vt: vt_ioctl: fix VT_DISALLOCATE freeing in-use virtual console
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_irq.c
blob29877969310dae65ff8f0a035285deb463c0d342
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
40 /**
41 * DOC: interrupt handling
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
118 static const u32 hpd_gen11[HPD_NUM_PINS] = {
119 [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
120 [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
121 [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
122 [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
125 static const u32 hpd_icp[HPD_NUM_PINS] = {
126 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
127 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
128 [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
129 [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
130 [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
131 [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
134 /* IIR can theoretically queue up two events. Be paranoid. */
135 #define GEN8_IRQ_RESET_NDX(type, which) do { \
136 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
137 POSTING_READ(GEN8_##type##_IMR(which)); \
138 I915_WRITE(GEN8_##type##_IER(which), 0); \
139 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
140 POSTING_READ(GEN8_##type##_IIR(which)); \
141 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
142 POSTING_READ(GEN8_##type##_IIR(which)); \
143 } while (0)
145 #define GEN3_IRQ_RESET(type) do { \
146 I915_WRITE(type##IMR, 0xffffffff); \
147 POSTING_READ(type##IMR); \
148 I915_WRITE(type##IER, 0); \
149 I915_WRITE(type##IIR, 0xffffffff); \
150 POSTING_READ(type##IIR); \
151 I915_WRITE(type##IIR, 0xffffffff); \
152 POSTING_READ(type##IIR); \
153 } while (0)
155 #define GEN2_IRQ_RESET(type) do { \
156 I915_WRITE16(type##IMR, 0xffff); \
157 POSTING_READ16(type##IMR); \
158 I915_WRITE16(type##IER, 0); \
159 I915_WRITE16(type##IIR, 0xffff); \
160 POSTING_READ16(type##IIR); \
161 I915_WRITE16(type##IIR, 0xffff); \
162 POSTING_READ16(type##IIR); \
163 } while (0)
166 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
168 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169 i915_reg_t reg)
171 u32 val = I915_READ(reg);
173 if (val == 0)
174 return;
176 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177 i915_mmio_reg_offset(reg), val);
178 I915_WRITE(reg, 0xffffffff);
179 POSTING_READ(reg);
180 I915_WRITE(reg, 0xffffffff);
181 POSTING_READ(reg);
184 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
185 i915_reg_t reg)
187 u16 val = I915_READ16(reg);
189 if (val == 0)
190 return;
192 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
193 i915_mmio_reg_offset(reg), val);
194 I915_WRITE16(reg, 0xffff);
195 POSTING_READ16(reg);
196 I915_WRITE16(reg, 0xffff);
197 POSTING_READ16(reg);
200 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
201 gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
202 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
203 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
204 POSTING_READ(GEN8_##type##_IMR(which)); \
205 } while (0)
207 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
208 gen3_assert_iir_is_zero(dev_priv, type##IIR); \
209 I915_WRITE(type##IER, (ier_val)); \
210 I915_WRITE(type##IMR, (imr_val)); \
211 POSTING_READ(type##IMR); \
212 } while (0)
214 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
215 gen2_assert_iir_is_zero(dev_priv, type##IIR); \
216 I915_WRITE16(type##IER, (ier_val)); \
217 I915_WRITE16(type##IMR, (imr_val)); \
218 POSTING_READ16(type##IMR); \
219 } while (0)
221 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
222 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
224 /* For display hotplug interrupt */
225 static inline void
226 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
227 uint32_t mask,
228 uint32_t bits)
230 uint32_t val;
232 lockdep_assert_held(&dev_priv->irq_lock);
233 WARN_ON(bits & ~mask);
235 val = I915_READ(PORT_HOTPLUG_EN);
236 val &= ~mask;
237 val |= bits;
238 I915_WRITE(PORT_HOTPLUG_EN, val);
242 * i915_hotplug_interrupt_update - update hotplug interrupt enable
243 * @dev_priv: driver private
244 * @mask: bits to update
245 * @bits: bits to enable
246 * NOTE: the HPD enable bits are modified both inside and outside
247 * of an interrupt context. To avoid that read-modify-write cycles
248 * interfer, these bits are protected by a spinlock. Since this
249 * function is usually not called from a context where the lock is
250 * held already, this function acquires the lock itself. A non-locking
251 * version is also available.
253 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
254 uint32_t mask,
255 uint32_t bits)
257 spin_lock_irq(&dev_priv->irq_lock);
258 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
259 spin_unlock_irq(&dev_priv->irq_lock);
262 static u32
263 gen11_gt_engine_identity(struct drm_i915_private * const i915,
264 const unsigned int bank, const unsigned int bit);
266 static bool gen11_reset_one_iir(struct drm_i915_private * const i915,
267 const unsigned int bank,
268 const unsigned int bit)
270 void __iomem * const regs = i915->regs;
271 u32 dw;
273 lockdep_assert_held(&i915->irq_lock);
275 dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
276 if (dw & BIT(bit)) {
278 * According to the BSpec, DW_IIR bits cannot be cleared without
279 * first servicing the Selector & Shared IIR registers.
281 gen11_gt_engine_identity(i915, bank, bit);
284 * We locked GT INT DW by reading it. If we want to (try
285 * to) recover from this succesfully, we need to clear
286 * our bit, otherwise we are locking the register for
287 * everybody.
289 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
291 return true;
294 return false;
298 * ilk_update_display_irq - update DEIMR
299 * @dev_priv: driver private
300 * @interrupt_mask: mask of interrupt bits to update
301 * @enabled_irq_mask: mask of interrupt bits to enable
303 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
304 uint32_t interrupt_mask,
305 uint32_t enabled_irq_mask)
307 uint32_t new_val;
309 lockdep_assert_held(&dev_priv->irq_lock);
311 WARN_ON(enabled_irq_mask & ~interrupt_mask);
313 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
314 return;
316 new_val = dev_priv->irq_mask;
317 new_val &= ~interrupt_mask;
318 new_val |= (~enabled_irq_mask & interrupt_mask);
320 if (new_val != dev_priv->irq_mask) {
321 dev_priv->irq_mask = new_val;
322 I915_WRITE(DEIMR, dev_priv->irq_mask);
323 POSTING_READ(DEIMR);
328 * ilk_update_gt_irq - update GTIMR
329 * @dev_priv: driver private
330 * @interrupt_mask: mask of interrupt bits to update
331 * @enabled_irq_mask: mask of interrupt bits to enable
333 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
334 uint32_t interrupt_mask,
335 uint32_t enabled_irq_mask)
337 lockdep_assert_held(&dev_priv->irq_lock);
339 WARN_ON(enabled_irq_mask & ~interrupt_mask);
341 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
342 return;
344 dev_priv->gt_irq_mask &= ~interrupt_mask;
345 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
346 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
349 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
351 ilk_update_gt_irq(dev_priv, mask, mask);
352 POSTING_READ_FW(GTIMR);
355 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
357 ilk_update_gt_irq(dev_priv, mask, 0);
360 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
362 WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
364 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
367 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
369 if (INTEL_GEN(dev_priv) >= 11)
370 return GEN11_GPM_WGBOXPERF_INTR_MASK;
371 else if (INTEL_GEN(dev_priv) >= 8)
372 return GEN8_GT_IMR(2);
373 else
374 return GEN6_PMIMR;
377 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
379 if (INTEL_GEN(dev_priv) >= 11)
380 return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
381 else if (INTEL_GEN(dev_priv) >= 8)
382 return GEN8_GT_IER(2);
383 else
384 return GEN6_PMIER;
388 * snb_update_pm_irq - update GEN6_PMIMR
389 * @dev_priv: driver private
390 * @interrupt_mask: mask of interrupt bits to update
391 * @enabled_irq_mask: mask of interrupt bits to enable
393 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
394 uint32_t interrupt_mask,
395 uint32_t enabled_irq_mask)
397 uint32_t new_val;
399 WARN_ON(enabled_irq_mask & ~interrupt_mask);
401 lockdep_assert_held(&dev_priv->irq_lock);
403 new_val = dev_priv->pm_imr;
404 new_val &= ~interrupt_mask;
405 new_val |= (~enabled_irq_mask & interrupt_mask);
407 if (new_val != dev_priv->pm_imr) {
408 dev_priv->pm_imr = new_val;
409 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
410 POSTING_READ(gen6_pm_imr(dev_priv));
414 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
416 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
417 return;
419 snb_update_pm_irq(dev_priv, mask, mask);
422 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
424 snb_update_pm_irq(dev_priv, mask, 0);
427 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
429 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
430 return;
432 __gen6_mask_pm_irq(dev_priv, mask);
435 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
437 i915_reg_t reg = gen6_pm_iir(dev_priv);
439 lockdep_assert_held(&dev_priv->irq_lock);
441 I915_WRITE(reg, reset_mask);
442 I915_WRITE(reg, reset_mask);
443 POSTING_READ(reg);
446 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
448 lockdep_assert_held(&dev_priv->irq_lock);
450 dev_priv->pm_ier |= enable_mask;
451 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
452 gen6_unmask_pm_irq(dev_priv, enable_mask);
453 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
456 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
458 lockdep_assert_held(&dev_priv->irq_lock);
460 dev_priv->pm_ier &= ~disable_mask;
461 __gen6_mask_pm_irq(dev_priv, disable_mask);
462 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
463 /* though a barrier is missing here, but don't really need a one */
466 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
468 spin_lock_irq(&dev_priv->irq_lock);
470 while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
473 dev_priv->gt_pm.rps.pm_iir = 0;
475 spin_unlock_irq(&dev_priv->irq_lock);
478 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
480 spin_lock_irq(&dev_priv->irq_lock);
481 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
482 dev_priv->gt_pm.rps.pm_iir = 0;
483 spin_unlock_irq(&dev_priv->irq_lock);
486 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
488 struct intel_rps *rps = &dev_priv->gt_pm.rps;
490 if (READ_ONCE(rps->interrupts_enabled))
491 return;
493 spin_lock_irq(&dev_priv->irq_lock);
494 WARN_ON_ONCE(rps->pm_iir);
496 if (INTEL_GEN(dev_priv) >= 11)
497 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
498 else
499 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
501 rps->interrupts_enabled = true;
502 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
504 spin_unlock_irq(&dev_priv->irq_lock);
507 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
509 struct intel_rps *rps = &dev_priv->gt_pm.rps;
511 if (!READ_ONCE(rps->interrupts_enabled))
512 return;
514 spin_lock_irq(&dev_priv->irq_lock);
515 rps->interrupts_enabled = false;
517 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
519 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
521 spin_unlock_irq(&dev_priv->irq_lock);
522 synchronize_irq(dev_priv->drm.irq);
524 /* Now that we will not be generating any more work, flush any
525 * outstanding tasks. As we are called on the RPS idle path,
526 * we will reset the GPU to minimum frequencies, so the current
527 * state of the worker can be discarded.
