this behaviour, until Cannonlake
813 i915_gem_chipset_flush(dev_priv
);
815 intel_runtime_pm_get(dev_priv
);
816 spin_lock_irq(&dev_priv
->uncore
.lock
);
818 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE
));
820 spin_unlock_irq(&dev_priv
->uncore
.lock
);
821 intel_runtime_pm_put(dev_priv
);
825 flush_write_domain(struct drm_i915_gem_object
*obj
, unsigned int flush_domains
)
827 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
828 struct i915_vma
*vma
;
830 if (!(obj
->write_domain
& flush_domains
))
833 switch (obj
->write_domain
) {
834 case I915_GEM_DOMAIN_GTT
:
835 i915_gem_flush_ggtt_writes(dev_priv
);
837 intel_fb_obj_flush(obj
,
838 fb_write_origin(obj
, I915_GEM_DOMAIN_GTT
));
840 for_each_ggtt_vma(vma
, obj
) {
844 i915_vma_unset_ggtt_write(vma
);
848 case I915_GEM_DOMAIN_WC
:
852 case I915_GEM_DOMAIN_CPU
:
853 i915_gem_clflush_object(obj
, I915_CLFLUSH_SYNC
);
856 case I915_GEM_DOMAIN_RENDER
:
857 if (gpu_write_needs_clflush(obj
))
858 obj
->cache_dirty
= true;
862 obj
->write_domain
= 0;
866 __copy_to_user_swizzled(char __user
*cpu_vaddr
,
867 const char *gpu_vaddr
, int gpu_offset
,
870 int ret
, cpu_offset
= 0;
873 int cacheline_end
= ALIGN(gpu_offset
+ 1, 64);
874 int this_length
= min(cacheline_end
- gpu_offset
, length
);
875 int swizzled_gpu_offset
= gpu_offset
^ 64;
877 ret
= __copy_to_user(cpu_vaddr
+ cpu_offset
,
878 gpu_vaddr
+ swizzled_gpu_offset
,
883 cpu_offset
+= this_length
;
884 gpu_offset
+= this_length
;
885 length
-= this_length
;
892 __copy_from_user_swizzled(char *gpu_vaddr
, int gpu_offset
,
893 const char __user
*cpu_vaddr
,
896 int ret
, cpu_offset
= 0;
899 int cacheline_end
= ALIGN(gpu_offset
+ 1, 64);
900 int this_length
= min(cacheline_end
- gpu_offset
, length
);
901 int swizzled_gpu_offset
= gpu_offset
^ 64;
903 ret
= __copy_from_user(gpu_vaddr
+ swizzled_gpu_offset
,
904 cpu_vaddr
+ cpu_offset
,
909 cpu_offset
+= this_length
;
910 gpu_offset
+= this_length
;
911 length
-= this_length
;
918 * Pins the specified object's pages and synchronizes the object with
919 * GPU accesses. Sets needs_clflush to non-zero if the caller should
920 * flush the object from the CPU cache.
922 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object
*obj
,
923 unsigned int *needs_clflush
)
927 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
930 if (!i915_gem_object_has_struct_page(obj
))
933 ret
= i915_gem_object_wait(obj
,
934 I915_WAIT_INTERRUPTIBLE
|
936 MAX_SCHEDULE_TIMEOUT
,
941 ret
= i915_gem_object_pin_pages(obj
);
945 if (obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_READ
||
946 !static_cpu_has(X86_FEATURE_CLFLUSH
)) {
947 ret
= i915_gem_object_set_to_cpu_domain(obj
, false);
954 flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
956 /* If we're not in the cpu read domain, set ourself into the gtt
957 * read domain and manually flush cachelines (if required). This
958 * optimizes for the case when the gpu will dirty the data
959 * anyway again before the next pread happens.
961 if (!obj
->cache_dirty
&&
962 !(obj
->read_domains
& I915_GEM_DOMAIN_CPU
))
963 *needs_clflush
= CLFLUSH_BEFORE
;
966 /* return with the pages pinned */
970 i915_gem_object_unpin_pages(obj
);
974 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object
*obj
,
975 unsigned int *needs_clflush
)
979 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
982 if (!i915_gem_object_has_struct_page(obj
))
985 ret
= i915_gem_object_wait(obj
,
986 I915_WAIT_INTERRUPTIBLE
|
989 MAX_SCHEDULE_TIMEOUT
,
994 ret
= i915_gem_object_pin_pages(obj
);
998 if (obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_WRITE
||
999 !static_cpu_has(X86_FEATURE_CLFLUSH
)) {
1000 ret
= i915_gem_object_set_to_cpu_domain(obj
, true);
1007 flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
1009 /* If we're not in the cpu write domain, set ourself into the
1010 * gtt write domain and manually flush cachelines (as required).
1011 * This optimizes for the case when the gpu will use the data
1012 * right away and we therefore have to clflush anyway.
1014 if (!obj
->cache_dirty
) {
1015 *needs_clflush
|= CLFLUSH_AFTER
;
1018 * Same trick applies to invalidate partially written
1019 * cachelines read before writing.
1021 if (!(obj
->read_domains
& I915_GEM_DOMAIN_CPU
))
1022 *needs_clflush
|= CLFLUSH_BEFORE
;
1026 intel_fb_obj_invalidate(obj
, ORIGIN_CPU
);
1027 obj
->mm
.dirty
= true;
1028 /* return with the pages pinned */
1032 i915_gem_object_unpin_pages(obj
);
1037 shmem_clflush_swizzled_range(char *addr
, unsigned long length
,
1040 if (unlikely(swizzled
)) {
1041 unsigned long start
= (unsigned long) addr
;
1042 unsigned long end
= (unsigned long) addr
+ length
;
1044 /* For swizzling simply ensure that we always flush both
1045 * channels. Lame, but simple and it works. Swizzled
1046 * pwrite/pread is far from a hotpath - current userspace
1047 * doesn't use it at all. */
1048 start
= round_down(start
, 128);
1049 end
= round_up(end
, 128);
1051 drm_clflush_virt_range((void *)start
, end
- start
);
1053 drm_clflush_virt_range(addr
, length
);
1058 /* Only difference to the fast-path function is that this can handle bit17
1059 * and uses non-atomic copy and kmap functions. */
1061 shmem_pread_slow(struct page
*page
, int offset
, int length
,
1062 char __user
*user_data
,
1063 bool page_do_bit17_swizzling
, bool needs_clflush
)
1070 shmem_clflush_swizzled_range(vaddr
+ offset
, length
,
1071 page_do_bit17_swizzling
);
1073 if (page_do_bit17_swizzling
)
1074 ret
= __copy_to_user_swizzled(user_data
, vaddr
, offset
, length
);
1076 ret
= __copy_to_user(user_data
, vaddr
+ offset
, length
);
1079 return ret
? - EFAULT
: 0;
1083 shmem_pread(struct page
*page
, int offset
, int length
, char __user
*user_data
,
1084 bool page_do_bit17_swizzling
, bool needs_clflush
)
1089 if (!page_do_bit17_swizzling
) {
1090 char *vaddr
= kmap_atomic(page
);
1093 drm_clflush_virt_range(vaddr
+ offset
, length
);
1094 ret
= __copy_to_user_inatomic(user_data
, vaddr
+ offset
, length
);
1095 kunmap_atomic(vaddr
);
1100 return shmem_pread_slow(page
, offset
, length
, user_data
,
1101 page_do_bit17_swizzling
, needs_clflush
);
1105 i915_gem_shmem_pread(struct drm_i915_gem_object
*obj
,
1106 struct drm_i915_gem_pread
*args
)
1108 char __user
*user_data
;
1110 unsigned int obj_do_bit17_swizzling
;
1111 unsigned int needs_clflush
;
1112 unsigned int idx
, offset
;
1115 obj_do_bit17_swizzling
= 0;
1116 if (i915_gem_object_needs_bit17_swizzle(obj
))
1117 obj_do_bit17_swizzling
= BIT(17);
1119 ret
= mutex_lock_interruptible(&obj
->base
.dev
->struct_mutex
);
1123 ret
= i915_gem_obj_prepare_shmem_read(obj
, &needs_clflush
);
1124 mutex_unlock(&obj
->base
.dev
->struct_mutex
);
1128 remain
= args
->size
;
1129 user_data
= u64_to_user_ptr(args
->data_ptr
);
1130 offset
= offset_in_page(args
->offset
);
1131 for (idx
= args
->offset
>> PAGE_SHIFT
; remain
; idx
++) {
1132 struct page
*page
= i915_gem_object_get_page(obj
, idx
);
1133 unsigned int length
= min_t(u64
, remain
, PAGE_SIZE
- offset
);
1135 ret
= shmem_pread(page
, offset
, length
, user_data
,
1136 page_to_phys(page
) & obj_do_bit17_swizzling
,
1142 user_data
+= length
;
1146 i915_gem_obj_finish_shmem_access(obj
);
1151 gtt_user_read(struct io_mapping
*mapping
,
1152 loff_t base
, int offset
,
1153 char __user
*user_data
, int length
)
1155 void __iomem
*vaddr
;
1156 unsigned long unwritten
;
1158 /* We can use the cpu mem copy function because this is X86. */
1159 vaddr
= io_mapping_map_atomic_wc(mapping
, base
);
1160 unwritten
= __copy_to_user_inatomic(user_data
,
1161 (void __force
*)vaddr
+ offset
,
1163 io_mapping_unmap_atomic(vaddr
);
1165 vaddr
= io_mapping_map_wc(mapping
, base
, PAGE_SIZE
);
1166 unwritten
= copy_to_user(user_data
,
1167 (void __force
*)vaddr
+ offset
,
1169 io_mapping_unmap(vaddr
);
1175 i915_gem_gtt_pread(struct drm_i915_gem_object
*obj
,
1176 const struct drm_i915_gem_pread
*args
)
1178 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
1179 struct i915_ggtt
*ggtt
= &i915
->ggtt
;
1180 struct drm_mm_node node
;
1181 struct i915_vma
*vma
;
1182 void __user
*user_data
;
1186 ret
= mutex_lock_interruptible(&i915
->drm
.struct_mutex
);
1190 intel_runtime_pm_get(i915
);
1191 vma
= i915_gem_object_ggtt_pin(obj
, NULL
, 0, 0,
1196 node
.start
= i915_ggtt_offset(vma
);
1197 node
.allocated
= false;
1198 ret
= i915_vma_put_fence(vma
);
1200 i915_vma_unpin(vma
);
1205 ret
= insert_mappable_node(ggtt
, &node
, PAGE_SIZE
);
1208 GEM_BUG_ON(!node
.allocated
);
1211 ret
= i915_gem_object_set_to_gtt_domain(obj
, false);
1215 mutex_unlock(&i915
->drm
.struct_mutex
);
1217 user_data
= u64_to_user_ptr(args
->data_ptr
);
1218 remain
= args
->size
;
1219 offset
= args
->offset
;
1221 while (remain
> 0) {
1222 /* Operation in this page
1224 * page_base = page offset within aperture
1225 * page_offset = offset within page
1226 * page_length = bytes to copy for this page
1228 u32 page_base
= node
.start
;
1229 unsigned page_offset
= offset_in_page(offset
);
1230 unsigned page_length
= PAGE_SIZE
- page_offset
;
1231 page_length
= remain
< page_length
? remain
: page_length
;
1232 if (node
.allocated
) {
1234 ggtt
->vm
.insert_page(&ggtt
->vm
,
1235 i915_gem_object_get_dma_address(obj
, offset
>> PAGE_SHIFT
),
1236 node
.start
, I915_CACHE_NONE
, 0);
1239 page_base
+= offset
& PAGE_MASK
;
1242 if (gtt_user_read(&ggtt
->iomap
, page_base
, page_offset
,
1243 user_data
, page_length
)) {
1248 remain
-= page_length
;
1249 user_data
+= page_length
;
1250 offset
+= page_length
;
1253 mutex_lock(&i915
->drm
.struct_mutex
);
1255 if (node
.allocated
) {
1257 ggtt
->vm
.clear_range(&ggtt
->vm
, node
.start
, node
.size
);
1258 remove_mappable_node(&node
);
1260 i915_vma_unpin(vma
);
1263 intel_runtime_pm_put(i915
);
1264 mutex_unlock(&i915
->drm
.struct_mutex
);
1270 * Reads data from the object referenced by handle.
1271 * @dev: drm device pointer
1272 * @data: ioctl data blob
1273 * @file: drm file pointer
1275 * On error, the contents of *data are undefined.
1278 i915_gem_pread_ioctl(struct drm_device
*dev
, void *data
,
1279 struct drm_file
*file
)
1281 struct drm_i915_gem_pread
*args
= data
;
1282 struct drm_i915_gem_object
*obj
;
1285 if (args
->size
== 0)
1288 if (!access_ok(VERIFY_WRITE
,
1289 u64_to_user_ptr(args
->data_ptr
),
1293 obj
= i915_gem_object_lookup(file
, args
->handle
);
1297 /* Bounds check source. */
1298 if (range_overflows_t(u64
, args
->offset
, args
->size
, obj
->base
.size
)) {
1303 trace_i915_gem_object_pread(obj
, args
->offset
, args
->size
);
1305 ret
= i915_gem_object_wait(obj
,
1306 I915_WAIT_INTERRUPTIBLE
,
1307 MAX_SCHEDULE_TIMEOUT
,
1308 to_rps_client(file
));
1312 ret
= i915_gem_object_pin_pages(obj
);
1316 ret
= i915_gem_shmem_pread(obj
, args
);
1317 if (ret
== -EFAULT
|| ret
== -ENODEV
)
1318 ret
= i915_gem_gtt_pread(obj
, args
);
1320 i915_gem_object_unpin_pages(obj
);
1322 i915_gem_object_put(obj
);
1326 /* This is the fast write path which cannot handle
1327 * page faults in the source data
1331 ggtt_write(struct io_mapping
*mapping
,
1332 loff_t base
, int offset
,
1333 char __user
*user_data
, int length
)
1335 void __iomem
*vaddr
;
1336 unsigned long unwritten
;
1338 /* We can use the cpu mem copy function because this is X86. */
1339 vaddr
= io_mapping_map_atomic_wc(mapping
, base
);
1340 unwritten
= __copy_from_user_inatomic_nocache((void __force
*)vaddr
+ offset
,
1342 io_mapping_unmap_atomic(vaddr
);
1344 vaddr
= io_mapping_map_wc(mapping
, base
, PAGE_SIZE
);
1345 unwritten
= copy_from_user((void __force
*)vaddr
+ offset
,
1347 io_mapping_unmap(vaddr
);
1354 * This is the fast pwrite path, where we copy the data directly from the
1355 * user into the GTT, uncached.
1356 * @obj: i915 GEM object
1357 * @args: pwrite arguments structure
1360 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object
*obj
,
1361 const struct drm_i915_gem_pwrite
*args
)
1363 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
1364 struct i915_ggtt
*ggtt
= &i915
->ggtt
;
1365 struct drm_mm_node node
;
1366 struct i915_vma
*vma
;
1368 void __user
*user_data
;
1371 ret
= mutex_lock_interruptible(&i915
->drm
.struct_mutex
);
1375 if (i915_gem_object_has_struct_page(obj
)) {
1377 * Avoid waking the device up if we can fallback, as
1378 * waking/resuming is very slow (worst-case 10-100 ms
1379 * depending on PCI sleeps and our own resume time).
1380 * This easily dwarfs any performance advantage from
1381 * using the cache bypass of indirect GGTT access.
1383 if (!intel_runtime_pm_get_if_in_use(i915
)) {
1388 /* No backing pages, no fallback, we must force GGTT access */
1389 intel_runtime_pm_get(i915
);
1392 vma
= i915_gem_object_ggtt_pin(obj
, NULL
, 0, 0,
1397 node
.start
= i915_ggtt_offset(vma
);
1398 node
.allocated
= false;
1399 ret
= i915_vma_put_fence(vma
);
1401 i915_vma_unpin(vma
);
1406 ret
= insert_mappable_node(ggtt
, &node
, PAGE_SIZE
);
1409 GEM_BUG_ON(!node
.allocated
);
1412 ret
= i915_gem_object_set_to_gtt_domain(obj
, true);
1416 mutex_unlock(&i915
->drm
.struct_mutex
);
1418 intel_fb_obj_invalidate(obj
, ORIGIN_CPU
);
1420 user_data
= u64_to_user_ptr(args
->data_ptr
);
1421 offset
= args
->offset
;
1422 remain
= args
->size
;
1424 /* Operation in this page
1426 * page_base = page offset within aperture
1427 * page_offset = offset within page
1428 * page_length = bytes to copy for this page
1430 u32 page_base
= node
.start
;
1431 unsigned int page_offset
= offset_in_page(offset
);
1432 unsigned int page_length
= PAGE_SIZE
- page_offset
;
1433 page_length
= remain
< page_length
? remain
: page_length
;
1434 if (node
.allocated
) {
1435 wmb(); /* flush the write before we modify the GGTT */
1436 ggtt
->vm
.insert_page(&ggtt
->vm
,
1437 i915_gem_object_get_dma_address(obj
, offset
>> PAGE_SHIFT
),
1438 node
.start
, I915_CACHE_NONE
, 0);
1439 wmb(); /* flush modifications to the GGTT (insert_page) */
1441 page_base
+= offset
& PAGE_MASK
;
1443 /* If we get a fault while copying data, then (presumably) our
1444 * source page isn't available. Return the error and we'll
1445 * retry in the slow path.
1446 * If the object is non-shmem backed, we retry again with the
1447 * path that handles page fault.
1449 if (ggtt_write(&ggtt
->iomap
, page_base
, page_offset
,
1450 user_data
, page_length
)) {
1455 remain
-= page_length
;
1456 user_data
+= page_length
;
1457 offset
+= page_length
;
1459 intel_fb_obj_flush(obj
, ORIGIN_CPU
);
1461 mutex_lock(&i915
->drm
.struct_mutex
);
1463 if (node
.allocated
) {
1465 ggtt
->vm
.clear_range(&ggtt
->vm
, node
.start
, node
.size
);
1466 remove_mappable_node(&node
);
1468 i915_vma_unpin(vma
);
1471 intel_runtime_pm_put(i915
);
1473 mutex_unlock(&i915
->drm
.struct_mutex
);
1478 shmem_pwrite_slow(struct page
*page
, int offset
, int length
,
1479 char __user
*user_data
,
1480 bool page_do_bit17_swizzling
,
1481 bool needs_clflush_before
,
1482 bool needs_clflush_after
)
1488 if (unlikely(needs_clflush_before
|| page_do_bit17_swizzling
))
1489 shmem_clflush_swizzled_range(vaddr
+ offset
, length
,
1490 page_do_bit17_swizzling
);
1491 if (page_do_bit17_swizzling
)
1492 ret
= __copy_from_user_swizzled(vaddr
, offset
, user_data
,
1495 ret
= __copy_from_user(vaddr
+ offset
, user_data
, length
);
1496 if (needs_clflush_after
)
1497 shmem_clflush_swizzled_range(vaddr
+ offset
, length
,
1498 page_do_bit17_swizzling
);
1501 return ret
? -EFAULT
: 0;
1504 /* Per-page copy function for the shmem pwrite fastpath.
1505 * Flushes invalid cachelines before writing to the target if
1506 * needs_clflush_before is set and flushes out any written cachelines after
1507 * writing if needs_clflush is set.
1510 shmem_pwrite(struct page
*page
, int offset
, int len
, char __user
*user_data
,
1511 bool page_do_bit17_swizzling
,
1512 bool needs_clflush_before
,
1513 bool needs_clflush_after
)
1518 if (!page_do_bit17_swizzling
) {
1519 char *vaddr
= kmap_atomic(page
);
1521 if (needs_clflush_before
)
1522 drm_clflush_virt_range(vaddr
+ offset
, len
);
1523 ret
= __copy_from_user_inatomic(vaddr
+ offset
, user_data
, len
);
1524 if (needs_clflush_after
)
1525 drm_clflush_virt_range(vaddr
+ offset
, len
);
1527 kunmap_atomic(vaddr
);
1532 return shmem_pwrite_slow(page
, offset
, len
, user_data
,
1533 page_do_bit17_swizzling
,
1534 needs_clflush_before
,
1535 needs_clflush_after
);
1539 i915_gem_shmem_pwrite(struct drm_i915_gem_object
*obj
,
1540 const struct drm_i915_gem_pwrite
*args
)
1542 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
1543 void __user
*user_data
;
1545 unsigned int obj_do_bit17_swizzling
;
1546 unsigned int partial_cacheline_write
;
1547 unsigned int needs_clflush
;
1548 unsigned int offset
, idx
;
1551 ret
= mutex_lock_interruptible(&i915
->drm
.struct_mutex
);
1555 ret
= i915_gem_obj_prepare_shmem_write(obj
, &needs_clflush
);
1556 mutex_unlock(&i915
->drm
.struct_mutex
);
1560 obj_do_bit17_swizzling
= 0;
1561 if (i915_gem_object_needs_bit17_swizzle(obj
))
1562 obj_do_bit17_swizzling
= BIT(17);
1564 /* If we don't overwrite a cacheline completely we need to be
1565 * careful to have up-to-date data by first clflushing. Don't
1566 * overcomplicate things and flush the entire patch.
