vt: vt_ioctl: fix VT_DISALLOCATE freeing in-use virtual console
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
blobd4c6aa7fbac8d57084c052100e77243658a50a14
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
34 #include <asm/set_memory.h>
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
45 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
47 /**
48 * DOC: Global GTT views
50 * Background and previous state
52 * Historically objects could exists (be bound) in global GTT space only as
53 * singular instances with a view representing all of the object's backing pages
54 * in a linear fashion. This view will be called a normal view.
56 * To support multiple views of the same object, where the number of mapped
57 * pages is not equal to the backing store, or where the layout of the pages
58 * is not linear, concept of a GGTT view was added.
60 * One example of an alternative view is a stereo display driven by a single
61 * image. In this case we would have a framebuffer looking like this
62 * (2x2 pages):
64 * 12
65 * 34
67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68 * rendering. In contrast, fed to the display engine would be an alternative
69 * view which could look something like this:
71 * 1212
72 * 3434
74 * In this example both the size and layout of pages in the alternative view is
75 * different from the normal view.
77 * Implementation and usage
79 * GGTT views are implemented using VMAs and are distinguished via enum
80 * i915_ggtt_view_type and struct i915_ggtt_view.
82 * A new flavour of core GEM functions which work with GGTT bound objects were
83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84 * renaming in large amounts of code. They take the struct i915_ggtt_view
85 * parameter encapsulating all metadata required to implement a view.
87 * As a helper for callers which are only interested in the normal view,
88 * globally const i915_ggtt_view_normal singleton instance exists. All old core
89 * GEM API functions, the ones not taking the view parameter, are operating on,
90 * or with the normal GGTT view.
92 * Code wanting to add or use a new GGTT view needs to:
94 * 1. Add a new enum with a suitable name.
95 * 2. Extend the metadata in the i915_ggtt_view structure if required.
96 * 3. Add support to i915_get_vma_pages().
98 * New views are required to build a scatter-gather table from within the
99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100 * exists for the lifetime of an VMA.
102 * Core API is designed to have copy semantics which means that passed in
103 * struct i915_ggtt_view does not need to be persistent (left around after
104 * calling the core API functions).
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
114 * Note that as an uncached mmio write, this will flush the
115 * WCB of the writes into the GGTT before it triggers the invalidate.
117 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
122 gen6_ggtt_invalidate(dev_priv);
123 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
128 intel_gtt_chipset_flush();
131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
133 i915->ggtt.invalidate(i915);
136 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
137 int enable_ppgtt)
139 bool has_full_ppgtt;
140 bool has_full_48bit_ppgtt;
142 if (!dev_priv->info.has_aliasing_ppgtt)
143 return 0;
145 has_full_ppgtt = dev_priv->info.has_full_ppgtt;
146 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
148 if (intel_vgpu_active(dev_priv)) {
149 /* GVT-g has no support for 32bit ppgtt */
150 has_full_ppgtt = false;
151 has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
155 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
156 * execlists, the sole mechanism available to submit work.
158 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 return 0;
161 /* Full PPGTT is required by the Gen9 cmdparser */
162 if (enable_ppgtt == 1 && INTEL_GEN(dev_priv) != 9)
163 return 1;
165 if (enable_ppgtt == 2 && has_full_ppgtt)
166 return 2;
168 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
169 return 3;
171 /* Disable ppgtt on SNB if VT-d is on. */
172 if (IS_GEN6(dev_priv) && intel_vtd_active()) {
173 DRM_INFO("Disabling PPGTT because VT-d is on\n");
174 return 0;
177 /* Early VLV doesn't have this */
178 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
179 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
180 return 0;
183 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
184 if (has_full_48bit_ppgtt)
185 return 3;
187 if (has_full_ppgtt)
188 return 2;
191 return 1;
194 static int ppgtt_bind_vma(struct i915_vma *vma,
195 enum i915_cache_level cache_level,
196 u32 unused)
198 u32 pte_flags;
199 int err;
201 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
202 err = vma->vm->allocate_va_range(vma->vm,
203 vma->node.start, vma->size);
204 if (err)
205 return err;
208 /* Applicable to VLV, and gen8+ */
209 pte_flags = 0;
210 if (i915_gem_object_is_readonly(vma->obj))
211 pte_flags |= PTE_READ_ONLY;
213 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
215 return 0;
218 static void ppgtt_unbind_vma(struct i915_vma *vma)
220 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
223 static int ppgtt_set_pages(struct i915_vma *vma)
225 GEM_BUG_ON(vma->pages);
227 vma->pages = vma->obj->mm.pages;
229 vma->page_sizes = vma->obj->mm.page_sizes;
231 return 0;
234 static void clear_pages(struct i915_vma *vma)
236 GEM_BUG_ON(!vma->pages);
238 if (vma->pages != vma->obj->mm.pages) {
239 sg_free_table(vma->pages);
240 kfree(vma->pages);
242 vma->pages = NULL;
244 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
247 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
248 enum i915_cache_level level,
249 u32 flags)
251 gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
253 if (unlikely(flags & PTE_READ_ONLY))
254 pte &= ~_PAGE_RW;
256 switch (level) {
257 case I915_CACHE_NONE:
258 pte |= PPAT_UNCACHED;
259 break;
260 case I915_CACHE_WT:
261 pte |= PPAT_DISPLAY_ELLC;
262 break;
263 default:
264 pte |= PPAT_CACHED;
265 break;
268 return pte;
271 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
272 const enum i915_cache_level level)
274 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
275 pde |= addr;
276 if (level != I915_CACHE_NONE)
277 pde |= PPAT_CACHED_PDE;
278 else
279 pde |= PPAT_UNCACHED;
280 return pde;
283 #define gen8_pdpe_encode gen8_pde_encode
284 #define gen8_pml4e_encode gen8_pde_encode
286 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
287 enum i915_cache_level level,
288 u32 unused)
290 gen6_pte_t pte = GEN6_PTE_VALID;
291 pte |= GEN6_PTE_ADDR_ENCODE(addr);
293 switch (level) {
294 case I915_CACHE_L3_LLC:
295 case I915_CACHE_LLC:
296 pte |= GEN6_PTE_CACHE_LLC;
297 break;
298 case I915_CACHE_NONE:
299 pte |= GEN6_PTE_UNCACHED;
300 break;
301 default:
302 MISSING_CASE(level);
305 return pte;
308 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
309 enum i915_cache_level level,
310 u32 unused)
312 gen6_pte_t pte = GEN6_PTE_VALID;
313 pte |= GEN6_PTE_ADDR_ENCODE(addr);
315 switch (level) {
316 case I915_CACHE_L3_LLC:
317 pte |= GEN7_PTE_CACHE_L3_LLC;
318 break;
319 case I915_CACHE_LLC:
320 pte |= GEN6_PTE_CACHE_LLC;
321 break;
322 case I915_CACHE_NONE:
323 pte |= GEN6_PTE_UNCACHED;
324 break;
325 default:
326 MISSING_CASE(level);
329 return pte;
332 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
333 enum i915_cache_level level,
334 u32 flags)
336 gen6_pte_t pte = GEN6_PTE_VALID;
337 pte |= GEN6_PTE_ADDR_ENCODE(addr);
339 if (!(flags & PTE_READ_ONLY))
340 pte |= BYT_PTE_WRITEABLE;
342 if (level != I915_CACHE_NONE)
343 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
345 return pte;
348 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
349 enum i915_cache_level level,
350 u32 unused)
352 gen6_pte_t pte = GEN6_PTE_VALID;
353 pte |= HSW_PTE_ADDR_ENCODE(addr);
355 if (level != I915_CACHE_NONE)
356 pte |= HSW_WB_LLC_AGE3;
358 return pte;
361 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
362 enum i915_cache_level level,
363 u32 unused)
365 gen6_pte_t pte = GEN6_PTE_VALID;
366 pte |= HSW_PTE_ADDR_ENCODE(addr);
368 switch (level) {
369 case I915_CACHE_NONE:
370 break;
371 case I915_CACHE_WT:
372 pte |= HSW_WT_ELLC_LLC_AGE3;
373 break;
374 default:
375 pte |= HSW_WB_ELLC_LLC_AGE3;
376 break;
379 return pte;
382 static void stash_init(struct pagestash *stash)
384 pagevec_init(&stash->pvec);
385 spin_lock_init(&stash->lock);
388 static struct page *stash_pop_page(struct pagestash *stash)
390 struct page *page = NULL;
392 spin_lock(&stash->lock);
393 if (likely(stash->pvec.nr))
394 page = stash->pvec.pages[--stash->pvec.nr];
395 spin_unlock(&stash->lock);
397 return page;
400 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
402 int nr;
404 spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
406 nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
407 memcpy(stash->pvec.pages + stash->pvec.nr,
408 pvec->pages + pvec->nr - nr,
409 sizeof(pvec->pages[0]) * nr);
410 stash->pvec.nr += nr;
412 spin_unlock(&stash->lock);
414 pvec->nr -= nr;
417 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
419 struct pagevec stack;
420 struct page *page;
422 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
423 i915_gem_shrink_all(vm->i915);
425 page = stash_pop_page(&vm->free_pages);
426 if (page)
427 return page;
429 if (!vm->pt_kmap_wc)
430 return alloc_page(gfp);
432 /* Look in our global stash of WC pages... */
433 page = stash_pop_page(&vm->i915->mm.wc_stash);
434 if (page)
435 return page;
438 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
440 * We have to be careful as page allocation may trigger the shrinker
441 * (via direct reclaim) which will fill up the WC stash underneath us.
442 * So we add our WB pages into a temporary pvec on the stack and merge
443 * them into the WC stash after all the allocations are complete.
445 pagevec_init(&stack);
446 do {
447 struct page *page;
449 page = alloc_page(gfp);
450 if (unlikely(!page))
451 break;
453 stack.pages[stack.nr++] = page;
454 } while (pagevec_space(&stack));
456 if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
457 page = stack.pages[--stack.nr];
459 /* Merge spare WC pages to the global stash */
460 stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
462 /* Push any surplus WC pages onto the local VM stash */
463 if (stack.nr)
464 stash_push_pagevec(&vm->free_pages, &stack);
467 /* Return unwanted leftovers */
468 if (unlikely(stack.nr)) {
469 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
470 __pagevec_release(&stack);
473 return page;
476 static void vm_free_pages_release(struct i915_address_space *vm,
477 bool immediate)
479 struct pagevec *pvec = &vm->free_pages.pvec;
480 struct pagevec stack;
482 lockdep_assert_held(&vm->free_pages.lock);
483 GEM_BUG_ON(!pagevec_count(pvec));
485 if (vm->pt_kmap_wc) {
487 * When we use WC, first fill up the global stash and then
488 * only if full immediately free the overflow.
490 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
493 * As we have made some room in the VM's free_pages,
494 * we can wait for it to fill again. Unless we are
495 * inside i915_address_space_fini() and must
496 * immediately release the pages!
498 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
499 return;
502 * We have to drop the lock to allow ourselves to sleep,
503 * so take a copy of the pvec and clear the stash for
504 * others to use it as we sleep.
506 stack = *pvec;
507 pagevec_reinit(pvec);
508 spin_unlock(&vm->free_pages.lock);
510 pvec = &stack;
511 set_pages_array_wb(pvec->pages, pvec->nr);
513 spin_lock(&vm->free_pages.lock);
516 __pagevec_release(pvec);
519 static void vm_free_page(struct i915_address_space *vm, struct page *page)
522 * On !llc, we need to change the pages back to WB. We only do so
523 * in bulk, so we rarely need to change the page attributes here,
524 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
525 * To make detection of the possible sleep more likely, use an
526 * unconditional might_sleep() for everybody.
528 might_sleep();
529 spin_lock(&vm->free_pages.lock);
530 if (!pagevec_add(&vm->free_pages.pvec, page))
531 vm_free_pages_release(vm, false);
532 spin_unlock(&vm->free_pages.lock);
535 static void i915_address_space_init(struct i915_address_space *vm,
536 struct drm_i915_private *dev_priv)
539 * The vm->mutex must be reclaim safe (for use in the shrinker).
540 * Do a dummy acquire now under fs_reclaim so that any allocation
541 * attempt holding the lock is immediately reported by lockdep.