529 cancel_work_sync(&rps->work);
530 if (INTEL_GEN(dev_priv) >= 11)
531 gen11_reset_rps_interrupts(dev_priv);
532 else
533 gen6_reset_rps_interrupts(dev_priv);
536 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
538 assert_rpm_wakelock_held(dev_priv);
540 spin_lock_irq(&dev_priv->irq_lock);
541 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
542 spin_unlock_irq(&dev_priv->irq_lock);
545 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
547 assert_rpm_wakelock_held(dev_priv);
549 spin_lock_irq(&dev_priv->irq_lock);
550 if (!dev_priv->guc.interrupts_enabled) {
551 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
552 dev_priv->pm_guc_events);
553 dev_priv->guc.interrupts_enabled = true;
554 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
556 spin_unlock_irq(&dev_priv->irq_lock);
559 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
561 assert_rpm_wakelock_held(dev_priv);
563 spin_lock_irq(&dev_priv->irq_lock);
564 dev_priv->guc.interrupts_enabled = false;
566 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
568 spin_unlock_irq(&dev_priv->irq_lock);
569 synchronize_irq(dev_priv->drm.irq);
571 gen9_reset_guc_interrupts(dev_priv);
575 * bdw_update_port_irq - update DE port interrupt
576 * @dev_priv: driver private
577 * @interrupt_mask: mask of interrupt bits to update
578 * @enabled_irq_mask: mask of interrupt bits to enable
580 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
581 uint32_t interrupt_mask,
582 uint32_t enabled_irq_mask)
584 uint32_t new_val;
585 uint32_t old_val;
587 lockdep_assert_held(&dev_priv->irq_lock);
589 WARN_ON(enabled_irq_mask & ~interrupt_mask);
591 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
592 return;
594 old_val = I915_READ(GEN8_DE_PORT_IMR);
596 new_val = old_val;
597 new_val &= ~interrupt_mask;
598 new_val |= (~enabled_irq_mask & interrupt_mask);
600 if (new_val != old_val) {
601 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
602 POSTING_READ(GEN8_DE_PORT_IMR);
607 * bdw_update_pipe_irq - update DE pipe interrupt
608 * @dev_priv: driver private
609 * @pipe: pipe whose interrupt to update
610 * @interrupt_mask: mask of interrupt bits to update
611 * @enabled_irq_mask: mask of interrupt bits to enable
613 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
614 enum pipe pipe,
615 uint32_t interrupt_mask,
616 uint32_t enabled_irq_mask)
618 uint32_t new_val;
620 lockdep_assert_held(&dev_priv->irq_lock);
622 WARN_ON(enabled_irq_mask & ~interrupt_mask);
624 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
625 return;
627 new_val = dev_priv->de_irq_mask[pipe];
628 new_val &= ~interrupt_mask;
629 new_val |= (~enabled_irq_mask & interrupt_mask);
631 if (new_val != dev_priv->de_irq_mask[pipe]) {
632 dev_priv->de_irq_mask[pipe] = new_val;
633 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
634 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
639 * ibx_display_interrupt_update - update SDEIMR
640 * @dev_priv: driver private
641 * @interrupt_mask: mask of interrupt bits to update
642 * @enabled_irq_mask: mask of interrupt bits to enable
644 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
645 uint32_t interrupt_mask,
646 uint32_t enabled_irq_mask)
648 uint32_t sdeimr = I915_READ(SDEIMR);
649 sdeimr &= ~interrupt_mask;
650 sdeimr |= (~enabled_irq_mask & interrupt_mask);
652 WARN_ON(enabled_irq_mask & ~interrupt_mask);
654 lockdep_assert_held(&dev_priv->irq_lock);
656 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
657 return;
659 I915_WRITE(SDEIMR, sdeimr);
660 POSTING_READ(SDEIMR);
663 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
664 enum pipe pipe)
666 u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
667 u32 enable_mask = status_mask << 16;
669 lockdep_assert_held(&dev_priv->irq_lock);
671 if (INTEL_GEN(dev_priv) < 5)
672 goto out;
675 * On pipe A we don't support the PSR interrupt yet,
676 * on pipe B and C the same bit MBZ.
678 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
679 return 0;
681 * On pipe B and C we don't support the PSR interrupt yet, on pipe
682 * A the same bit is for perf counters which we don't use either.
684 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
685 return 0;
687 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
688 SPRITE0_FLIP_DONE_INT_EN_VLV |
689 SPRITE1_FLIP_DONE_INT_EN_VLV);
690 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
691 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
692 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
693 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
695 out:
696 WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
697 status_mask & ~PIPESTAT_INT_STATUS_MASK,
698 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
699 pipe_name(pipe), enable_mask, status_mask);
701 return enable_mask;
704 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
705 enum pipe pipe, u32 status_mask)
707 i915_reg_t reg = PIPESTAT(pipe);
708 u32 enable_mask;
710 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
711 "pipe %c: status_mask=0x%x\n",
712 pipe_name(pipe), status_mask);
714 lockdep_assert_held(&dev_priv->irq_lock);
715 WARN_ON(!intel_irqs_enabled(dev_priv));
717 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
718 return;
720 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
721 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
723 I915_WRITE(reg, enable_mask | status_mask);
724 POSTING_READ(reg);
727 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
728 enum pipe pipe, u32 status_mask)
730 i915_reg_t reg = PIPESTAT(pipe);
731 u32 enable_mask;
733 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
734 "pipe %c: status_mask=0x%x\n",
735 pipe_name(pipe), status_mask);
737 lockdep_assert_held(&dev_priv->irq_lock);
738 WARN_ON(!intel_irqs_enabled(dev_priv));
740 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
741 return;
743 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
744 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
746 I915_WRITE(reg, enable_mask | status_mask);
747 POSTING_READ(reg);
751 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
752 * @dev_priv: i915 device private
754 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
756 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
757 return;
759 spin_lock_irq(&dev_priv->irq_lock);
761 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
762 if (INTEL_GEN(dev_priv) >= 4)
763 i915_enable_pipestat(dev_priv, PIPE_A,
764 PIPE_LEGACY_BLC_EVENT_STATUS);
766 spin_unlock_irq(&dev_priv->irq_lock);
770 * This timing diagram depicts the video signal in and
771 * around the vertical blanking period.
773 * Assumptions about the fictitious mode used in this example:
774 * vblank_start >= 3
775 * vsync_start = vblank_start + 1
776 * vsync_end = vblank_start + 2
777 * vtotal = vblank_start + 3
779 * start of vblank:
780 * latch double buffered registers
781 * increment frame counter (ctg+)
782 * generate start of vblank interrupt (gen4+)
784 * | frame start:
785 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
786 * | may be shifted forward 1-3 extra lines via PIPECONF
787 * | |
788 * | | start of vsync:
789 * | | generate vsync interrupt
790 * | | |
791 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
792 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
793 * ----va---> <-----------------vb--------------------> <--------va-------------
794 * | | <----vs-----> |
795 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
796 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
797 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
798 * | | |
799 * last visible pixel first visible pixel
800 * | increment frame counter (gen3/4)
801 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
803 * x = horizontal active
804 * _ = horizontal blanking
805 * hs = horizontal sync
806 * va = vertical active
807 * vb = vertical blanking
808 * vs = vertical sync
809 * vbs = vblank_start (number)
811 * Summary:
812 * - most events happen at the start of horizontal sync
813 * - frame start happens at the start of horizontal blank, 1-4 lines
814 * (depending on PIPECONF settings) after the start of vblank
815 * - gen3/4 pixel and frame counter are synchronized with the start
816 * of horizontal active on the first line of vertical active
819 /* Called from drm generic code, passed a 'crtc', which
820 * we use as a pipe index
822 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
824 struct drm_i915_private *dev_priv = to_i915(dev);
825 i915_reg_t high_frame, low_frame;
826 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
827 const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
828 unsigned long irqflags;
830 htotal = mode->crtc_htotal;
831 hsync_start = mode->crtc_hsync_start;
832 vbl_start = mode->crtc_vblank_start;
833 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
834 vbl_start = DIV_ROUND_UP(vbl_start, 2);
836 /* Convert to pixel count */
837 vbl_start *= htotal;
839 /* Start of vblank event occurs at start of hsync */
840 vbl_start -= htotal - hsync_start;
842 high_frame = PIPEFRAME(pipe);
843 low_frame = PIPEFRAMEPIXEL(pipe);
845 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
848 * High & low register fields aren't synchronized, so make sure
849 * we get a low value that's stable across two reads of the high
850 * register.