1568 partial_cacheline_write
= 0;
1569 if (needs_clflush
& CLFLUSH_BEFORE
)
1570 partial_cacheline_write
= boot_cpu_data
.x86_clflush_size
- 1;
1572 user_data
= u64_to_user_ptr(args
->data_ptr
);
1573 remain
= args
->size
;
1574 offset
= offset_in_page(args
->offset
);
1575 for (idx
= args
->offset
>> PAGE_SHIFT
; remain
; idx
++) {
1576 struct page
*page
= i915_gem_object_get_page(obj
, idx
);
1577 unsigned int length
= min_t(u64
, remain
, PAGE_SIZE
- offset
);
1579 ret
= shmem_pwrite(page
, offset
, length
, user_data
,
1580 page_to_phys(page
) & obj_do_bit17_swizzling
,
1581 (offset
| length
) & partial_cacheline_write
,
1582 needs_clflush
& CLFLUSH_AFTER
);
1587 user_data
+= length
;
1591 intel_fb_obj_flush(obj
, ORIGIN_CPU
);
1592 i915_gem_obj_finish_shmem_access(obj
);
1597 * Writes data to the object referenced by handle.
1599 * @data: ioctl data blob
1602 * On error, the contents of the buffer that were to be modified are undefined.
1605 i915_gem_pwrite_ioctl(struct drm_device
*dev
, void *data
,
1606 struct drm_file
*file
)
1608 struct drm_i915_gem_pwrite
*args
= data
;
1609 struct drm_i915_gem_object
*obj
;
1612 if (args
->size
== 0)
1615 if (!access_ok(VERIFY_READ
,
1616 u64_to_user_ptr(args
->data_ptr
),
1620 obj
= i915_gem_object_lookup(file
, args
->handle
);
1624 /* Bounds check destination. */
1625 if (range_overflows_t(u64
, args
->offset
, args
->size
, obj
->base
.size
)) {
1630 /* Writes not allowed into this read-only object */
1631 if (i915_gem_object_is_readonly(obj
)) {
1636 trace_i915_gem_object_pwrite(obj
, args
->offset
, args
->size
);
1639 if (obj
->ops
->pwrite
)
1640 ret
= obj
->ops
->pwrite(obj
, args
);
1644 ret
= i915_gem_object_wait(obj
,
1645 I915_WAIT_INTERRUPTIBLE
|
1647 MAX_SCHEDULE_TIMEOUT
,
1648 to_rps_client(file
));
1652 ret
= i915_gem_object_pin_pages(obj
);
1657 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1658 * it would end up going through the fenced access, and we'll get
1659 * different detiling behavior between reading and writing.
1660 * pread/pwrite currently are reading and writing from the CPU
1661 * perspective, requiring manual detiling by the client.
1663 if (!i915_gem_object_has_struct_page(obj
) ||
1664 cpu_write_needs_clflush(obj
))
1665 /* Note that the gtt paths might fail with non-page-backed user
1666 * pointers (e.g. gtt mappings when moving data between
1667 * textures). Fallback to the shmem path in that case.
1669 ret
= i915_gem_gtt_pwrite_fast(obj
, args
);
1671 if (ret
== -EFAULT
|| ret
== -ENOSPC
) {
1672 if (obj
->phys_handle
)
1673 ret
= i915_gem_phys_pwrite(obj
, args
, file
);
1675 ret
= i915_gem_shmem_pwrite(obj
, args
);
1678 i915_gem_object_unpin_pages(obj
);
1680 i915_gem_object_put(obj
);
1684 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object
*obj
)
1686 struct drm_i915_private
*i915
;
1687 struct list_head
*list
;
1688 struct i915_vma
*vma
;
1690 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj
));
1692 for_each_ggtt_vma(vma
, obj
) {
1693 if (i915_vma_is_active(vma
))
1696 if (!drm_mm_node_allocated(&vma
->node
))
1699 list_move_tail(&vma
->vm_link
, &vma
->vm
->inactive_list
);
1702 i915
= to_i915(obj
->base
.dev
);
1703 spin_lock(&i915
->mm
.obj_lock
);
1704 list
= obj
->bind_count
? &i915
->mm
.bound_list
: &i915
->mm
.unbound_list
;
1705 list_move_tail(&obj
->mm
.link
, list
);
1706 spin_unlock(&i915
->mm
.obj_lock
);
1710 * Called when user space prepares to use an object with the CPU, either
1711 * through the mmap ioctl's mapping or a GTT mapping.
1713 * @data: ioctl data blob
1717 i915_gem_set_domain_ioctl(struct drm_device
*dev
, void *data
,
1718 struct drm_file
*file
)
1720 struct drm_i915_gem_set_domain
*args
= data
;
1721 struct drm_i915_gem_object
*obj
;
1722 uint32_t read_domains
= args
->read_domains
;
1723 uint32_t write_domain
= args
->write_domain
;
1726 /* Only handle setting domains to types used by the CPU. */
1727 if ((write_domain
| read_domains
) & I915_GEM_GPU_DOMAINS
)
1730 /* Having something in the write domain implies it's in the read
1731 * domain, and only that read domain. Enforce that in the request.
1733 if (write_domain
!= 0 && read_domains
!= write_domain
)
1736 obj
= i915_gem_object_lookup(file
, args
->handle
);
1740 /* Try to flush the object off the GPU without holding the lock.
1741 * We will repeat the flush holding the lock in the normal manner
1742 * to catch cases where we are gazumped.
1744 err
= i915_gem_object_wait(obj
,
1745 I915_WAIT_INTERRUPTIBLE
|
1746 (write_domain
? I915_WAIT_ALL
: 0),
1747 MAX_SCHEDULE_TIMEOUT
,
1748 to_rps_client(file
));
1753 * Proxy objects do not control access to the backing storage, ergo
1754 * they cannot be used as a means to manipulate the cache domain
1755 * tracking for that backing storage. The proxy object is always
1756 * considered to be outside of any cache domain.
1758 if (i915_gem_object_is_proxy(obj
)) {
1764 * Flush and acquire obj->pages so that we are coherent through
1765 * direct access in memory with previous cached writes through
1766 * shmemfs and that our cache domain tracking remains valid.
1767 * For example, if the obj->filp was moved to swap without us
1768 * being notified and releasing the pages, we would mistakenly
1769 * continue to assume that the obj remained out of the CPU cached
1772 err
= i915_gem_object_pin_pages(obj
);
1776 err
= i915_mutex_lock_interruptible(dev
);
1780 if (read_domains
& I915_GEM_DOMAIN_WC
)
1781 err
= i915_gem_object_set_to_wc_domain(obj
, write_domain
);
1782 else if (read_domains
& I915_GEM_DOMAIN_GTT
)
1783 err
= i915_gem_object_set_to_gtt_domain(obj
, write_domain
);
1785 err
= i915_gem_object_set_to_cpu_domain(obj
, write_domain
);
1787 /* And bump the LRU for this access */
1788 i915_gem_object_bump_inactive_ggtt(obj
);
1790 mutex_unlock(&dev
->struct_mutex
);
1792 if (write_domain
!= 0)
1793 intel_fb_obj_invalidate(obj
,
1794 fb_write_origin(obj
, write_domain
));
1797 i915_gem_object_unpin_pages(obj
);
1799 i915_gem_object_put(obj
);
1804 * Called when user space has done writes to this buffer
1806 * @data: ioctl data blob
1810 i915_gem_sw_finish_ioctl(struct drm_device
*dev
, void *data
,
1811 struct drm_file
*file
)
1813 struct drm_i915_gem_sw_finish
*args
= data
;
1814 struct drm_i915_gem_object
*obj
;
1816 obj
= i915_gem_object_lookup(file
, args
->handle
);
1821 * Proxy objects are barred from CPU access, so there is no
1822 * need to ban sw_finish as it is a nop.
1825 /* Pinned buffers may be scanout, so flush the cache */
1826 i915_gem_object_flush_if_display(obj
);
1827 i915_gem_object_put(obj
);
1833 __vma_matches(struct vm_area_struct
*vma
, struct file
*filp
,
1834 unsigned long addr
, unsigned long size
)
1836 if (vma
->vm_file
!= filp
)
1839 return vma
->vm_start
== addr
&&
1840 (vma
->vm_end
- vma
->vm_start
) == PAGE_ALIGN(size
);
1844 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1847 * @data: ioctl data blob
1850 * While the mapping holds a reference on the contents of the object, it doesn't
1851 * imply a ref on the object itself.
1855 * DRM driver writers who look a this function as an example for how to do GEM
1856 * mmap support, please don't implement mmap support like here. The modern way
1857 * to implement DRM mmap support is with an mmap offset ioctl (like
1858 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1859 * That way debug tooling like valgrind will understand what's going on, hiding
1860 * the mmap call in a driver private ioctl will break that. The i915 driver only
1861 * does cpu mmaps this way because we didn't know better.
1864 i915_gem_mmap_ioctl(struct drm_device
*dev
, void *data
,
1865 struct drm_file
*file
)
1867 struct drm_i915_gem_mmap
*args
= data
;
1868 struct drm_i915_gem_object
*obj
;
1871 if (args
->flags
& ~(I915_MMAP_WC
))
1874 if (args
->flags
& I915_MMAP_WC
&& !boot_cpu_has(X86_FEATURE_PAT
))
1877 obj
= i915_gem_object_lookup(file
, args
->handle
);
1881 /* prime objects have no backing filp to GEM mmap
1884 if (!obj
->base
.filp
) {
1889 if (range_overflows(args
->offset
, args
->size
, (u64
)obj
->base
.size
)) {
1894 addr
= vm_mmap(obj
->base
.filp
, 0, args
->size
,
1895 PROT_READ
| PROT_WRITE
, MAP_SHARED
,
1897 if (IS_ERR_VALUE(addr
))
1900 if (args
->flags
& I915_MMAP_WC
) {
1901 struct mm_struct
*mm
= current
->mm
;
1902 struct vm_area_struct
*vma
;
1904 if (down_write_killable(&mm
->mmap_sem
)) {
1908 vma
= find_vma(mm
, addr
);
1909 if (vma
&& __vma_matches(vma
, obj
->base
.filp
, addr
, args
->size
))
1911 pgprot_writecombine(vm_get_page_prot(vma
->vm_flags
));
1914 up_write(&mm
->mmap_sem
);
1915 if (IS_ERR_VALUE(addr
))
1918 /* This may race, but that's ok, it only gets set */
1919 WRITE_ONCE(obj
->frontbuffer_ggtt_origin
, ORIGIN_CPU
);
1921 i915_gem_object_put(obj
);
1923 args
->addr_ptr
= (uint64_t) addr
;
1927 i915_gem_object_put(obj
);
1931 static unsigned int tile_row_pages(struct drm_i915_gem_object
*obj
)
1933 return i915_gem_object_get_tile_row_size(obj
) >> PAGE_SHIFT
;
1937 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1939 * A history of the GTT mmap interface:
1941 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1942 * aligned and suitable for fencing, and still fit into the available
1943 * mappable space left by the pinned display objects. A classic problem
1944 * we called the page-fault-of-doom where we would ping-pong between
1945 * two objects that could not fit inside the GTT and so the memcpy
1946 * would page one object in at the expense of the other between every
1949 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1950 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1951 * object is too large for the available space (or simply too large
1952 * for the mappable aperture!), a view is created instead and faulted
1953 * into userspace. (This view is aligned and sized appropriately for
1956 * 2 - Recognise WC as a separate cache domain so that we can flush the
1957 * delayed writes via GTT before performing direct access via WC.
1961 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1962 * hangs on some architectures, corruption on others. An attempt to service
1963 * a GTT page fault from a snoopable object will generate a SIGBUS.
1965 * * the object must be able to fit into RAM (physical memory, though no
1966 * limited to the mappable aperture).
1971 * * a new GTT page fault will synchronize rendering from the GPU and flush
1972 * all data to system memory. Subsequent access will not be synchronized.
1974 * * all mappings are revoked on runtime device suspend.
1976 * * there are only 8, 16 or 32 fence registers to share between all users
1977 * (older machines require fence register for display and blitter access
1978 * as well). Contention of the fence registers will cause the previous users
1979 * to be unmapped and any new access will generate new page faults.
1981 * * running out of memory while servicing a fault may generate a SIGBUS,
1982 * rather than the expected SIGSEGV.
1984 int i915_gem_mmap_gtt_version(void)
1989 static inline struct i915_ggtt_view
1990 compute_partial_view(struct drm_i915_gem_object
*obj
,
1991 pgoff_t page_offset
,
1994 struct i915_ggtt_view view
;
1996 if (i915_gem_object_is_tiled(obj
))
1997 chunk
= roundup(chunk
, tile_row_pages(obj
));
1999 view
.type
= I915_GGTT_VIEW_PARTIAL
;
2000 view
.partial
.offset
= rounddown(page_offset
, chunk
);
2002 min_t(unsigned int, chunk
,
2003 (obj
->base
.size
>> PAGE_SHIFT
) - view
.partial
.offset
);
2005 /* If the partial covers the entire object, just create a normal VMA. */
2006 if (chunk
>= obj
->base
.size
>> PAGE_SHIFT
)
2007 view
.type
= I915_GGTT_VIEW_NORMAL
;
2013 * i915_gem_fault - fault a page into the GTT
2016 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
2017 * from userspace. The fault handler takes care of binding the object to
2018 * the GTT (if needed), allocating and programming a fence register (again,
2019 * only if needed based on whether the old reg is still valid or the object
2020 * is tiled) and inserting a new PTE into the faulting process.
2022 * Note that the faulting process may involve evicting existing objects
2023 * from the GTT and/or fence registers to make room. So performance may
2024 * suffer if the GTT working set is large or there are few fence registers
2027 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2028 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2030 vm_fault_t
i915_gem_fault(struct vm_fault
*vmf
)
2032 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2033 struct vm_area_struct
*area
= vmf
->vma
;
2034 struct drm_i915_gem_object
*obj
= to_intel_bo(area
->vm_private_data
);
2035 struct drm_device
*dev
= obj
->base
.dev
;
2036 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2037 struct i915_ggtt
*ggtt
= &dev_priv
->ggtt
;
2038 bool write
= !!(vmf
->flags
& FAULT_FLAG_WRITE
);
2039 struct i915_vma
*vma
;
2040 pgoff_t page_offset
;
2043 /* Sanity check that we allow writing into this object */
2044 if (i915_gem_object_is_readonly(obj
) && write
)
2045 return VM_FAULT_SIGBUS
;
2047 /* We don't use vmf->pgoff since that has the fake offset */
2048 page_offset
= (vmf
->address
- area
->vm_start
) >> PAGE_SHIFT
;
2050 trace_i915_gem_object_fault(obj
, page_offset
, true, write
);
2052 /* Try to flush the object off the GPU first without holding the lock.
2053 * Upon acquiring the lock, we will perform our sanity checks and then
2054 * repeat the flush holding the lock in the normal manner to catch cases
2055 * where we are gazumped.
2057 ret
= i915_gem_object_wait(obj
,
2058 I915_WAIT_INTERRUPTIBLE
,
2059 MAX_SCHEDULE_TIMEOUT
,
2064 ret
= i915_gem_object_pin_pages(obj
);
2068 intel_runtime_pm_get(dev_priv
);
2070 ret
= i915_mutex_lock_interruptible(dev
);
2074 /* Access to snoopable pages through the GTT is incoherent. */
2075 if (obj
->cache_level
!= I915_CACHE_NONE
&& !HAS_LLC(dev_priv
)) {
2081 /* Now pin it into the GTT as needed */
2082 vma
= i915_gem_object_ggtt_pin(obj
, NULL
, 0, 0,
2087 /* Use a partial view if it is bigger than available space */
2088 struct i915_ggtt_view view
=
2089 compute_partial_view(obj
, page_offset
, MIN_CHUNK_PAGES
);
2092 flags
= PIN_MAPPABLE
;
2093 if (view
.type
== I915_GGTT_VIEW_NORMAL
)
2094 flags
|= PIN_NONBLOCK
; /* avoid warnings for pinned */
2097 * Userspace is now writing through an untracked VMA, abandon
2098 * all hope that the hardware is able to track future writes.
2100 obj
->frontbuffer_ggtt_origin
= ORIGIN_CPU
;
2102 vma
= i915_gem_object_ggtt_pin(obj
, &view
, 0, 0, flags
);
2103 if (IS_ERR(vma
) && !view
.type
) {
2104 flags
= PIN_MAPPABLE
;
2105 view
.type
= I915_GGTT_VIEW_PARTIAL
;
2106 vma
= i915_gem_object_ggtt_pin(obj
, &view
, 0, 0, flags
);
2114 ret
= i915_gem_object_set_to_gtt_domain(obj
, write
);
2118 ret
= i915_vma_pin_fence(vma
);
2122 /* Finally, remap it using the new GTT offset */
2123 ret
= remap_io_mapping(area
,
2124 area
->vm_start
+ (vma
->ggtt_view
.partial
.offset
<< PAGE_SHIFT
),
2125 (ggtt
->gmadr
.start
+ vma
->node
.start
) >> PAGE_SHIFT
,
2126 min_t(u64
, vma
->size
, area
->vm_end
- area
->vm_start
),
2131 /* Mark as being mmapped into userspace for later revocation */
2132 assert_rpm_wakelock_held(dev_priv
);
2133 if (!i915_vma_set_userfault(vma
) && !obj
->userfault_count
++)
2134 list_add(&obj
->userfault_link
, &dev_priv
->mm
.userfault_list
);
2135 GEM_BUG_ON(!obj
->userfault_count
);
2137 i915_vma_set_ggtt_write(vma
);
2140 i915_vma_unpin_fence(vma
);
2142 __i915_vma_unpin(vma
);
2144 mutex_unlock(&dev
->struct_mutex
);
2146 intel_runtime_pm_put(dev_priv
);
2147 i915_gem_object_unpin_pages(obj
);
2152 * We eat errors when the gpu is terminally wedged to avoid
2153 * userspace unduly crashing (gl has no provisions for mmaps to
2154 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2155 * and so needs to be reported.
2157 if (!i915_terminally_wedged(&dev_priv
->gpu_error
))
2158 return VM_FAULT_SIGBUS
;
2159 /* else: fall through */
2162 * EAGAIN means the gpu is hung and we'll wait for the error
2163 * handler to reset everything when re-faulting in
2164 * i915_mutex_lock_interruptible.
2171 * EBUSY is ok: this just means that another thread
2172 * already did the job.
2174 return VM_FAULT_NOPAGE
;
2176 return VM_FAULT_OOM
;
2179 return VM_FAULT_SIGBUS
;
2181 WARN_ONCE(ret
, "unhandled error in i915_gem_fault: %i\n", ret
);
2182 return VM_FAULT_SIGBUS
;
2186 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object
*obj
)
2188 struct i915_vma
*vma
;
2190 GEM_BUG_ON(!obj
->userfault_count
);
2192 obj
->userfault_count
= 0;
2193 list_del(&obj
->userfault_link
);
2194 drm_vma_node_unmap(&obj
->base
.vma_node
,
2195 obj
->base
.dev
->anon_inode
->i_mapping
);
2197 for_each_ggtt_vma(vma
, obj
)
2198 i915_vma_unset_userfault(vma
);
2202 * i915_gem_release_mmap - remove physical page mappings
2203 * @obj: obj in question
2205 * Preserve the reservation of the mmapping with the DRM core code, but
2206 * relinquish ownership of the pages back to the system.
2208 * It is vital that we remove the page mapping if we have mapped a tiled
2209 * object through the GTT and then lose the fence register due to
2210 * resource pressure. Similarly if the object has been moved out of the
2211 * aperture, than pages mapped into userspace must be revoked. Removing the
2212 * mapping will then trigger a page fault on the next user access, allowing
2213 * fixup by i915_gem_fault().
2216 i915_gem_release_mmap(struct drm_i915_gem_object
*obj
)
2218 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
2220 /* Serialisation between user GTT access and our code depends upon
2221 * revoking the CPU's PTE whilst the mutex is held. The next user
2222 * pagefault then has to wait until we release the mutex.