543 mutex_init(&vm->mutex);
544 i915_gem_shrinker_taints_mutex(&vm->mutex);
546 GEM_BUG_ON(!vm->total);
547 drm_mm_init(&vm->mm, 0, vm->total);
548 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
550 stash_init(&vm->free_pages);
552 INIT_LIST_HEAD(&vm->active_list);
553 INIT_LIST_HEAD(&vm->inactive_list);
554 INIT_LIST_HEAD(&vm->unbound_list);
557 static void i915_address_space_fini(struct i915_address_space *vm)
559 spin_lock(&vm->free_pages.lock);
560 if (pagevec_count(&vm->free_pages.pvec))
561 vm_free_pages_release(vm, true);
562 GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
563 spin_unlock(&vm->free_pages.lock);
565 drm_mm_takedown(&vm->mm);
567 mutex_destroy(&vm->mutex);
570 static int __setup_page_dma(struct i915_address_space *vm,
571 struct i915_page_dma *p,
572 gfp_t gfp)
574 p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
575 if (unlikely(!p->page))
576 return -ENOMEM;
578 p->daddr = dma_map_page_attrs(vm->dma,
579 p->page, 0, PAGE_SIZE,
580 PCI_DMA_BIDIRECTIONAL,
581 DMA_ATTR_SKIP_CPU_SYNC |
582 DMA_ATTR_NO_WARN);
583 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
584 vm_free_page(vm, p->page);
585 return -ENOMEM;
588 return 0;
591 static int setup_page_dma(struct i915_address_space *vm,
592 struct i915_page_dma *p)
594 return __setup_page_dma(vm, p, __GFP_HIGHMEM);
597 static void cleanup_page_dma(struct i915_address_space *vm,
598 struct i915_page_dma *p)
600 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
601 vm_free_page(vm, p->page);
604 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
606 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
607 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
608 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
609 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
611 static void fill_page_dma(struct i915_address_space *vm,
612 struct i915_page_dma *p,
613 const u64 val)
615 u64 * const vaddr = kmap_atomic(p->page);
617 memset64(vaddr, val, PAGE_SIZE / sizeof(val));
619 kunmap_atomic(vaddr);
622 static void fill_page_dma_32(struct i915_address_space *vm,
623 struct i915_page_dma *p,
624 const u32 v)
626 fill_page_dma(vm, p, (u64)v << 32 | v);
629 static int
630 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
632 unsigned long size;
635 * In order to utilize 64K pages for an object with a size < 2M, we will
636 * need to support a 64K scratch page, given that every 16th entry for a
637 * page-table operating in 64K mode must point to a properly aligned 64K
638 * region, including any PTEs which happen to point to scratch.
640 * This is only relevant for the 48b PPGTT where we support
641 * huge-gtt-pages, see also i915_vma_insert().
643 * TODO: we should really consider write-protecting the scratch-page and
644 * sharing between ppgtt
646 size = I915_GTT_PAGE_SIZE_4K;
647 if (i915_vm_is_48bit(vm) &&
648 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
649 size = I915_GTT_PAGE_SIZE_64K;
650 gfp |= __GFP_NOWARN;
652 gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
654 do {
655 int order = get_order(size);
656 struct page *page;
657 dma_addr_t addr;
659 page = alloc_pages(gfp, order);
660 if (unlikely(!page))
661 goto skip;
663 addr = dma_map_page_attrs(vm->dma,
664 page, 0, size,
665 PCI_DMA_BIDIRECTIONAL,
666 DMA_ATTR_SKIP_CPU_SYNC |
667 DMA_ATTR_NO_WARN);
668 if (unlikely(dma_mapping_error(vm->dma, addr)))
669 goto free_page;
671 if (unlikely(!IS_ALIGNED(addr, size)))
672 goto unmap_page;
674 vm->scratch_page.page = page;
675 vm->scratch_page.daddr = addr;
676 vm->scratch_page.order = order;
677 return 0;
679 unmap_page:
680 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
681 free_page:
682 __free_pages(page, order);
683 skip:
684 if (size == I915_GTT_PAGE_SIZE_4K)
685 return -ENOMEM;
687 size = I915_GTT_PAGE_SIZE_4K;
688 gfp &= ~__GFP_NOWARN;
689 } while (1);
692 static void cleanup_scratch_page(struct i915_address_space *vm)
694 struct i915_page_dma *p = &vm->scratch_page;
696 dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
697 PCI_DMA_BIDIRECTIONAL);
698 __free_pages(p->page, p->order);
701 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
703 struct i915_page_table *pt;
705 pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
706 if (unlikely(!pt))
707 return ERR_PTR(-ENOMEM);
709 if (unlikely(setup_px(vm, pt))) {
710 kfree(pt);
711 return ERR_PTR(-ENOMEM);
714 pt->used_ptes = 0;
715 return pt;
718 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
720 cleanup_px(vm, pt);
721 kfree(pt);
724 static void gen8_initialize_pt(struct i915_address_space *vm,
725 struct i915_page_table *pt)
727 fill_px(vm, pt,
728 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
731 static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
732 struct i915_page_table *pt)
734 fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
737 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
739 struct i915_page_directory *pd;
741 pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
742 if (unlikely(!pd))
743 return ERR_PTR(-ENOMEM);
745 if (unlikely(setup_px(vm, pd))) {
746 kfree(pd);
747 return ERR_PTR(-ENOMEM);
750 pd->used_pdes = 0;
751 return pd;
754 static void free_pd(struct i915_address_space *vm,
755 struct i915_page_directory *pd)
757 cleanup_px(vm, pd);
758 kfree(pd);
761 static void gen8_initialize_pd(struct i915_address_space *vm,
762 struct i915_page_directory *pd)
764 fill_px(vm, pd,
765 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
766 memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
769 static int __pdp_init(struct i915_address_space *vm,
770 struct i915_page_directory_pointer *pdp)
772 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
774 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
775 I915_GFP_ALLOW_FAIL);
776 if (unlikely(!pdp->page_directory))
777 return -ENOMEM;
779 memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
781 return 0;
784 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
786 kfree(pdp->page_directory);
787 pdp->page_directory = NULL;
790 static inline bool use_4lvl(const struct i915_address_space *vm)
792 return i915_vm_is_48bit(vm);
795 static struct i915_page_directory_pointer *
796 alloc_pdp(struct i915_address_space *vm)
798 struct i915_page_directory_pointer *pdp;
799 int ret = -ENOMEM;
801 GEM_BUG_ON(!use_4lvl(vm));
803 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
804 if (!pdp)
805 return ERR_PTR(-ENOMEM);
807 ret = __pdp_init(vm, pdp);
808 if (ret)
809 goto fail_bitmap;
811 ret = setup_px(vm, pdp);
812 if (ret)
813 goto fail_page_m;
815 return pdp;
817 fail_page_m:
818 __pdp_fini(pdp);
819 fail_bitmap:
820 kfree(pdp);
822 return ERR_PTR(ret);
825 static void free_pdp(struct i915_address_space *vm,
826 struct i915_page_directory_pointer *pdp)
828 __pdp_fini(pdp);
830 if (!use_4lvl(vm))
831 return;
833 cleanup_px(vm, pdp);
834 kfree(pdp);
837 static void gen8_initialize_pdp(struct i915_address_space *vm,
838 struct i915_page_directory_pointer *pdp)
840 gen8_ppgtt_pdpe_t scratch_pdpe;
842 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
844 fill_px(vm, pdp, scratch_pdpe);
847 static void gen8_initialize_pml4(struct i915_address_space *vm,
848 struct i915_pml4 *pml4)
850 fill_px(vm, pml4,
851 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
852 memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
855 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
856 * the page table structures, we mark them dirty so that
857 * context switching/execlist queuing code takes extra steps
858 * to ensure that tlbs are flushed.
860 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
862 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
865 /* Removes entries from a single page table, releasing it if it's empty.
866 * Caller can use the return value to update higher-level entries.
868 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
869 struct i915_page_table *pt,
870 u64 start, u64 length)
872 unsigned int num_entries = gen8_pte_count(start, length);
873 unsigned int pte = gen8_pte_index(start);
874 unsigned int pte_end = pte + num_entries;
875 const gen8_pte_t scratch_pte =
876 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
877 gen8_pte_t *vaddr;
879 GEM_BUG_ON(num_entries > pt->used_ptes);
881 pt->used_ptes -= num_entries;
882 if (!pt->used_ptes)
883 return true;
885 vaddr = kmap_atomic_px(pt);
886 while (pte < pte_end)
887 vaddr[pte++] = scratch_pte;
888 kunmap_atomic(vaddr);
890 return false;
893 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
894 struct i915_page_directory *pd,
895 struct i915_page_table *pt,
896 unsigned int pde)
898 gen8_pde_t *vaddr;
900 pd->page_table[pde] = pt;
902 vaddr = kmap_atomic_px(pd);
903 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
904 kunmap_atomic(vaddr);
907 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
908 struct i915_page_directory *pd,
909 u64 start, u64 length)
911 struct i915_page_table *pt;
912 u32 pde;
914 gen8_for_each_pde(pt, pd, start, length, pde) {
915 GEM_BUG_ON(pt == vm->scratch_pt);
917 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
918 continue;
920 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
921 GEM_BUG_ON(!pd->used_pdes);
922 pd->used_pdes--;
924 free_pt(vm, pt);
927 return !pd->used_pdes;
930 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
931 struct i915_page_directory_pointer *pdp,
932 struct i915_page_directory *pd,
933 unsigned int pdpe)
935 gen8_ppgtt_pdpe_t *vaddr;
937 pdp->page_directory[pdpe] = pd;
938 if (!use_4lvl(vm))
939 return;
941 vaddr = kmap_atomic_px(pdp);
942 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
943 kunmap_atomic(vaddr);
946 /* Removes entries from a single page dir pointer, releasing it if it's empty.
947 * Caller can use the return value to update higher-level entries
949 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
950 struct i915_page_directory_pointer *pdp,
951 u64 start, u64 length)
953 struct i915_page_directory *pd;
954 unsigned int pdpe;
956 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
957 GEM_BUG_ON(pd == vm->scratch_pd);
959 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
960 continue;
962 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
963 GEM_BUG_ON(!pdp->used_pdpes);
964 pdp->used_pdpes--;
966 free_pd(vm, pd);
969 return !pdp->used_pdpes;
972 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
973 u64 start, u64 length)
975 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
978 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
979 struct i915_page_directory_pointer *pdp,
980 unsigned int pml4e)
982 gen8_ppgtt_pml4e_t *vaddr;
984 pml4->pdps[pml4e] = pdp;
986 vaddr = kmap_atomic_px(pml4);
987 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
988 kunmap_atomic(vaddr);
991 /* Removes entries from a single pml4.
992 * This is the top-level structure in 4-level page tables used on gen8+.
993 * Empty entries are always scratch pml4e.
995 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
996 u64 start, u64 length)
998 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
999 struct i915_pml4 *pml4 = &ppgtt->pml4;
1000 struct i915_page_directory_pointer *pdp;
1001 unsigned int pml4e;
1003 GEM_BUG_ON(!use_4lvl(vm));
1005 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1006 GEM_BUG_ON(pdp == vm->scratch_pdp);
1008 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
1009 continue;
1011 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1013 free_pdp(vm, pdp);
1017 static inline struct sgt_dma {
1018 struct scatterlist *sg;
1019 dma_addr_t dma, max;
1020 } sgt_dma(struct i915_vma *vma) {
1021 struct scatterlist *sg = vma->pages->sgl;
1022 dma_addr_t addr = sg_dma_address(sg);
1023 return (struct sgt_dma) { sg, addr, addr + sg->length };
1026 struct gen8_insert_pte {
1027 u16 pml4e;
1028 u16 pdpe;
1029 u16 pde;
1030 u16 pte;
1033 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
1035 return (struct gen8_insert_pte) {
1036 gen8_pml4e_index(start),
1037 gen8_pdpe_index(start),
1038 gen8_pde_index(start),
1039 gen8_pte_index(start),
1043 static __always_inline bool
1044 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1045 struct i915_page_directory_pointer *pdp,
1046 struct sgt_dma *iter,
1047 struct gen8_insert_pte *idx,
1048 enum i915_cache_level cache_level,
1049 u32 flags)
1051 struct i915_page_directory *pd;
1052 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1053 gen8_pte_t *vaddr;
1054 bool ret;
1056 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1057 pd = pdp->page_directory[idx->pdpe];
1058 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1059 do {
1060 vaddr[idx->pte] = pte_encode | iter->dma;
1062 iter->dma += I915_GTT_PAGE_SIZE;
1063 if (iter->dma >= iter->max) {
1064 iter->sg = __sg_next(iter->sg);
1065 if (!iter->sg) {
1066 ret = false;
1067 break;
1070 iter->dma = sg_dma_address(iter->sg);
1071 iter->max = iter->dma + iter->sg->length;
1074 if (++idx->pte == GEN8_PTES) {
1075 idx->pte = 0;
1077 if (++idx->pde == I915_PDES) {
1078 idx->pde = 0;
1080 /* Limited by sg length for 3lvl */
1081 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1082 idx->pdpe = 0;
1083 ret = true;
1084 break;
1087 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1088 pd = pdp->page_directory[idx->pdpe];
1091 kunmap_atomic(vaddr);
1092 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1094 } while (1);
1095 kunmap_atomic(vaddr);
1097 return ret;
1100 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1101 struct i915_vma *vma,
1102 enum i915_cache_level cache_level,
1103 u32 flags)
1105 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1106 struct sgt_dma iter = sgt_dma(vma);
1107 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1109 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1110 cache_level, flags);
1112 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1115 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1116 struct i915_page_directory_pointer **pdps,
1117 struct sgt_dma *iter,
1118 enum i915_cache_level cache_level,
1119 u32 flags)
1121 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1122 u64 start = vma->node.start;
1123 dma_addr_t rem = iter->sg->length;
1125 do {
1126 struct gen8_insert_pte idx = gen8_insert_pte(start);
1127 struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1128 struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1129 unsigned int page_size;
1130 bool maybe_64K = false;
1131 gen8_pte_t encode = pte_encode;
1132 gen8_pte_t *vaddr;
1133 u16 index, max;
1135 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1136 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1137 rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1138 index = idx.pde;
1139 max = I915_PDES;
1140 page_size = I915_GTT_PAGE_SIZE_2M;
1142 encode |= GEN8_PDE_PS_2M;
1144 vaddr = kmap_atomic_px(pd);
1145 } else {
1146 struct i915_page_table *pt = pd->page_table[idx.pde];
1148 index = idx.pte;
1149 max = GEN8_PTES;
1150 page_size = I915_GTT_PAGE_SIZE;
1152 if (!index &&
1153 vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1154 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1155 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1156 rem >= (max - index) << PAGE_SHIFT))
1157 maybe_64K = true;
1159 vaddr = kmap_atomic_px(pt);
1162 do {
1163 GEM_BUG_ON(iter->sg->length < page_size);
1164 vaddr[index++] = encode | iter->dma;
1166 start += page_size;
1167 iter->dma += page_size;
1168 rem -= page_size;
1169 if (iter->dma >= iter->max) {
1170 iter->sg = __sg_next(iter->sg);
1171 if (!iter->sg)
1172 break;
1174 rem = iter->sg->length;
1175 iter->dma = sg_dma_address(iter->sg);
1176 iter->max = iter->dma + rem;
1178 if (maybe_64K && index < max &&
1179 !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1180 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1181 rem >= (max - index) << PAGE_SHIFT)))
1182 maybe_64K = false;
1184 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1185 break;
1187 } while (rem >= page_size && index < max);
1189 kunmap_atomic(vaddr);
1192 * Is it safe to mark the 2M block as 64K? -- Either we have
1193 * filled whole page-table with 64K entries, or filled part of
1194 * it and have reached the end of the sg table and we have
1195 * enough padding.