852 do {
853 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
854 low = I915_READ_FW(low_frame);
855 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
856 } while (high1 != high2);
858 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
860 high1 >>= PIPE_FRAME_HIGH_SHIFT;
861 pixel = low & PIPE_PIXEL_MASK;
862 low >>= PIPE_FRAME_LOW_SHIFT;
865 * The frame counter increments at beginning of active.
866 * Cook up a vblank counter by also checking the pixel
867 * counter against vblank start.
869 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
872 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
874 struct drm_i915_private *dev_priv = to_i915(dev);
876 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
880 * On certain encoders on certain platforms, pipe
881 * scanline register will not work to get the scanline,
882 * since the timings are driven from the PORT or issues
883 * with scanline register updates.
884 * This function will use Framestamp and current
885 * timestamp registers to calculate the scanline.
887 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
889 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
890 struct drm_vblank_crtc *vblank =
891 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
892 const struct drm_display_mode *mode = &vblank->hwmode;
893 u32 vblank_start = mode->crtc_vblank_start;
894 u32 vtotal = mode->crtc_vtotal;
895 u32 htotal = mode->crtc_htotal;
896 u32 clock = mode->crtc_clock;
897 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
900 * To avoid the race condition where we might cross into the
901 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
902 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
903 * during the same frame.
905 do {
907 * This field provides read back of the display
908 * pipe frame time stamp. The time stamp value
909 * is sampled at every start of vertical blank.
911 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
914 * The TIMESTAMP_CTR register has the current
915 * time stamp value.
917 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
919 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
920 } while (scan_post_time != scan_prev_time);
922 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
923 clock), 1000 * htotal);
924 scanline = min(scanline, vtotal - 1);
925 scanline = (scanline + vblank_start) % vtotal;
927 return scanline;
930 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
931 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
933 struct drm_device *dev = crtc->base.dev;
934 struct drm_i915_private *dev_priv = to_i915(dev);
935 const struct drm_display_mode *mode;
936 struct drm_vblank_crtc *vblank;
937 enum pipe pipe = crtc->pipe;
938 int position, vtotal;
940 if (!crtc->active)
941 return -1;
943 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
944 mode = &vblank->hwmode;
946 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
947 return __intel_get_crtc_scanline_from_timestamp(crtc);
949 vtotal = mode->crtc_vtotal;
950 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
951 vtotal /= 2;
953 if (IS_GEN2(dev_priv))
954 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
955 else
956 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
959 * On HSW, the DSL reg (0x70000) appears to return 0 if we
960 * read it just before the start of vblank. So try it again
961 * so we don't accidentally end up spanning a vblank frame
962 * increment, causing the pipe_update_end() code to squak at us.
964 * The nature of this problem means we can't simply check the ISR
965 * bit and return the vblank start value; nor can we use the scanline
966 * debug register in the transcoder as it appears to have the same
967 * problem. We may need to extend this to include other platforms,
968 * but so far testing only shows the problem on HSW.
970 if (HAS_DDI(dev_priv) && !position) {
971 int i, temp;
973 for (i = 0; i < 100; i++) {
974 udelay(1);
975 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
976 if (temp != position) {
977 position = temp;
978 break;
984 * See update_scanline_offset() for the details on the
985 * scanline_offset adjustment.
987 return (position + crtc->scanline_offset) % vtotal;
990 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
991 bool in_vblank_irq, int *vpos, int *hpos,
992 ktime_t *stime, ktime_t *etime,
993 const struct drm_display_mode *mode)
995 struct drm_i915_private *dev_priv = to_i915(dev);
996 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
997 pipe);
998 int position;
999 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1000 unsigned long irqflags;
1002 if (WARN_ON(!mode->crtc_clock)) {
1003 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1004 "pipe %c\n", pipe_name(pipe));
1005 return false;
1008 htotal = mode->crtc_htotal;
1009 hsync_start = mode->crtc_hsync_start;
1010 vtotal = mode->crtc_vtotal;
1011 vbl_start = mode->crtc_vblank_start;
1012 vbl_end = mode->crtc_vblank_end;
1014 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1015 vbl_start = DIV_ROUND_UP(vbl_start, 2);
1016 vbl_end /= 2;
1017 vtotal /= 2;
1021 * Lock uncore.lock, as we will do multiple timing critical raw
1022 * register reads, potentially with preemption disabled, so the
1023 * following code must not block on uncore.lock.
1025 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1027 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1029 /* Get optional system timestamp before query. */
1030 if (stime)
1031 *stime = ktime_get();
1033 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1034 /* No obvious pixelcount register. Only query vertical
1035 * scanout position from Display scan line register.
1037 position = __intel_get_crtc_scanline(intel_crtc);
1038 } else {
1039 /* Have access to pixelcount since start of frame.
1040 * We can split this into vertical and horizontal
1041 * scanout position.
1043 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1045 /* convert to pixel counts */
1046 vbl_start *= htotal;
1047 vbl_end *= htotal;
1048 vtotal *= htotal;
1051 * In interlaced modes, the pixel counter counts all pixels,
1052 * so one field will have htotal more pixels. In order to avoid
1053 * the reported position from jumping backwards when the pixel
1054 * counter is beyond the length of the shorter field, just
1055 * clamp the position the length of the shorter field. This
1056 * matches how the scanline counter based position works since
1057 * the scanline counter doesn't count the two half lines.
1059 if (position >= vtotal)
1060 position = vtotal - 1;
1063 * Start of vblank interrupt is triggered at start of hsync,
1064 * just prior to the first active line of vblank. However we
1065 * consider lines to start at the leading edge of horizontal
1066 * active. So, should we get here before we've crossed into
1067 * the horizontal active of the first line in vblank, we would
1068 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1069 * always add htotal-hsync_start to the current pixel position.
1071 position = (position + htotal - hsync_start) % vtotal;
1074 /* Get optional system timestamp after query. */
1075 if (etime)
1076 *etime = ktime_get();
1078 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1080 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1083 * While in vblank, position will be negative
1084 * counting up towards 0 at vbl_end. And outside
1085 * vblank, position will be positive counting
1086 * up since vbl_end.
1088 if (position >= vbl_start)
1089 position -= vbl_end;
1090 else
1091 position += vtotal - vbl_end;
1093 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1094 *vpos = position;
1095 *hpos = 0;
1096 } else {
1097 *vpos = position / htotal;
1098 *hpos = position - (*vpos * htotal);
1101 return true;
1104 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1106 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1107 unsigned long irqflags;
1108 int position;
1110 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1111 position = __intel_get_crtc_scanline(crtc);
1112 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1114 return position;
1117 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1119 u32 busy_up, busy_down, max_avg, min_avg;
1120 u8 new_delay;
1122 spin_lock(&mchdev_lock);
1124 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1126 new_delay = dev_priv->ips.cur_delay;
1128 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1129 busy_up = I915_READ(RCPREVBSYTUPAVG);
1130 busy_down = I915_READ(RCPREVBSYTDNAVG);
1131 max_avg = I915_READ(RCBMAXAVG);
1132 min_avg = I915_READ(RCBMINAVG);
1134 /* Handle RCS change request from hw */
1135 if (busy_up > max_avg) {
1136 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1137 new_delay = dev_priv->ips.cur_delay - 1;
1138 if (new_delay < dev_priv->ips.max_delay)
1139 new_delay = dev_priv->ips.max_delay;
1140 } else if (busy_down < min_avg) {
1141 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1142 new_delay = dev_priv->ips.cur_delay + 1;
1143 if (new_delay > dev_priv->ips.min_delay)
1144 new_delay = dev_priv->ips.min_delay;
1147 if (ironlake_set_drps(dev_priv, new_delay))
1148 dev_priv->ips.cur_delay = new_delay;
1150 spin_unlock(&mchdev_lock);
1152 return;
1155 static void notify_ring(struct intel_engine_cs *engine)
1157 const u32 seqno = intel_engine_get_seqno(engine);
1158 struct i915_request *rq = NULL;
1159 struct task_struct *tsk = NULL;
1160 struct intel_wait *wait;
1162 if (unlikely(!engine->breadcrumbs.irq_armed))
1163 return;
1165 rcu_read_lock();
1167 spin_lock(&engine->breadcrumbs.irq_lock);
1168 wait = engine->breadcrumbs.irq_wait;
1169 if (wait) {
1171 * We use a callback from the dma-fence to submit
1172 * requests after waiting on our own requests. To
1173 * ensure minimum delay in queuing the next request to
1174 * hardware, signal the fence now rather than wait for
1175 * the signaler to be woken up. We still wake up the
1176 * waiter in order to handle the irq-seqno coherency
1177 * issues (we may receive the interrupt before the
1178 * seqno is written, see __i915_request_irq_complete())
1179 * and to handle coalescing of multiple seqno updates
1180 * and many waiters.