2224 * Note that RPM complicates somewhat by adding an additional
2225 * requirement that operations to the GGTT be made holding the RPM
2228 lockdep_assert_held(&i915
->drm
.struct_mutex
);
2229 intel_runtime_pm_get(i915
);
2231 if (!obj
->userfault_count
)
2234 __i915_gem_object_release_mmap(obj
);
2236 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2237 * memory transactions from userspace before we return. The TLB
2238 * flushing implied above by changing the PTE above *should* be
2239 * sufficient, an extra barrier here just provides us with a bit
2240 * of paranoid documentation about our requirement to serialise
2241 * memory writes before touching registers / GSM.
2246 intel_runtime_pm_put(i915
);
2249 void i915_gem_runtime_suspend(struct drm_i915_private
*dev_priv
)
2251 struct drm_i915_gem_object
*obj
, *on
;
2255 * Only called during RPM suspend. All users of the userfault_list
2256 * must be holding an RPM wakeref to ensure that this can not
2257 * run concurrently with themselves (and use the struct_mutex for
2258 * protection between themselves).
2261 list_for_each_entry_safe(obj
, on
,
2262 &dev_priv
->mm
.userfault_list
, userfault_link
)
2263 __i915_gem_object_release_mmap(obj
);
2265 /* The fence will be lost when the device powers down. If any were
2266 * in use by hardware (i.e. they are pinned), we should not be powering
2267 * down! All other fences will be reacquired by the user upon waking.
2269 for (i
= 0; i
< dev_priv
->num_fence_regs
; i
++) {
2270 struct drm_i915_fence_reg
*reg
= &dev_priv
->fence_regs
[i
];
2272 /* Ideally we want to assert that the fence register is not
2273 * live at this point (i.e. that no piece of code will be
2274 * trying to write through fence + GTT, as that both violates
2275 * our tracking of activity and associated locking/barriers,
2276 * but also is illegal given that the hw is powered down).
2278 * Previously we used reg->pin_count as a "liveness" indicator.
2279 * That is not sufficient, and we need a more fine-grained
2280 * tool if we want to have a sanity check here.
2286 GEM_BUG_ON(i915_vma_has_userfault(reg
->vma
));
2291 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object
*obj
)
2293 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
2296 err
= drm_gem_create_mmap_offset(&obj
->base
);
2300 /* Attempt to reap some mmap space from dead objects */
2302 err
= i915_gem_wait_for_idle(dev_priv
,
2303 I915_WAIT_INTERRUPTIBLE
,
2304 MAX_SCHEDULE_TIMEOUT
);
2308 i915_gem_drain_freed_objects(dev_priv
);
2309 err
= drm_gem_create_mmap_offset(&obj
->base
);
2313 } while (flush_delayed_work(&dev_priv
->gt
.retire_work
));
2318 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object
*obj
)
2320 drm_gem_free_mmap_offset(&obj
->base
);
2324 i915_gem_mmap_gtt(struct drm_file
*file
,
2325 struct drm_device
*dev
,
2329 struct drm_i915_gem_object
*obj
;
2332 obj
= i915_gem_object_lookup(file
, handle
);
2336 ret
= i915_gem_object_create_mmap_offset(obj
);
2338 *offset
= drm_vma_node_offset_addr(&obj
->base
.vma_node
);
2340 i915_gem_object_put(obj
);
2345 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2347 * @data: GTT mapping ioctl data
2348 * @file: GEM object info
2350 * Simply returns the fake offset to userspace so it can mmap it.
2351 * The mmap call will end up in drm_gem_mmap(), which will set things
2352 * up so we can get faults in the handler above.
2354 * The fault handler will take care of binding the object into the GTT
2355 * (since it may have been evicted to make room for something), allocating
2356 * a fence register, and mapping the appropriate aperture address into
2360 i915_gem_mmap_gtt_ioctl(struct drm_device
*dev
, void *data
,
2361 struct drm_file
*file
)
2363 struct drm_i915_gem_mmap_gtt
*args
= data
;
2365 return i915_gem_mmap_gtt(file
, dev
, args
->handle
, &args
->offset
);
2368 /* Immediately discard the backing storage */
2370 i915_gem_object_truncate(struct drm_i915_gem_object
*obj
)
2372 i915_gem_object_free_mmap_offset(obj
);
2374 if (obj
->base
.filp
== NULL
)
2377 /* Our goal here is to return as much of the memory as
2378 * is possible back to the system as we are called from OOM.
2379 * To do this we must instruct the shmfs to drop all of its
2380 * backing pages, *now*.
2382 shmem_truncate_range(file_inode(obj
->base
.filp
), 0, (loff_t
)-1);
2383 obj
->mm
.madv
= __I915_MADV_PURGED
;
2384 obj
->mm
.pages
= ERR_PTR(-EFAULT
);
2387 /* Try to discard unwanted pages */
2388 void __i915_gem_object_invalidate(struct drm_i915_gem_object
*obj
)
2390 struct address_space
*mapping
;
2392 lockdep_assert_held(&obj
->mm
.lock
);
2393 GEM_BUG_ON(i915_gem_object_has_pages(obj
));
2395 switch (obj
->mm
.madv
) {
2396 case I915_MADV_DONTNEED
:
2397 i915_gem_object_truncate(obj
);
2398 case __I915_MADV_PURGED
:
2402 if (obj
->base
.filp
== NULL
)
2405 mapping
= obj
->base
.filp
->f_mapping
,
2406 invalidate_mapping_pages(mapping
, 0, (loff_t
)-1);
2410 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object
*obj
,
2411 struct sg_table
*pages
)
2413 struct sgt_iter sgt_iter
;
2416 __i915_gem_object_release_shmem(obj
, pages
, true);
2418 i915_gem_gtt_finish_pages(obj
, pages
);
2420 if (i915_gem_object_needs_bit17_swizzle(obj
))
2421 i915_gem_object_save_bit_17_swizzle(obj
, pages
);
2423 for_each_sgt_page(page
, sgt_iter
, pages
) {
2425 set_page_dirty(page
);
2427 if (obj
->mm
.madv
== I915_MADV_WILLNEED
)
2428 mark_page_accessed(page
);
2432 obj
->mm
.dirty
= false;
2434 sg_free_table(pages
);
2438 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object
*obj
)
2440 struct radix_tree_iter iter
;
2444 radix_tree_for_each_slot(slot
, &obj
->mm
.get_page
.radix
, &iter
, 0)
2445 radix_tree_delete(&obj
->mm
.get_page
.radix
, iter
.index
);
2449 static struct sg_table
*
2450 __i915_gem_object_unset_pages(struct drm_i915_gem_object
*obj
)
2452 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
2453 struct sg_table
*pages
;
2455 pages
= fetch_and_zero(&obj
->mm
.pages
);
2459 spin_lock(&i915
->mm
.obj_lock
);
2460 list_del(&obj
->mm
.link
);
2461 spin_unlock(&i915
->mm
.obj_lock
);
2463 if (obj
->mm
.mapping
) {
2466 ptr
= page_mask_bits(obj
->mm
.mapping
);
2467 if (is_vmalloc_addr(ptr
))
2470 kunmap(kmap_to_page(ptr
));
2472 obj
->mm
.mapping
= NULL
;
2475 __i915_gem_object_reset_page_iter(obj
);
2476 obj
->mm
.page_sizes
.phys
= obj
->mm
.page_sizes
.sg
= 0;
2481 void __i915_gem_object_put_pages(struct drm_i915_gem_object
*obj
,
2482 enum i915_mm_subclass subclass
)
2484 struct sg_table
*pages
;
2486 if (i915_gem_object_has_pinned_pages(obj
))
2489 GEM_BUG_ON(obj
->bind_count
);
2490 if (!i915_gem_object_has_pages(obj
))
2493 /* May be called by shrinker from within get_pages() (on another bo) */
2494 mutex_lock_nested(&obj
->mm
.lock
, subclass
);
2495 if (unlikely(atomic_read(&obj
->mm
.pages_pin_count
)))
2499 * ->put_pages might need to allocate memory for the bit17 swizzle
2500 * array, hence protect them from being reaped by removing them from gtt
2503 pages
= __i915_gem_object_unset_pages(obj
);
2505 obj
->ops
->put_pages(obj
, pages
);
2508 mutex_unlock(&obj
->mm
.lock
);
2511 static bool i915_sg_trim(struct sg_table
*orig_st
)
2513 struct sg_table new_st
;
2514 struct scatterlist
*sg
, *new_sg
;
2517 if (orig_st
->nents
== orig_st
->orig_nents
)
2520 if (sg_alloc_table(&new_st
, orig_st
->nents
, GFP_KERNEL
| __GFP_NOWARN
))
2523 new_sg
= new_st
.sgl
;
2524 for_each_sg(orig_st
->sgl
, sg
, orig_st
->nents
, i
) {
2525 sg_set_page(new_sg
, sg_page(sg
), sg
->length
, 0);
2526 /* called before being DMA mapped, no need to copy sg->dma_* */
2527 new_sg
= sg_next(new_sg
);
2529 GEM_BUG_ON(new_sg
); /* Should walk exactly nents and hit the end */
2531 sg_free_table(orig_st
);
2537 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object
*obj
)
2539 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
2540 const unsigned long page_count
= obj
->base
.size
/ PAGE_SIZE
;
2542 struct address_space
*mapping
;
2543 struct sg_table
*st
;
2544 struct scatterlist
*sg
;
2545 struct sgt_iter sgt_iter
;
2547 unsigned long last_pfn
= 0; /* suppress gcc warning */
2548 unsigned int max_segment
= i915_sg_segment_size();
2549 unsigned int sg_page_sizes
;
2553 /* Assert that the object is not currently in any GPU domain. As it
2554 * wasn't in the GTT, there shouldn't be any way it could have been in
2557 GEM_BUG_ON(obj
->read_domains
& I915_GEM_GPU_DOMAINS
);
2558 GEM_BUG_ON(obj
->write_domain
& I915_GEM_GPU_DOMAINS
);
2560 st
= kmalloc(sizeof(*st
), GFP_KERNEL
);
2565 if (sg_alloc_table(st
, page_count
, GFP_KERNEL
)) {
2570 /* Get the list of pages out of our struct file. They'll be pinned
2571 * at this point until we release them.
2573 * Fail silently without starting the shrinker
2575 mapping
= obj
->base
.filp
->f_mapping
;
2576 noreclaim
= mapping_gfp_constraint(mapping
, ~__GFP_RECLAIM
);
2577 noreclaim
|= __GFP_NORETRY
| __GFP_NOWARN
;
2582 for (i
= 0; i
< page_count
; i
++) {
2583 const unsigned int shrink
[] = {
2584 I915_SHRINK_BOUND
| I915_SHRINK_UNBOUND
| I915_SHRINK_PURGEABLE
,
2587 gfp_t gfp
= noreclaim
;
2590 page
= shmem_read_mapping_page_gfp(mapping
, i
, gfp
);
2591 if (likely(!IS_ERR(page
)))
2595 ret
= PTR_ERR(page
);
2599 i915_gem_shrink(dev_priv
, 2 * page_count
, NULL
, *s
++);
2602 /* We've tried hard to allocate the memory by reaping
2603 * our own buffer, now let the real VM do its job and
2604 * go down in flames if truly OOM.
2606 * However, since graphics tend to be disposable,
2607 * defer the oom here by reporting the ENOMEM back
2611 /* reclaim and warn, but no oom */
2612 gfp
= mapping_gfp_mask(mapping
);
2614 /* Our bo are always dirty and so we require
2615 * kswapd to reclaim our pages (direct reclaim
2616 * does not effectively begin pageout of our
2617 * buffers on its own). However, direct reclaim
2618 * only waits for kswapd when under allocation
2619 * congestion. So as a result __GFP_RECLAIM is
2620 * unreliable and fails to actually reclaim our
2621 * dirty pages -- unless you try over and over
2622 * again with !__GFP_NORETRY. However, we still
2623 * want to fail this allocation rather than
2624 * trigger the out-of-memory killer and for
2625 * this we want __GFP_RETRY_MAYFAIL.
2627 gfp
|= __GFP_RETRY_MAYFAIL
;
2632 sg
->length
>= max_segment
||
2633 page_to_pfn(page
) != last_pfn
+ 1) {
2635 sg_page_sizes
|= sg
->length
;
2639 sg_set_page(sg
, page
, PAGE_SIZE
, 0);
2641 sg
->length
+= PAGE_SIZE
;
2643 last_pfn
= page_to_pfn(page
);
2645 /* Check that the i965g/gm workaround works. */
2646 WARN_ON((gfp
& __GFP_DMA32
) && (last_pfn
>= 0x00100000UL
));
2648 if (sg
) { /* loop terminated early; short sg table */
2649 sg_page_sizes
|= sg
->length
;
2653 /* Trim unused sg entries to avoid wasting memory. */
2656 ret
= i915_gem_gtt_prepare_pages(obj
, st
);
2658 /* DMA remapping failed? One possible cause is that
2659 * it could not reserve enough large entries, asking
2660 * for PAGE_SIZE chunks instead may be helpful.
2662 if (max_segment
> PAGE_SIZE
) {
2663 for_each_sgt_page(page
, sgt_iter
, st
)
2667 max_segment
= PAGE_SIZE
;
2670 dev_warn(&dev_priv
->drm
.pdev
->dev
,
2671 "Failed to DMA remap %lu pages\n",
2677 if (i915_gem_object_needs_bit17_swizzle(obj
))
2678 i915_gem_object_do_bit_17_swizzle(obj
, st
);
2680 __i915_gem_object_set_pages(obj
, st
, sg_page_sizes
);
2687 for_each_sgt_page(page
, sgt_iter
, st
)
2692 /* shmemfs first checks if there is enough memory to allocate the page
2693 * and reports ENOSPC should there be insufficient, along with the usual
2694 * ENOMEM for a genuine allocation failure.
2696 * We use ENOSPC in our driver to mean that we have run out of aperture
2697 * space and so want to translate the error from shmemfs back to our
2698 * usual understanding of ENOMEM.
2706 void __i915_gem_object_set_pages(struct drm_i915_gem_object
*obj
,
2707 struct sg_table
*pages
,
2708 unsigned int sg_page_sizes
)
2710 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
2711 unsigned long supported
= INTEL_INFO(i915
)->page_sizes
;
2714 lockdep_assert_held(&obj
->mm
.lock
);
2716 obj
->mm
.get_page
.sg_pos
= pages
->sgl
;
2717 obj
->mm
.get_page
.sg_idx
= 0;
2719 obj
->mm
.pages
= pages
;
2721 if (i915_gem_object_is_tiled(obj
) &&
2722 i915
->quirks
& QUIRK_PIN_SWIZZLED_PAGES
) {
2723 GEM_BUG_ON(obj
->mm
.quirked
);
2724 __i915_gem_object_pin_pages(obj
);
2725 obj
->mm
.quirked
= true;
2728 GEM_BUG_ON(!sg_page_sizes
);
2729 obj
->mm
.page_sizes
.phys
= sg_page_sizes
;
2732 * Calculate the supported page-sizes which fit into the given
2733 * sg_page_sizes. This will give us the page-sizes which we may be able
2734 * to use opportunistically when later inserting into the GTT. For
2735 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2736 * 64K or 4K pages, although in practice this will depend on a number of
2739 obj
->mm
.page_sizes
.sg
= 0;
2740 for_each_set_bit(i
, &supported
, ilog2(I915_GTT_MAX_PAGE_SIZE
) + 1) {
2741 if (obj
->mm
.page_sizes
.phys
& ~0u << i
)
2742 obj
->mm
.page_sizes
.sg
|= BIT(i
);
2744 GEM_BUG_ON(!HAS_PAGE_SIZES(i915
, obj
->mm
.page_sizes
.sg
));
2746 spin_lock(&i915
->mm
.obj_lock
);
2747 list_add(&obj
->mm
.link
, &i915
->mm
.unbound_list
);
2748 spin_unlock(&i915
->mm
.obj_lock
);
2751 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object
*obj
)
2755 if (unlikely(obj
->mm
.madv
!= I915_MADV_WILLNEED
)) {
2756 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2760 err
= obj
->ops
->get_pages(obj
);
2761 GEM_BUG_ON(!err
&& !i915_gem_object_has_pages(obj
));
2766 /* Ensure that the associated pages are gathered from the backing storage
2767 * and pinned into our object. i915_gem_object_pin_pages() may be called
2768 * multiple times before they are released by a single call to
2769 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2770 * either as a result of memory pressure (reaping pages under the shrinker)
2771 * or as the object is itself released.
2773 int __i915_gem_object_get_pages(struct drm_i915_gem_object
*obj
)
2777 err
= mutex_lock_interruptible(&obj
->mm
.lock
);
2781 if (unlikely(!i915_gem_object_has_pages(obj
))) {
2782 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj
));
2784 err
= ____i915_gem_object_get_pages(obj
);
2788 smp_mb__before_atomic();
2790 atomic_inc(&obj
->mm
.pages_pin_count
);
2793 mutex_unlock(&obj
->mm
.lock
);
2797 /* The 'mapping' part of i915_gem_object_pin_map() below */
2798 static void *i915_gem_object_map(const struct drm_i915_gem_object
*obj
,
2799 enum i915_map_type type
)
2801 unsigned long n_pages
= obj
->base
.size
>> PAGE_SHIFT
;
2802 struct sg_table
*sgt
= obj
->mm
.pages
;
2803 struct sgt_iter sgt_iter
;
2805 struct page
*stack_pages
[32];
2806 struct page
**pages
= stack_pages
;
2807 unsigned long i
= 0;
2811 /* A single page can always be kmapped */
2812 if (n_pages
== 1 && type
== I915_MAP_WB
)
2813 return kmap(sg_page(sgt
->sgl
));
2815 if (n_pages
> ARRAY_SIZE(stack_pages
)) {
2816 /* Too big for stack -- allocate temporary array instead */
2817 pages
= kvmalloc_array(n_pages
, sizeof(*pages
), GFP_KERNEL
);
2822 for_each_sgt_page(page
, sgt_iter
, sgt
)
2825 /* Check that we have the expected number of pages */
2826 GEM_BUG_ON(i
!= n_pages
);
2831 /* fallthrough to use PAGE_KERNEL anyway */
2833 pgprot
= PAGE_KERNEL
;
2836 pgprot
= pgprot_writecombine(PAGE_KERNEL_IO
);
2839 addr
= vmap(pages
, n_pages
, 0, pgprot
);
2841 if (pages
!= stack_pages
)
2847 /* get, pin, and map the pages of the object into kernel space */
2848 void *i915_gem_object_pin_map(struct drm_i915_gem_object
*obj
,
2849 enum i915_map_type type
)
2851 enum i915_map_type has_type
;
2856 if (unlikely(!i915_gem_object_has_struct_page(obj
)))
2857 return ERR_PTR(-ENXIO
);
2859 ret
= mutex_lock_interruptible(&obj
->mm
.lock
);
2861 return ERR_PTR(ret
);
2863 pinned
= !(type
& I915_MAP_OVERRIDE
);
2864 type
&= ~I915_MAP_OVERRIDE
;
2866 if (!atomic_inc_not_zero(&obj
->mm
.pages_pin_count
)) {
2867 if (unlikely(!i915_gem_object_has_pages(obj
))) {
2868 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj
));
2870 ret
= ____i915_gem_object_get_pages(obj
);
2874 smp_mb__before_atomic();
2876 atomic_inc(&obj
->mm
.pages_pin_count
);
2879 GEM_BUG_ON(!i915_gem_object_has_pages(obj
));
2881 ptr
= page_unpack_bits(obj
->mm
.mapping
, &has_type
);
2882 if (ptr
&& has_type
!= type
) {
2888 if (is_vmalloc_addr(ptr
))
2891 kunmap(kmap_to_page(ptr
));
2893 ptr
= obj
->mm
.mapping
= NULL
;
2897 ptr
= i915_gem_object_map(obj
, type
);
2903 obj
->mm
.mapping
= page_pack_bits(ptr
, type
);
2907 mutex_unlock(&obj
->mm
.lock
);
2911 atomic_dec(&obj
->mm
.pages_pin_count
);
2918 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object
*obj
,
2919 const struct drm_i915_gem_pwrite
*arg
)
2921 struct address_space
*mapping
= obj
->base
.filp
->f_mapping
;
2922 char __user
*user_data
= u64_to_user_ptr(arg
->data_ptr
);
2926 /* Before we instantiate/pin the backing store for our use, we
2927 * can prepopulate the shmemfs filp efficiently using a write into
2928 * the pagecache. We avoid the penalty of instantiating all the
2929 * pages, important if the user is just writing to a few and never
2930 * uses the object on the GPU, and using a direct write into shmemfs
2931 * allows it to avoid the cost of retrieving a page (either swapin
2932 * or clearing-before-use) before it is overwritten.