1197 if (maybe_64K &&
1198 (index == max ||
1199 (i915_vm_has_scratch_64K(vma->vm) &&
1200 !iter->sg && IS_ALIGNED(vma->node.start +
1201 vma->node.size,
1202 I915_GTT_PAGE_SIZE_2M)))) {
1203 vaddr = kmap_atomic_px(pd);
1204 vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1205 kunmap_atomic(vaddr);
1206 page_size = I915_GTT_PAGE_SIZE_64K;
1209 * We write all 4K page entries, even when using 64K
1210 * pages. In order to verify that the HW isn't cheating
1211 * by using the 4K PTE instead of the 64K PTE, we want
1212 * to remove all the surplus entries. If the HW skipped
1213 * the 64K PTE, it will read/write into the scratch page
1214 * instead - which we detect as missing results during
1215 * selftests.
1217 if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1218 u16 i;
1220 encode = pte_encode | vma->vm->scratch_page.daddr;
1221 vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1223 for (i = 1; i < index; i += 16)
1224 memset64(vaddr + i, encode, 15);
1226 kunmap_atomic(vaddr);
1230 vma->page_sizes.gtt |= page_size;
1231 } while (iter->sg);
1234 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1235 struct i915_vma *vma,
1236 enum i915_cache_level cache_level,
1237 u32 flags)
1239 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1240 struct sgt_dma iter = sgt_dma(vma);
1241 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1243 if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1244 gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
1245 flags);
1246 } else {
1247 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1249 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1250 &iter, &idx, cache_level,
1251 flags))
1252 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1254 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1258 static void gen8_free_page_tables(struct i915_address_space *vm,
1259 struct i915_page_directory *pd)
1261 int i;
1263 if (!px_page(pd))
1264 return;
1266 for (i = 0; i < I915_PDES; i++) {
1267 if (pd->page_table[i] != vm->scratch_pt)
1268 free_pt(vm, pd->page_table[i]);
1272 static int gen8_init_scratch(struct i915_address_space *vm)
1274 int ret;
1276 ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1277 if (ret)
1278 return ret;
1280 vm->scratch_pt = alloc_pt(vm);
1281 if (IS_ERR(vm->scratch_pt)) {
1282 ret = PTR_ERR(vm->scratch_pt);
1283 goto free_scratch_page;
1286 vm->scratch_pd = alloc_pd(vm);
1287 if (IS_ERR(vm->scratch_pd)) {
1288 ret = PTR_ERR(vm->scratch_pd);
1289 goto free_pt;
1292 if (use_4lvl(vm)) {
1293 vm->scratch_pdp = alloc_pdp(vm);
1294 if (IS_ERR(vm->scratch_pdp)) {
1295 ret = PTR_ERR(vm->scratch_pdp);
1296 goto free_pd;
1300 gen8_initialize_pt(vm, vm->scratch_pt);
1301 gen8_initialize_pd(vm, vm->scratch_pd);
1302 if (use_4lvl(vm))
1303 gen8_initialize_pdp(vm, vm->scratch_pdp);
1305 return 0;
1307 free_pd:
1308 free_pd(vm, vm->scratch_pd);
1309 free_pt:
1310 free_pt(vm, vm->scratch_pt);
1311 free_scratch_page:
1312 cleanup_scratch_page(vm);
1314 return ret;
1317 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1319 struct i915_address_space *vm = &ppgtt->vm;
1320 struct drm_i915_private *dev_priv = vm->i915;
1321 enum vgt_g2v_type msg;
1322 int i;
1324 if (use_4lvl(vm)) {
1325 const u64 daddr = px_dma(&ppgtt->pml4);
1327 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1328 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1330 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1331 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1332 } else {
1333 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1334 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1336 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1337 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1340 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1341 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1344 I915_WRITE(vgtif_reg(g2v_notify), msg);
1346 return 0;
1349 static void gen8_free_scratch(struct i915_address_space *vm)
1351 if (use_4lvl(vm))
1352 free_pdp(vm, vm->scratch_pdp);
1353 free_pd(vm, vm->scratch_pd);
1354 free_pt(vm, vm->scratch_pt);
1355 cleanup_scratch_page(vm);
1358 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1359 struct i915_page_directory_pointer *pdp)
1361 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1362 int i;
1364 for (i = 0; i < pdpes; i++) {
1365 if (pdp->page_directory[i] == vm->scratch_pd)
1366 continue;
1368 gen8_free_page_tables(vm, pdp->page_directory[i]);
1369 free_pd(vm, pdp->page_directory[i]);
1372 free_pdp(vm, pdp);
1375 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1377 int i;
1379 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1380 if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1381 continue;
1383 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1386 cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1389 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1391 struct drm_i915_private *dev_priv = vm->i915;
1392 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1394 if (intel_vgpu_active(dev_priv))
1395 gen8_ppgtt_notify_vgt(ppgtt, false);
1397 if (use_4lvl(vm))
1398 gen8_ppgtt_cleanup_4lvl(ppgtt);
1399 else
1400 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1402 gen8_free_scratch(vm);
1405 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1406 struct i915_page_directory *pd,
1407 u64 start, u64 length)
1409 struct i915_page_table *pt;
1410 u64 from = start;
1411 unsigned int pde;
1413 gen8_for_each_pde(pt, pd, start, length, pde) {
1414 int count = gen8_pte_count(start, length);
1416 if (pt == vm->scratch_pt) {
1417 pd->used_pdes++;
1419 pt = alloc_pt(vm);
1420 if (IS_ERR(pt)) {
1421 pd->used_pdes--;
1422 goto unwind;
1425 if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1426 gen8_initialize_pt(vm, pt);
1428 gen8_ppgtt_set_pde(vm, pd, pt, pde);
1429 GEM_BUG_ON(pd->used_pdes > I915_PDES);
1432 pt->used_ptes += count;
1434 return 0;
1436 unwind:
1437 gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1438 return -ENOMEM;
1441 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1442 struct i915_page_directory_pointer *pdp,
1443 u64 start, u64 length)
1445 struct i915_page_directory *pd;
1446 u64 from = start;
1447 unsigned int pdpe;
1448 int ret;
1450 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1451 if (pd == vm->scratch_pd) {
1452 pdp->used_pdpes++;
1454 pd = alloc_pd(vm);
1455 if (IS_ERR(pd)) {
1456 pdp->used_pdpes--;
1457 goto unwind;
1460 gen8_initialize_pd(vm, pd);
1461 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1462 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1464 mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1467 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1468 if (unlikely(ret))
1469 goto unwind_pd;
1472 return 0;
1474 unwind_pd:
1475 if (!pd->used_pdes) {
1476 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1477 GEM_BUG_ON(!pdp->used_pdpes);
1478 pdp->used_pdpes--;
1479 free_pd(vm, pd);
1481 unwind:
1482 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1483 return -ENOMEM;
1486 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1487 u64 start, u64 length)
1489 return gen8_ppgtt_alloc_pdp(vm,
1490 &i915_vm_to_ppgtt(vm)->pdp, start, length);
1493 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1494 u64 start, u64 length)
1496 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1497 struct i915_pml4 *pml4 = &ppgtt->pml4;
1498 struct i915_page_directory_pointer *pdp;
1499 u64 from = start;
1500 u32 pml4e;
1501 int ret;
1503 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1504 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1505 pdp = alloc_pdp(vm);
1506 if (IS_ERR(pdp))
1507 goto unwind;
1509 gen8_initialize_pdp(vm, pdp);
1510 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1513 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1514 if (unlikely(ret))
1515 goto unwind_pdp;
1518 return 0;
1520 unwind_pdp:
1521 if (!pdp->used_pdpes) {
1522 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1523 free_pdp(vm, pdp);
1525 unwind:
1526 gen8_ppgtt_clear_4lvl(vm, from, start - from);
1527 return -ENOMEM;
1530 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1531 struct i915_page_directory_pointer *pdp,
1532 u64 start, u64 length,
1533 gen8_pte_t scratch_pte,
1534 struct seq_file *m)
1536 struct i915_address_space *vm = &ppgtt->vm;
1537 struct i915_page_directory *pd;
1538 u32 pdpe;
1540 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1541 struct i915_page_table *pt;
1542 u64 pd_len = length;
1543 u64 pd_start = start;
1544 u32 pde;
1546 if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1547 continue;
1549 seq_printf(m, "\tPDPE #%d\n", pdpe);
1550 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1551 u32 pte;
1552 gen8_pte_t *pt_vaddr;
1554 if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1555 continue;
1557 pt_vaddr = kmap_atomic_px(pt);
1558 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1559 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1560 pde << GEN8_PDE_SHIFT |
1561 pte << GEN8_PTE_SHIFT);
1562 int i;
1563 bool found = false;
1565 for (i = 0; i < 4; i++)
1566 if (pt_vaddr[pte + i] != scratch_pte)
1567 found = true;
1568 if (!found)
1569 continue;
1571 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1572 for (i = 0; i < 4; i++) {
1573 if (pt_vaddr[pte + i] != scratch_pte)
1574 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1575 else
1576 seq_puts(m, " SCRATCH ");
1578 seq_puts(m, "\n");
1580 kunmap_atomic(pt_vaddr);
1585 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1587 struct i915_address_space *vm = &ppgtt->vm;
1588 const gen8_pte_t scratch_pte =
1589 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1590 u64 start = 0, length = ppgtt->vm.total;
1592 if (use_4lvl(vm)) {
1593 u64 pml4e;
1594 struct i915_pml4 *pml4 = &ppgtt->pml4;
1595 struct i915_page_directory_pointer *pdp;
1597 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1598 if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1599 continue;
1601 seq_printf(m, " PML4E #%llu\n", pml4e);
1602 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1604 } else {
1605 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1609 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1611 struct i915_address_space *vm = &ppgtt->vm;
1612 struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1613 struct i915_page_directory *pd;
1614 u64 start = 0, length = ppgtt->vm.total;
1615 u64 from = start;
1616 unsigned int pdpe;
1618 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1619 pd = alloc_pd(vm);
1620 if (IS_ERR(pd))
1621 goto unwind;
1623 gen8_initialize_pd(vm, pd);
1624 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1625 pdp->used_pdpes++;
1628 pdp->used_pdpes++; /* never remove */
1629 return 0;
1631 unwind:
1632 start -= from;
1633 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1634 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1635 free_pd(vm, pd);
1637 pdp->used_pdpes = 0;
1638 return -ENOMEM;
1642 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1643 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1644 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1645 * space.