1182 if (i915_seqno_passed(seqno, wait->seqno)) {
1183 struct i915_request *waiter = wait->request;
1185 if (waiter &&
1186 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1187 &waiter->fence.flags) &&
1188 intel_wait_check_request(wait, waiter))
1189 rq = i915_request_get(waiter);
1191 tsk = wait->tsk;
1192 } else {
1193 if (engine->irq_seqno_barrier &&
1194 i915_seqno_passed(seqno, wait->seqno - 1)) {
1195 set_bit(ENGINE_IRQ_BREADCRUMB,
1196 &engine->irq_posted);
1197 tsk = wait->tsk;
1201 engine->breadcrumbs.irq_count++;
1202 } else {
1203 if (engine->breadcrumbs.irq_armed)
1204 __intel_engine_disarm_breadcrumbs(engine);
1206 spin_unlock(&engine->breadcrumbs.irq_lock);
1208 if (rq) {
1209 spin_lock(&rq->lock);
1210 dma_fence_signal_locked(&rq->fence);
1211 GEM_BUG_ON(!i915_request_completed(rq));
1212 spin_unlock(&rq->lock);
1214 i915_request_put(rq);
1217 if (tsk && tsk->state & TASK_NORMAL)
1218 wake_up_process(tsk);
1220 rcu_read_unlock();
1222 trace_intel_engine_notify(engine, wait);
1225 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1226 struct intel_rps_ei *ei)
1228 ei->ktime = ktime_get_raw();
1229 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1230 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1233 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1235 memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1238 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1240 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1241 const struct intel_rps_ei *prev = &rps->ei;
1242 struct intel_rps_ei now;
1243 u32 events = 0;
1245 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1246 return 0;
1248 vlv_c0_read(dev_priv, &now);
1250 if (prev->ktime) {
1251 u64 time, c0;
1252 u32 render, media;
1254 time = ktime_us_delta(now.ktime, prev->ktime);
1256 time *= dev_priv->czclk_freq;
1258 /* Workload can be split between render + media,
1259 * e.g. SwapBuffers being blitted in X after being rendered in
1260 * mesa. To account for this we need to combine both engines
1261 * into our activity counter.
1263 render = now.render_c0 - prev->render_c0;
1264 media = now.media_c0 - prev->media_c0;
1265 c0 = max(render, media);
1266 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1268 if (c0 > time * rps->power.up_threshold)
1269 events = GEN6_PM_RP_UP_THRESHOLD;
1270 else if (c0 < time * rps->power.down_threshold)
1271 events = GEN6_PM_RP_DOWN_THRESHOLD;
1274 rps->ei = now;
1275 return events;
1278 static void gen6_pm_rps_work(struct work_struct *work)
1280 struct drm_i915_private *dev_priv =
1281 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1282 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1283 bool client_boost = false;
1284 int new_delay, adj, min, max;
1285 u32 pm_iir = 0;
1287 spin_lock_irq(&dev_priv->irq_lock);
1288 if (rps->interrupts_enabled) {
1289 pm_iir = fetch_and_zero(&rps->pm_iir);
1290 client_boost = atomic_read(&rps->num_waiters);
1292 spin_unlock_irq(&dev_priv->irq_lock);
1294 /* Make sure we didn't queue anything we're not going to process. */
1295 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1296 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1297 goto out;
1299 mutex_lock(&dev_priv->pcu_lock);
1301 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1303 adj = rps->last_adj;
1304 new_delay = rps->cur_freq;
1305 min = rps->min_freq_softlimit;
1306 max = rps->max_freq_softlimit;
1307 if (client_boost)
1308 max = rps->max_freq;
1309 if (client_boost && new_delay < rps->boost_freq) {
1310 new_delay = rps->boost_freq;
1311 adj = 0;
1312 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1313 if (adj > 0)
1314 adj *= 2;
1315 else /* CHV needs even encode values */
1316 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1318 if (new_delay >= rps->max_freq_softlimit)
1319 adj = 0;
1320 } else if (client_boost) {
1321 adj = 0;
1322 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1323 if (rps->cur_freq > rps->efficient_freq)
1324 new_delay = rps->efficient_freq;
1325 else if (rps->cur_freq > rps->min_freq_softlimit)
1326 new_delay = rps->min_freq_softlimit;
1327 adj = 0;
1328 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1329 if (adj < 0)
1330 adj *= 2;
1331 else /* CHV needs even encode values */
1332 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1334 if (new_delay <= rps->min_freq_softlimit)
1335 adj = 0;
1336 } else { /* unknown event */
1337 adj = 0;
1340 rps->last_adj = adj;
1342 /* sysfs frequency interfaces may have snuck in while servicing the
1343 * interrupt
1345 new_delay += adj;
1346 new_delay = clamp_t(int, new_delay, min, max);
1348 if (intel_set_rps(dev_priv, new_delay)) {
1349 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1350 rps->last_adj = 0;
1353 mutex_unlock(&dev_priv->pcu_lock);
1355 out:
1356 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1357 spin_lock_irq(&dev_priv->irq_lock);
1358 if (rps->interrupts_enabled)
1359 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1360 spin_unlock_irq(&dev_priv->irq_lock);
1365 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1366 * occurred.
1367 * @work: workqueue struct
1369 * Doesn't actually do anything except notify userspace. As a consequence of
1370 * this event, userspace should try to remap the bad rows since statistically
1371 * it is likely the same row is more likely to go bad again.
1373 static void ivybridge_parity_work(struct work_struct *work)
1375 struct drm_i915_private *dev_priv =
1376 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1377 u32 error_status, row, bank, subbank;
1378 char *parity_event[6];
1379 uint32_t misccpctl;
1380 uint8_t slice = 0;
1382 /* We must turn off DOP level clock gating to access the L3 registers.
1383 * In order to prevent a get/put style interface, acquire struct mutex
1384 * any time we access those registers.
1386 mutex_lock(&dev_priv->drm.struct_mutex);
1388 /* If we've screwed up tracking, just let the interrupt fire again */
1389 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1390 goto out;
1392 misccpctl = I915_READ(GEN7_MISCCPCTL);
1393 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1394 POSTING_READ(GEN7_MISCCPCTL);
1396 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1397 i915_reg_t reg;
1399 slice--;
1400 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1401 break;
1403 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1405 reg = GEN7_L3CDERRST1(slice);
1407 error_status = I915_READ(reg);
1408 row = GEN7_PARITY_ERROR_ROW(error_status);
1409 bank = GEN7_PARITY_ERROR_BANK(error_status);
1410 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1412 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1413 POSTING_READ(reg);
1415 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1416 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1417 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1418 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1419 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1420 parity_event[5] = NULL;
1422 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1423 KOBJ_CHANGE, parity_event);
1425 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1426 slice, row, bank, subbank);
1428 kfree(parity_event[4]);
1429 kfree(parity_event[3]);
1430 kfree(parity_event[2]);
1431 kfree(parity_event[1]);
1434 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1436 out:
1437 WARN_ON(dev_priv->l3_parity.which_slice);
1438 spin_lock_irq(&dev_priv->irq_lock);
1439 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1440 spin_unlock_irq(&dev_priv->irq_lock);
1442 mutex_unlock(&dev_priv->drm.struct_mutex);
1445 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1446 u32 iir)
1448 if (!HAS_L3_DPF(dev_priv))
1449 return;
1451 spin_lock(&dev_priv->irq_lock);
1452 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1453 spin_unlock(&dev_priv->irq_lock);
1455 iir &= GT_PARITY_ERROR(dev_priv);
1456 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1457 dev_priv->l3_parity.which_slice |= 1 << 1;
1459 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1460 dev_priv->l3_parity.which_slice |= 1 << 0;
1462 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1465 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1466 u32 gt_iir)
1468 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1469 notify_ring(dev_priv->engine[RCS]);
1470 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1471 notify_ring(dev_priv->engine[VCS]);
1474 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1475 u32 gt_iir)
1477 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1478 notify_ring(dev_priv->engine[RCS]);
1479 if (gt_iir & GT_BSD_USER_INTERRUPT)
1480 notify_ring(dev_priv->engine[VCS]);
1481 if (gt_iir & GT_BLT_USER_INTERRUPT)
1482 notify_ring(dev_priv->engine[BCS]);
1484 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1485 GT_BSD_CS_ERROR_INTERRUPT |
1486 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1487 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1489 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1490 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1493 static void
1494 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1496 bool tasklet = false;
1498 if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1499 tasklet = true;
1501 if (iir & GT_RENDER_USER_INTERRUPT) {
1502 notify_ring(engine);
1503 tasklet |= USES_GUC_SUBMISSION(engine->i915);
1506 if (tasklet)
1507 tasklet_hi_schedule(&engine->execlists.tasklet);
1510 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1511 u32 master_ctl, u32 gt_iir[4])
1513 void __iomem * const regs = i915->regs;
1515 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1516 GEN8_GT_BCS_IRQ | \
1517 GEN8_GT_VCS1_IRQ | \
1518 GEN8_GT_VCS2_IRQ | \
1519 GEN8_GT_VECS_IRQ | \
1520 GEN8_GT_PM_IRQ | \
1521 GEN8_GT_GUC_IRQ)
1523 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1524 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1525 if (likely(gt_iir[0]))
1526 raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1529 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1530 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1531 if (likely(gt_iir[1]))
1532 raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1535 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1536 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1537 if (likely(gt_iir[2] & (i915->pm_rps_events |
1538 i915->pm_guc_events)))
1539 raw_reg_write(regs, GEN8_GT_IIR(2),
1540 gt_iir[2] & (i915->pm_rps_events |
1541 i915->pm_guc_events));
1544 if (master_ctl & GEN8_GT_VECS_IRQ) {
1545 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1546 if (likely(gt_iir[3]))
1547 raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1551 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1552 u32 master_ctl, u32 gt_iir[4])
1554 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1555 gen8_cs_irq_handler(i915->engine[RCS],
1556 gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1557 gen8_cs_irq_handler(i915->engine[BCS],
1558 gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1561 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1562 gen8_cs_irq_handler(i915->engine[VCS],
1563 gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1564 gen8_cs_irq_handler(i915->engine[VCS2],
1565 gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1568 if (master_ctl & GEN8_GT_VECS_IRQ) {
1569 gen8_cs_irq_handler(i915->engine[VECS],
1570 gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1573 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1574 gen6_rps_irq_handler(i915, gt_iir[2]);
1575 gen9_guc_irq_handler(i915, gt_iir[2]);
1579 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1581 switch (pin) {
1582 case HPD_PORT_C:
1583 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1584 case HPD_PORT_D:
1585 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1586 case HPD_PORT_E:
1587 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1588 case HPD_PORT_F:
1589 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1590 default:
1591 return false;
1595 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1597 switch (pin) {
1598 case HPD_PORT_A:
1599 return val & PORTA_HOTPLUG_LONG_DETECT;
1600 case HPD_PORT_B:
1601 return val & PORTB_HOTPLUG_LONG_DETECT;
1602 case HPD_PORT_C:
1603 return val & PORTC_HOTPLUG_LONG_DETECT;
1604 default:
1605 return false;
1609 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1611 switch (pin) {
1612 case HPD_PORT_A:
1613 return val & ICP_DDIA_HPD_LONG_DETECT;
1614 case HPD_PORT_B:
1615 return val & ICP_DDIB_HPD_LONG_DETECT;
1616 default:
1617 return false;
1621 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1623 switch (pin) {
1624 case HPD_PORT_C:
1625 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1626 case HPD_PORT_D:
1627 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1628 case HPD_PORT_E:
1629 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1630 case HPD_PORT_F:
1631 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1632 default:
1633 return false;
1637 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1639 switch (pin) {
1640 case HPD_PORT_E:
1641 return val & PORTE_HOTPLUG_LONG_DETECT;
1642 default:
1643 return false;
1647 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1649 switch (pin) {
1650 case HPD_PORT_A:
1651 return val & PORTA_HOTPLUG_LONG_DETECT;
1652 case HPD_PORT_B:
1653 return val & PORTB_HOTPLUG_LONG_DETECT;
1654 case HPD_PORT_C:
1655 return val & PORTC_HOTPLUG_LONG_DETECT;
1656 case HPD_PORT_D:
1657 return val & PORTD_HOTPLUG_LONG_DETECT;
1658 default:
1659 return false;
1663 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1665 switch (pin) {
1666 case HPD_PORT_A:
1667 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1668 default:
1669 return false;
1673 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1675 switch (pin) {
1676 case HPD_PORT_B:
1677 return val & PORTB_HOTPLUG_LONG_DETECT;
1678 case HPD_PORT_C:
1679 return val & PORTC_HOTPLUG_LONG_DETECT;
1680 case HPD_PORT_D:
1681 return val & PORTD_HOTPLUG_LONG_DETECT;
1682 default:
1683 return false;
1687 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1689 switch (pin) {
1690 case HPD_PORT_B:
1691 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1692 case HPD_PORT_C:
1693 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1694 case HPD_PORT_D:
1695 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1696 default:
1697 return false;
1702 * Get a bit mask of pins that have triggered, and which ones may be long.