2934 if (i915_gem_object_has_pages(obj
))
2937 if (obj
->mm
.madv
!= I915_MADV_WILLNEED
)
2940 /* Before the pages are instantiated the object is treated as being
2941 * in the CPU domain. The pages will be clflushed as required before
2942 * use, and we can freely write into the pages directly. If userspace
2943 * races pwrite with any other operation; corruption will ensue -
2944 * that is userspace's prerogative!
2948 offset
= arg
->offset
;
2949 pg
= offset_in_page(offset
);
2952 unsigned int len
, unwritten
;
2957 len
= PAGE_SIZE
- pg
;
2961 err
= pagecache_write_begin(obj
->base
.filp
, mapping
,
2968 unwritten
= copy_from_user(vaddr
+ pg
, user_data
, len
);
2971 err
= pagecache_write_end(obj
->base
.filp
, mapping
,
2972 offset
, len
, len
- unwritten
,
2989 static void i915_gem_client_mark_guilty(struct drm_i915_file_private
*file_priv
,
2990 const struct i915_gem_context
*ctx
)
2993 unsigned long prev_hang
;
2995 if (i915_gem_context_is_banned(ctx
))
2996 score
= I915_CLIENT_SCORE_CONTEXT_BAN
;
3000 prev_hang
= xchg(&file_priv
->hang_timestamp
, jiffies
);
3001 if (time_before(jiffies
, prev_hang
+ I915_CLIENT_FAST_HANG_JIFFIES
))
3002 score
+= I915_CLIENT_SCORE_HANG_FAST
;
3005 atomic_add(score
, &file_priv
->ban_score
);
3007 DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
3009 atomic_read(&file_priv
->ban_score
));
3013 static void i915_gem_context_mark_guilty(struct i915_gem_context
*ctx
)
3016 bool banned
, bannable
;
3018 atomic_inc(&ctx
->guilty_count
);
3020 bannable
= i915_gem_context_is_bannable(ctx
);
3021 score
= atomic_add_return(CONTEXT_SCORE_GUILTY
, &ctx
->ban_score
);
3022 banned
= score
>= CONTEXT_SCORE_BAN_THRESHOLD
;
3024 /* Cool contexts don't accumulate client ban score */
3029 DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3030 ctx
->name
, atomic_read(&ctx
->guilty_count
),
3032 i915_gem_context_set_banned(ctx
);
3035 if (!IS_ERR_OR_NULL(ctx
->file_priv
))
3036 i915_gem_client_mark_guilty(ctx
->file_priv
, ctx
);
3039 static void i915_gem_context_mark_innocent(struct i915_gem_context
*ctx
)
3041 atomic_inc(&ctx
->active_count
);
3044 struct i915_request
*
3045 i915_gem_find_active_request(struct intel_engine_cs
*engine
)
3047 struct i915_request
*request
, *active
= NULL
;
3048 unsigned long flags
;
3051 * We are called by the error capture, reset and to dump engine
3052 * state at random points in time. In particular, note that neither is
3053 * crucially ordered with an interrupt. After a hang, the GPU is dead
3054 * and we assume that no more writes can happen (we waited long enough
3055 * for all writes that were in transaction to be flushed) - adding an
3056 * extra delay for a recent interrupt is pointless. Hence, we do
3057 * not need an engine->irq_seqno_barrier() before the seqno reads.
3058 * At all other times, we must assume the GPU is still running, but
3059 * we only care about the snapshot of this moment.
3061 spin_lock_irqsave(&engine
->timeline
.lock
, flags
);
3062 list_for_each_entry(request
, &engine
->timeline
.requests
, link
) {
3063 if (__i915_request_completed(request
, request
->global_seqno
))
3069 spin_unlock_irqrestore(&engine
->timeline
.lock
, flags
);
3075 * Ensure irq handler finishes, and not run again.
3076 * Also return the active request so that we only search for it once.
3078 struct i915_request
*
3079 i915_gem_reset_prepare_engine(struct intel_engine_cs
*engine
)
3081 struct i915_request
*request
;
3084 * During the reset sequence, we must prevent the engine from
3085 * entering RC6. As the context state is undefined until we restart
3086 * the engine, if it does enter RC6 during the reset, the state
3087 * written to the powercontext is undefined and so we may lose
3088 * GPU state upon resume, i.e. fail to restart after a reset.
3090 intel_uncore_forcewake_get(engine
->i915
, FORCEWAKE_ALL
);
3092 request
= engine
->reset
.prepare(engine
);
3093 if (request
&& request
->fence
.error
== -EIO
)
3094 request
= ERR_PTR(-EIO
); /* Previous reset failed! */
3099 int i915_gem_reset_prepare(struct drm_i915_private
*dev_priv
)
3101 struct intel_engine_cs
*engine
;
3102 struct i915_request
*request
;
3103 enum intel_engine_id id
;
3106 for_each_engine(engine
, dev_priv
, id
) {
3107 request
= i915_gem_reset_prepare_engine(engine
);
3108 if (IS_ERR(request
)) {
3109 err
= PTR_ERR(request
);
3113 engine
->hangcheck
.active_request
= request
;
3116 i915_gem_revoke_fences(dev_priv
);
3117 intel_uc_sanitize(dev_priv
);
3122 static void engine_skip_context(struct i915_request
*request
)
3124 struct intel_engine_cs
*engine
= request
->engine
;
3125 struct i915_gem_context
*hung_ctx
= request
->gem_context
;
3126 struct i915_timeline
*timeline
= request
->timeline
;
3127 unsigned long flags
;
3129 GEM_BUG_ON(timeline
== &engine
->timeline
);
3131 spin_lock_irqsave(&engine
->timeline
.lock
, flags
);
3132 spin_lock(&timeline
->lock
);
3134 list_for_each_entry_continue(request
, &engine
->timeline
.requests
, link
)
3135 if (request
->gem_context
== hung_ctx
)
3136 i915_request_skip(request
, -EIO
);
3138 list_for_each_entry(request
, &timeline
->requests
, link
)
3139 i915_request_skip(request
, -EIO
);
3141 spin_unlock(&timeline
->lock
);
3142 spin_unlock_irqrestore(&engine
->timeline
.lock
, flags
);
3145 /* Returns the request if it was guilty of the hang */
3146 static struct i915_request
*
3147 i915_gem_reset_request(struct intel_engine_cs
*engine
,
3148 struct i915_request
*request
,
3151 /* The guilty request will get skipped on a hung engine.
3153 * Users of client default contexts do not rely on logical
3154 * state preserved between batches so it is safe to execute
3155 * queued requests following the hang. Non default contexts
3156 * rely on preserved state, so skipping a batch loses the
3157 * evolution of the state and it needs to be considered corrupted.
3158 * Executing more queued batches on top of corrupted state is
3159 * risky. But we take the risk by trying to advance through
3160 * the queued requests in order to make the client behaviour
3161 * more predictable around resets, by not throwing away random
3162 * amount of batches it has prepared for execution. Sophisticated
3163 * clients can use gem_reset_stats_ioctl and dma fence status
3164 * (exported via sync_file info ioctl on explicit fences) to observe
3165 * when it loses the context state and should rebuild accordingly.
3167 * The context ban, and ultimately the client ban, mechanism are safety
3168 * valves if client submission ends up resulting in nothing more than
3172 if (i915_request_completed(request
)) {
3173 GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3174 engine
->name
, request
->global_seqno
,
3175 request
->fence
.context
, request
->fence
.seqno
,
3176 intel_engine_get_seqno(engine
));
3181 i915_gem_context_mark_guilty(request
->gem_context
);
3182 i915_request_skip(request
, -EIO
);
3184 /* If this context is now banned, skip all pending requests. */
3185 if (i915_gem_context_is_banned(request
->gem_context
))
3186 engine_skip_context(request
);
3189 * Since this is not the hung engine, it may have advanced
3190 * since the hang declaration. Double check by refinding
3191 * the active request at the time of the reset.
3193 request
= i915_gem_find_active_request(engine
);
3195 unsigned long flags
;
3197 i915_gem_context_mark_innocent(request
->gem_context
);
3198 dma_fence_set_error(&request
->fence
, -EAGAIN
);
3200 /* Rewind the engine to replay the incomplete rq */
3201 spin_lock_irqsave(&engine
->timeline
.lock
, flags
);
3202 request
= list_prev_entry(request
, link
);
3203 if (&request
->link
== &engine
->timeline
.requests
)
3205 spin_unlock_irqrestore(&engine
->timeline
.lock
, flags
);
3212 void i915_gem_reset_engine(struct intel_engine_cs
*engine
,
3213 struct i915_request
*request
,
3217 * Make sure this write is visible before we re-enable the interrupt
3218 * handlers on another CPU, as tasklet_enable() resolves to just
3219 * a compiler barrier which is insufficient for our purpose here.
3221 smp_store_mb(engine
->irq_posted
, 0);
3224 request
= i915_gem_reset_request(engine
, request
, stalled
);
3226 /* Setup the CS to resume from the breadcrumb of the hung request */
3227 engine
->reset
.reset(engine
, request
);
3230 void i915_gem_reset(struct drm_i915_private
*dev_priv
,
3231 unsigned int stalled_mask
)
3233 struct intel_engine_cs
*engine
;
3234 enum intel_engine_id id
;
3236 lockdep_assert_held(&dev_priv
->drm
.struct_mutex
);
3238 i915_retire_requests(dev_priv
);
3240 for_each_engine(engine
, dev_priv
, id
) {
3241 struct intel_context
*ce
;
3243 i915_gem_reset_engine(engine
,
3244 engine
->hangcheck
.active_request
,
3245 stalled_mask
& ENGINE_MASK(id
));
3246 ce
= fetch_and_zero(&engine
->last_retired_context
);
3248 intel_context_unpin(ce
);
3251 * Ostensibily, we always want a context loaded for powersaving,
3252 * so if the engine is idle after the reset, send a request
3253 * to load our scratch kernel_context.
3255 * More mysteriously, if we leave the engine idle after a reset,
3256 * the next userspace batch may hang, with what appears to be
3257 * an incoherent read by the CS (presumably stale TLB). An
3258 * empty request appears sufficient to paper over the glitch.
3260 if (intel_engine_is_idle(engine
)) {
3261 struct i915_request
*rq
;
3263 rq
= i915_request_alloc(engine
,
3264 dev_priv
->kernel_context
);
3266 i915_request_add(rq
);
3270 i915_gem_restore_fences(dev_priv
);
3273 void i915_gem_reset_finish_engine(struct intel_engine_cs
*engine
)
3275 engine
->reset
.finish(engine
);
3277 intel_uncore_forcewake_put(engine
->i915
, FORCEWAKE_ALL
);
3280 void i915_gem_reset_finish(struct drm_i915_private
*dev_priv
)
3282 struct intel_engine_cs
*engine
;
3283 enum intel_engine_id id
;
3285 lockdep_assert_held(&dev_priv
->drm
.struct_mutex
);
3287 for_each_engine(engine
, dev_priv
, id
) {
3288 engine
->hangcheck
.active_request
= NULL
;
3289 i915_gem_reset_finish_engine(engine
);
3293 static void nop_submit_request(struct i915_request
*request
)
3295 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3296 request
->engine
->name
,
3297 request
->fence
.context
, request
->fence
.seqno
);
3298 dma_fence_set_error(&request
->fence
, -EIO
);
3300 i915_request_submit(request
);
3303 static void nop_complete_submit_request(struct i915_request
*request
)
3305 unsigned long flags
;
3307 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3308 request
->engine
->name
,
3309 request
->fence
.context
, request
->fence
.seqno
);
3310 dma_fence_set_error(&request
->fence
, -EIO
);
3312 spin_lock_irqsave(&request
->engine
->timeline
.lock
, flags
);
3313 __i915_request_submit(request
);
3314 intel_engine_init_global_seqno(request
->engine
, request
->global_seqno
);
3315 spin_unlock_irqrestore(&request
->engine
->timeline
.lock
, flags
);
3318 void i915_gem_set_wedged(struct drm_i915_private
*i915
)
3320 struct intel_engine_cs
*engine
;
3321 enum intel_engine_id id
;
3323 GEM_TRACE("start\n");
3325 if (GEM_SHOW_DEBUG()) {
3326 struct drm_printer p
= drm_debug_printer(__func__
);
3328 for_each_engine(engine
, i915
, id
)
3329 intel_engine_dump(engine
, &p
, "%s\n", engine
->name
);
3332 set_bit(I915_WEDGED
, &i915
->gpu_error
.flags
);
3333 smp_mb__after_atomic();
3336 * First, stop submission to hw, but do not yet complete requests by
3337 * rolling the global seqno forward (since this would complete requests
3338 * for which we haven't set the fence error to EIO yet).
3340 for_each_engine(engine
, i915
, id
) {
3341 i915_gem_reset_prepare_engine(engine
);
3343 engine
->submit_request
= nop_submit_request
;
3344 engine
->schedule
= NULL
;
3346 i915
->caps
.scheduler
= 0;
3348 /* Even if the GPU reset fails, it should still stop the engines */
3349 intel_gpu_reset(i915
, ALL_ENGINES
);
3352 * Make sure no one is running the old callback before we proceed with
3353 * cancelling requests and resetting the completion tracking. Otherwise
3354 * we might submit a request to the hardware which never completes.
3358 for_each_engine(engine
, i915
, id
) {
3359 /* Mark all executing requests as skipped */
3360 engine
->cancel_requests(engine
);
3363 * Only once we've force-cancelled all in-flight requests can we
3364 * start to complete all requests.
3366 engine
->submit_request
= nop_complete_submit_request
;
3370 * Make sure no request can slip through without getting completed by
3371 * either this call here to intel_engine_init_global_seqno, or the one
3372 * in nop_complete_submit_request.
3376 for_each_engine(engine
, i915
, id
) {
3377 unsigned long flags
;
3380 * Mark all pending requests as complete so that any concurrent
3381 * (lockless) lookup doesn't try and wait upon the request as we
3384 spin_lock_irqsave(&engine
->timeline
.lock
, flags
);
3385 intel_engine_init_global_seqno(engine
,
3386 intel_engine_last_submit(engine
));
3387 spin_unlock_irqrestore(&engine
->timeline
.lock
, flags
);
3389 i915_gem_reset_finish_engine(engine
);
3394 wake_up_all(&i915
->gpu_error
.reset_queue
);
3397 bool i915_gem_unset_wedged(struct drm_i915_private
*i915
)
3399 struct i915_timeline
*tl
;
3401 lockdep_assert_held(&i915
->drm
.struct_mutex
);
3402 if (!test_bit(I915_WEDGED
, &i915
->gpu_error
.flags
))
3405 GEM_TRACE("start\n");
3408 * Before unwedging, make sure that all pending operations
3409 * are flushed and errored out - we may have requests waiting upon
3410 * third party fences. We marked all inflight requests as EIO, and
3411 * every execbuf since returned EIO, for consistency we want all
3412 * the currently pending requests to also be marked as EIO, which
3413 * is done inside our nop_submit_request - and so we must wait.
3415 * No more can be submitted until we reset the wedged bit.
3417 list_for_each_entry(tl
, &i915
->gt
.timelines
, link
) {
3418 struct i915_request
*rq
;
3420 rq
= i915_gem_active_peek(&tl
->last_request
,
3421 &i915
->drm
.struct_mutex
);
3426 * We can't use our normal waiter as we want to
3427 * avoid recursively trying to handle the current
3428 * reset. The basic dma_fence_default_wait() installs
3429 * a callback for dma_fence_signal(), which is
3430 * triggered by our nop handler (indirectly, the
3431 * callback enables the signaler thread which is
3432 * woken by the nop_submit_request() advancing the seqno
3433 * and when the seqno passes the fence, the signaler
3434 * then signals the fence waking us up).
3436 if (dma_fence_default_wait(&rq
->fence
, true,
3437 MAX_SCHEDULE_TIMEOUT
) < 0)
3440 i915_retire_requests(i915
);
3441 GEM_BUG_ON(i915
->gt
.active_requests
);
3444 * Undo nop_submit_request. We prevent all new i915 requests from
3445 * being queued (by disallowing execbuf whilst wedged) so having
3446 * waited for all active requests above, we know the system is idle
3447 * and do not have to worry about a thread being inside
3448 * engine->submit_request() as we swap over. So unlike installing
3449 * the nop_submit_request on reset, we can do this from normal
3450 * context and do not require stop_machine().
3452 intel_engines_reset_default_submission(i915
);
3453 i915_gem_contexts_lost(i915
);
3457 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3458 clear_bit(I915_WEDGED
, &i915
->gpu_error
.flags
);
3464 i915_gem_retire_work_handler(struct work_struct
*work
)
3466 struct drm_i915_private
*dev_priv
=
3467 container_of(work
, typeof(*dev_priv
), gt
.retire_work
.work
);
3468 struct drm_device
*dev
= &dev_priv
->drm
;
3470 /* Come back later if the device is busy... */
3471 if (mutex_trylock(&dev
->struct_mutex
)) {
3472 i915_retire_requests(dev_priv
);
3473 mutex_unlock(&dev
->struct_mutex
);
3477 * Keep the retire handler running until we are finally idle.
3478 * We do not need to do this test under locking as in the worst-case
3479 * we queue the retire worker once too often.
3481 if (READ_ONCE(dev_priv
->gt
.awake
))
3482 queue_delayed_work(dev_priv
->wq
,
3483 &dev_priv
->gt
.retire_work
,
3484 round_jiffies_up_relative(HZ
));
3487 static void shrink_caches(struct drm_i915_private
*i915
)
3490 * kmem_cache_shrink() discards empty slabs and reorders partially
3491 * filled slabs to prioritise allocating from the mostly full slabs,
3492 * with the aim of reducing fragmentation.
3494 kmem_cache_shrink(i915
->priorities
);
3495 kmem_cache_shrink(i915
->dependencies
);
3496 kmem_cache_shrink(i915
->requests
);
3497 kmem_cache_shrink(i915
->luts
);
3498 kmem_cache_shrink(i915
->vmas
);
3499 kmem_cache_shrink(i915
->objects
);
3502 struct sleep_rcu_work
{
3504 struct rcu_head rcu
;
3505 struct work_struct work
;
3507 struct drm_i915_private
*i915
;
3512 same_epoch(struct drm_i915_private
*i915
, unsigned int epoch
)
3515 * There is a small chance that the epoch wrapped since we started
3516 * sleeping. If we assume that epoch is at least a u32, then it will
3517 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3519 return epoch
== READ_ONCE(i915
->gt
.epoch
);
3522 static void __sleep_work(struct work_struct
*work
)
3524 struct sleep_rcu_work
*s
= container_of(work
, typeof(*s
), work
);
3525 struct drm_i915_private
*i915
= s
->i915
;
3526 unsigned int epoch
= s
->epoch
;
3529 if (same_epoch(i915
, epoch
))
3530 shrink_caches(i915
);
3533 static void __sleep_rcu(struct rcu_head
*rcu
)
3535 struct sleep_rcu_work
*s
= container_of(rcu
, typeof(*s
), rcu
);
3536 struct drm_i915_private
*i915
= s
->i915
;
3538 if (same_epoch(i915
, s
->epoch
)) {
3539 INIT_WORK(&s
->work
, __sleep_work
);
3540 queue_work(i915
->wq
, &s
->work
);
3547 new_requests_since_last_retire(const struct drm_i915_private
*i915
)
3549 return (READ_ONCE(i915
->gt
.active_requests
) ||
3550 work_pending(&i915
->gt
.idle_work
.work
));
3553 static void assert_kernel_context_is_current(struct drm_i915_private
*i915
)
3555 struct intel_engine_cs
*engine
;
3556 enum intel_engine_id id
;
3558 if (i915_terminally_wedged(&i915
->gpu_error
))
3561 GEM_BUG_ON(i915
->gt
.active_requests
);
3562 for_each_engine(engine
, i915
, id
) {
3563 GEM_BUG_ON(__i915_gem_active_peek(&engine
->timeline
.last_request
));
3564 GEM_BUG_ON(engine
->last_retired_context
!=
3565 to_intel_context(i915
->kernel_context
, engine
));
3570 i915_gem_idle_work_handler(struct work_struct
*work
)
3572 struct drm_i915_private
*dev_priv
=
3573 container_of(work
, typeof(*dev_priv
), gt
.idle_work
.work
);
3574 unsigned int epoch
= I915_EPOCH_INVALID
;
3575 bool rearm_hangcheck
;
3577 if (!READ_ONCE(dev_priv
->gt
.awake
))
3580 if (READ_ONCE(dev_priv
->gt
.active_requests
))
3584 * Flush out the last user context, leaving only the pinned
3585 * kernel context resident. When we are idling on the kernel_context,
3586 * no more new requests (with a context switch) are emitted and we
3587 * can finally rest. A consequence is that the idle work handler is
3588 * always called at least twice before idling (and if the system is
3589 * idle that implies a round trip through the retire worker).