1648 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1650 struct i915_hw_ppgtt *ppgtt;
1651 int err;
1653 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1654 if (!ppgtt)
1655 return ERR_PTR(-ENOMEM);
1657 kref_init(&ppgtt->ref);
1659 ppgtt->vm.i915 = i915;
1660 ppgtt->vm.dma = &i915->drm.pdev->dev;
1662 ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1663 1ULL << 48 :
1664 1ULL << 32;
1667 * From bdw, there is support for read-only pages in the PPGTT.
1669 * XXX GVT is not honouring the lack of RW in the PTE bits.
1671 ppgtt->vm.has_read_only = !intel_vgpu_active(i915);
1673 i915_address_space_init(&ppgtt->vm, i915);
1675 /* There are only few exceptions for gen >=6. chv and bxt.
1676 * And we are not sure about the latter so play safe for now.
1678 if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1679 ppgtt->vm.pt_kmap_wc = true;
1681 err = gen8_init_scratch(&ppgtt->vm);
1682 if (err)
1683 goto err_free;
1685 if (use_4lvl(&ppgtt->vm)) {
1686 err = setup_px(&ppgtt->vm, &ppgtt->pml4);
1687 if (err)
1688 goto err_scratch;
1690 gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1692 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1693 ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1694 ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1695 } else {
1696 err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
1697 if (err)
1698 goto err_scratch;
1700 if (intel_vgpu_active(i915)) {
1701 err = gen8_preallocate_top_level_pdp(ppgtt);
1702 if (err) {
1703 __pdp_fini(&ppgtt->pdp);
1704 goto err_scratch;
1708 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1709 ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1710 ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1713 if (intel_vgpu_active(i915))
1714 gen8_ppgtt_notify_vgt(ppgtt, true);
1716 ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1717 ppgtt->debug_dump = gen8_dump_ppgtt;
1719 ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma;
1720 ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma;
1721 ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages;
1722 ppgtt->vm.vma_ops.clear_pages = clear_pages;
1724 return ppgtt;
1726 err_scratch:
1727 gen8_free_scratch(&ppgtt->vm);
1728 err_free:
1729 kfree(ppgtt);
1730 return ERR_PTR(err);
1733 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
1735 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1736 const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1737 struct i915_page_table *pt;
1738 u32 pte, pde;
1740 gen6_for_all_pdes(pt, &base->pd, pde) {
1741 gen6_pte_t *vaddr;
1743 if (pt == base->vm.scratch_pt)
1744 continue;
1746 if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
1747 u32 expected =
1748 GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
1749 GEN6_PDE_VALID;
1750 u32 pd_entry = readl(ppgtt->pd_addr + pde);
1752 if (pd_entry != expected)
1753 seq_printf(m,
1754 "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1755 pde,
1756 pd_entry,
1757 expected);
1759 seq_printf(m, "\tPDE: %x\n", pd_entry);
1762 vaddr = kmap_atomic_px(base->pd.page_table[pde]);
1763 for (pte = 0; pte < GEN6_PTES; pte += 4) {
1764 int i;
1766 for (i = 0; i < 4; i++)
1767 if (vaddr[pte + i] != scratch_pte)
1768 break;
1769 if (i == 4)
1770 continue;
1772 seq_printf(m, "\t\t(%03d, %04d) %08llx: ",
1773 pde, pte,
1774 (pde * GEN6_PTES + pte) * I915_GTT_PAGE_SIZE);
1775 for (i = 0; i < 4; i++) {
1776 if (vaddr[pte + i] != scratch_pte)
1777 seq_printf(m, " %08x", vaddr[pte + i]);
1778 else
1779 seq_puts(m, " SCRATCH");
1781 seq_puts(m, "\n");
1783 kunmap_atomic(vaddr);
1787 /* Write pde (index) from the page directory @pd to the page table @pt */
1788 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
1789 const unsigned int pde,
1790 const struct i915_page_table *pt)
1792 /* Caller needs to make sure the write completes if necessary */
1793 iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1794 ppgtt->pd_addr + pde);
1797 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1799 struct intel_engine_cs *engine;
1800 enum intel_engine_id id;
1802 for_each_engine(engine, dev_priv, id) {
1803 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1804 GEN8_GFX_PPGTT_48B : 0;
1805 I915_WRITE(RING_MODE_GEN7(engine),
1806 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1810 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1812 struct intel_engine_cs *engine;
1813 u32 ecochk, ecobits;
1814 enum intel_engine_id id;
1816 ecobits = I915_READ(GAC_ECO_BITS);
1817 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1819 ecochk = I915_READ(GAM_ECOCHK);
1820 if (IS_HASWELL(dev_priv)) {
1821 ecochk |= ECOCHK_PPGTT_WB_HSW;
1822 } else {
1823 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1824 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1826 I915_WRITE(GAM_ECOCHK, ecochk);
1828 for_each_engine(engine, dev_priv, id) {
1829 /* GFX_MODE is per-ring on gen7+ */
1830 I915_WRITE(RING_MODE_GEN7(engine),
1831 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1835 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1837 u32 ecochk, gab_ctl, ecobits;
1839 ecobits = I915_READ(GAC_ECO_BITS);
1840 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1841 ECOBITS_PPGTT_CACHE64B);
1843 gab_ctl = I915_READ(GAB_CTL);
1844 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1846 ecochk = I915_READ(GAM_ECOCHK);
1847 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1849 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1852 /* PPGTT support for Sandybdrige/Gen6 and later */
1853 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1854 u64 start, u64 length)
1856 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1857 unsigned int first_entry = start >> PAGE_SHIFT;
1858 unsigned int pde = first_entry / GEN6_PTES;
1859 unsigned int pte = first_entry % GEN6_PTES;
1860 unsigned int num_entries = length >> PAGE_SHIFT;
1861 const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1863 while (num_entries) {
1864 struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1865 const unsigned int end = min(pte + num_entries, GEN6_PTES);
1866 const unsigned int count = end - pte;
1867 gen6_pte_t *vaddr;
1869 GEM_BUG_ON(pt == vm->scratch_pt);
1871 num_entries -= count;
1873 GEM_BUG_ON(count > pt->used_ptes);
1874 pt->used_ptes -= count;
1875 if (!pt->used_ptes)
1876 ppgtt->scan_for_unused_pt = true;
1879 * Note that the hw doesn't support removing PDE on the fly
1880 * (they are cached inside the context with no means to
1881 * invalidate the cache), so we can only reset the PTE
1882 * entries back to scratch.
1885 vaddr = kmap_atomic_px(pt);
1886 do {
1887 vaddr[pte++] = scratch_pte;
1888 } while (pte < end);
1889 kunmap_atomic(vaddr);
1891 pte = 0;
1895 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1896 struct i915_vma *vma,
1897 enum i915_cache_level cache_level,
1898 u32 flags)
1900 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1901 unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1902 unsigned act_pt = first_entry / GEN6_PTES;
1903 unsigned act_pte = first_entry % GEN6_PTES;
1904 const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1905 struct sgt_dma iter = sgt_dma(vma);
1906 gen6_pte_t *vaddr;
1908 GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
1910 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1911 do {
1912 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1914 iter.dma += I915_GTT_PAGE_SIZE;
1915 if (iter.dma == iter.max) {
1916 iter.sg = __sg_next(iter.sg);
1917 if (!iter.sg)
1918 break;
1920 iter.dma = sg_dma_address(iter.sg);
1921 iter.max = iter.dma + iter.sg->length;
1924 if (++act_pte == GEN6_PTES) {
1925 kunmap_atomic(vaddr);
1926 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1927 act_pte = 0;
1929 } while (1);
1930 kunmap_atomic(vaddr);
1932 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1935 static int gen6_alloc_va_range(struct i915_address_space *vm,
1936 u64 start, u64 length)
1938 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1939 struct i915_page_table *pt;
1940 u64 from = start;
1941 unsigned int pde;
1942 bool flush = false;
1944 gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1945 const unsigned int count = gen6_pte_count(start, length);
1947 if (pt == vm->scratch_pt) {
1948 pt = alloc_pt(vm);
1949 if (IS_ERR(pt))
1950 goto unwind_out;
1952 gen6_initialize_pt(ppgtt, pt);
1953 ppgtt->base.pd.page_table[pde] = pt;
1955 if (i915_vma_is_bound(ppgtt->vma,
1956 I915_VMA_GLOBAL_BIND)) {
1957 gen6_write_pde(ppgtt, pde, pt);
1958 flush = true;
1961 GEM_BUG_ON(pt->used_ptes);
1964 pt->used_ptes += count;
1967 if (flush) {
1968 mark_tlbs_dirty(&ppgtt->base);
1969 gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1972 return 0;
1974 unwind_out:
1975 gen6_ppgtt_clear_range(vm, from, start - from);
1976 return -ENOMEM;
1979 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1981 struct i915_address_space * const vm = &ppgtt->base.vm;
1982 struct i915_page_table *unused;
1983 u32 pde;
1984 int ret;
1986 ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1987 if (ret)
1988 return ret;
1990 ppgtt->scratch_pte =
1991 vm->pte_encode(vm->scratch_page.daddr,
1992 I915_CACHE_NONE, PTE_READ_ONLY);
1994 vm->scratch_pt = alloc_pt(vm);
1995 if (IS_ERR(vm->scratch_pt)) {
1996 cleanup_scratch_page(vm);
1997 return PTR_ERR(vm->scratch_pt);
2000 gen6_initialize_pt(ppgtt, vm->scratch_pt);
2001 gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
2002 ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
2004 return 0;
2007 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
2009 free_pt(vm, vm->scratch_pt);
2010 cleanup_scratch_page(vm);
2013 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
2015 struct i915_page_table *pt;
2016 u32 pde;
2018 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2019 if (pt != ppgtt->base.vm.scratch_pt)
2020 free_pt(&ppgtt->base.vm, pt);
2023 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2025 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
2027 i915_vma_destroy(ppgtt->vma);
2029 gen6_ppgtt_free_pd(ppgtt);
2030 gen6_ppgtt_free_scratch(vm);
2033 static int pd_vma_set_pages(struct i915_vma *vma)
2035 vma->pages = ERR_PTR(-ENODEV);
2036 return 0;
2039 static void pd_vma_clear_pages(struct i915_vma *vma)
2041 GEM_BUG_ON(!vma->pages);
2043 vma->pages = NULL;
2046 static int pd_vma_bind(struct i915_vma *vma,
2047 enum i915_cache_level cache_level,
2048 u32 unused)
2050 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
2051 struct gen6_hw_ppgtt *ppgtt = vma->private;
2052 u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
2053 struct i915_page_table *pt;
2054 unsigned int pde;
2056 ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
2057 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2059 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2060 gen6_write_pde(ppgtt, pde, pt);
2062 mark_tlbs_dirty(&ppgtt->base);
2063 gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2065 return 0;
2068 static void pd_vma_unbind(struct i915_vma *vma)
2070 struct gen6_hw_ppgtt *ppgtt = vma->private;
2071 struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
2072 struct i915_page_table *pt;
2073 unsigned int pde;
2075 if (!ppgtt->scan_for_unused_pt)
2076 return;
2078 /* Free all no longer used page tables */
2079 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
2080 if (pt->used_ptes || pt == scratch_pt)
2081 continue;
2083 free_pt(&ppgtt->base.vm, pt);
2084 ppgtt->base.pd.page_table[pde] = scratch_pt;
2087 ppgtt->scan_for_unused_pt = false;
2090 static const struct i915_vma_ops pd_vma_ops = {
2091 .set_pages = pd_vma_set_pages,
2092 .clear_pages = pd_vma_clear_pages,
2093 .bind_vma = pd_vma_bind,
2094 .unbind_vma = pd_vma_unbind,
2097 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
2099 struct drm_i915_private *i915 = ppgtt->base.vm.i915;
2100 struct i915_ggtt *ggtt = &i915->ggtt;
2101 struct i915_vma *vma;
2103 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
2104 GEM_BUG_ON(size > ggtt->vm.total);
2106 vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
2107 if (!vma)
2108 return ERR_PTR(-ENOMEM);
2110 init_request_active(&vma->last_fence, NULL);
2112 vma->vm = &ggtt->vm;
2113 vma->ops = &pd_vma_ops;
2114 vma->private = ppgtt;
2116 vma->active = RB_ROOT;
2118 vma->size = size;
2119 vma->fence_size = size;
2120 vma->flags = I915_VMA_GGTT;
2121 vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
2123 INIT_LIST_HEAD(&vma->obj_link);
2124 list_add(&vma->vm_link, &vma->vm->unbound_list);
2126 return vma;
2129 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2131 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2132 int err;
2135 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
2136 * which will be pinned into every active context.
2137 * (When vma->pin_count becomes atomic, I expect we will naturally
2138 * need a larger, unpacked, type and kill this redundancy.)
2140 if (ppgtt->pin_count++)
2141 return 0;
2144 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2145 * allocator works in address space sizes, so it's multiplied by page
2146 * size. We allocate at the top of the GTT to avoid fragmentation.