1703 * This can be called multiple times with the same masks to accumulate
1704 * hotplug detection results from several registers.
1706 * Note that the caller is expected to zero out the masks initially.
1708 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1709 u32 *pin_mask, u32 *long_mask,
1710 u32 hotplug_trigger, u32 dig_hotplug_reg,
1711 const u32 hpd[HPD_NUM_PINS],
1712 bool long_pulse_detect(enum hpd_pin pin, u32 val))
1714 enum hpd_pin pin;
1716 for_each_hpd_pin(pin) {
1717 if ((hpd[pin] & hotplug_trigger) == 0)
1718 continue;
1720 *pin_mask |= BIT(pin);
1722 if (long_pulse_detect(pin, dig_hotplug_reg))
1723 *long_mask |= BIT(pin);
1726 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1727 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1731 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1733 wake_up_all(&dev_priv->gmbus_wait_queue);
1736 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1738 wake_up_all(&dev_priv->gmbus_wait_queue);
1741 #if defined(CONFIG_DEBUG_FS)
1742 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1743 enum pipe pipe,
1744 uint32_t crc0, uint32_t crc1,
1745 uint32_t crc2, uint32_t crc3,
1746 uint32_t crc4)
1748 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1749 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1750 uint32_t crcs[5];
1752 spin_lock(&pipe_crc->lock);
1754 * For some not yet identified reason, the first CRC is
1755 * bonkers. So let's just wait for the next vblank and read
1756 * out the buggy result.
1758 * On GEN8+ sometimes the second CRC is bonkers as well, so
1759 * don't trust that one either.
1761 if (pipe_crc->skipped <= 0 ||
1762 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1763 pipe_crc->skipped++;
1764 spin_unlock(&pipe_crc->lock);
1765 return;
1767 spin_unlock(&pipe_crc->lock);
1769 crcs[0] = crc0;
1770 crcs[1] = crc1;
1771 crcs[2] = crc2;
1772 crcs[3] = crc3;
1773 crcs[4] = crc4;
1774 drm_crtc_add_crc_entry(&crtc->base, true,
1775 drm_crtc_accurate_vblank_count(&crtc->base),
1776 crcs);
1778 #else
1779 static inline void
1780 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1781 enum pipe pipe,
1782 uint32_t crc0, uint32_t crc1,
1783 uint32_t crc2, uint32_t crc3,
1784 uint32_t crc4) {}
1785 #endif
1788 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1789 enum pipe pipe)
1791 display_pipe_crc_irq_handler(dev_priv, pipe,
1792 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1793 0, 0, 0, 0);
1796 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1797 enum pipe pipe)
1799 display_pipe_crc_irq_handler(dev_priv, pipe,
1800 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1801 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1802 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1803 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1804 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1807 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1808 enum pipe pipe)
1810 uint32_t res1, res2;
1812 if (INTEL_GEN(dev_priv) >= 3)
1813 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1814 else
1815 res1 = 0;
1817 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1818 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1819 else
1820 res2 = 0;
1822 display_pipe_crc_irq_handler(dev_priv, pipe,
1823 I915_READ(PIPE_CRC_RES_RED(pipe)),
1824 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1825 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1826 res1, res2);
1829 /* The RPS events need forcewake, so we add them to a work queue and mask their
1830 * IMR bits until the work is done. Other interrupts can be processed without
1831 * the work queue. */
1832 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1834 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1836 if (pm_iir & dev_priv->pm_rps_events) {
1837 spin_lock(&dev_priv->irq_lock);
1838 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1839 if (rps->interrupts_enabled) {
1840 rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1841 schedule_work(&rps->work);
1843 spin_unlock(&dev_priv->irq_lock);
1846 if (INTEL_GEN(dev_priv) >= 8)
1847 return;
1849 if (HAS_VEBOX(dev_priv)) {
1850 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1851 notify_ring(dev_priv->engine[VECS]);
1853 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1854 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1858 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1860 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1861 intel_guc_to_host_event_handler(&dev_priv->guc);
1864 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1866 enum pipe pipe;
1868 for_each_pipe(dev_priv, pipe) {
1869 I915_WRITE(PIPESTAT(pipe),
1870 PIPESTAT_INT_STATUS_MASK |
1871 PIPE_FIFO_UNDERRUN_STATUS);
1873 dev_priv->pipestat_irq_mask[pipe] = 0;
1877 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1878 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1880 int pipe;
1882 spin_lock(&dev_priv->irq_lock);
1884 if (!dev_priv->display_irqs_enabled) {
1885 spin_unlock(&dev_priv->irq_lock);
1886 return;
1889 for_each_pipe(dev_priv, pipe) {
1890 i915_reg_t reg;
1891 u32 status_mask, enable_mask, iir_bit = 0;
1894 * PIPESTAT bits get signalled even when the interrupt is
1895 * disabled with the mask bits, and some of the status bits do
1896 * not generate interrupts at all (like the underrun bit). Hence
1897 * we need to be careful that we only handle what we want to
1898 * handle.
1901 /* fifo underruns are filterered in the underrun handler. */
1902 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1904 switch (pipe) {
1905 case PIPE_A:
1906 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1907 break;
1908 case PIPE_B:
1909 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1910 break;
1911 case PIPE_C:
1912 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1913 break;
1915 if (iir & iir_bit)
1916 status_mask |= dev_priv->pipestat_irq_mask[pipe];
1918 if (!status_mask)
1919 continue;
1921 reg = PIPESTAT(pipe);
1922 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1923 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1926 * Clear the PIPE*STAT regs before the IIR
1928 * Toggle the enable bits to make sure we get an
1929 * edge in the ISR pipe event bit if we don't clear
1930 * all the enabled status bits. Otherwise the edge
1931 * triggered IIR on i965/g4x wouldn't notice that
1932 * an interrupt is still pending.