3591 mutex_lock(&dev_priv
->drm
.struct_mutex
);
3592 i915_gem_switch_to_kernel_context(dev_priv
);
3593 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
3595 GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3596 READ_ONCE(dev_priv
->gt
.active_requests
));
3599 * Wait for last execlists context complete, but bail out in case a
3600 * new request is submitted. As we don't trust the hardware, we
3601 * continue on if the wait times out. This is necessary to allow
3602 * the machine to suspend even if the hardware dies, and we will
3603 * try to recover in resume (after depriving the hardware of power,
3604 * it may be in a better mmod).
3606 __wait_for(if (new_requests_since_last_retire(dev_priv
)) return,
3607 intel_engines_are_idle(dev_priv
),
3608 I915_IDLE_ENGINES_TIMEOUT
* 1000,
3612 cancel_delayed_work_sync(&dev_priv
->gpu_error
.hangcheck_work
);
3614 if (!mutex_trylock(&dev_priv
->drm
.struct_mutex
)) {
3615 /* Currently busy, come back later */
3616 mod_delayed_work(dev_priv
->wq
,
3617 &dev_priv
->gt
.idle_work
,
3618 msecs_to_jiffies(50));
3623 * New request retired after this work handler started, extend active
3624 * period until next instance of the work.
3626 if (new_requests_since_last_retire(dev_priv
))
3629 epoch
= __i915_gem_park(dev_priv
);
3631 assert_kernel_context_is_current(dev_priv
);
3633 rearm_hangcheck
= false;
3635 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
3638 if (rearm_hangcheck
) {
3639 GEM_BUG_ON(!dev_priv
->gt
.awake
);
3640 i915_queue_hangcheck(dev_priv
);
3644 * When we are idle, it is an opportune time to reap our caches.
3645 * However, we have many objects that utilise RCU and the ordered
3646 * i915->wq that this work is executing on. To try and flush any
3647 * pending frees now we are idle, we first wait for an RCU grace
3648 * period, and then queue a task (that will run last on the wq) to
3649 * shrink and re-optimize the caches.
3651 if (same_epoch(dev_priv
, epoch
)) {
3652 struct sleep_rcu_work
*s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
3656 call_rcu(&s
->rcu
, __sleep_rcu
);
3661 void i915_gem_close_object(struct drm_gem_object
*gem
, struct drm_file
*file
)
3663 struct drm_i915_private
*i915
= to_i915(gem
->dev
);
3664 struct drm_i915_gem_object
*obj
= to_intel_bo(gem
);
3665 struct drm_i915_file_private
*fpriv
= file
->driver_priv
;
3666 struct i915_lut_handle
*lut
, *ln
;
3668 mutex_lock(&i915
->drm
.struct_mutex
);
3670 list_for_each_entry_safe(lut
, ln
, &obj
->lut_list
, obj_link
) {
3671 struct i915_gem_context
*ctx
= lut
->ctx
;
3672 struct i915_vma
*vma
;
3674 GEM_BUG_ON(ctx
->file_priv
== ERR_PTR(-EBADF
));
3675 if (ctx
->file_priv
!= fpriv
)
3678 vma
= radix_tree_delete(&ctx
->handles_vma
, lut
->handle
);
3679 GEM_BUG_ON(vma
->obj
!= obj
);
3681 /* We allow the process to have multiple handles to the same
3682 * vma, in the same fd namespace, by virtue of flink/open.
3684 GEM_BUG_ON(!vma
->open_count
);
3685 if (!--vma
->open_count
&& !i915_vma_is_ggtt(vma
))
3686 i915_vma_close(vma
);
3688 list_del(&lut
->obj_link
);
3689 list_del(&lut
->ctx_link
);
3691 kmem_cache_free(i915
->luts
, lut
);
3692 __i915_gem_object_release_unless_active(obj
);
3695 mutex_unlock(&i915
->drm
.struct_mutex
);
3698 static unsigned long to_wait_timeout(s64 timeout_ns
)
3701 return MAX_SCHEDULE_TIMEOUT
;
3703 if (timeout_ns
== 0)
3706 return nsecs_to_jiffies_timeout(timeout_ns
);
3710 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3711 * @dev: drm device pointer
3712 * @data: ioctl data blob
3713 * @file: drm file pointer
3715 * Returns 0 if successful, else an error is returned with the remaining time in
3716 * the timeout parameter.
3717 * -ETIME: object is still busy after timeout
3718 * -ERESTARTSYS: signal interrupted the wait
3719 * -ENONENT: object doesn't exist
3720 * Also possible, but rare:
3721 * -EAGAIN: incomplete, restart syscall
3723 * -ENODEV: Internal IRQ fail
3724 * -E?: The add request failed
3726 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3727 * non-zero timeout parameter the wait ioctl will wait for the given number of
3728 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3729 * without holding struct_mutex the object may become re-busied before this
3730 * function completes. A similar but shorter * race condition exists in the busy
3734 i915_gem_wait_ioctl(struct drm_device
*dev
, void *data
, struct drm_file
*file
)
3736 struct drm_i915_gem_wait
*args
= data
;
3737 struct drm_i915_gem_object
*obj
;
3741 if (args
->flags
!= 0)
3744 obj
= i915_gem_object_lookup(file
, args
->bo_handle
);
3748 start
= ktime_get();
3750 ret
= i915_gem_object_wait(obj
,
3751 I915_WAIT_INTERRUPTIBLE
| I915_WAIT_ALL
,
3752 to_wait_timeout(args
->timeout_ns
),
3753 to_rps_client(file
));
3755 if (args
->timeout_ns
> 0) {
3756 args
->timeout_ns
-= ktime_to_ns(ktime_sub(ktime_get(), start
));
3757 if (args
->timeout_ns
< 0)
3758 args
->timeout_ns
= 0;
3761 * Apparently ktime isn't accurate enough and occasionally has a
3762 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3763 * things up to make the test happy. We allow up to 1 jiffy.
3765 * This is a regression from the timespec->ktime conversion.
3767 if (ret
== -ETIME
&& !nsecs_to_jiffies(args
->timeout_ns
))
3768 args
->timeout_ns
= 0;
3770 /* Asked to wait beyond the jiffie/scheduler precision? */
3771 if (ret
== -ETIME
&& args
->timeout_ns
)
3775 i915_gem_object_put(obj
);
3779 static long wait_for_timeline(struct i915_timeline
*tl
,
3780 unsigned int flags
, long timeout
)
3782 struct i915_request
*rq
;
3784 rq
= i915_gem_active_get_unlocked(&tl
->last_request
);
3791 * Switching to the kernel context is often used a synchronous
3792 * step prior to idling, e.g. in suspend for flushing all
3793 * current operations to memory before sleeping. These we
3794 * want to complete as quickly as possible to avoid prolonged
3795 * stalls, so allow the gpu to boost to maximum clocks.
3797 if (flags
& I915_WAIT_FOR_IDLE_BOOST
)
3798 gen6_rps_boost(rq
, NULL
);
3800 timeout
= i915_request_wait(rq
, flags
, timeout
);
3801 i915_request_put(rq
);
3806 static int wait_for_engines(struct drm_i915_private
*i915
)
3808 if (wait_for(intel_engines_are_idle(i915
), I915_IDLE_ENGINES_TIMEOUT
)) {
3809 dev_err(i915
->drm
.dev
,
3810 "Failed to idle engines, declaring wedged!\n");
3812 i915_gem_set_wedged(i915
);
3819 int i915_gem_wait_for_idle(struct drm_i915_private
*i915
,
3820 unsigned int flags
, long timeout
)
3822 GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3823 flags
, flags
& I915_WAIT_LOCKED
? "locked" : "unlocked",
3824 timeout
, timeout
== MAX_SCHEDULE_TIMEOUT
? " (forever)" : "");
3826 /* If the device is asleep, we have no requests outstanding */
3827 if (!READ_ONCE(i915
->gt
.awake
))
3830 if (flags
& I915_WAIT_LOCKED
) {
3831 struct i915_timeline
*tl
;
3834 lockdep_assert_held(&i915
->drm
.struct_mutex
);
3836 list_for_each_entry(tl
, &i915
->gt
.timelines
, link
) {
3837 timeout
= wait_for_timeline(tl
, flags
, timeout
);
3842 err
= wait_for_engines(i915
);
3846 i915_retire_requests(i915
);
3847 GEM_BUG_ON(i915
->gt
.active_requests
);
3849 struct intel_engine_cs
*engine
;
3850 enum intel_engine_id id
;
3852 for_each_engine(engine
, i915
, id
) {
3853 struct i915_timeline
*tl
= &engine
->timeline
;
3855 timeout
= wait_for_timeline(tl
, flags
, timeout
);
3864 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object
*obj
)
3867 * We manually flush the CPU domain so that we can override and
3868 * force the flush for the display, and perform it asyncrhonously.
3870 flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
3871 if (obj
->cache_dirty
)
3872 i915_gem_clflush_object(obj
, I915_CLFLUSH_FORCE
);
3873 obj
->write_domain
= 0;
3876 void i915_gem_object_flush_if_display(struct drm_i915_gem_object
*obj
)
3878 if (!READ_ONCE(obj
->pin_global
))
3881 mutex_lock(&obj
->base
.dev
->struct_mutex
);
3882 __i915_gem_object_flush_for_display(obj
);
3883 mutex_unlock(&obj
->base
.dev
->struct_mutex
);
3887 * Moves a single object to the WC read, and possibly write domain.
3888 * @obj: object to act on
3889 * @write: ask for write access or read only
3891 * This function returns when the move is complete, including waiting on
3895 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object
*obj
, bool write
)
3899 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
3901 ret
= i915_gem_object_wait(obj
,
3902 I915_WAIT_INTERRUPTIBLE
|
3904 (write
? I915_WAIT_ALL
: 0),
3905 MAX_SCHEDULE_TIMEOUT
,
3910 if (obj
->write_domain
== I915_GEM_DOMAIN_WC
)
3913 /* Flush and acquire obj->pages so that we are coherent through
3914 * direct access in memory with previous cached writes through
3915 * shmemfs and that our cache domain tracking remains valid.
3916 * For example, if the obj->filp was moved to swap without us
3917 * being notified and releasing the pages, we would mistakenly
3918 * continue to assume that the obj remained out of the CPU cached
3921 ret
= i915_gem_object_pin_pages(obj
);
3925 flush_write_domain(obj
, ~I915_GEM_DOMAIN_WC
);
3927 /* Serialise direct access to this object with the barriers for
3928 * coherent writes from the GPU, by effectively invalidating the
3929 * WC domain upon first access.
3931 if ((obj
->read_domains
& I915_GEM_DOMAIN_WC
) == 0)
3934 /* It should now be out of any other write domains, and we can update
3935 * the domain values for our changes.
3937 GEM_BUG_ON((obj
->write_domain
& ~I915_GEM_DOMAIN_WC
) != 0);
3938 obj
->read_domains
|= I915_GEM_DOMAIN_WC
;
3940 obj
->read_domains
= I915_GEM_DOMAIN_WC
;
3941 obj
->write_domain
= I915_GEM_DOMAIN_WC
;
3942 obj
->mm
.dirty
= true;
3945 i915_gem_object_unpin_pages(obj
);
3950 * Moves a single object to the GTT read, and possibly write domain.
3951 * @obj: object to act on
3952 * @write: ask for write access or read only
3954 * This function returns when the move is complete, including waiting on
3958 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object
*obj
, bool write
)
3962 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
3964 ret
= i915_gem_object_wait(obj
,
3965 I915_WAIT_INTERRUPTIBLE
|
3967 (write
? I915_WAIT_ALL
: 0),
3968 MAX_SCHEDULE_TIMEOUT
,
3973 if (obj
->write_domain
== I915_GEM_DOMAIN_GTT
)
3976 /* Flush and acquire obj->pages so that we are coherent through
3977 * direct access in memory with previous cached writes through
3978 * shmemfs and that our cache domain tracking remains valid.
3979 * For example, if the obj->filp was moved to swap without us
3980 * being notified and releasing the pages, we would mistakenly
3981 * continue to assume that the obj remained out of the CPU cached
3984 ret
= i915_gem_object_pin_pages(obj
);
3988 flush_write_domain(obj
, ~I915_GEM_DOMAIN_GTT
);
3990 /* Serialise direct access to this object with the barriers for
3991 * coherent writes from the GPU, by effectively invalidating the
3992 * GTT domain upon first access.
3994 if ((obj
->read_domains
& I915_GEM_DOMAIN_GTT
) == 0)
3997 /* It should now be out of any other write domains, and we can update
3998 * the domain values for our changes.
4000 GEM_BUG_ON((obj
->write_domain
& ~I915_GEM_DOMAIN_GTT
) != 0);
4001 obj
->read_domains
|= I915_GEM_DOMAIN_GTT
;
4003 obj
->read_domains
= I915_GEM_DOMAIN_GTT
;
4004 obj
->write_domain
= I915_GEM_DOMAIN_GTT
;
4005 obj
->mm
.dirty
= true;
4008 i915_gem_object_unpin_pages(obj
);
4013 * Changes the cache-level of an object across all VMA.
4014 * @obj: object to act on
4015 * @cache_level: new cache level to set for the object
4017 * After this function returns, the object will be in the new cache-level
4018 * across all GTT and the contents of the backing storage will be coherent,
4019 * with respect to the new cache-level. In order to keep the backing storage
4020 * coherent for all users, we only allow a single cache level to be set
4021 * globally on the object and prevent it from being changed whilst the
4022 * hardware is reading from the object. That is if the object is currently
4023 * on the scanout it will be set to uncached (or equivalent display
4024 * cache coherency) and all non-MOCS GPU access will also be uncached so
4025 * that all direct access to the scanout remains coherent.
4027 int i915_gem_object_set_cache_level(struct drm_i915_gem_object
*obj
,
4028 enum i915_cache_level cache_level
)
4030 struct i915_vma
*vma
;
4033 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
4035 if (obj
->cache_level
== cache_level
)
4038 /* Inspect the list of currently bound VMA and unbind any that would
4039 * be invalid given the new cache-level. This is principally to
4040 * catch the issue of the CS prefetch crossing page boundaries and
4041 * reading an invalid PTE on older architectures.
4044 list_for_each_entry(vma
, &obj
->vma_list
, obj_link
) {
4045 if (!drm_mm_node_allocated(&vma
->node
))
4048 if (i915_vma_is_pinned(vma
)) {
4049 DRM_DEBUG("can not change the cache level of pinned objects\n");
4053 if (!i915_vma_is_closed(vma
) &&
4054 i915_gem_valid_gtt_space(vma
, cache_level
))
4057 ret
= i915_vma_unbind(vma
);
4061 /* As unbinding may affect other elements in the
4062 * obj->vma_list (due to side-effects from retiring
4063 * an active vma), play safe and restart the iterator.
4068 /* We can reuse the existing drm_mm nodes but need to change the
4069 * cache-level on the PTE. We could simply unbind them all and
4070 * rebind with the correct cache-level on next use. However since
4071 * we already have a valid slot, dma mapping, pages etc, we may as
4072 * rewrite the PTE in the belief that doing so tramples upon less
4073 * state and so involves less work.
4075 if (obj
->bind_count
) {
4076 /* Before we change the PTE, the GPU must not be accessing it.
4077 * If we wait upon the object, we know that all the bound
4078 * VMA are no longer active.
4080 ret
= i915_gem_object_wait(obj
,
4081 I915_WAIT_INTERRUPTIBLE
|
4084 MAX_SCHEDULE_TIMEOUT
,
4089 if (!HAS_LLC(to_i915(obj
->base
.dev
)) &&
4090 cache_level
!= I915_CACHE_NONE
) {
4091 /* Access to snoopable pages through the GTT is
4092 * incoherent and on some machines causes a hard
4093 * lockup. Relinquish the CPU mmaping to force
4094 * userspace to refault in the pages and we can
4095 * then double check if the GTT mapping is still
4096 * valid for that pointer access.
4098 i915_gem_release_mmap(obj
);
4100 /* As we no longer need a fence for GTT access,
4101 * we can relinquish it now (and so prevent having
4102 * to steal a fence from someone else on the next
4103 * fence request). Note GPU activity would have
4104 * dropped the fence as all snoopable access is
4105 * supposed to be linear.
4107 for_each_ggtt_vma(vma
, obj
) {
4108 ret
= i915_vma_put_fence(vma
);
4113 /* We either have incoherent backing store and
4114 * so no GTT access or the architecture is fully
4115 * coherent. In such cases, existing GTT mmaps
4116 * ignore the cache bit in the PTE and we can
4117 * rewrite it without confusing the GPU or having
4118 * to force userspace to fault back in its mmaps.
4122 list_for_each_entry(vma
, &obj
->vma_list
, obj_link
) {
4123 if (!drm_mm_node_allocated(&vma
->node
))
4126 ret
= i915_vma_bind(vma
, cache_level
, PIN_UPDATE
);
4132 list_for_each_entry(vma
, &obj
->vma_list
, obj_link
)
4133 vma
->node
.color
= cache_level
;
4134 i915_gem_object_set_cache_coherency(obj
, cache_level
);
4135 obj
->cache_dirty
= true; /* Always invalidate stale cachelines */
4140 int i915_gem_get_caching_ioctl(struct drm_device
*dev
, void *data
,
4141 struct drm_file
*file
)
4143 struct drm_i915_gem_caching
*args
= data
;
4144 struct drm_i915_gem_object
*obj
;
4148 obj
= i915_gem_object_lookup_rcu(file
, args
->handle
);
4154 switch (obj
->cache_level
) {
4155 case I915_CACHE_LLC
:
4156 case I915_CACHE_L3_LLC
:
4157 args
->caching
= I915_CACHING_CACHED
;
4161 args
->caching
= I915_CACHING_DISPLAY
;
4165 args
->caching
= I915_CACHING_NONE
;
4173 int i915_gem_set_caching_ioctl(struct drm_device
*dev
, void *data
,
4174 struct drm_file
*file
)
4176 struct drm_i915_private
*i915
= to_i915(dev
);
4177 struct drm_i915_gem_caching
*args
= data
;
4178 struct drm_i915_gem_object
*obj
;
4179 enum i915_cache_level level
;
4182 switch (args
->caching
) {
4183 case I915_CACHING_NONE
:
4184 level
= I915_CACHE_NONE
;
4186 case I915_CACHING_CACHED
:
4188 * Due to a HW issue on BXT A stepping, GPU stores via a
4189 * snooped mapping may leave stale data in a corresponding CPU
4190 * cacheline, whereas normally such cachelines would get
4193 if (!HAS_LLC(i915
) && !HAS_SNOOP(i915
))
4196 level
= I915_CACHE_LLC
;
4198 case I915_CACHING_DISPLAY
:
4199 level
= HAS_WT(i915
) ? I915_CACHE_WT
: I915_CACHE_NONE
;
4205 obj
= i915_gem_object_lookup(file
, args
->handle
);
4210 * The caching mode of proxy object is handled by its generator, and
4211 * not allowed to be changed by userspace.
4213 if (i915_gem_object_is_proxy(obj
)) {
4218 if (obj
->cache_level
== level
)
4221 ret
= i915_gem_object_wait(obj
,
4222 I915_WAIT_INTERRUPTIBLE
,
4223 MAX_SCHEDULE_TIMEOUT
,
4224 to_rps_client(file
));
4228 ret
= i915_mutex_lock_interruptible(dev
);
4232 ret
= i915_gem_object_set_cache_level(obj
, level
);
4233 mutex_unlock(&dev
->struct_mutex
);
4236 i915_gem_object_put(obj
);
4241 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4242 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4243 * (for pageflips). We only flush the caches while preparing the buffer for
4244 * display, the callers are responsible for frontbuffer flush.
4247 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object
*obj
,
4249 const struct i915_ggtt_view
*view
,
4252 struct i915_vma
*vma
;
4255 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
4257 /* Mark the global pin early so that we account for the
4258 * display coherency whilst setting up the cache domains.
4262 /* The display engine is not coherent with the LLC cache on gen6. As
4263 * a result, we make sure that the pinning that is about to occur is
4264 * done with uncached PTEs. This is lowest common denominator for all
4267 * However for gen6+, we could do better by using the GFDT bit instead
4268 * of uncaching, which would allow us to flush all the LLC-cached data
4269 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4271 ret
= i915_gem_object_set_cache_level(obj
,
4272 HAS_WT(to_i915(obj
->base
.dev
)) ?