2148 err = i915_vma_pin(ppgtt->vma,
2149 0, GEN6_PD_ALIGN,
2150 PIN_GLOBAL | PIN_HIGH);
2151 if (err)
2152 goto unpin;
2154 return 0;
2156 unpin:
2157 ppgtt->pin_count = 0;
2158 return err;
2161 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
2163 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2165 GEM_BUG_ON(!ppgtt->pin_count);
2166 if (--ppgtt->pin_count)
2167 return;
2169 i915_vma_unpin(ppgtt->vma);
2172 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2174 struct i915_ggtt * const ggtt = &i915->ggtt;
2175 struct gen6_hw_ppgtt *ppgtt;
2176 int err;
2178 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2179 if (!ppgtt)
2180 return ERR_PTR(-ENOMEM);
2182 kref_init(&ppgtt->base.ref);
2184 ppgtt->base.vm.i915 = i915;
2185 ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2187 ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
2189 i915_address_space_init(&ppgtt->base.vm, i915);
2191 ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2192 ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2193 ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2194 ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2195 ppgtt->base.debug_dump = gen6_dump_ppgtt;
2197 ppgtt->base.vm.vma_ops.bind_vma = ppgtt_bind_vma;
2198 ppgtt->base.vm.vma_ops.unbind_vma = ppgtt_unbind_vma;
2199 ppgtt->base.vm.vma_ops.set_pages = ppgtt_set_pages;
2200 ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2202 ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2204 err = gen6_ppgtt_init_scratch(ppgtt);
2205 if (err)
2206 goto err_free;
2208 ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2209 if (IS_ERR(ppgtt->vma)) {
2210 err = PTR_ERR(ppgtt->vma);
2211 goto err_scratch;
2214 return &ppgtt->base;
2216 err_scratch:
2217 gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2218 err_free:
2219 kfree(ppgtt);
2220 return ERR_PTR(err);
2223 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2225 /* This function is for gtt related workarounds. This function is
2226 * called on driver load and after a GPU reset, so you can place
2227 * workarounds here even if they get overwritten by GPU reset.
2229 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2230 if (IS_BROADWELL(dev_priv))
2231 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2232 else if (IS_CHERRYVIEW(dev_priv))
2233 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2234 else if (IS_GEN9_LP(dev_priv))
2235 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2236 else if (INTEL_GEN(dev_priv) >= 9)
2237 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2240 * To support 64K PTEs we need to first enable the use of the
2241 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2242 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2243 * shouldn't be needed after GEN10.
2245 * 64K pages were first introduced from BDW+, although technically they
2246 * only *work* from gen9+. For pre-BDW we instead have the option for
2247 * 32K pages, but we don't currently have any support for it in our
2248 * driver.
2250 if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2251 INTEL_GEN(dev_priv) <= 10)
2252 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2253 I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2254 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2257 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2259 gtt_write_workarounds(dev_priv);
2261 /* In the case of execlists, PPGTT is enabled by the context descriptor
2262 * and the PDPs are contained within the context itself. We don't
2263 * need to do anything here. */
2264 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2265 return 0;
2267 if (!USES_PPGTT(dev_priv))
2268 return 0;
2270 if (IS_GEN6(dev_priv))
2271 gen6_ppgtt_enable(dev_priv);
2272 else if (IS_GEN7(dev_priv))
2273 gen7_ppgtt_enable(dev_priv);
2274 else if (INTEL_GEN(dev_priv) >= 8)
2275 gen8_ppgtt_enable(dev_priv);
2276 else
2277 MISSING_CASE(INTEL_GEN(dev_priv));
2279 return 0;
2282 static struct i915_hw_ppgtt *
2283 __hw_ppgtt_create(struct drm_i915_private *i915)
2285 if (INTEL_GEN(i915) < 8)
2286 return gen6_ppgtt_create(i915);
2287 else
2288 return gen8_ppgtt_create(i915);
2291 struct i915_hw_ppgtt *
2292 i915_ppgtt_create(struct drm_i915_private *i915,
2293 struct drm_i915_file_private *fpriv)
2295 struct i915_hw_ppgtt *ppgtt;
2297 ppgtt = __hw_ppgtt_create(i915);
2298 if (IS_ERR(ppgtt))
2299 return ppgtt;
2301 ppgtt->vm.file = fpriv;
2303 trace_i915_ppgtt_create(&ppgtt->vm);
2305 return ppgtt;
2308 void i915_ppgtt_close(struct i915_address_space *vm)
2310 GEM_BUG_ON(vm->closed);
2311 vm->closed = true;
2314 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2316 struct list_head *phases[] = {
2317 &vm->active_list,
2318 &vm->inactive_list,
2319 &vm->unbound_list,
2320 NULL,
2321 }, **phase;
2323 vm->closed = true;
2324 for (phase = phases; *phase; phase++) {
2325 struct i915_vma *vma, *vn;
2327 list_for_each_entry_safe(vma, vn, *phase, vm_link)
2328 i915_vma_destroy(vma);
2332 void i915_ppgtt_release(struct kref *kref)
2334 struct i915_hw_ppgtt *ppgtt =
2335 container_of(kref, struct i915_hw_ppgtt, ref);
2337 trace_i915_ppgtt_release(&ppgtt->vm);
2339 ppgtt_destroy_vma(&ppgtt->vm);
2341 GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
2342 GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
2343 GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2345 ppgtt->vm.cleanup(&ppgtt->vm);
2346 i915_address_space_fini(&ppgtt->vm);
2347 kfree(ppgtt);
2350 /* Certain Gen5 chipsets require require idling the GPU before
2351 * unmapping anything from the GTT when VT-d is enabled.
2353 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2355 /* Query intel_iommu to see if we need the workaround. Presumably that
2356 * was loaded first.
2358 return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2361 static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2363 struct intel_engine_cs *engine;
2364 enum intel_engine_id id;
2365 u32 fault;
2367 for_each_engine(engine, dev_priv, id) {
2368 fault = I915_READ(RING_FAULT_REG(engine));
2369 if (fault & RING_FAULT_VALID) {
2370 DRM_DEBUG_DRIVER("Unexpected fault\n"
2371 "\tAddr: 0x%08lx\n"
2372 "\tAddress space: %s\n"
2373 "\tSource ID: %d\n"
2374 "\tType: %d\n",
2375 fault & PAGE_MASK,
2376 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2377 RING_FAULT_SRCID(fault),
2378 RING_FAULT_FAULT_TYPE(fault));
2379 I915_WRITE(RING_FAULT_REG(engine),
2380 fault & ~RING_FAULT_VALID);
2384 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2387 static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
2389 u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2391 if (fault & RING_FAULT_VALID) {
2392 u32 fault_data0, fault_data1;
2393 u64 fault_addr;
2395 fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2396 fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2397 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2398 ((u64)fault_data0 << 12);
2400 DRM_DEBUG_DRIVER("Unexpected fault\n"
2401 "\tAddr: 0x%08x_%08x\n"
2402 "\tAddress space: %s\n"
2403 "\tEngine ID: %d\n"
2404 "\tSource ID: %d\n"
2405 "\tType: %d\n",
2406 upper_32_bits(fault_addr),
2407 lower_32_bits(fault_addr),
2408 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2409 GEN8_RING_FAULT_ENGINE_ID(fault),
2410 RING_FAULT_SRCID(fault),
2411 RING_FAULT_FAULT_TYPE(fault));
2412 I915_WRITE(GEN8_RING_FAULT_REG,
2413 fault & ~RING_FAULT_VALID);
2416 POSTING_READ(GEN8_RING_FAULT_REG);
2419 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2421 /* From GEN8 onwards we only have one 'All Engine Fault Register' */
2422 if (INTEL_GEN(dev_priv) >= 8)
2423 gen8_check_and_clear_faults(dev_priv);
2424 else if (INTEL_GEN(dev_priv) >= 6)
2425 gen6_check_and_clear_faults(dev_priv);
2426 else
2427 return;
2430 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2432 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2434 /* Don't bother messing with faults pre GEN6 as we have little
2435 * documentation supporting that it's a good idea.
2437 if (INTEL_GEN(dev_priv) < 6)
2438 return;
2440 i915_check_and_clear_faults(dev_priv);
2442 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2444 i915_ggtt_invalidate(dev_priv);
2447 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2448 struct sg_table *pages)
2450 do {
2451 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2452 pages->sgl, pages->nents,
2453 PCI_DMA_BIDIRECTIONAL,
2454 DMA_ATTR_NO_WARN))
2455 return 0;
2457 /* If the DMA remap fails, one cause can be that we have
2458 * too many objects pinned in a small remapping table,
2459 * such as swiotlb. Incrementally purge all other objects and
2460 * try again - if there are no more pages to remove from
2461 * the DMA remapper, i915_gem_shrink will return 0.
2463 GEM_BUG_ON(obj->mm.pages == pages);
2464 } while (i915_gem_shrink(to_i915(obj->base.dev),
2465 obj->base.size >> PAGE_SHIFT, NULL,
2466 I915_SHRINK_BOUND |
2467 I915_SHRINK_UNBOUND |
2468 I915_SHRINK_ACTIVE));
2470 return -ENOSPC;
2473 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2475 writeq(pte, addr);
2478 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2479 dma_addr_t addr,
2480 u64 offset,
2481 enum i915_cache_level level,
2482 u32 unused)
2484 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2485 gen8_pte_t __iomem *pte =
2486 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2488 gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2490 ggtt->invalidate(vm->i915);
2493 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2494 struct i915_vma *vma,
2495 enum i915_cache_level level,
2496 u32 flags)
2498 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2499 struct sgt_iter sgt_iter;
2500 gen8_pte_t __iomem *gtt_entries;
2501 const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2502 dma_addr_t addr;
2505 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2506 * not to allow the user to override access to a read only page.
2509 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2510 gtt_entries += vma->node.start >> PAGE_SHIFT;
2511 for_each_sgt_dma(addr, sgt_iter, vma->pages)
2512 gen8_set_pte(gtt_entries++, pte_encode | addr);
2515 * We want to flush the TLBs only after we're certain all the PTE
2516 * updates have finished.
2518 ggtt->invalidate(vm->i915);
2521 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2522 dma_addr_t addr,
2523 u64 offset,
2524 enum i915_cache_level level,
2525 u32 flags)
2527 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2528 gen6_pte_t __iomem *pte =
2529 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2531 iowrite32(vm->pte_encode(addr, level, flags), pte);
2533 ggtt->invalidate(vm->i915);
2537 * Binds an object into the global gtt with the specified cache level. The object
2538 * will be accessible to the GPU via commands whose operands reference offsets
2539 * within the global GTT as well as accessible by the GPU through the GMADR
2540 * mapped BAR (dev_priv->mm.gtt->gtt).
2542 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2543 struct i915_vma *vma,
2544 enum i915_cache_level level,
2545 u32 flags)
2547 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2548 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2549 unsigned int i = vma->node.start >> PAGE_SHIFT;
2550 struct sgt_iter iter;
2551 dma_addr_t addr;
2552 for_each_sgt_dma(addr, iter, vma->pages)
2553 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2556 * We want to flush the TLBs only after we're certain all the PTE
2557 * updates have finished.
2559 ggtt->invalidate(vm->i915);
2562 static void nop_clear_range(struct i915_address_space *vm,
2563 u64 start, u64 length)
2567 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2568 u64 start, u64 length)
2570 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2571 unsigned first_entry = start >> PAGE_SHIFT;
2572 unsigned num_entries = length >> PAGE_SHIFT;
2573 const gen8_pte_t scratch_pte =
2574 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
2575 gen8_pte_t __iomem *gtt_base =
2576 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2577 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2578 int i;
2580 if (WARN(num_entries > max_entries,
2581 "First entry = %d; Num entries = %d (max=%d)\n",
2582 first_entry, num_entries, max_entries))
2583 num_entries = max_entries;
2585 for (i = 0; i < num_entries; i++)
2586 gen8_set_pte(&gtt_base[i], scratch_pte);
2589 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2591 struct drm_i915_private *dev_priv = vm->i915;
2594 * Make sure the internal GAM fifo has been cleared of all GTT
2595 * writes before exiting stop_machine(). This guarantees that
2596 * any aperture accesses waiting to start in another process
2597 * cannot back up behind the GTT writes causing a hang.
2598 * The register can be any arbitrary GAM register.