1934 if (pipe_stats[pipe]) {
1935 I915_WRITE(reg, pipe_stats[pipe]);
1936 I915_WRITE(reg, enable_mask);
1939 spin_unlock(&dev_priv->irq_lock);
1942 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1943 u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1945 enum pipe pipe;
1947 for_each_pipe(dev_priv, pipe) {
1948 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1949 drm_handle_vblank(&dev_priv->drm, pipe);
1951 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1952 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1954 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1955 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1959 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1960 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1962 bool blc_event = false;
1963 enum pipe pipe;
1965 for_each_pipe(dev_priv, pipe) {
1966 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1967 drm_handle_vblank(&dev_priv->drm, pipe);
1969 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1970 blc_event = true;
1972 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1973 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1975 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1976 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1979 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1980 intel_opregion_asle_intr(dev_priv);
1983 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1984 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1986 bool blc_event = false;
1987 enum pipe pipe;
1989 for_each_pipe(dev_priv, pipe) {
1990 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1991 drm_handle_vblank(&dev_priv->drm, pipe);
1993 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1994 blc_event = true;
1996 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1997 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1999 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2000 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2003 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2004 intel_opregion_asle_intr(dev_priv);
2006 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2007 gmbus_irq_handler(dev_priv);
2010 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2011 u32 pipe_stats[I915_MAX_PIPES])
2013 enum pipe pipe;
2015 for_each_pipe(dev_priv, pipe) {
2016 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2017 drm_handle_vblank(&dev_priv->drm, pipe);
2019 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2020 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2022 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2023 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2026 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2027 gmbus_irq_handler(dev_priv);
2030 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2032 u32 hotplug_status = 0, hotplug_status_mask;
2033 int i;
2035 if (IS_G4X(dev_priv) ||
2036 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2037 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2038 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2039 else
2040 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2043 * We absolutely have to clear all the pending interrupt
2044 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2045 * interrupt bit won't have an edge, and the i965/g4x
2046 * edge triggered IIR will not notice that an interrupt
2047 * is still pending. We can't use PORT_HOTPLUG_EN to
2048 * guarantee the edge as the act of toggling the enable
2049 * bits can itself generate a new hotplug interrupt :(
2051 for (i = 0; i < 10; i++) {
2052 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2054 if (tmp == 0)
2055 return hotplug_status;
2057 hotplug_status |= tmp;
2058 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2061 WARN_ONCE(1,
2062 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2063 I915_READ(PORT_HOTPLUG_STAT));
2065 return hotplug_status;
2068 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2069 u32 hotplug_status)
2071 u32 pin_mask = 0, long_mask = 0;
2073 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2074 IS_CHERRYVIEW(dev_priv)) {
2075 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2077 if (hotplug_trigger) {
2078 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2079 hotplug_trigger, hotplug_trigger,
2080 hpd_status_g4x,
2081 i9xx_port_hotplug_long_detect);
2083 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2086 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2087 dp_aux_irq_handler(dev_priv);
2088 } else {
2089 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2091 if (hotplug_trigger) {
2092 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2093 hotplug_trigger, hotplug_trigger,
2094 hpd_status_i915,
2095 i9xx_port_hotplug_long_detect);
2096 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2101 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2103 struct drm_device *dev = arg;
2104 struct drm_i915_private *dev_priv = to_i915(dev);
2105 irqreturn_t ret = IRQ_NONE;
2107 if (!intel_irqs_enabled(dev_priv))
2108 return IRQ_NONE;
2110 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2111 disable_rpm_wakeref_asserts(dev_priv);
2113 do {
2114 u32 iir, gt_iir, pm_iir;
2115 u32 pipe_stats[I915_MAX_PIPES] = {};
2116 u32 hotplug_status = 0;
2117 u32 ier = 0;
2119 gt_iir = I915_READ(GTIIR);
2120 pm_iir = I915_READ(GEN6_PMIIR);
2121 iir = I915_READ(VLV_IIR);
2123 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2124 break;
2126 ret = IRQ_HANDLED;
2129 * Theory on interrupt generation, based on empirical evidence:
2131 * x = ((VLV_IIR & VLV_IER) ||
2132 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2133 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2135 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2136 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2137 * guarantee the CPU interrupt will be raised again even if we
2138 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2139 * bits this time around.
2141 I915_WRITE(VLV_MASTER_IER, 0);
2142 ier = I915_READ(VLV_IER);
2143 I915_WRITE(VLV_IER, 0);
2145 if (gt_iir)
2146 I915_WRITE(GTIIR, gt_iir);
2147 if (pm_iir)
2148 I915_WRITE(GEN6_PMIIR, pm_iir);
2150 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2151 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2153 /* Call regardless, as some status bits might not be
2154 * signalled in iir */
2155 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2157 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2158 I915_LPE_PIPE_B_INTERRUPT))
2159 intel_lpe_audio_irq_handler(dev_priv);
2162 * VLV_IIR is single buffered, and reflects the level
2163 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2165 if (iir)
2166 I915_WRITE(VLV_IIR, iir);
2168 I915_WRITE(VLV_IER, ier);
2169 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2171 if (gt_iir)
2172 snb_gt_irq_handler(dev_priv, gt_iir);
2173 if (pm_iir)
2174 gen6_rps_irq_handler(dev_priv, pm_iir);
2176 if (hotplug_status)
2177 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2179 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2180 } while (0);
2182 enable_rpm_wakeref_asserts(dev_priv);
2184 return ret;
2187 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2189 struct drm_device *dev = arg;
2190 struct drm_i915_private *dev_priv = to_i915(dev);
2191 irqreturn_t ret = IRQ_NONE;
2193 if (!intel_irqs_enabled(dev_priv))
2194 return IRQ_NONE;
2196 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2197 disable_rpm_wakeref_asserts(dev_priv);
2199 do {
2200 u32 master_ctl, iir;
2201 u32 pipe_stats[I915_MAX_PIPES] = {};
2202 u32 hotplug_status = 0;
2203 u32 gt_iir[4];
2204 u32 ier = 0;
2206 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2207 iir = I915_READ(VLV_IIR);
2209 if (master_ctl == 0 && iir == 0)
2210 break;
2212 ret = IRQ_HANDLED;
2215 * Theory on interrupt generation, based on empirical evidence:
2217 * x = ((VLV_IIR & VLV_IER) ||
2218 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2219 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2221 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2222 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2223 * guarantee the CPU interrupt will be raised again even if we
2224 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2225 * bits this time around.
2227 I915_WRITE(GEN8_MASTER_IRQ, 0);
2228 ier = I915_READ(VLV_IER);
2229 I915_WRITE(VLV_IER, 0);
2231 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2233 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2234 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2236 /* Call regardless, as some status bits might not be
2237 * signalled in iir */
2238 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2240 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2241 I915_LPE_PIPE_B_INTERRUPT |
2242 I915_LPE_PIPE_C_INTERRUPT))
2243 intel_lpe_audio_irq_handler(dev_priv);
2246 * VLV_IIR is single buffered, and reflects the level
2247 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2249 if (iir)
2250 I915_WRITE(VLV_IIR, iir);
2252 I915_WRITE(VLV_IER, ier);
2253 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2255 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2257 if (hotplug_status)
2258 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2260 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2261 } while (0);
2263 enable_rpm_wakeref_asserts(dev_priv);
2265 return ret;
2268 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2269 u32 hotplug_trigger,
2270 const u32 hpd[HPD_NUM_PINS])
2272 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2275 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2276 * unless we touch the hotplug register, even if hotplug_trigger is
2277 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2278 * errors.
2280 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2281 if (!hotplug_trigger) {
2282 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2283 PORTD_HOTPLUG_STATUS_MASK |
2284 PORTC_HOTPLUG_STATUS_MASK |
2285 PORTB_HOTPLUG_STATUS_MASK;
2286 dig_hotplug_reg &= ~mask;
2289 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2290 if (!hotplug_trigger)
2291 return;
2293 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2294 dig_hotplug_reg, hpd,
2295 pch_port_hotplug_long_detect);
2297 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2300 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2302 int pipe;
2303 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2305 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2307 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2308 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2309 SDE_AUDIO_POWER_SHIFT);
2310 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2311 port_name(port));
2314 if (pch_iir & SDE_AUX_MASK)
2315 dp_aux_irq_handler(dev_priv);
2317 if (pch_iir & SDE_GMBUS)
2318 gmbus_irq_handler(dev_priv);
2320 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2321 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2323 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2324 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2326 if (pch_iir & SDE_POISON)
2327 DRM_ERROR("PCH poison interrupt\n");
2329 if (pch_iir & SDE_FDI_MASK)
2330 for_each_pipe(dev_priv, pipe)
2331 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2332 pipe_name(pipe),
2333 I915_READ(FDI_RX_IIR(pipe)));
2335 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2336 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2338 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2339 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2341 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2342 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2344 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2345 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2348 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2350 u32 err_int = I915_READ(GEN7_ERR_INT);
2351 enum pipe pipe;
2353 if (err_int & ERR_INT_POISON)
2354 DRM_ERROR("Poison interrupt\n");
2356 for_each_pipe(dev_priv, pipe) {
2357 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2358 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2360 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2361 if (IS_IVYBRIDGE(dev_priv))
2362 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2363 else
2364 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2368 I915_WRITE(GEN7_ERR_INT, err_int);
2371 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2373 u32 serr_int = I915_READ(SERR_INT);
2374 enum pipe pipe;
2376 if (serr_int & SERR_INT_POISON)
2377 DRM_ERROR("PCH poison interrupt\n");
2379 for_each_pipe(dev_priv, pipe)
2380 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2381 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2383 I915_WRITE(SERR_INT, serr_int);
2386 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2388 int pipe;