4273 I915_CACHE_WT
: I915_CACHE_NONE
);
4276 goto err_unpin_global
;
4279 /* As the user may map the buffer once pinned in the display plane
4280 * (e.g. libkms for the bootup splash), we have to ensure that we
4281 * always use map_and_fenceable for all scanout buffers. However,
4282 * it may simply be too big to fit into mappable, in which case
4283 * put it anyway and hope that userspace can cope (but always first
4284 * try to preserve the existing ABI).
4286 vma
= ERR_PTR(-ENOSPC
);
4287 if ((flags
& PIN_MAPPABLE
) == 0 &&
4288 (!view
|| view
->type
== I915_GGTT_VIEW_NORMAL
))
4289 vma
= i915_gem_object_ggtt_pin(obj
, view
, 0, alignment
,
4294 vma
= i915_gem_object_ggtt_pin(obj
, view
, 0, alignment
, flags
);
4296 goto err_unpin_global
;
4298 vma
->display_alignment
= max_t(u64
, vma
->display_alignment
, alignment
);
4300 __i915_gem_object_flush_for_display(obj
);
4302 /* It should now be out of any other write domains, and we can update
4303 * the domain values for our changes.
4305 obj
->read_domains
|= I915_GEM_DOMAIN_GTT
;
4315 i915_gem_object_unpin_from_display_plane(struct i915_vma
*vma
)
4317 lockdep_assert_held(&vma
->vm
->i915
->drm
.struct_mutex
);
4319 if (WARN_ON(vma
->obj
->pin_global
== 0))
4322 if (--vma
->obj
->pin_global
== 0)
4323 vma
->display_alignment
= I915_GTT_MIN_ALIGNMENT
;
4325 /* Bump the LRU to try and avoid premature eviction whilst flipping */
4326 i915_gem_object_bump_inactive_ggtt(vma
->obj
);
4328 i915_vma_unpin(vma
);
4332 * Moves a single object to the CPU read, and possibly write domain.
4333 * @obj: object to act on
4334 * @write: requesting write or read-only access
4336 * This function returns when the move is complete, including waiting on
4340 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object
*obj
, bool write
)
4344 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
4346 ret
= i915_gem_object_wait(obj
,
4347 I915_WAIT_INTERRUPTIBLE
|
4349 (write
? I915_WAIT_ALL
: 0),
4350 MAX_SCHEDULE_TIMEOUT
,
4355 flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
4357 /* Flush the CPU cache if it's still invalid. */
4358 if ((obj
->read_domains
& I915_GEM_DOMAIN_CPU
) == 0) {
4359 i915_gem_clflush_object(obj
, I915_CLFLUSH_SYNC
);
4360 obj
->read_domains
|= I915_GEM_DOMAIN_CPU
;
4363 /* It should now be out of any other write domains, and we can update
4364 * the domain values for our changes.
4366 GEM_BUG_ON(obj
->write_domain
& ~I915_GEM_DOMAIN_CPU
);
4368 /* If we're writing through the CPU, then the GPU read domains will
4369 * need to be invalidated at next use.
4372 __start_cpu_write(obj
);
4377 /* Throttle our rendering by waiting until the ring has completed our requests
4378 * emitted over 20 msec ago.
4380 * Note that if we were to use the current jiffies each time around the loop,
4381 * we wouldn't escape the function with any frames outstanding if the time to
4382 * render a frame was over 20ms.
4384 * This should get us reasonable parallelism between CPU and GPU but also
4385 * relatively low latency when blocking on a particular request to finish.
4388 i915_gem_ring_throttle(struct drm_device
*dev
, struct drm_file
*file
)
4390 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4391 struct drm_i915_file_private
*file_priv
= file
->driver_priv
;
4392 unsigned long recent_enough
= jiffies
- DRM_I915_THROTTLE_JIFFIES
;
4393 struct i915_request
*request
, *target
= NULL
;
4396 /* ABI: return -EIO if already wedged */
4397 if (i915_terminally_wedged(&dev_priv
->gpu_error
))
4400 spin_lock(&file_priv
->mm
.lock
);
4401 list_for_each_entry(request
, &file_priv
->mm
.request_list
, client_link
) {
4402 if (time_after_eq(request
->emitted_jiffies
, recent_enough
))
4406 list_del(&target
->client_link
);
4407 target
->file_priv
= NULL
;
4413 i915_request_get(target
);
4414 spin_unlock(&file_priv
->mm
.lock
);
4419 ret
= i915_request_wait(target
,
4420 I915_WAIT_INTERRUPTIBLE
,
4421 MAX_SCHEDULE_TIMEOUT
);
4422 i915_request_put(target
);
4424 return ret
< 0 ? ret
: 0;
4428 i915_gem_object_ggtt_pin(struct drm_i915_gem_object
*obj
,
4429 const struct i915_ggtt_view
*view
,
4434 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
4435 struct i915_address_space
*vm
= &dev_priv
->ggtt
.vm
;
4437 return i915_gem_object_pin(obj
, vm
, view
, size
, alignment
,
4438 flags
| PIN_GLOBAL
);
4442 i915_gem_object_pin(struct drm_i915_gem_object
*obj
,
4443 struct i915_address_space
*vm
,
4444 const struct i915_ggtt_view
*view
,
4449 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
4450 struct i915_vma
*vma
;
4453 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
4455 if (flags
& PIN_MAPPABLE
&&
4456 (!view
|| view
->type
== I915_GGTT_VIEW_NORMAL
)) {
4457 /* If the required space is larger than the available
4458 * aperture, we will not able to find a slot for the
4459 * object and unbinding the object now will be in
4460 * vain. Worse, doing so may cause us to ping-pong
4461 * the object in and out of the Global GTT and
4462 * waste a lot of cycles under the mutex.
4464 if (obj
->base
.size
> dev_priv
->ggtt
.mappable_end
)
4465 return ERR_PTR(-E2BIG
);
4467 /* If NONBLOCK is set the caller is optimistically
4468 * trying to cache the full object within the mappable
4469 * aperture, and *must* have a fallback in place for
4470 * situations where we cannot bind the object. We
4471 * can be a little more lax here and use the fallback
4472 * more often to avoid costly migrations of ourselves
4473 * and other objects within the aperture.
4475 * Half-the-aperture is used as a simple heuristic.
4476 * More interesting would to do search for a free
4477 * block prior to making the commitment to unbind.
4478 * That caters for the self-harm case, and with a
4479 * little more heuristics (e.g. NOFAULT, NOEVICT)
4480 * we could try to minimise harm to others.
4482 if (flags
& PIN_NONBLOCK
&&
4483 obj
->base
.size
> dev_priv
->ggtt
.mappable_end
/ 2)
4484 return ERR_PTR(-ENOSPC
);
4487 vma
= i915_vma_instance(obj
, vm
, view
);
4488 if (unlikely(IS_ERR(vma
)))
4491 if (i915_vma_misplaced(vma
, size
, alignment
, flags
)) {
4492 if (flags
& PIN_NONBLOCK
) {
4493 if (i915_vma_is_pinned(vma
) || i915_vma_is_active(vma
))
4494 return ERR_PTR(-ENOSPC
);
4496 if (flags
& PIN_MAPPABLE
&&
4497 vma
->fence_size
> dev_priv
->ggtt
.mappable_end
/ 2)
4498 return ERR_PTR(-ENOSPC
);
4501 WARN(i915_vma_is_pinned(vma
),
4502 "bo is already pinned in ggtt with incorrect alignment:"
4503 " offset=%08x, req.alignment=%llx,"
4504 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4505 i915_ggtt_offset(vma
), alignment
,
4506 !!(flags
& PIN_MAPPABLE
),
4507 i915_vma_is_map_and_fenceable(vma
));
4508 ret
= i915_vma_unbind(vma
);
4510 return ERR_PTR(ret
);
4513 ret
= i915_vma_pin(vma
, size
, alignment
, flags
);
4515 return ERR_PTR(ret
);
4520 static __always_inline
unsigned int __busy_read_flag(unsigned int id
)
4522 /* Note that we could alias engines in the execbuf API, but
4523 * that would be very unwise as it prevents userspace from
4524 * fine control over engine selection. Ahem.
4526 * This should be something like EXEC_MAX_ENGINE instead of
4529 BUILD_BUG_ON(I915_NUM_ENGINES
> 16);
4530 return 0x10000 << id
;
4533 static __always_inline
unsigned int __busy_write_id(unsigned int id
)
4535 /* The uABI guarantees an active writer is also amongst the read
4536 * engines. This would be true if we accessed the activity tracking
4537 * under the lock, but as we perform the lookup of the object and
4538 * its activity locklessly we can not guarantee that the last_write
4539 * being active implies that we have set the same engine flag from
4540 * last_read - hence we always set both read and write busy for
4543 return id
| __busy_read_flag(id
);
4546 static __always_inline
unsigned int
4547 __busy_set_if_active(const struct dma_fence
*fence
,
4548 unsigned int (*flag
)(unsigned int id
))
4550 struct i915_request
*rq
;
4552 /* We have to check the current hw status of the fence as the uABI
4553 * guarantees forward progress. We could rely on the idle worker
4554 * to eventually flush us, but to minimise latency just ask the
4557 * Note we only report on the status of native fences.
4559 if (!dma_fence_is_i915(fence
))
4562 /* opencode to_request() in order to avoid const warnings */
4563 rq
= container_of(fence
, struct i915_request
, fence
);
4564 if (i915_request_completed(rq
))
4567 return flag(rq
->engine
->uabi_id
);
4570 static __always_inline
unsigned int
4571 busy_check_reader(const struct dma_fence
*fence
)
4573 return __busy_set_if_active(fence
, __busy_read_flag
);
4576 static __always_inline
unsigned int
4577 busy_check_writer(const struct dma_fence
*fence
)
4582 return __busy_set_if_active(fence
, __busy_write_id
);
4586 i915_gem_busy_ioctl(struct drm_device
*dev
, void *data
,
4587 struct drm_file
*file
)
4589 struct drm_i915_gem_busy
*args
= data
;
4590 struct drm_i915_gem_object
*obj
;
4591 struct reservation_object_list
*list
;
4597 obj
= i915_gem_object_lookup_rcu(file
, args
->handle
);
4601 /* A discrepancy here is that we do not report the status of
4602 * non-i915 fences, i.e. even though we may report the object as idle,
4603 * a call to set-domain may still stall waiting for foreign rendering.
4604 * This also means that wait-ioctl may report an object as busy,
4605 * where busy-ioctl considers it idle.
4607 * We trade the ability to warn of foreign fences to report on which
4608 * i915 engines are active for the object.
4610 * Alternatively, we can trade that extra information on read/write
4613 * !reservation_object_test_signaled_rcu(obj->resv, true);
4614 * to report the overall busyness. This is what the wait-ioctl does.
4618 seq
= raw_read_seqcount(&obj
->resv
->seq
);
4620 /* Translate the exclusive fence to the READ *and* WRITE engine */
4621 args
->busy
= busy_check_writer(rcu_dereference(obj
->resv
->fence_excl
));
4623 /* Translate shared fences to READ set of engines */
4624 list
= rcu_dereference(obj
->resv
->fence
);
4626 unsigned int shared_count
= list
->shared_count
, i
;
4628 for (i
= 0; i
< shared_count
; ++i
) {
4629 struct dma_fence
*fence
=
4630 rcu_dereference(list
->shared
[i
]);
4632 args
->busy
|= busy_check_reader(fence
);
4636 if (args
->busy
&& read_seqcount_retry(&obj
->resv
->seq
, seq
))
4646 i915_gem_throttle_ioctl(struct drm_device
*dev
, void *data
,
4647 struct drm_file
*file_priv
)
4649 return i915_gem_ring_throttle(dev
, file_priv
);
4653 i915_gem_madvise_ioctl(struct drm_device
*dev
, void *data
,
4654 struct drm_file
*file_priv
)
4656 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4657 struct drm_i915_gem_madvise
*args
= data
;
4658 struct drm_i915_gem_object
*obj
;
4661 switch (args
->madv
) {
4662 case I915_MADV_DONTNEED
:
4663 case I915_MADV_WILLNEED
:
4669 obj
= i915_gem_object_lookup(file_priv
, args
->handle
);
4673 err
= mutex_lock_interruptible(&obj
->mm
.lock
);
4677 if (i915_gem_object_has_pages(obj
) &&
4678 i915_gem_object_is_tiled(obj
) &&
4679 dev_priv
->quirks
& QUIRK_PIN_SWIZZLED_PAGES
) {
4680 if (obj
->mm
.madv
== I915_MADV_WILLNEED
) {
4681 GEM_BUG_ON(!obj
->mm
.quirked
);
4682 __i915_gem_object_unpin_pages(obj
);
4683 obj
->mm
.quirked
= false;
4685 if (args
->madv
== I915_MADV_WILLNEED
) {
4686 GEM_BUG_ON(obj
->mm
.quirked
);
4687 __i915_gem_object_pin_pages(obj
);
4688 obj
->mm
.quirked
= true;
4692 if (obj
->mm
.madv
!= __I915_MADV_PURGED
)
4693 obj
->mm
.madv
= args
->madv
;
4695 /* if the object is no longer attached, discard its backing storage */
4696 if (obj
->mm
.madv
== I915_MADV_DONTNEED
&&
4697 !i915_gem_object_has_pages(obj
))
4698 i915_gem_object_truncate(obj
);
4700 args
->retained
= obj
->mm
.madv
!= __I915_MADV_PURGED
;
4701 mutex_unlock(&obj
->mm
.lock
);
4704 i915_gem_object_put(obj
);
4709 frontbuffer_retire(struct i915_gem_active
*active
, struct i915_request
*request
)
4711 struct drm_i915_gem_object
*obj
=
4712 container_of(active
, typeof(*obj
), frontbuffer_write
);
4714 intel_fb_obj_flush(obj
, ORIGIN_CS
);
4717 void i915_gem_object_init(struct drm_i915_gem_object
*obj
,
4718 const struct drm_i915_gem_object_ops
*ops
)
4720 mutex_init(&obj
->mm
.lock
);
4722 INIT_LIST_HEAD(&obj
->vma_list
);
4723 INIT_LIST_HEAD(&obj
->lut_list
);
4724 INIT_LIST_HEAD(&obj
->batch_pool_link
);
4728 reservation_object_init(&obj
->__builtin_resv
);
4729 obj
->resv
= &obj
->__builtin_resv
;
4731 obj
->frontbuffer_ggtt_origin
= ORIGIN_GTT
;
4732 init_request_active(&obj
->frontbuffer_write
, frontbuffer_retire
);
4734 obj
->mm
.madv
= I915_MADV_WILLNEED
;
4735 INIT_RADIX_TREE(&obj
->mm
.get_page
.radix
, GFP_KERNEL
| __GFP_NOWARN
);
4736 mutex_init(&obj
->mm
.get_page
.lock
);
4738 i915_gem_info_add_obj(to_i915(obj
->base
.dev
), obj
->base
.size
);
4741 static const struct drm_i915_gem_object_ops i915_gem_object_ops
= {
4742 .flags
= I915_GEM_OBJECT_HAS_STRUCT_PAGE
|
4743 I915_GEM_OBJECT_IS_SHRINKABLE
,
4745 .get_pages
= i915_gem_object_get_pages_gtt
,
4746 .put_pages
= i915_gem_object_put_pages_gtt
,
4748 .pwrite
= i915_gem_object_pwrite_gtt
,
4751 static int i915_gem_object_create_shmem(struct drm_device
*dev
,
4752 struct drm_gem_object
*obj
,
4755 struct drm_i915_private
*i915
= to_i915(dev
);
4756 unsigned long flags
= VM_NORESERVE
;
4759 drm_gem_private_object_init(dev
, obj
, size
);
4762 filp
= shmem_file_setup_with_mnt(i915
->mm
.gemfs
, "i915", size
,
4765 filp
= shmem_file_setup("i915", size
, flags
);
4768 return PTR_ERR(filp
);
4775 struct drm_i915_gem_object
*
4776 i915_gem_object_create(struct drm_i915_private
*dev_priv
, u64 size
)
4778 struct drm_i915_gem_object
*obj
;
4779 struct address_space
*mapping
;
4780 unsigned int cache_level
;
4784 /* There is a prevalence of the assumption that we fit the object's
4785 * page count inside a 32bit _signed_ variable. Let's document this and
4786 * catch if we ever need to fix it. In the meantime, if you do spot
4787 * such a local variable, please consider fixing!
4789 if (size
>> PAGE_SHIFT
> INT_MAX
)
4790 return ERR_PTR(-E2BIG
);
4792 if (overflows_type(size
, obj
->base
.size
))
4793 return ERR_PTR(-E2BIG
);
4795 obj
= i915_gem_object_alloc(dev_priv
);
4797 return ERR_PTR(-ENOMEM
);
4799 ret
= i915_gem_object_create_shmem(&dev_priv
->drm
, &obj
->base
, size
);
4803 mask
= GFP_HIGHUSER
| __GFP_RECLAIMABLE
;
4804 if (IS_I965GM(dev_priv
) || IS_I965G(dev_priv
)) {
4805 /* 965gm cannot relocate objects above 4GiB. */
4806 mask
&= ~__GFP_HIGHMEM
;
4807 mask
|= __GFP_DMA32
;
4810 mapping
= obj
->base
.filp
->f_mapping
;
4811 mapping_set_gfp_mask(mapping
, mask
);
4812 GEM_BUG_ON(!(mapping_gfp_mask(mapping
) & __GFP_RECLAIM
));
4814 i915_gem_object_init(obj
, &i915_gem_object_ops
);
4816 obj
->write_domain
= I915_GEM_DOMAIN_CPU
;
4817 obj
->read_domains
= I915_GEM_DOMAIN_CPU
;
4819 if (HAS_LLC(dev_priv
))
4820 /* On some devices, we can have the GPU use the LLC (the CPU
4821 * cache) for about a 10% performance improvement
4822 * compared to uncached. Graphics requests other than
4823 * display scanout are coherent with the CPU in
4824 * accessing this cache. This means in this mode we
4825 * don't need to clflush on the CPU side, and on the
4826 * GPU side we only need to flush internal caches to
4827 * get data visible to the CPU.
4829 * However, we maintain the display planes as UC, and so
4830 * need to rebind when first used as such.
4832 cache_level
= I915_CACHE_LLC
;
4834 cache_level
= I915_CACHE_NONE
;
4836 i915_gem_object_set_cache_coherency(obj
, cache_level
);
4838 trace_i915_gem_object_create(obj
);
4843 i915_gem_object_free(obj
);
4844 return ERR_PTR(ret
);
4847 static bool discard_backing_storage(struct drm_i915_gem_object
*obj
)
4849 /* If we are the last user of the backing storage (be it shmemfs
4850 * pages or stolen etc), we know that the pages are going to be
4851 * immediately released. In this case, we can then skip copying
4852 * back the contents from the GPU.
4855 if (obj
->mm
.madv
!= I915_MADV_WILLNEED
)
4858 if (obj
->base
.filp
== NULL
)
4861 /* At first glance, this looks racy, but then again so would be
4862 * userspace racing mmap against close. However, the first external
4863 * reference to the filp can only be obtained through the
4864 * i915_gem_mmap_ioctl() which safeguards us against the user
4865 * acquiring such a reference whilst we are in the middle of
4866 * freeing the object.