2600 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2603 struct insert_page {
2604 struct i915_address_space *vm;
2605 dma_addr_t addr;
2606 u64 offset;
2607 enum i915_cache_level level;
2610 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2612 struct insert_page *arg = _arg;
2614 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2615 bxt_vtd_ggtt_wa(arg->vm);
2617 return 0;
2620 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2621 dma_addr_t addr,
2622 u64 offset,
2623 enum i915_cache_level level,
2624 u32 unused)
2626 struct insert_page arg = { vm, addr, offset, level };
2628 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2631 struct insert_entries {
2632 struct i915_address_space *vm;
2633 struct i915_vma *vma;
2634 enum i915_cache_level level;
2635 u32 flags;
2638 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2640 struct insert_entries *arg = _arg;
2642 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2643 bxt_vtd_ggtt_wa(arg->vm);
2645 return 0;
2648 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2649 struct i915_vma *vma,
2650 enum i915_cache_level level,
2651 u32 flags)
2653 struct insert_entries arg = { vm, vma, level, flags };
2655 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2658 struct clear_range {
2659 struct i915_address_space *vm;
2660 u64 start;
2661 u64 length;
2664 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2666 struct clear_range *arg = _arg;
2668 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2669 bxt_vtd_ggtt_wa(arg->vm);
2671 return 0;
2674 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2675 u64 start,
2676 u64 length)
2678 struct clear_range arg = { vm, start, length };
2680 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2683 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2684 u64 start, u64 length)
2686 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2687 unsigned first_entry = start >> PAGE_SHIFT;
2688 unsigned num_entries = length >> PAGE_SHIFT;
2689 gen6_pte_t scratch_pte, __iomem *gtt_base =
2690 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2691 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2692 int i;
2694 if (WARN(num_entries > max_entries,
2695 "First entry = %d; Num entries = %d (max=%d)\n",
2696 first_entry, num_entries, max_entries))
2697 num_entries = max_entries;
2699 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2700 I915_CACHE_LLC, 0);
2702 for (i = 0; i < num_entries; i++)
2703 iowrite32(scratch_pte, &gtt_base[i]);
2706 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2707 dma_addr_t addr,
2708 u64 offset,
2709 enum i915_cache_level cache_level,
2710 u32 unused)
2712 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2713 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2715 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2718 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2719 struct i915_vma *vma,
2720 enum i915_cache_level cache_level,
2721 u32 unused)
2723 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2724 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2726 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2727 flags);
2730 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2731 u64 start, u64 length)
2733 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2736 static int ggtt_bind_vma(struct i915_vma *vma,
2737 enum i915_cache_level cache_level,
2738 u32 flags)
2740 struct drm_i915_private *i915 = vma->vm->i915;
2741 struct drm_i915_gem_object *obj = vma->obj;
2742 u32 pte_flags;
2744 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2745 pte_flags = 0;
2746 if (i915_gem_object_is_readonly(obj))
2747 pte_flags |= PTE_READ_ONLY;
2749 intel_runtime_pm_get(i915);
2750 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2751 intel_runtime_pm_put(i915);
2753 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2756 * Without aliasing PPGTT there's no difference between
2757 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2758 * upgrade to both bound if we bind either to avoid double-binding.
2760 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2762 return 0;
2765 static void ggtt_unbind_vma(struct i915_vma *vma)
2767 struct drm_i915_private *i915 = vma->vm->i915;
2769 intel_runtime_pm_get(i915);
2770 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2771 intel_runtime_pm_put(i915);
2774 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2775 enum i915_cache_level cache_level,
2776 u32 flags)
2778 struct drm_i915_private *i915 = vma->vm->i915;
2779 u32 pte_flags;
2780 int ret;
2782 /* Currently applicable only to VLV */
2783 pte_flags = 0;
2784 if (i915_gem_object_is_readonly(vma->obj))
2785 pte_flags |= PTE_READ_ONLY;
2787 if (flags & I915_VMA_LOCAL_BIND) {
2788 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2790 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2791 ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2792 vma->node.start,
2793 vma->size);
2794 if (ret)
2795 return ret;
2798 appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2799 pte_flags);
2802 if (flags & I915_VMA_GLOBAL_BIND) {
2803 intel_runtime_pm_get(i915);
2804 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2805 intel_runtime_pm_put(i915);
2808 return 0;
2811 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2813 struct drm_i915_private *i915 = vma->vm->i915;
2815 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2816 intel_runtime_pm_get(i915);
2817 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2818 intel_runtime_pm_put(i915);
2821 if (vma->flags & I915_VMA_LOCAL_BIND) {
2822 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2824 vm->clear_range(vm, vma->node.start, vma->size);
2828 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2829 struct sg_table *pages)
2831 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2832 struct device *kdev = &dev_priv->drm.pdev->dev;
2833 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2835 if (unlikely(ggtt->do_idle_maps)) {
2836 if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2837 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2838 /* Wait a bit, in hopes it avoids the hang */
2839 udelay(10);
2843 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2846 static int ggtt_set_pages(struct i915_vma *vma)
2848 int ret;
2850 GEM_BUG_ON(vma->pages);
2852 ret = i915_get_ggtt_vma_pages(vma);
2853 if (ret)
2854 return ret;
2856 vma->page_sizes = vma->obj->mm.page_sizes;
2858 return 0;
2861 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2862 unsigned long color,
2863 u64 *start,
2864 u64 *end)
2866 if (node->allocated && node->color != color)
2867 *start += I915_GTT_PAGE_SIZE;
2869 /* Also leave a space between the unallocated reserved node after the
2870 * GTT and any objects within the GTT, i.e. we use the color adjustment
2871 * to insert a guard page to prevent prefetches crossing over the
2872 * GTT boundary.
2874 node = list_next_entry(node, node_list);
2875 if (node->color != color)
2876 *end -= I915_GTT_PAGE_SIZE;
2879 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2881 struct i915_ggtt *ggtt = &i915->ggtt;
2882 struct i915_hw_ppgtt *ppgtt;
2883 int err;
2885 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2886 if (IS_ERR(ppgtt))
2887 return PTR_ERR(ppgtt);
2889 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2890 err = -ENODEV;
2891 goto err_ppgtt;
2895 * Note we only pre-allocate as far as the end of the global
2896 * GTT. On 48b / 4-level page-tables, the difference is very,
2897 * very significant! We have to preallocate as GVT/vgpu does
2898 * not like the page directory disappearing.
2900 err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2901 if (err)
2902 goto err_ppgtt;
2904 i915->mm.aliasing_ppgtt = ppgtt;
2906 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2907 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2909 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2910 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2912 return 0;
2914 err_ppgtt:
2915 i915_ppgtt_put(ppgtt);
2916 return err;
2919 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2921 struct i915_ggtt *ggtt = &i915->ggtt;
2922 struct i915_hw_ppgtt *ppgtt;
2924 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2925 if (!ppgtt)
2926 return;
2928 i915_ppgtt_put(ppgtt);
2930 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
2931 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2934 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2936 /* Let GEM Manage all of the aperture.
2938 * However, leave one page at the end still bound to the scratch page.
2939 * There are a number of places where the hardware apparently prefetches
2940 * past the end of the object, and we've seen multiple hangs with the
2941 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2942 * aperture. One page should be enough to keep any prefetching inside
2943 * of the aperture.
2945 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2946 unsigned long hole_start, hole_end;
2947 struct drm_mm_node *entry;
2948 int ret;
2950 ret = intel_vgt_balloon(dev_priv);
2951 if (ret)
2952 return ret;
2954 /* Reserve a mappable slot for our lockless error capture */
2955 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2956 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2957 0, ggtt->mappable_end,
2958 DRM_MM_INSERT_LOW);
2959 if (ret)
2960 return ret;
2962 /* Clear any non-preallocated blocks */
2963 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2964 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2965 hole_start, hole_end);
2966 ggtt->vm.clear_range(&ggtt->vm, hole_start,
2967 hole_end - hole_start);
2970 /* And finally clear the reserved guard page */
2971 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2973 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2974 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2975 if (ret)
2976 goto err;
2979 return 0;
2981 err:
2982 drm_mm_remove_node(&ggtt->error_capture);
2983 return ret;
2987 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2988 * @dev_priv: i915 device
2990 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2992 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2993 struct i915_vma *vma, *vn;
2994 struct pagevec *pvec;
2996 ggtt->vm.closed = true;
2998 mutex_lock(&dev_priv->drm.struct_mutex);
2999 i915_gem_fini_aliasing_ppgtt(dev_priv);
3001 GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
3002 list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
3003 WARN_ON(i915_vma_unbind(vma));
3005 if (drm_mm_node_allocated(&ggtt->error_capture))
3006 drm_mm_remove_node(&ggtt->error_capture);
3008 if (drm_mm_initialized(&ggtt->vm.mm)) {
3009 intel_vgt_deballoon(dev_priv);
3010 i915_address_space_fini(&ggtt->vm);
3013 ggtt->vm.cleanup(&ggtt->vm);
3015 pvec = &dev_priv->mm.wc_stash.pvec;
3016 if (pvec->nr) {
3017 set_pages_array_wb(pvec->pages, pvec->nr);
3018 __pagevec_release(pvec);
3021 mutex_unlock(&dev_priv->drm.struct_mutex);
3023 arch_phys_wc_del(ggtt->mtrr);
3024 io_mapping_fini(&ggtt->iomap);
3026 i915_gem_cleanup_stolen(&dev_priv->drm);
3029 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
3031 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
3032 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
3033 return snb_gmch_ctl << 20;
3036 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
3038 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
3039 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
3040 if (bdw_gmch_ctl)
3041 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3043 #ifdef CONFIG_X86_32
3044 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
3045 if (bdw_gmch_ctl > 4)
3046 bdw_gmch_ctl = 4;
3047 #endif
3049 return bdw_gmch_ctl << 20;
3052 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3054 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
3055 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
3057 if (gmch_ctrl)
3058 return 1 << (20 + gmch_ctrl);
3060 return 0;
3063 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
3065 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3066 struct pci_dev *pdev = dev_priv->drm.pdev;
3067 phys_addr_t phys_addr;
3068 int ret;
3070 /* For Modern GENs the PTEs and register space are split in the BAR */
3071 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
3074 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
3075 * will be dropped. For WC mappings in general we have 64 byte burst
3076 * writes when the WC buffer is flushed, so we can't use it, but have to
3077 * resort to an uncached mapping. The WC issue is easily caught by the
3078 * readback check when writing GTT PTE entries.
3080 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3081 ggtt->gsm = ioremap_nocache(phys_addr, size);
3082 else
3083 ggtt->gsm = ioremap_wc(phys_addr, size);
3084 if (!ggtt->gsm) {
3085 DRM_ERROR("Failed to map the ggtt page table\n");
3086 return -ENOMEM;
3089 ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3090 if (ret) {
3091 DRM_ERROR("Scratch setup failed\n");
3092 /* iounmap will also get called at remove, but meh */
3093 iounmap(ggtt->gsm);
3094 return ret;
3097 return 0;
3100 static struct intel_ppat_entry *
3101 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3103 struct intel_ppat_entry *entry = &ppat->entries[index];
3105 GEM_BUG_ON(index >= ppat->max_entries);
3106 GEM_BUG_ON(test_bit(index, ppat->used));
3108 entry->ppat = ppat;
3109 entry->value = value;
3110 kref_init(&entry->ref);
3111 set_bit(index, ppat->used);
3112 set_bit(index, ppat->dirty);
3114 return entry;
3117 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3119 struct intel_ppat *ppat = entry->ppat;
3120 unsigned int index = entry - ppat->entries;
3122 GEM_BUG_ON(index >= ppat->max_entries);
3123 GEM_BUG_ON(!test_bit(index, ppat->used));
3125 entry->value = ppat->clear_value;
3126 clear_bit(index, ppat->used);
3127 set_bit(index, ppat->dirty);
3131 * intel_ppat_get - get a usable PPAT entry
3132 * @i915: i915 device instance
3133 * @value: the PPAT value required by the caller
3135 * The function tries to search if there is an existing PPAT entry which
3136 * matches with the required value. If perfectly matched, the existing PPAT
3137 * entry will be used. If only partially matched, it will try to check if
3138 * there is any available PPAT index. If yes, it will allocate a new PPAT
3139 * index for the required entry and update the HW. If not, the partially
3140 * matched entry will be used.
3142 const struct intel_ppat_entry *
3143 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3145 struct intel_ppat *ppat = &i915->ppat;
3146 struct intel_ppat_entry *entry = NULL;
3147 unsigned int scanned, best_score;
3148 int i;
3150 GEM_BUG_ON(!ppat->max_entries);
3152 scanned = best_score = 0;
3153 for_each_set_bit(i, ppat->used, ppat->max_entries) {
3154 unsigned int score;
3156 score = ppat->match(ppat->entries[i].value, value);
3157 if (score > best_score) {
3158 entry = &ppat->entries[i];
3159 if (score == INTEL_PPAT_PERFECT_MATCH) {
3160 kref_get(&entry->ref);
3161 return entry;
3163 best_score = score;
3165 scanned++;
3168 if (scanned == ppat->max_entries) {
3169 if (!entry)
3170 return ERR_PTR(-ENOSPC);
3172 kref_get(&entry->ref);
3173 return entry;
3176 i = find_first_zero_bit(ppat->used, ppat->max_entries);
3177 entry = __alloc_ppat_entry(ppat, i, value);
3178 ppat->update_hw(i915);
3179 return entry;
3182 static void release_ppat(struct kref *kref)
3184 struct intel_ppat_entry *entry =
3185 container_of(kref, struct intel_ppat_entry, ref);
3186 struct drm_i915_private *i915 = entry->ppat->i915;
3188 __free_ppat_entry(entry);
3189 entry->ppat->update_hw(i915);
3193 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3194 * @entry: an intel PPAT entry
3196 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3197 * entry is dynamically allocated, its reference count will be decreased. Once
3198 * the reference count becomes into zero, the PPAT index becomes free again.