2389 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2391 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2393 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2394 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2395 SDE_AUDIO_POWER_SHIFT_CPT);
2396 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2397 port_name(port));
2400 if (pch_iir & SDE_AUX_MASK_CPT)
2401 dp_aux_irq_handler(dev_priv);
2403 if (pch_iir & SDE_GMBUS_CPT)
2404 gmbus_irq_handler(dev_priv);
2406 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2407 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2409 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2410 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2412 if (pch_iir & SDE_FDI_MASK_CPT)
2413 for_each_pipe(dev_priv, pipe)
2414 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2415 pipe_name(pipe),
2416 I915_READ(FDI_RX_IIR(pipe)));
2418 if (pch_iir & SDE_ERROR_CPT)
2419 cpt_serr_int_handler(dev_priv);
2422 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2424 u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2425 u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2426 u32 pin_mask = 0, long_mask = 0;
2428 if (ddi_hotplug_trigger) {
2429 u32 dig_hotplug_reg;
2431 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2432 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2434 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2435 ddi_hotplug_trigger,
2436 dig_hotplug_reg, hpd_icp,
2437 icp_ddi_port_hotplug_long_detect);
2440 if (tc_hotplug_trigger) {
2441 u32 dig_hotplug_reg;
2443 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2444 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2446 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2447 tc_hotplug_trigger,
2448 dig_hotplug_reg, hpd_icp,
2449 icp_tc_port_hotplug_long_detect);
2452 if (pin_mask)
2453 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2455 if (pch_iir & SDE_GMBUS_ICP)
2456 gmbus_irq_handler(dev_priv);
2459 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2461 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2462 ~SDE_PORTE_HOTPLUG_SPT;
2463 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2464 u32 pin_mask = 0, long_mask = 0;
2466 if (hotplug_trigger) {
2467 u32 dig_hotplug_reg;
2469 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2470 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2472 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2473 hotplug_trigger, dig_hotplug_reg, hpd_spt,
2474 spt_port_hotplug_long_detect);
2477 if (hotplug2_trigger) {
2478 u32 dig_hotplug_reg;
2480 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2481 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2483 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2484 hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2485 spt_port_hotplug2_long_detect);
2488 if (pin_mask)
2489 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2491 if (pch_iir & SDE_GMBUS_CPT)
2492 gmbus_irq_handler(dev_priv);
2495 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2496 u32 hotplug_trigger,
2497 const u32 hpd[HPD_NUM_PINS])
2499 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2501 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2502 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2504 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2505 dig_hotplug_reg, hpd,
2506 ilk_port_hotplug_long_detect);
2508 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2511 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2512 u32 de_iir)
2514 enum pipe pipe;
2515 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2517 if (hotplug_trigger)
2518 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2520 if (de_iir & DE_AUX_CHANNEL_A)
2521 dp_aux_irq_handler(dev_priv);
2523 if (de_iir & DE_GSE)
2524 intel_opregion_asle_intr(dev_priv);
2526 if (de_iir & DE_POISON)
2527 DRM_ERROR("Poison interrupt\n");
2529 for_each_pipe(dev_priv, pipe) {
2530 if (de_iir & DE_PIPE_VBLANK(pipe))
2531 drm_handle_vblank(&dev_priv->drm, pipe);
2533 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2534 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2536 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2537 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2540 /* check event from PCH */
2541 if (de_iir & DE_PCH_EVENT) {
2542 u32 pch_iir = I915_READ(SDEIIR);
2544 if (HAS_PCH_CPT(dev_priv))
2545 cpt_irq_handler(dev_priv, pch_iir);
2546 else
2547 ibx_irq_handler(dev_priv, pch_iir);
2549 /* should clear PCH hotplug event before clear CPU irq */
2550 I915_WRITE(SDEIIR, pch_iir);
2553 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2554 ironlake_rps_change_irq_handler(dev_priv);
2557 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2558 u32 de_iir)
2560 enum pipe pipe;
2561 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2563 if (hotplug_trigger)
2564 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2566 if (de_iir & DE_ERR_INT_IVB)
2567 ivb_err_int_handler(dev_priv);
2569 if (de_iir & DE_EDP_PSR_INT_HSW) {
2570 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2572 intel_psr_irq_handler(dev_priv, psr_iir);
2573 I915_WRITE(EDP_PSR_IIR, psr_iir);
2576 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2577 dp_aux_irq_handler(dev_priv);
2579 if (de_iir & DE_GSE_IVB)
2580 intel_opregion_asle_intr(dev_priv);
2582 for_each_pipe(dev_priv, pipe) {
2583 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2584 drm_handle_vblank(&dev_priv->drm, pipe);
2587 /* check event from PCH */
2588 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2589 u32 pch_iir = I915_READ(SDEIIR);
2591 cpt_irq_handler(dev_priv, pch_iir);
2593 /* clear PCH hotplug event before clear CPU irq */
2594 I915_WRITE(SDEIIR, pch_iir);
2599 * To handle irqs with the minimum potential races with fresh interrupts, we:
2600 * 1 - Disable Master Interrupt Control.
2601 * 2 - Find the source(s) of the interrupt.
2602 * 3 - Clear the Interrupt Identity bits (IIR).
2603 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2604 * 5 - Re-enable Master Interrupt Control.
2606 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2608 struct drm_device *dev = arg;
2609 struct drm_i915_private *dev_priv = to_i915(dev);
2610 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2611 irqreturn_t ret = IRQ_NONE;
2613 if (!intel_irqs_enabled(dev_priv))
2614 return IRQ_NONE;
2616 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2617 disable_rpm_wakeref_asserts(dev_priv);
2619 /* disable master interrupt before clearing iir */
2620 de_ier = I915_READ(DEIER);
2621 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2623 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2624 * interrupts will will be stored on its back queue, and then we'll be
2625 * able to process them after we restore SDEIER (as soon as we restore
2626 * it, we'll get an interrupt if SDEIIR still has something to process
2627 * due to its back queue). */
2628 if (!HAS_PCH_NOP(dev_priv)) {
2629 sde_ier = I915_READ(SDEIER);
2630 I915_WRITE(SDEIER, 0);
2633 /* Find, clear, then process each source of interrupt */
2635 gt_iir = I915_READ(GTIIR);
2636 if (gt_iir) {
2637 I915_WRITE(GTIIR, gt_iir);
2638 ret = IRQ_HANDLED;
2639 if (INTEL_GEN(dev_priv) >= 6)
2640 snb_gt_irq_handler(dev_priv, gt_iir);
2641 else
2642 ilk_gt_irq_handler(dev_priv, gt_iir);
2645 de_iir = I915_READ(DEIIR);
2646 if (de_iir) {
2647 I915_WRITE(DEIIR, de_iir);
2648 ret = IRQ_HANDLED;
2649 if (INTEL_GEN(dev_priv) >= 7)
2650 ivb_display_irq_handler(dev_priv, de_iir);
2651 else
2652 ilk_display_irq_handler(dev_priv, de_iir);
2655 if (INTEL_GEN(dev_priv) >= 6) {
2656 u32 pm_iir = I915_READ(GEN6_PMIIR);
2657 if (pm_iir) {
2658 I915_WRITE(GEN6_PMIIR, pm_iir);
2659 ret = IRQ_HANDLED;
2660 gen6_rps_irq_handler(dev_priv, pm_iir);
2664 I915_WRITE(DEIER, de_ier);
2665 if (!HAS_PCH_NOP(dev_priv))
2666 I915_WRITE(SDEIER, sde_ier);
2668 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2669 enable_rpm_wakeref_asserts(dev_priv);
2671 return ret;
2674 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2675 u32 hotplug_trigger,
2676 const u32 hpd[HPD_NUM_PINS])
2678 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2680 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2681 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2683 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2684 dig_hotplug_reg, hpd,
2685 bxt_port_hotplug_long_detect);
2687 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2690 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2692 u32 pin_mask = 0, long_mask = 0;
2693 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2694 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2696 if (trigger_tc) {
2697 u32 dig_hotplug_reg;
2699 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2700 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2702 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2703 dig_hotplug_reg, hpd_gen11,
2704 gen11_port_hotplug_long_detect);
2707 if (trigger_tbt) {
2708 u32 dig_hotplug_reg;
2710 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2711 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2713 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2714 dig_hotplug_reg, hpd_gen11,
2715 gen11_port_hotplug_long_detect);
2718 if (pin_mask)
2719 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2720 else
2721 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2724 static irqreturn_t
2725 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2727 irqreturn_t ret = IRQ_NONE;
2728 u32 iir;
2729 enum pipe pipe;
2731 if (master_ctl & GEN8_DE_MISC_IRQ) {
2732 iir = I915_READ(GEN8_DE_MISC_IIR);
2733 if (iir) {
2734 bool found = false;
2736 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2737 ret = IRQ_HANDLED;
2739 if (iir & GEN8_DE_MISC_GSE) {
2740 intel_opregion_asle_intr(dev_priv);
2741 found = true;
2744 if (iir & GEN8_DE_EDP_PSR) {
2745 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2747 intel_psr_irq_handler(dev_priv, psr_iir);
2748 I915_WRITE(EDP_PSR_IIR, psr_iir);
2749 found = true;
2752 if (!found)
2753 DRM_ERROR("Unexpected DE Misc interrupt\n");
2755 else
2756 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2759 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2760 iir = I915_READ(GEN11_DE_HPD_IIR);
2761 if (iir) {
2762 I915_WRITE(GEN11_DE_HPD_IIR, iir);
2763 ret = IRQ_HANDLED;
2764 gen11_hpd_irq_handler(dev_priv, iir);
2765 } else {
2766 DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2770 if (master_ctl & GEN8_DE_PORT_IRQ) {
2771 iir = I915_READ(GEN8_DE_PORT_IIR);
2772 if (iir) {
2773 u32 tmp_mask;
2774 bool found = false;
2776 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2777 ret = IRQ_HANDLED;
2779 tmp_mask = GEN8_AUX_CHANNEL_A;
2780 if (INTEL_GEN(dev_priv) >= 9)
2781 tmp_mask |= GEN9_AUX_CHANNEL_B |
2782 GEN9_AUX_CHANNEL_C |
2783 GEN9_AUX_CHANNEL_D;
2785 if (INTEL_GEN(dev_priv) >= 11)
2786 tmp_mask |= ICL_AUX_CHANNEL_E;
2788 if (IS_CNL_WITH_PORT_F(dev_priv) ||
2789 INTEL_GEN(dev_priv) >= 11)
2790 tmp_mask |= CNL_AUX_CHANNEL_F;
2792 if (iir & tmp_mask) {
2793 dp_aux_irq_handler(dev_priv);
2794 found = true;
2797 if (IS_GEN9_LP(dev_priv)) {
2798 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2799 if (tmp_mask) {
2800 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2801 hpd_bxt);
2802 found = true;
2804 } else if (IS_BROADWELL(dev_priv)) {
2805 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2806 if (tmp_mask) {
2807 ilk_hpd_irq_handler(dev_priv,
2808 tmp_mask, hpd_bdw);
2809 found = true;
2813 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2814 gmbus_irq_handler(dev_priv);
2815 found = true;
2818 if (!found)
2819 DRM_ERROR("Unexpected DE Port interrupt\n");
2821 else
2822 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2825 for_each_pipe(dev_priv, pipe) {
2826 u32 fault_errors;
2828 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2829 continue;
2831 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2832 if (!iir) {
2833 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2834 continue;
2837 ret = IRQ_HANDLED;
2838 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2840 if (iir & GEN8_PIPE_VBLANK)
2841 drm_handle_vblank(&dev_priv->drm, pipe);
2843 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2844 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2846 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2847 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2849 fault_errors = iir;
2850 if (INTEL_GEN(dev_priv) >= 9)
2851 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2852 else
2853 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2855 if (fault_errors)
2856 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2857 pipe_name(pipe),
2858 fault_errors);
2861 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2862 master_ctl & GEN8_DE_PCH_IRQ) {
2864 * FIXME(BDW): Assume for now that the new interrupt handling
2865 * scheme also closed the SDE interrupt handling race we've seen
2866 * on older pch-split platforms. But this needs testing.