4868 return atomic_long_read(&obj
->base
.filp
->f_count
) == 1;
4871 static void __i915_gem_free_objects(struct drm_i915_private
*i915
,
4872 struct llist_node
*freed
)
4874 struct drm_i915_gem_object
*obj
, *on
;
4876 intel_runtime_pm_get(i915
);
4877 llist_for_each_entry_safe(obj
, on
, freed
, freed
) {
4878 struct i915_vma
*vma
, *vn
;
4880 trace_i915_gem_object_destroy(obj
);
4882 mutex_lock(&i915
->drm
.struct_mutex
);
4884 GEM_BUG_ON(i915_gem_object_is_active(obj
));
4885 list_for_each_entry_safe(vma
, vn
,
4886 &obj
->vma_list
, obj_link
) {
4887 GEM_BUG_ON(i915_vma_is_active(vma
));
4888 vma
->flags
&= ~I915_VMA_PIN_MASK
;
4889 i915_vma_destroy(vma
);
4891 GEM_BUG_ON(!list_empty(&obj
->vma_list
));
4892 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj
->vma_tree
));
4894 /* This serializes freeing with the shrinker. Since the free
4895 * is delayed, first by RCU then by the workqueue, we want the
4896 * shrinker to be able to free pages of unreferenced objects,
4897 * or else we may oom whilst there are plenty of deferred
4900 if (i915_gem_object_has_pages(obj
)) {
4901 spin_lock(&i915
->mm
.obj_lock
);
4902 list_del_init(&obj
->mm
.link
);
4903 spin_unlock(&i915
->mm
.obj_lock
);
4906 mutex_unlock(&i915
->drm
.struct_mutex
);
4908 GEM_BUG_ON(obj
->bind_count
);
4909 GEM_BUG_ON(obj
->userfault_count
);
4910 GEM_BUG_ON(atomic_read(&obj
->frontbuffer_bits
));
4911 GEM_BUG_ON(!list_empty(&obj
->lut_list
));
4913 if (obj
->ops
->release
)
4914 obj
->ops
->release(obj
);
4916 if (WARN_ON(i915_gem_object_has_pinned_pages(obj
)))
4917 atomic_set(&obj
->mm
.pages_pin_count
, 0);
4918 __i915_gem_object_put_pages(obj
, I915_MM_NORMAL
);
4919 GEM_BUG_ON(i915_gem_object_has_pages(obj
));
4921 if (obj
->base
.import_attach
)
4922 drm_prime_gem_destroy(&obj
->base
, NULL
);
4924 reservation_object_fini(&obj
->__builtin_resv
);
4925 drm_gem_object_release(&obj
->base
);
4926 i915_gem_info_remove_obj(i915
, obj
->base
.size
);
4929 i915_gem_object_free(obj
);
4931 GEM_BUG_ON(!atomic_read(&i915
->mm
.free_count
));
4932 atomic_dec(&i915
->mm
.free_count
);
4937 intel_runtime_pm_put(i915
);
4940 static void i915_gem_flush_free_objects(struct drm_i915_private
*i915
)
4942 struct llist_node
*freed
;
4944 /* Free the oldest, most stale object to keep the free_list short */
4946 if (!llist_empty(&i915
->mm
.free_list
)) { /* quick test for hotpath */
4947 /* Only one consumer of llist_del_first() allowed */
4948 spin_lock(&i915
->mm
.free_lock
);
4949 freed
= llist_del_first(&i915
->mm
.free_list
);
4950 spin_unlock(&i915
->mm
.free_lock
);
4952 if (unlikely(freed
)) {
4954 __i915_gem_free_objects(i915
, freed
);
4958 static void __i915_gem_free_work(struct work_struct
*work
)
4960 struct drm_i915_private
*i915
=
4961 container_of(work
, struct drm_i915_private
, mm
.free_work
);
4962 struct llist_node
*freed
;
4965 * All file-owned VMA should have been released by this point through
4966 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4967 * However, the object may also be bound into the global GTT (e.g.
4968 * older GPUs without per-process support, or for direct access through
4969 * the GTT either for the user or for scanout). Those VMA still need to
4973 spin_lock(&i915
->mm
.free_lock
);
4974 while ((freed
= llist_del_all(&i915
->mm
.free_list
))) {
4975 spin_unlock(&i915
->mm
.free_lock
);
4977 __i915_gem_free_objects(i915
, freed
);
4981 spin_lock(&i915
->mm
.free_lock
);
4983 spin_unlock(&i915
->mm
.free_lock
);
4986 static void __i915_gem_free_object_rcu(struct rcu_head
*head
)
4988 struct drm_i915_gem_object
*obj
=
4989 container_of(head
, typeof(*obj
), rcu
);
4990 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
4993 * Since we require blocking on struct_mutex to unbind the freed
4994 * object from the GPU before releasing resources back to the
4995 * system, we can not do that directly from the RCU callback (which may
4996 * be a softirq context), but must instead then defer that work onto a
4997 * kthread. We use the RCU callback rather than move the freed object
4998 * directly onto the work queue so that we can mix between using the
4999 * worker and performing frees directly from subsequent allocations for
5000 * crude but effective memory throttling.
5002 if (llist_add(&obj
->freed
, &i915
->mm
.free_list
))
5003 queue_work(i915
->wq
, &i915
->mm
.free_work
);
5006 void i915_gem_free_object(struct drm_gem_object
*gem_obj
)
5008 struct drm_i915_gem_object
*obj
= to_intel_bo(gem_obj
);
5010 if (obj
->mm
.quirked
)
5011 __i915_gem_object_unpin_pages(obj
);
5013 if (discard_backing_storage(obj
))
5014 obj
->mm
.madv
= I915_MADV_DONTNEED
;
5017 * Before we free the object, make sure any pure RCU-only
5018 * read-side critical sections are complete, e.g.
5019 * i915_gem_busy_ioctl(). For the corresponding synchronized
5020 * lookup see i915_gem_object_lookup_rcu().
5022 atomic_inc(&to_i915(obj
->base
.dev
)->mm
.free_count
);
5023 call_rcu(&obj
->rcu
, __i915_gem_free_object_rcu
);
5026 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object
*obj
)
5028 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
5030 if (!i915_gem_object_has_active_reference(obj
) &&
5031 i915_gem_object_is_active(obj
))
5032 i915_gem_object_set_active_reference(obj
);
5034 i915_gem_object_put(obj
);
5037 void i915_gem_sanitize(struct drm_i915_private
*i915
)
5043 mutex_lock(&i915
->drm
.struct_mutex
);
5045 intel_runtime_pm_get(i915
);
5046 intel_uncore_forcewake_get(i915
, FORCEWAKE_ALL
);
5049 * As we have just resumed the machine and woken the device up from
5050 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5051 * back to defaults, recovering from whatever wedged state we left it
5052 * in and so worth trying to use the device once more.
5054 if (i915_terminally_wedged(&i915
->gpu_error
))
5055 i915_gem_unset_wedged(i915
);
5058 * If we inherit context state from the BIOS or earlier occupants
5059 * of the GPU, the GPU may be in an inconsistent state when we
5060 * try to take over. The only way to remove the earlier state
5061 * is by resetting. However, resetting on earlier gen is tricky as
5062 * it may impact the display and we are uncertain about the stability
5063 * of the reset, so this could be applied to even earlier gen.
5066 if (INTEL_GEN(i915
) >= 5 && intel_has_gpu_reset(i915
))
5067 err
= WARN_ON(intel_gpu_reset(i915
, ALL_ENGINES
));
5069 intel_engines_sanitize(i915
);
5071 intel_uncore_forcewake_put(i915
, FORCEWAKE_ALL
);
5072 intel_runtime_pm_put(i915
);
5074 i915_gem_contexts_lost(i915
);
5075 mutex_unlock(&i915
->drm
.struct_mutex
);
5078 int i915_gem_suspend(struct drm_i915_private
*i915
)
5084 intel_runtime_pm_get(i915
);
5085 intel_suspend_gt_powersave(i915
);
5087 mutex_lock(&i915
->drm
.struct_mutex
);
5090 * We have to flush all the executing contexts to main memory so
5091 * that they can saved in the hibernation image. To ensure the last
5092 * context image is coherent, we have to switch away from it. That
5093 * leaves the i915->kernel_context still active when
5094 * we actually suspend, and its image in memory may not match the GPU
5095 * state. Fortunately, the kernel_context is disposable and we do
5096 * not rely on its state.
5098 if (!i915_terminally_wedged(&i915
->gpu_error
)) {
5099 ret
= i915_gem_switch_to_kernel_context(i915
);
5103 ret
= i915_gem_wait_for_idle(i915
,
5104 I915_WAIT_INTERRUPTIBLE
|
5106 I915_WAIT_FOR_IDLE_BOOST
,
5107 MAX_SCHEDULE_TIMEOUT
);
5108 if (ret
&& ret
!= -EIO
)
5111 assert_kernel_context_is_current(i915
);
5113 i915_retire_requests(i915
); /* ensure we flush after wedging */
5115 mutex_unlock(&i915
->drm
.struct_mutex
);
5117 intel_uc_suspend(i915
);
5119 cancel_delayed_work_sync(&i915
->gpu_error
.hangcheck_work
);
5120 cancel_delayed_work_sync(&i915
->gt
.retire_work
);
5123 * As the idle_work is rearming if it detects a race, play safe and
5124 * repeat the flush until it is definitely idle.
5126 drain_delayed_work(&i915
->gt
.idle_work
);
5129 * Assert that we successfully flushed all the work and
5130 * reset the GPU back to its idle, low power state.
5132 WARN_ON(i915
->gt
.awake
);
5133 if (WARN_ON(!intel_engines_are_idle(i915
)))
5134 i915_gem_set_wedged(i915
); /* no hope, discard everything */
5136 intel_runtime_pm_put(i915
);
5140 mutex_unlock(&i915
->drm
.struct_mutex
);
5141 intel_runtime_pm_put(i915
);
5145 void i915_gem_suspend_late(struct drm_i915_private
*i915
)
5147 struct drm_i915_gem_object
*obj
;
5148 struct list_head
*phases
[] = {
5149 &i915
->mm
.unbound_list
,
5150 &i915
->mm
.bound_list
,
5155 * Neither the BIOS, ourselves or any other kernel
5156 * expects the system to be in execlists mode on startup,
5157 * so we need to reset the GPU back to legacy mode. And the only
5158 * known way to disable logical contexts is through a GPU reset.
5160 * So in order to leave the system in a known default configuration,
5161 * always reset the GPU upon unload and suspend. Afterwards we then
5162 * clean up the GEM state tracking, flushing off the requests and
5163 * leaving the system in a known idle state.
5165 * Note that is of the upmost importance that the GPU is idle and
5166 * all stray writes are flushed *before* we dismantle the backing
5167 * storage for the pinned objects.
5169 * However, since we are uncertain that resetting the GPU on older
5170 * machines is a good idea, we don't - just in case it leaves the
5171 * machine in an unusable condition.
5174 mutex_lock(&i915
->drm
.struct_mutex
);
5175 for (phase
= phases
; *phase
; phase
++) {
5176 list_for_each_entry(obj
, *phase
, mm
.link
)
5177 WARN_ON(i915_gem_object_set_to_gtt_domain(obj
, false));
5179 mutex_unlock(&i915
->drm
.struct_mutex
);
5181 intel_uc_sanitize(i915
);
5182 i915_gem_sanitize(i915
);
5185 void i915_gem_resume(struct drm_i915_private
*i915
)
5189 WARN_ON(i915
->gt
.awake
);
5191 mutex_lock(&i915
->drm
.struct_mutex
);
5192 intel_uncore_forcewake_get(i915
, FORCEWAKE_ALL
);
5194 i915_gem_restore_gtt_mappings(i915
);
5195 i915_gem_restore_fences(i915
);
5198 * As we didn't flush the kernel context before suspend, we cannot
5199 * guarantee that the context image is complete. So let's just reset
5200 * it and start again.
5202 i915
->gt
.resume(i915
);
5204 if (i915_gem_init_hw(i915
))
5207 intel_uc_resume(i915
);
5209 /* Always reload a context for powersaving. */
5210 if (i915_gem_switch_to_kernel_context(i915
))
5214 intel_uncore_forcewake_put(i915
, FORCEWAKE_ALL
);
5215 mutex_unlock(&i915
->drm
.struct_mutex
);
5219 if (!i915_terminally_wedged(&i915
->gpu_error
)) {
5220 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5221 i915_gem_set_wedged(i915
);
5226 void i915_gem_init_swizzling(struct drm_i915_private
*dev_priv
)
5228 if (INTEL_GEN(dev_priv
) < 5 ||
5229 dev_priv
->mm
.bit_6_swizzle_x
== I915_BIT_6_SWIZZLE_NONE
)
5232 I915_WRITE(DISP_ARB_CTL
, I915_READ(DISP_ARB_CTL
) |
5233 DISP_TILE_SURFACE_SWIZZLING
);
5235 if (IS_GEN5(dev_priv
))
5238 I915_WRITE(TILECTL
, I915_READ(TILECTL
) | TILECTL_SWZCTL
);
5239 if (IS_GEN6(dev_priv
))
5240 I915_WRITE(ARB_MODE
, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB
));
5241 else if (IS_GEN7(dev_priv
))
5242 I915_WRITE(ARB_MODE
, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB
));
5243 else if (IS_GEN8(dev_priv
))
5244 I915_WRITE(GAMTARBMODE
, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW
));
5249 static void init_unused_ring(struct drm_i915_private
*dev_priv
, u32 base
)
5251 I915_WRITE(RING_CTL(base
), 0);
5252 I915_WRITE(RING_HEAD(base
), 0);
5253 I915_WRITE(RING_TAIL(base
), 0);
5254 I915_WRITE(RING_START(base
), 0);
5257 static void init_unused_rings(struct drm_i915_private
*dev_priv
)
5259 if (IS_I830(dev_priv
)) {
5260 init_unused_ring(dev_priv
, PRB1_BASE
);
5261 init_unused_ring(dev_priv
, SRB0_BASE
);
5262 init_unused_ring(dev_priv
, SRB1_BASE
);
5263 init_unused_ring(dev_priv
, SRB2_BASE
);
5264 init_unused_ring(dev_priv
, SRB3_BASE
);
5265 } else if (IS_GEN2(dev_priv
)) {
5266 init_unused_ring(dev_priv
, SRB0_BASE
);
5267 init_unused_ring(dev_priv
, SRB1_BASE
);
5268 } else if (IS_GEN3(dev_priv
)) {
5269 init_unused_ring(dev_priv
, PRB1_BASE
);
5270 init_unused_ring(dev_priv
, PRB2_BASE
);
5274 static int __i915_gem_restart_engines(void *data
)
5276 struct drm_i915_private
*i915
= data
;
5277 struct intel_engine_cs
*engine
;
5278 enum intel_engine_id id
;
5281 for_each_engine(engine
, i915
, id
) {
5282 err
= engine
->init_hw(engine
);
5284 DRM_ERROR("Failed to restart %s (%d)\n",
5293 int i915_gem_init_hw(struct drm_i915_private
*dev_priv
)
5297 dev_priv
->gt
.last_init_time
= ktime_get();
5299 /* Double layer security blanket, see i915_gem_init() */
5300 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
5302 if (HAS_EDRAM(dev_priv
) && INTEL_GEN(dev_priv
) < 9)
5303 I915_WRITE(HSW_IDICR
, I915_READ(HSW_IDICR
) | IDIHASHMSK(0xf));
5305 if (IS_HASWELL(dev_priv
))
5306 I915_WRITE(MI_PREDICATE_RESULT_2
, IS_HSW_GT3(dev_priv
) ?
5307 LOWER_SLICE_ENABLED
: LOWER_SLICE_DISABLED
);
5309 if (HAS_PCH_NOP(dev_priv
)) {
5310 if (IS_IVYBRIDGE(dev_priv
)) {
5311 u32 temp
= I915_READ(GEN7_MSG_CTL
);
5312 temp
&= ~(WAIT_FOR_PCH_FLR_ACK
| WAIT_FOR_PCH_RESET_ACK
);
5313 I915_WRITE(GEN7_MSG_CTL
, temp
);
5314 } else if (INTEL_GEN(dev_priv
) >= 7) {
5315 u32 temp
= I915_READ(HSW_NDE_RSTWRN_OPT
);
5316 temp
&= ~RESET_PCH_HANDSHAKE_ENABLE
;
5317 I915_WRITE(HSW_NDE_RSTWRN_OPT
, temp
);
5321 intel_gt_workarounds_apply(dev_priv
);
5323 i915_gem_init_swizzling(dev_priv
);
5326 * At least 830 can leave some of the unused rings
5327 * "active" (ie. head != tail) after resume which
5328 * will prevent c3 entry. Makes sure all unused rings
5331 init_unused_rings(dev_priv
);
5333 BUG_ON(!dev_priv
->kernel_context
);
5334 if (i915_terminally_wedged(&dev_priv
->gpu_error
)) {
5339 ret
= i915_ppgtt_init_hw(dev_priv
);
5341 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret
);
5345 ret
= intel_wopcm_init_hw(&dev_priv
->wopcm
);
5347 DRM_ERROR("Enabling WOPCM failed (%d)\n", ret
);
5351 /* We can't enable contexts until all firmware is loaded */
5352 ret
= intel_uc_init_hw(dev_priv
);
5354 DRM_ERROR("Enabling uc failed (%d)\n", ret
);
5358 intel_mocs_init_l3cc_table(dev_priv
);
5360 /* Only when the HW is re-initialised, can we replay the requests */
5361 ret
= __i915_gem_restart_engines(dev_priv
);
5365 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5370 intel_uc_fini_hw(dev_priv
);
5372 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5377 static int __intel_engines_record_defaults(struct drm_i915_private
*i915
)
5379 struct i915_gem_context
*ctx
;
5380 struct intel_engine_cs
*engine
;
5381 enum intel_engine_id id
;
5385 * As we reset the gpu during very early sanitisation, the current
5386 * register state on the GPU should reflect its defaults values.
5387 * We load a context onto the hw (with restore-inhibit), then switch
5388 * over to a second context to save that default register state. We
5389 * can then prime every new context with that state so they all start
5390 * from the same default HW values.
5393 ctx
= i915_gem_context_create_kernel(i915
, 0);
5395 return PTR_ERR(ctx
);
5397 for_each_engine(engine
, i915
, id
) {
5398 struct i915_request
*rq
;
5400 rq
= i915_request_alloc(engine
, ctx
);
5407 if (engine
->init_context
)
5408 err
= engine
->init_context(rq
);
5410 i915_request_add(rq
);
5415 err
= i915_gem_switch_to_kernel_context(i915
);
5419 if (i915_gem_wait_for_idle(i915
, I915_WAIT_LOCKED
, HZ
/ 5)) {
5420 i915_gem_set_wedged(i915
);
5421 err
= -EIO
; /* Caller will declare us wedged */
5425 assert_kernel_context_is_current(i915
);
5427 for_each_engine(engine
, i915
, id
) {
5428 struct i915_vma
*state
;
5430 state
= to_intel_context(ctx
, engine
)->state
;
5435 * As we will hold a reference to the logical state, it will
5436 * not be torn down with the context, and importantly the
5437 * object will hold onto its vma (making it possible for a
5438 * stray GTT write to corrupt our defaults). Unmap the vma
5439 * from the GTT to prevent such accidents and reclaim the
5442 err
= i915_vma_unbind(state
);
5446 err
= i915_gem_object_set_to_cpu_domain(state
->obj
, false);
5450 engine
->default_state
= i915_gem_object_get(state
->obj
);
5453 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM
)) {
5454 unsigned int found
= intel_engines_has_context_isolation(i915
);
5457 * Make sure that classes with multiple engine instances all
5458 * share the same basic configuration.
5460 for_each_engine(engine
, i915
, id
) {
5461 unsigned int bit
= BIT(engine
->uabi_class
);
5462 unsigned int expected
= engine
->default_state
? bit
: 0;
5464 if ((found
& bit
) != expected
) {
5465 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5466 engine
->uabi_class
, engine
->name
);
5472 i915_gem_context_set_closed(ctx
);
5473 i915_gem_context_put(ctx
);
5478 * If we have to abandon now, we expect the engines to be idle
5479 * and ready to be torn-down. First try to flush any remaining
5480 * request, ensure we are pointing at the kernel context and
5483 if (WARN_ON(i915_gem_switch_to_kernel_context(i915
)))
5486 if (WARN_ON(i915_gem_wait_for_idle(i915
,
5488 MAX_SCHEDULE_TIMEOUT
)))
5491 i915_gem_contexts_lost(i915
);
5495 int i915_gem_init(struct drm_i915_private
*dev_priv
)
5499 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
5500 if (intel_vgpu_active(dev_priv
) && !intel_vgpu_has_huge_gtt(dev_priv
))
5501 mkwrite_device_info(dev_priv
)->page_sizes
=
5502 I915_GTT_PAGE_SIZE_4K
;
5504 dev_priv
->mm
.unordered_timeline
= dma_fence_context_alloc(1);
5506 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv
)) {
5507 dev_priv
->gt
.resume
= intel_lr_context_resume
;
5508 dev_priv
->gt
.cleanup_engine
= intel_logical_ring_cleanup
;
5510 dev_priv
->gt
.resume
= intel_legacy_submission_resume
;
5511 dev_priv
->gt
.cleanup_engine
= intel_engine_cleanup
;
5514 ret
= i915_gem_init_userptr(dev_priv
);
5518 ret
= intel_uc_init_misc(dev_priv
);
5522 ret
= intel_wopcm_init(&dev_priv
->wopcm
);
5526 /* This is just a security blanket to placate dragons.
5527 * On some systems, we very sporadically observe that the first TLBs
5528 * used by the CS may be stale, despite us poking the TLB reset. If
5529 * we hold the forcewake during initialisation these problems
5530 * just magically go away.