3200 void intel_ppat_put(const struct intel_ppat_entry *entry)
3202 struct intel_ppat *ppat = entry->ppat;
3203 unsigned int index = entry - ppat->entries;
3205 GEM_BUG_ON(!ppat->max_entries);
3207 kref_put(&ppat->entries[index].ref, release_ppat);
3210 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3212 struct intel_ppat *ppat = &dev_priv->ppat;
3213 int i;
3215 for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3216 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3217 clear_bit(i, ppat->dirty);
3221 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3223 struct intel_ppat *ppat = &dev_priv->ppat;
3224 u64 pat = 0;
3225 int i;
3227 for (i = 0; i < ppat->max_entries; i++)
3228 pat |= GEN8_PPAT(i, ppat->entries[i].value);
3230 bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3232 I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3233 I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3236 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3238 unsigned int score = 0;
3239 enum {
3240 AGE_MATCH = BIT(0),
3241 TC_MATCH = BIT(1),
3242 CA_MATCH = BIT(2),
3245 /* Cache attribute has to be matched. */
3246 if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3247 return 0;
3249 score |= CA_MATCH;
3251 if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3252 score |= TC_MATCH;
3254 if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3255 score |= AGE_MATCH;
3257 if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3258 return INTEL_PPAT_PERFECT_MATCH;
3260 return score;
3263 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3265 return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3266 INTEL_PPAT_PERFECT_MATCH : 0;
3269 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3271 ppat->max_entries = 8;
3272 ppat->update_hw = cnl_private_pat_update_hw;
3273 ppat->match = bdw_private_pat_match;
3274 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3276 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3277 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3278 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3279 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3280 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3281 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3282 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3283 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3286 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3287 * bits. When using advanced contexts each context stores its own PAT, but
3288 * writing this data shouldn't be harmful even in those cases. */
3289 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3291 ppat->max_entries = 8;
3292 ppat->update_hw = bdw_private_pat_update_hw;
3293 ppat->match = bdw_private_pat_match;
3294 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3296 if (!USES_PPGTT(ppat->i915)) {
3297 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3298 * so RTL will always use the value corresponding to
3299 * pat_sel = 000".
3300 * So let's disable cache for GGTT to avoid screen corruptions.
3301 * MOCS still can be used though.
3302 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3303 * before this patch, i.e. the same uncached + snooping access
3304 * like on gen6/7 seems to be in effect.
3305 * - So this just fixes blitter/render access. Again it looks
3306 * like it's not just uncached access, but uncached + snooping.
3307 * So we can still hold onto all our assumptions wrt cpu
3308 * clflushing on LLC machines.
3310 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3311 return;
3314 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */
3315 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */
3316 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */
3317 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */
3318 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3319 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3320 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3321 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3324 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3326 ppat->max_entries = 8;
3327 ppat->update_hw = bdw_private_pat_update_hw;
3328 ppat->match = chv_private_pat_match;
3329 ppat->clear_value = CHV_PPAT_SNOOP;
3332 * Map WB on BDW to snooped on CHV.
3334 * Only the snoop bit has meaning for CHV, the rest is
3335 * ignored.
3337 * The hardware will never snoop for certain types of accesses:
3338 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3339 * - PPGTT page tables
3340 * - some other special cycles
3342 * As with BDW, we also need to consider the following for GT accesses:
3343 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3344 * so RTL will always use the value corresponding to
3345 * pat_sel = 000".
3346 * Which means we must set the snoop bit in PAT entry 0
3347 * in order to keep the global status page working.
3350 __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3351 __alloc_ppat_entry(ppat, 1, 0);
3352 __alloc_ppat_entry(ppat, 2, 0);
3353 __alloc_ppat_entry(ppat, 3, 0);
3354 __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3355 __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3356 __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3357 __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3360 static void gen6_gmch_remove(struct i915_address_space *vm)
3362 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3364 iounmap(ggtt->gsm);
3365 cleanup_scratch_page(vm);
3368 static void setup_private_pat(struct drm_i915_private *dev_priv)
3370 struct intel_ppat *ppat = &dev_priv->ppat;
3371 int i;
3373 ppat->i915 = dev_priv;
3375 if (INTEL_GEN(dev_priv) >= 10)
3376 cnl_setup_private_ppat(ppat);
3377 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3378 chv_setup_private_ppat(ppat);
3379 else
3380 bdw_setup_private_ppat(ppat);
3382 GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3384 for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3385 ppat->entries[i].value = ppat->clear_value;
3386 ppat->entries[i].ppat = ppat;
3387 set_bit(i, ppat->dirty);
3390 ppat->update_hw(dev_priv);
3393 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3395 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3396 struct pci_dev *pdev = dev_priv->drm.pdev;
3397 unsigned int size;
3398 u16 snb_gmch_ctl;
3399 int err;
3401 /* TODO: We're not aware of mappable constraints on gen8 yet */
3402 ggtt->gmadr =
3403 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3404 pci_resource_len(pdev, 2));
3405 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3407 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3408 if (!err)
3409 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3410 if (err)
3411 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3413 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3414 if (IS_CHERRYVIEW(dev_priv))
3415 size = chv_get_total_gtt_size(snb_gmch_ctl);
3416 else
3417 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3419 ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3420 ggtt->vm.cleanup = gen6_gmch_remove;
3421 ggtt->vm.insert_page = gen8_ggtt_insert_page;
3422 ggtt->vm.clear_range = nop_clear_range;
3423 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3424 ggtt->vm.clear_range = gen8_ggtt_clear_range;
3426 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3428 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3429 if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3430 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3431 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
3432 if (ggtt->vm.clear_range != nop_clear_range)
3433 ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3436 ggtt->invalidate = gen6_ggtt_invalidate;
3438 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
3439 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
3440 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
3441 ggtt->vm.vma_ops.clear_pages = clear_pages;
3443 setup_private_pat(dev_priv);
3445 return ggtt_probe_common(ggtt, size);
3448 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3450 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3451 struct pci_dev *pdev = dev_priv->drm.pdev;
3452 unsigned int size;
3453 u16 snb_gmch_ctl;
3454 int err;
3456 ggtt->gmadr =
3457 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3458 pci_resource_len(pdev, 2));
3459 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3461 /* 64/512MB is the current min/max we actually know of, but this is just
3462 * a coarse sanity check.
3464 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3465 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3466 return -ENXIO;
3469 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3470 if (!err)
3471 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3472 if (err)
3473 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3474 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3476 size = gen6_get_total_gtt_size(snb_gmch_ctl);
3477 ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3479 ggtt->vm.clear_range = gen6_ggtt_clear_range;
3480 ggtt->vm.insert_page = gen6_ggtt_insert_page;
3481 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3482 ggtt->vm.cleanup = gen6_gmch_remove;
3484 ggtt->invalidate = gen6_ggtt_invalidate;
3486 if (HAS_EDRAM(dev_priv))
3487 ggtt->vm.pte_encode = iris_pte_encode;
3488 else if (IS_HASWELL(dev_priv))
3489 ggtt->vm.pte_encode = hsw_pte_encode;
3490 else if (IS_VALLEYVIEW(dev_priv))
3491 ggtt->vm.pte_encode = byt_pte_encode;
3492 else if (INTEL_GEN(dev_priv) >= 7)
3493 ggtt->vm.pte_encode = ivb_pte_encode;
3494 else
3495 ggtt->vm.pte_encode = snb_pte_encode;
3497 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
3498 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
3499 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
3500 ggtt->vm.vma_ops.clear_pages = clear_pages;
3502 return ggtt_probe_common(ggtt, size);
3505 static void i915_gmch_remove(struct i915_address_space *vm)
3507 intel_gmch_remove();
3510 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3512 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3513 phys_addr_t gmadr_base;
3514 int ret;
3516 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3517 if (!ret) {
3518 DRM_ERROR("failed to set up gmch\n");
3519 return -EIO;
3522 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3524 ggtt->gmadr =
3525 (struct resource) DEFINE_RES_MEM(gmadr_base,
3526 ggtt->mappable_end);
3528 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3529 ggtt->vm.insert_page = i915_ggtt_insert_page;
3530 ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3531 ggtt->vm.clear_range = i915_ggtt_clear_range;
3532 ggtt->vm.cleanup = i915_gmch_remove;
3534 ggtt->invalidate = gmch_ggtt_invalidate;
3536 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
3537 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
3538 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
3539 ggtt->vm.vma_ops.clear_pages = clear_pages;
3541 if (unlikely(ggtt->do_idle_maps))
3542 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3544 return 0;
3548 * i915_ggtt_probe_hw - Probe GGTT hardware location
3549 * @dev_priv: i915 device
3551 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3553 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3554 int ret;
3556 ggtt->vm.i915 = dev_priv;
3557 ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3559 if (INTEL_GEN(dev_priv) <= 5)
3560 ret = i915_gmch_probe(ggtt);
3561 else if (INTEL_GEN(dev_priv) < 8)
3562 ret = gen6_gmch_probe(ggtt);
3563 else
3564 ret = gen8_gmch_probe(ggtt);
3565 if (ret)
3566 return ret;
3568 /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3569 * This is easier than doing range restriction on the fly, as we
3570 * currently don't have any bits spare to pass in this upper
3571 * restriction!
3573 if (USES_GUC(dev_priv)) {
3574 ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
3575 ggtt->mappable_end =
3576 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3579 if ((ggtt->vm.total - 1) >> 32) {
3580 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3581 " of address space! Found %lldM!\n",
3582 ggtt->vm.total >> 20);
3583 ggtt->vm.total = 1ULL << 32;
3584 ggtt->mappable_end =
3585 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3588 if (ggtt->mappable_end > ggtt->vm.total) {
3589 DRM_ERROR("mappable aperture extends past end of GGTT,"
3590 " aperture=%pa, total=%llx\n",
3591 &ggtt->mappable_end, ggtt->vm.total);
3592 ggtt->mappable_end = ggtt->vm.total;
3595 /* GMADR is the PCI mmio aperture into the global GTT. */
3596 DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3597 DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3598 DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3599 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3600 if (intel_vtd_active())
3601 DRM_INFO("VT-d active for gfx access\n");
3603 return 0;
3607 * i915_ggtt_init_hw - Initialize GGTT hardware
3608 * @dev_priv: i915 device
3610 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3612 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3613 int ret;
3615 stash_init(&dev_priv->mm.wc_stash);
3617 /* Note that we use page colouring to enforce a guard page at the
3618 * end of the address space. This is required as the CS may prefetch
3619 * beyond the end of the batch buffer, across the page boundary,
3620 * and beyond the end of the GTT if we do not provide a guard.
3622 mutex_lock(&dev_priv->drm.struct_mutex);
3623 i915_address_space_init(&ggtt->vm, dev_priv);
3625 /* Only VLV supports read-only GGTT mappings */
3626 ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
3628 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3629 ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3630 mutex_unlock(&dev_priv->drm.struct_mutex);
3632 if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3633 dev_priv->ggtt.gmadr.start,
3634 dev_priv->ggtt.mappable_end)) {
3635 ret = -EIO;
3636 goto out_gtt_cleanup;
3639 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3642 * Initialise stolen early so that we may reserve preallocated
3643 * objects for the BIOS to KMS transition.
3645 ret = i915_gem_init_stolen(dev_priv);
3646 if (ret)
3647 goto out_gtt_cleanup;
3649 return 0;
3651 out_gtt_cleanup:
3652 ggtt->vm.cleanup(&ggtt->vm);
3653 return ret;
3656 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3658 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3659 return -EIO;
3661 return 0;
3664 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3666 GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3668 i915->ggtt.invalidate = guc_ggtt_invalidate;
3670 i915_ggtt_invalidate(i915);
3673 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3675 /* We should only be called after i915_ggtt_enable_guc() */
3676 GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3678 i915->ggtt.invalidate = gen6_ggtt_invalidate;
3680 i915_ggtt_invalidate(i915);
3683 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3685 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3686 struct i915_vma *vma, *vn;
3688 i915_check_and_clear_faults(dev_priv);
3690 /* First fill our portion of the GTT with scratch pages */
3691 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3693 ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3695 /* clflush objects bound into the GGTT and rebind them. */
3696 GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
3697 list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3698 struct drm_i915_gem_object *obj = vma->obj;
3700 if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3701 continue;
3703 if (!i915_vma_unbind(vma))
3704 continue;
3706 WARN_ON(i915_vma_bind(vma,
3707 obj ? obj->cache_level : 0,
3708 PIN_UPDATE));
3709 if (obj)
3710 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3713 ggtt->vm.closed = false;
3714 i915_ggtt_invalidate(dev_priv);
3716 if (INTEL_GEN(dev_priv) >= 8) {
3717 struct intel_ppat *ppat = &dev_priv->ppat;
3719 bitmap_set(ppat->dirty, 0, ppat->max_entries);
3720 dev_priv->ppat.update_hw(dev_priv);
3721 return;
3725 static struct scatterlist *
3726 rotate_pages(const dma_addr_t *in, unsigned int offset,
3727 unsigned int width, unsigned int height,
3728 unsigned int stride,
3729 struct sg_table *st, struct scatterlist *sg)
3731 unsigned int column, row;
3732 unsigned int src_idx;
3734 for (column = 0; column < width; column++) {
3735 src_idx = stride * (height - 1) + column;
3736 for (row = 0; row < height; row++) {
3737 st->nents++;
3738 /* We don't need the pages, but need to initialize
3739 * the entries so the sg list can be happily traversed.