5532 mutex_lock(&dev_priv
->drm
.struct_mutex
);
5533 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
5535 ret
= i915_gem_init_ggtt(dev_priv
);
5537 GEM_BUG_ON(ret
== -EIO
);
5541 ret
= i915_gem_contexts_init(dev_priv
);
5543 GEM_BUG_ON(ret
== -EIO
);
5547 ret
= intel_engines_init(dev_priv
);
5549 GEM_BUG_ON(ret
== -EIO
);
5553 intel_init_gt_powersave(dev_priv
);
5555 ret
= intel_uc_init(dev_priv
);
5559 ret
= i915_gem_init_hw(dev_priv
);
5564 * Despite its name intel_init_clock_gating applies both display
5565 * clock gating workarounds; GT mmio workarounds and the occasional
5566 * GT power context workaround. Worse, sometimes it includes a context
5567 * register workaround which we need to apply before we record the
5568 * default HW state for all contexts.
5570 * FIXME: break up the workarounds and apply them at the right time!
5572 intel_init_clock_gating(dev_priv
);
5574 ret
= __intel_engines_record_defaults(dev_priv
);
5578 if (i915_inject_load_failure()) {
5583 if (i915_inject_load_failure()) {
5588 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5589 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5594 * Unwinding is complicated by that we want to handle -EIO to mean
5595 * disable GPU submission but keep KMS alive. We want to mark the
5596 * HW as irrevisibly wedged, but keep enough state around that the
5597 * driver doesn't explode during runtime.
5600 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5602 WARN_ON(i915_gem_suspend(dev_priv
));
5603 i915_gem_suspend_late(dev_priv
);
5605 i915_gem_drain_workqueue(dev_priv
);
5607 mutex_lock(&dev_priv
->drm
.struct_mutex
);
5608 intel_uc_fini_hw(dev_priv
);
5610 intel_uc_fini(dev_priv
);
5613 intel_cleanup_gt_powersave(dev_priv
);
5614 i915_gem_cleanup_engines(dev_priv
);
5618 i915_gem_contexts_fini(dev_priv
);
5621 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5622 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5625 intel_uc_fini_misc(dev_priv
);
5628 i915_gem_cleanup_userptr(dev_priv
);
5631 mutex_lock(&dev_priv
->drm
.struct_mutex
);
5634 * Allow engine initialisation to fail by marking the GPU as
5635 * wedged. But we only want to do this where the GPU is angry,
5636 * for all other failure, such as an allocation failure, bail.
5638 if (!i915_terminally_wedged(&dev_priv
->gpu_error
)) {
5639 i915_load_error(dev_priv
,
5640 "Failed to initialize GPU, declaring it wedged!\n");
5641 i915_gem_set_wedged(dev_priv
);
5644 /* Minimal basic recovery for KMS */
5645 ret
= i915_ggtt_enable_hw(dev_priv
);
5646 i915_gem_restore_gtt_mappings(dev_priv
);
5647 i915_gem_restore_fences(dev_priv
);
5648 intel_init_clock_gating(dev_priv
);
5650 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5653 i915_gem_drain_freed_objects(dev_priv
);
5657 void i915_gem_fini(struct drm_i915_private
*dev_priv
)
5659 i915_gem_suspend_late(dev_priv
);
5660 intel_disable_gt_powersave(dev_priv
);
5662 /* Flush any outstanding unpin_work. */
5663 i915_gem_drain_workqueue(dev_priv
);
5665 mutex_lock(&dev_priv
->drm
.struct_mutex
);
5666 intel_uc_fini_hw(dev_priv
);
5667 intel_uc_fini(dev_priv
);
5668 i915_gem_cleanup_engines(dev_priv
);
5669 i915_gem_contexts_fini(dev_priv
);
5670 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5672 intel_cleanup_gt_powersave(dev_priv
);
5674 intel_uc_fini_misc(dev_priv
);
5675 i915_gem_cleanup_userptr(dev_priv
);
5677 i915_gem_drain_freed_objects(dev_priv
);
5679 WARN_ON(!list_empty(&dev_priv
->contexts
.list
));
5682 void i915_gem_init_mmio(struct drm_i915_private
*i915
)
5684 i915_gem_sanitize(i915
);
5688 i915_gem_cleanup_engines(struct drm_i915_private
*dev_priv
)
5690 struct intel_engine_cs
*engine
;
5691 enum intel_engine_id id
;
5693 for_each_engine(engine
, dev_priv
, id
)
5694 dev_priv
->gt
.cleanup_engine(engine
);
5698 i915_gem_load_init_fences(struct drm_i915_private
*dev_priv
)
5702 if (INTEL_GEN(dev_priv
) >= 7 && !IS_VALLEYVIEW(dev_priv
) &&
5703 !IS_CHERRYVIEW(dev_priv
))
5704 dev_priv
->num_fence_regs
= 32;
5705 else if (INTEL_GEN(dev_priv
) >= 4 ||
5706 IS_I945G(dev_priv
) || IS_I945GM(dev_priv
) ||
5707 IS_G33(dev_priv
) || IS_PINEVIEW(dev_priv
))
5708 dev_priv
->num_fence_regs
= 16;
5710 dev_priv
->num_fence_regs
= 8;
5712 if (intel_vgpu_active(dev_priv
))
5713 dev_priv
->num_fence_regs
=
5714 I915_READ(vgtif_reg(avail_rs
.fence_num
));
5716 /* Initialize fence registers to zero */
5717 for (i
= 0; i
< dev_priv
->num_fence_regs
; i
++) {
5718 struct drm_i915_fence_reg
*fence
= &dev_priv
->fence_regs
[i
];
5720 fence
->i915
= dev_priv
;
5722 list_add_tail(&fence
->link
, &dev_priv
->mm
.fence_list
);
5724 i915_gem_restore_fences(dev_priv
);
5726 i915_gem_detect_bit_6_swizzle(dev_priv
);
5729 static void i915_gem_init__mm(struct drm_i915_private
*i915
)
5731 spin_lock_init(&i915
->mm
.object_stat_lock
);
5732 spin_lock_init(&i915
->mm
.obj_lock
);
5733 spin_lock_init(&i915
->mm
.free_lock
);
5735 init_llist_head(&i915
->mm
.free_list
);
5737 INIT_LIST_HEAD(&i915
->mm
.unbound_list
);
5738 INIT_LIST_HEAD(&i915
->mm
.bound_list
);
5739 INIT_LIST_HEAD(&i915
->mm
.fence_list
);
5740 INIT_LIST_HEAD(&i915
->mm
.userfault_list
);
5742 INIT_WORK(&i915
->mm
.free_work
, __i915_gem_free_work
);
5745 int i915_gem_init_early(struct drm_i915_private
*dev_priv
)
5749 dev_priv
->objects
= KMEM_CACHE(drm_i915_gem_object
, SLAB_HWCACHE_ALIGN
);
5750 if (!dev_priv
->objects
)
5753 dev_priv
->vmas
= KMEM_CACHE(i915_vma
, SLAB_HWCACHE_ALIGN
);
5754 if (!dev_priv
->vmas
)
5757 dev_priv
->luts
= KMEM_CACHE(i915_lut_handle
, 0);
5758 if (!dev_priv
->luts
)
5761 dev_priv
->requests
= KMEM_CACHE(i915_request
,
5762 SLAB_HWCACHE_ALIGN
|
5763 SLAB_RECLAIM_ACCOUNT
|
5764 SLAB_TYPESAFE_BY_RCU
);
5765 if (!dev_priv
->requests
)
5768 dev_priv
->dependencies
= KMEM_CACHE(i915_dependency
,
5769 SLAB_HWCACHE_ALIGN
|
5770 SLAB_RECLAIM_ACCOUNT
);
5771 if (!dev_priv
->dependencies
)
5774 dev_priv
->priorities
= KMEM_CACHE(i915_priolist
, SLAB_HWCACHE_ALIGN
);
5775 if (!dev_priv
->priorities
)
5776 goto err_dependencies
;
5778 INIT_LIST_HEAD(&dev_priv
->gt
.timelines
);
5779 INIT_LIST_HEAD(&dev_priv
->gt
.active_rings
);
5780 INIT_LIST_HEAD(&dev_priv
->gt
.closed_vma
);
5782 i915_gem_init__mm(dev_priv
);
5784 INIT_DELAYED_WORK(&dev_priv
->gt
.retire_work
,
5785 i915_gem_retire_work_handler
);
5786 INIT_DELAYED_WORK(&dev_priv
->gt
.idle_work
,
5787 i915_gem_idle_work_handler
);
5788 init_waitqueue_head(&dev_priv
->gpu_error
.wait_queue
);
5789 init_waitqueue_head(&dev_priv
->gpu_error
.reset_queue
);
5791 atomic_set(&dev_priv
->mm
.bsd_engine_dispatch_index
, 0);
5793 spin_lock_init(&dev_priv
->fb_tracking
.lock
);
5795 err
= i915_gemfs_init(dev_priv
);
5797 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err
);
5802 kmem_cache_destroy(dev_priv
->dependencies
);
5804 kmem_cache_destroy(dev_priv
->requests
);
5806 kmem_cache_destroy(dev_priv
->luts
);
5808 kmem_cache_destroy(dev_priv
->vmas
);
5810 kmem_cache_destroy(dev_priv
->objects
);
5815 void i915_gem_cleanup_early(struct drm_i915_private
*dev_priv
)
5817 i915_gem_drain_freed_objects(dev_priv
);
5818 GEM_BUG_ON(!llist_empty(&dev_priv
->mm
.free_list
));
5819 GEM_BUG_ON(atomic_read(&dev_priv
->mm
.free_count
));
5820 WARN_ON(dev_priv
->mm
.object_count
);
5821 WARN_ON(!list_empty(&dev_priv
->gt
.timelines
));
5823 kmem_cache_destroy(dev_priv
->priorities
);
5824 kmem_cache_destroy(dev_priv
->dependencies
);
5825 kmem_cache_destroy(dev_priv
->requests
);
5826 kmem_cache_destroy(dev_priv
->luts
);
5827 kmem_cache_destroy(dev_priv
->vmas
);
5828 kmem_cache_destroy(dev_priv
->objects
);
5830 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5833 i915_gemfs_fini(dev_priv
);
5836 int i915_gem_freeze(struct drm_i915_private
*dev_priv
)
5838 /* Discard all purgeable objects, let userspace recover those as
5839 * required after resuming.
5841 i915_gem_shrink_all(dev_priv
);
5846 int i915_gem_freeze_late(struct drm_i915_private
*i915
)
5848 struct drm_i915_gem_object
*obj
;
5849 struct list_head
*phases
[] = {
5850 &i915
->mm
.unbound_list
,
5851 &i915
->mm
.bound_list
,
5856 * Called just before we write the hibernation image.
5858 * We need to update the domain tracking to reflect that the CPU
5859 * will be accessing all the pages to create and restore from the
5860 * hibernation, and so upon restoration those pages will be in the
5863 * To make sure the hibernation image contains the latest state,
5864 * we update that state just before writing out the image.
5866 * To try and reduce the hibernation image, we manually shrink
5867 * the objects as well, see i915_gem_freeze()
5870 i915_gem_shrink(i915
, -1UL, NULL
, I915_SHRINK_UNBOUND
);
5871 i915_gem_drain_freed_objects(i915
);
5873 mutex_lock(&i915
->drm
.struct_mutex
);
5874 for (phase
= phases
; *phase
; phase
++) {
5875 list_for_each_entry(obj
, *phase
, mm
.link
)
5876 WARN_ON(i915_gem_object_set_to_cpu_domain(obj
, true));
5878 mutex_unlock(&i915
->drm
.struct_mutex
);
5883 void i915_gem_release(struct drm_device
*dev
, struct drm_file
*file
)
5885 struct drm_i915_file_private
*file_priv
= file
->driver_priv
;
5886 struct i915_request
*request
;
5888 /* Clean up our request list when the client is going away, so that
5889 * later retire_requests won't dereference our soon-to-be-gone
5892 spin_lock(&file_priv
->mm
.lock
);
5893 list_for_each_entry(request
, &file_priv
->mm
.request_list
, client_link
)
5894 request
->file_priv
= NULL
;
5895 spin_unlock(&file_priv
->mm
.lock
);
5898 int i915_gem_open(struct drm_i915_private
*i915
, struct drm_file
*file
)
5900 struct drm_i915_file_private
*file_priv
;
5905 file_priv
= kzalloc(sizeof(*file_priv
), GFP_KERNEL
);
5909 file
->driver_priv
= file_priv
;
5910 file_priv
->dev_priv
= i915
;
5911 file_priv
->file
= file
;
5913 spin_lock_init(&file_priv
->mm
.lock
);
5914 INIT_LIST_HEAD(&file_priv
->mm
.request_list
);
5916 file_priv
->bsd_engine
= -1;
5917 file_priv
->hang_timestamp
= jiffies
;
5919 ret
= i915_gem_context_open(i915
, file
);
5927 * i915_gem_track_fb - update frontbuffer tracking
5928 * @old: current GEM buffer for the frontbuffer slots
5929 * @new: new GEM buffer for the frontbuffer slots
5930 * @frontbuffer_bits: bitmask of frontbuffer slots
5932 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5933 * from @old and setting them in @new. Both @old and @new can be NULL.
5935 void i915_gem_track_fb(struct drm_i915_gem_object
*old
,
5936 struct drm_i915_gem_object
*new,
5937 unsigned frontbuffer_bits
)
5939 /* Control of individual bits within the mask are guarded by
5940 * the owning plane->mutex, i.e. we can never see concurrent
5941 * manipulation of individual bits. But since the bitfield as a whole
5942 * is updated using RMW, we need to use atomics in order to update
5945 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE
* I915_MAX_PIPES
>
5946 sizeof(atomic_t
) * BITS_PER_BYTE
);
5949 WARN_ON(!(atomic_read(&old
->frontbuffer_bits
) & frontbuffer_bits
));
5950 atomic_andnot(frontbuffer_bits
, &old
->frontbuffer_bits
);
5954 WARN_ON(atomic_read(&new->frontbuffer_bits
) & frontbuffer_bits
);
5955 atomic_or(frontbuffer_bits
, &new->frontbuffer_bits
);
5959 /* Allocate a new GEM object and fill it with the supplied data */
5960 struct drm_i915_gem_object
*
5961 i915_gem_object_create_from_data(struct drm_i915_private
*dev_priv
,
5962 const void *data
, size_t size
)
5964 struct drm_i915_gem_object
*obj
;
5969 obj
= i915_gem_object_create(dev_priv
, round_up(size
, PAGE_SIZE
));
5973 GEM_BUG_ON(obj
->write_domain
!= I915_GEM_DOMAIN_CPU
);
5975 file
= obj
->base
.filp
;
5978 unsigned int len
= min_t(typeof(size
), size
, PAGE_SIZE
);
5980 void *pgdata
, *vaddr
;
5982 err
= pagecache_write_begin(file
, file
->f_mapping
,
5989 memcpy(vaddr
, data
, len
);
5992 err
= pagecache_write_end(file
, file
->f_mapping
,
6006 i915_gem_object_put(obj
);
6007 return ERR_PTR(err
);
6010 struct scatterlist
*
6011 i915_gem_object_get_sg(struct drm_i915_gem_object
*obj
,
6013 unsigned int *offset
)
6015 struct i915_gem_object_page_iter
*iter
= &obj
->mm
.get_page
;
6016 struct scatterlist
*sg
;
6017 unsigned int idx
, count
;
6020 GEM_BUG_ON(n
>= obj
->base
.size
>> PAGE_SHIFT
);
6021 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj
));
6023 /* As we iterate forward through the sg, we record each entry in a
6024 * radixtree for quick repeated (backwards) lookups. If we have seen
6025 * this index previously, we will have an entry for it.
6027 * Initial lookup is O(N), but this is amortized to O(1) for
6028 * sequential page access (where each new request is consecutive
6029 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6030 * i.e. O(1) with a large constant!
6032 if (n
< READ_ONCE(iter
->sg_idx
))
6035 mutex_lock(&iter
->lock
);
6037 /* We prefer to reuse the last sg so that repeated lookup of this
6038 * (or the subsequent) sg are fast - comparing against the last
6039 * sg is faster than going through the radixtree.
6044 count
= __sg_page_count(sg
);
6046 while (idx
+ count
<= n
) {
6047 unsigned long exception
, i
;
6050 /* If we cannot allocate and insert this entry, or the
6051 * individual pages from this range, cancel updating the
6052 * sg_idx so that on this lookup we are forced to linearly
6053 * scan onwards, but on future lookups we will try the
6054 * insertion again (in which case we need to be careful of
6055 * the error return reporting that we have already inserted
6058 ret
= radix_tree_insert(&iter
->radix
, idx
, sg
);
6059 if (ret
&& ret
!= -EEXIST
)
6063 RADIX_TREE_EXCEPTIONAL_ENTRY
|
6064 idx
<< RADIX_TREE_EXCEPTIONAL_SHIFT
;
6065 for (i
= 1; i
< count
; i
++) {
6066 ret
= radix_tree_insert(&iter
->radix
, idx
+ i
,
6068 if (ret
&& ret
!= -EEXIST
)
6073 sg
= ____sg_next(sg
);
6074 count
= __sg_page_count(sg
);
6081 mutex_unlock(&iter
->lock
);
6083 if (unlikely(n
< idx
)) /* insertion completed by another thread */
6086 /* In case we failed to insert the entry into the radixtree, we need
6087 * to look beyond the current sg.
6089 while (idx
+ count
<= n
) {
6091 sg
= ____sg_next(sg
);
6092 count
= __sg_page_count(sg
);
6101 sg
= radix_tree_lookup(&iter
->radix
, n
);
6104 /* If this index is in the middle of multi-page sg entry,
6105 * the radixtree will contain an exceptional entry that points
6106 * to the start of that range. We will return the pointer to
6107 * the base page and the offset of this page within the
6111 if (unlikely(radix_tree_exception(sg
))) {
6112 unsigned long base
=
6113 (unsigned long)sg
>> RADIX_TREE_EXCEPTIONAL_SHIFT
;
6115 sg
= radix_tree_lookup(&iter
->radix
, base
);
6127 i915_gem_object_get_page(struct drm_i915_gem_object
*obj
, unsigned int n
)
6129 struct scatterlist
*sg
;
6130 unsigned int offset
;
6132 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj
));
6134 sg
= i915_gem_object_get_sg(obj
, n
, &offset
);
6135 return nth_page(sg_page(sg
), offset
);
6138 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6140 i915_gem_object_get_dirty_page(struct drm_i915_gem_object
*obj
,
6145 page
= i915_gem_object_get_page(obj
, n
);
6147 set_page_dirty(page
);
6153 i915_gem_object_get_dma_address(struct drm_i915_gem_object
*obj
,
6156 struct scatterlist
*sg
;
6157 unsigned int offset
;
6159 sg
= i915_gem_object_get_sg(obj
, n
, &offset
);
6160 return sg_dma_address(sg
) + (offset
<< PAGE_SHIFT
);
6163 int i915_gem_object_attach_phys(struct drm_i915_gem_object
*obj
, int align
)
6165 struct sg_table
*pages
;
6168 if (align
> obj
->base
.size
)
6171 if (obj
->ops
== &i915_gem_phys_ops
)
6174 if (obj
->ops
!= &i915_gem_object_ops
)
6177 err
= i915_gem_object_unbind(obj
);
6181 mutex_lock(&obj
->mm
.lock
);
6183 if (obj
->mm
.madv
!= I915_MADV_WILLNEED
) {
6188 if (obj
->mm
.quirked
) {
6193 if (obj
->mm
.mapping
) {
6198 pages
= __i915_gem_object_unset_pages(obj
);
6200 obj
->ops
= &i915_gem_phys_ops
;
6202 err
= ____i915_gem_object_get_pages(obj
);
6206 /* Perma-pin (until release) the physical set of pages */
6207 __i915_gem_object_pin_pages(obj
);
6209 if (!IS_ERR_OR_NULL(pages
))
6210 i915_gem_object_ops
.put_pages(obj
, pages
);
6211 mutex_unlock(&obj
->mm
.lock
);
6215 obj
->ops
= &i915_gem_object_ops
;
6216 if (!IS_ERR_OR_NULL(pages
)) {
6217 unsigned int sg_page_sizes
= i915_sg_page_sizes(pages
->sgl
);
6219 __i915_gem_object_set_pages(obj
, pages
, sg_page_sizes
);
6222 mutex_unlock(&obj
->mm
.lock
);
6226 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6227 #include "selftests/scatterlist.c"
6228 #include "selftests/mock_gem_device.c"
6229 #include "selftests/huge_gem_object.c"
6230 #include "selftests/huge_pages.c"
6231 #include "selftests/i915_gem_object.c"
6232 #include "selftests/i915_gem_coherency.c"