3740 * The only thing we need are DMA addresses.
3742 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3743 sg_dma_address(sg) = in[offset + src_idx];
3744 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3745 sg = sg_next(sg);
3746 src_idx -= stride;
3750 return sg;
3753 static noinline struct sg_table *
3754 intel_rotate_pages(struct intel_rotation_info *rot_info,
3755 struct drm_i915_gem_object *obj)
3757 const unsigned long n_pages = obj->base.size / I915_GTT_PAGE_SIZE;
3758 unsigned int size = intel_rotation_info_size(rot_info);
3759 struct sgt_iter sgt_iter;
3760 dma_addr_t dma_addr;
3761 unsigned long i;
3762 dma_addr_t *page_addr_list;
3763 struct sg_table *st;
3764 struct scatterlist *sg;
3765 int ret = -ENOMEM;
3767 /* Allocate a temporary list of source pages for random access. */
3768 page_addr_list = kvmalloc_array(n_pages,
3769 sizeof(dma_addr_t),
3770 GFP_KERNEL);
3771 if (!page_addr_list)
3772 return ERR_PTR(ret);
3774 /* Allocate target SG list. */
3775 st = kmalloc(sizeof(*st), GFP_KERNEL);
3776 if (!st)
3777 goto err_st_alloc;
3779 ret = sg_alloc_table(st, size, GFP_KERNEL);
3780 if (ret)
3781 goto err_sg_alloc;
3783 /* Populate source page list from the object. */
3784 i = 0;
3785 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3786 page_addr_list[i++] = dma_addr;
3788 GEM_BUG_ON(i != n_pages);
3789 st->nents = 0;
3790 sg = st->sgl;
3792 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3793 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3794 rot_info->plane[i].width, rot_info->plane[i].height,
3795 rot_info->plane[i].stride, st, sg);
3798 kvfree(page_addr_list);
3800 return st;
3802 err_sg_alloc:
3803 kfree(st);
3804 err_st_alloc:
3805 kvfree(page_addr_list);
3807 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3808 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3810 return ERR_PTR(ret);
3813 static noinline struct sg_table *
3814 intel_partial_pages(const struct i915_ggtt_view *view,
3815 struct drm_i915_gem_object *obj)
3817 struct sg_table *st;
3818 struct scatterlist *sg, *iter;
3819 unsigned int count = view->partial.size;
3820 unsigned int offset;
3821 int ret = -ENOMEM;
3823 st = kmalloc(sizeof(*st), GFP_KERNEL);
3824 if (!st)
3825 goto err_st_alloc;
3827 ret = sg_alloc_table(st, count, GFP_KERNEL);
3828 if (ret)
3829 goto err_sg_alloc;
3831 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3832 GEM_BUG_ON(!iter);
3834 sg = st->sgl;
3835 st->nents = 0;
3836 do {
3837 unsigned int len;
3839 len = min(iter->length - (offset << PAGE_SHIFT),
3840 count << PAGE_SHIFT);
3841 sg_set_page(sg, NULL, len, 0);
3842 sg_dma_address(sg) =
3843 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3844 sg_dma_len(sg) = len;
3846 st->nents++;
3847 count -= len >> PAGE_SHIFT;
3848 if (count == 0) {
3849 sg_mark_end(sg);
3850 return st;
3853 sg = __sg_next(sg);
3854 iter = __sg_next(iter);
3855 offset = 0;
3856 } while (1);
3858 err_sg_alloc:
3859 kfree(st);
3860 err_st_alloc:
3861 return ERR_PTR(ret);
3864 static int
3865 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3867 int ret;
3869 /* The vma->pages are only valid within the lifespan of the borrowed
3870 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3871 * must be the vma->pages. A simple rule is that vma->pages must only
3872 * be accessed when the obj->mm.pages are pinned.
3874 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3876 switch (vma->ggtt_view.type) {
3877 default:
3878 GEM_BUG_ON(vma->ggtt_view.type);
3879 /* fall through */
3880 case I915_GGTT_VIEW_NORMAL:
3881 vma->pages = vma->obj->mm.pages;
3882 return 0;
3884 case I915_GGTT_VIEW_ROTATED:
3885 vma->pages =
3886 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3887 break;
3889 case I915_GGTT_VIEW_PARTIAL:
3890 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3891 break;
3894 ret = 0;
3895 if (unlikely(IS_ERR(vma->pages))) {
3896 ret = PTR_ERR(vma->pages);
3897 vma->pages = NULL;
3898 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3899 vma->ggtt_view.type, ret);
3901 return ret;
3905 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3906 * @vm: the &struct i915_address_space
3907 * @node: the &struct drm_mm_node (typically i915_vma.mode)
3908 * @size: how much space to allocate inside the GTT,
3909 * must be #I915_GTT_PAGE_SIZE aligned
3910 * @offset: where to insert inside the GTT,
3911 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3912 * (@offset + @size) must fit within the address space
3913 * @color: color to apply to node, if this node is not from a VMA,
3914 * color must be #I915_COLOR_UNEVICTABLE
3915 * @flags: control search and eviction behaviour
3917 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3918 * the address space (using @size and @color). If the @node does not fit, it
3919 * tries to evict any overlapping nodes from the GTT, including any
3920 * neighbouring nodes if the colors do not match (to ensure guard pages between
3921 * differing domains). See i915_gem_evict_for_node() for the gory details
3922 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3923 * evicting active overlapping objects, and any overlapping node that is pinned
3924 * or marked as unevictable will also result in failure.
3926 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3927 * asked to wait for eviction and interrupted.
3929 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3930 struct drm_mm_node *node,
3931 u64 size, u64 offset, unsigned long color,
3932 unsigned int flags)
3934 int err;
3936 GEM_BUG_ON(!size);
3937 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3938 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3939 GEM_BUG_ON(range_overflows(offset, size, vm->total));
3940 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3941 GEM_BUG_ON(drm_mm_node_allocated(node));
3943 node->size = size;
3944 node->start = offset;
3945 node->color = color;
3947 err = drm_mm_reserve_node(&vm->mm, node);
3948 if (err != -ENOSPC)
3949 return err;
3951 if (flags & PIN_NOEVICT)
3952 return -ENOSPC;
3954 err = i915_gem_evict_for_node(vm, node, flags);
3955 if (err == 0)
3956 err = drm_mm_reserve_node(&vm->mm, node);
3958 return err;
3961 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3963 u64 range, addr;
3965 GEM_BUG_ON(range_overflows(start, len, end));
3966 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3968 range = round_down(end - len, align) - round_up(start, align);
3969 if (range) {
3970 if (sizeof(unsigned long) == sizeof(u64)) {
3971 addr = get_random_long();
3972 } else {
3973 addr = get_random_int();
3974 if (range > U32_MAX) {
3975 addr <<= 32;
3976 addr |= get_random_int();
3979 div64_u64_rem(addr, range, &addr);
3980 start += addr;
3983 return round_up(start, align);
3987 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3988 * @vm: the &struct i915_address_space
3989 * @node: the &struct drm_mm_node (typically i915_vma.node)
3990 * @size: how much space to allocate inside the GTT,
3991 * must be #I915_GTT_PAGE_SIZE aligned
3992 * @alignment: required alignment of starting offset, may be 0 but
3993 * if specified, this must be a power-of-two and at least
3994 * #I915_GTT_MIN_ALIGNMENT
3995 * @color: color to apply to node
3996 * @start: start of any range restriction inside GTT (0 for all),
3997 * must be #I915_GTT_PAGE_SIZE aligned
3998 * @end: end of any range restriction inside GTT (U64_MAX for all),
3999 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
4000 * @flags: control search and eviction behaviour
4002 * i915_gem_gtt_insert() first searches for an available hole into which
4003 * is can insert the node. The hole address is aligned to @alignment and
4004 * its @size must then fit entirely within the [@start, @end] bounds. The
4005 * nodes on either side of the hole must match @color, or else a guard page
4006 * will be inserted between the two nodes (or the node evicted). If no
4007 * suitable hole is found, first a victim is randomly selected and tested
4008 * for eviction, otherwise then the LRU list of objects within the GTT
4009 * is scanned to find the first set of replacement nodes to create the hole.
4010 * Those old overlapping nodes are evicted from the GTT (and so must be
4011 * rebound before any future use). Any node that is currently pinned cannot
4012 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
4013 * active and #PIN_NONBLOCK is specified, that node is also skipped when
4014 * searching for an eviction candidate. See i915_gem_evict_something() for
4015 * the gory details on the eviction algorithm.
4017 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
4018 * asked to wait for eviction and interrupted.
4020 int i915_gem_gtt_insert(struct i915_address_space *vm,
4021 struct drm_mm_node *node,
4022 u64 size, u64 alignment, unsigned long color,
4023 u64 start, u64 end, unsigned int flags)
4025 enum drm_mm_insert_mode mode;
4026 u64 offset;
4027 int err;
4029 lockdep_assert_held(&vm->i915->drm.struct_mutex);
4030 GEM_BUG_ON(!size);
4031 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
4032 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
4033 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
4034 GEM_BUG_ON(start >= end);
4035 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
4036 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4037 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4038 GEM_BUG_ON(drm_mm_node_allocated(node));
4040 if (unlikely(range_overflows(start, size, end)))
4041 return -ENOSPC;
4043 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
4044 return -ENOSPC;
4046 mode = DRM_MM_INSERT_BEST;
4047 if (flags & PIN_HIGH)
4048 mode = DRM_MM_INSERT_HIGHEST;
4049 if (flags & PIN_MAPPABLE)
4050 mode = DRM_MM_INSERT_LOW;
4052 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
4053 * so we know that we always have a minimum alignment of 4096.
4054 * The drm_mm range manager is optimised to return results
4055 * with zero alignment, so where possible use the optimal
4056 * path.
4058 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
4059 if (alignment <= I915_GTT_MIN_ALIGNMENT)
4060 alignment = 0;
4062 err = drm_mm_insert_node_in_range(&vm->mm, node,
4063 size, alignment, color,
4064 start, end, mode);
4065 if (err != -ENOSPC)
4066 return err;
4068 if (mode & DRM_MM_INSERT_ONCE) {
4069 err = drm_mm_insert_node_in_range(&vm->mm, node,
4070 size, alignment, color,
4071 start, end,
4072 DRM_MM_INSERT_BEST);
4073 if (err != -ENOSPC)
4074 return err;
4077 if (flags & PIN_NOEVICT)
4078 return -ENOSPC;
4080 /* No free space, pick a slot at random.
4082 * There is a pathological case here using a GTT shared between
4083 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4085 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4086 * (64k objects) (448k objects)
4088 * Now imagine that the eviction LRU is ordered top-down (just because
4089 * pathology meets real life), and that we need to evict an object to
4090 * make room inside the aperture. The eviction scan then has to walk
4091 * the 448k list before it finds one within range. And now imagine that
4092 * it has to search for a new hole between every byte inside the memcpy,
4093 * for several simultaneous clients.
4095 * On a full-ppgtt system, if we have run out of available space, there
4096 * will be lots and lots of objects in the eviction list! Again,
4097 * searching that LRU list may be slow if we are also applying any
4098 * range restrictions (e.g. restriction to low 4GiB) and so, for
4099 * simplicity and similarilty between different GTT, try the single
4100 * random replacement first.
4102 offset = random_offset(start, end,
4103 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4104 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4105 if (err != -ENOSPC)
4106 return err;
4108 /* Randomly selected placement is pinned, do a search */
4109 err = i915_gem_evict_something(vm, size, alignment, color,
4110 start, end, flags);
4111 if (err)
4112 return err;
4114 return drm_mm_insert_node_in_range(&vm->mm, node,
4115 size, alignment, color,
4116 start, end, DRM_MM_INSERT_EVICT);
4119 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4120 #include "selftests/mock_gtt.c"
4121 #include "selftests/i915_gem_gtt.c"
4122 #endif