2868 iir = I915_READ(SDEIIR);
2869 if (iir) {
2870 I915_WRITE(SDEIIR, iir);
2871 ret = IRQ_HANDLED;
2873 if (HAS_PCH_ICP(dev_priv))
2874 icp_irq_handler(dev_priv, iir);
2875 else if (HAS_PCH_SPT(dev_priv) ||
2876 HAS_PCH_KBP(dev_priv) ||
2877 HAS_PCH_CNP(dev_priv))
2878 spt_irq_handler(dev_priv, iir);
2879 else
2880 cpt_irq_handler(dev_priv, iir);
2881 } else {
2883 * Like on previous PCH there seems to be something
2884 * fishy going on with forwarding PCH interrupts.
2886 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2890 return ret;
2893 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2895 struct drm_i915_private *dev_priv = to_i915(arg);
2896 u32 master_ctl;
2897 u32 gt_iir[4];
2899 if (!intel_irqs_enabled(dev_priv))
2900 return IRQ_NONE;
2902 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2903 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2904 if (!master_ctl)
2905 return IRQ_NONE;
2907 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2909 /* Find, clear, then process each source of interrupt */
2910 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2912 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2913 if (master_ctl & ~GEN8_GT_IRQS) {
2914 disable_rpm_wakeref_asserts(dev_priv);
2915 gen8_de_irq_handler(dev_priv, master_ctl);
2916 enable_rpm_wakeref_asserts(dev_priv);
2919 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2921 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2923 return IRQ_HANDLED;
2926 struct wedge_me {
2927 struct delayed_work work;
2928 struct drm_i915_private *i915;
2929 const char *name;
2932 static void wedge_me(struct work_struct *work)
2934 struct wedge_me *w = container_of(work, typeof(*w), work.work);
2936 dev_err(w->i915->drm.dev,
2937 "%s timed out, cancelling all in-flight rendering.\n",
2938 w->name);
2939 i915_gem_set_wedged(w->i915);
2942 static void __init_wedge(struct wedge_me *w,
2943 struct drm_i915_private *i915,
2944 long timeout,
2945 const char *name)
2947 w->i915 = i915;
2948 w->name = name;
2950 INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2951 schedule_delayed_work(&w->work, timeout);
2954 static void __fini_wedge(struct wedge_me *w)
2956 cancel_delayed_work_sync(&w->work);
2957 destroy_delayed_work_on_stack(&w->work);
2958 w->i915 = NULL;
2961 #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
2962 for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
2963 (W)->i915; \
2964 __fini_wedge((W)))
2966 static u32
2967 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2968 const unsigned int bank, const unsigned int bit)
2970 void __iomem * const regs = i915->regs;
2971 u32 timeout_ts;
2972 u32 ident;
2974 lockdep_assert_held(&i915->irq_lock);
2976 raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2979 * NB: Specs do not specify how long to spin wait,
2980 * so we do ~100us as an educated guess.
2982 timeout_ts = (local_clock() >> 10) + 100;
2983 do {
2984 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2985 } while (!(ident & GEN11_INTR_DATA_VALID) &&
2986 !time_after32(local_clock() >> 10, timeout_ts));
2988 if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2989 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2990 bank, bit, ident);
2991 return 0;
2994 raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
2995 GEN11_INTR_DATA_VALID);
2997 return ident;
3000 static void
3001 gen11_other_irq_handler(struct drm_i915_private * const i915,
3002 const u8 instance, const u16 iir)
3004 if (instance == OTHER_GTPM_INSTANCE)
3005 return gen6_rps_irq_handler(i915, iir);
3007 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3008 instance, iir);
3011 static void
3012 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3013 const u8 class, const u8 instance, const u16 iir)
3015 struct intel_engine_cs *engine;
3017 if (instance <= MAX_ENGINE_INSTANCE)
3018 engine = i915->engine_class[class][instance];
3019 else
3020 engine = NULL;
3022 if (likely(engine))
3023 return gen8_cs_irq_handler(engine, iir);
3025 WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3026 class, instance);
3029 static void
3030 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3031 const u32 identity)
3033 const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3034 const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3035 const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3037 if (unlikely(!intr))
3038 return;
3040 if (class <= COPY_ENGINE_CLASS)
3041 return gen11_engine_irq_handler(i915, class, instance, intr);
3043 if (class == OTHER_CLASS)
3044 return gen11_other_irq_handler(i915, instance, intr);
3046 WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3047 class, instance, intr);
3050 static void
3051 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3052 const unsigned int bank)
3054 void __iomem * const regs = i915->regs;
3055 unsigned long intr_dw;
3056 unsigned int bit;
3058 lockdep_assert_held(&i915->irq_lock);
3060 intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3062 if (unlikely(!intr_dw)) {
3063 DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
3064 return;
3067 for_each_set_bit(bit, &intr_dw, 32) {
3068 const u32 ident = gen11_gt_engine_identity(i915,
3069 bank, bit);
3071 gen11_gt_identity_handler(i915, ident);
3074 /* Clear must be after shared has been served for engine */
3075 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3078 static void
3079 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3080 const u32 master_ctl)
3082 unsigned int bank;
3084 spin_lock(&i915->irq_lock);
3086 for (bank = 0; bank < 2; bank++) {
3087 if (master_ctl & GEN11_GT_DW_IRQ(bank))
3088 gen11_gt_bank_handler(i915, bank);
3091 spin_unlock(&i915->irq_lock);
3094 static u32
3095 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl)
3097 void __iomem * const regs = dev_priv->regs;
3098 u32 iir;
3100 if (!(master_ctl & GEN11_GU_MISC_IRQ))
3101 return 0;
3103 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3104 if (likely(iir))
3105 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
3107 return iir;
3110 static void
3111 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv, const u32 iir)
3113 if (iir & GEN11_GU_MISC_GSE)
3114 intel_opregion_asle_intr(dev_priv);
3117 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3119 struct drm_i915_private * const i915 = to_i915(arg);
3120 void __iomem * const regs = i915->regs;
3121 u32 master_ctl;
3122 u32 gu_misc_iir;
3124 if (!intel_irqs_enabled(i915))
3125 return IRQ_NONE;
3127 master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3128 master_ctl &= ~GEN11_MASTER_IRQ;
3129 if (!master_ctl)
3130 return IRQ_NONE;
3132 /* Disable interrupts. */
3133 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3135 /* Find, clear, then process each source of interrupt. */
3136 gen11_gt_irq_handler(i915, master_ctl);
3138 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3139 if (master_ctl & GEN11_DISPLAY_IRQ) {
3140 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3142 disable_rpm_wakeref_asserts(i915);
3144 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3145 * for the display related bits.
3147 gen8_de_irq_handler(i915, disp_ctl);
3148 enable_rpm_wakeref_asserts(i915);
3151 gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
3153 /* Acknowledge and enable interrupts. */
3154 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
3156 gen11_gu_misc_irq_handler(i915, gu_misc_iir);
3158 return IRQ_HANDLED;
3161 static void i915_reset_device(struct drm_i915_private *dev_priv,
3162 u32 engine_mask,
3163 const char *reason)
3165 struct i915_gpu_error *error = &dev_priv->gpu_error;
3166 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
3167 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
3168 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
3169 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
3170 struct wedge_me w;
3172 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
3174 DRM_DEBUG_DRIVER("resetting chip\n");
3175 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
3177 /* Use a watchdog to ensure that our reset completes */
3178 i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
3179 intel_prepare_reset(dev_priv);
3181 error->reason = reason;
3182 error->stalled_mask = engine_mask;
3184 /* Signal that locked waiters should reset the GPU */
3185 smp_mb__before_atomic();
3186 set_bit(I915_RESET_HANDOFF, &error->flags);
3187 wake_up_all(&error->wait_queue);
3189 /* Wait for anyone holding the lock to wakeup, without
3190 * blocking indefinitely on struct_mutex.
3192 do {
3193 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
3194 i915_reset(dev_priv, engine_mask, reason);
3195 mutex_unlock(&dev_priv->drm.struct_mutex);
3197 } while (wait_on_bit_timeout(&error->flags,
3198 I915_RESET_HANDOFF,
3199 TASK_UNINTERRUPTIBLE,
3200 1));
3202 error->stalled_mask = 0;
3203 error->reason = NULL;
3205 intel_finish_reset(dev_priv);
3208 if (!test_bit(I915_WEDGED, &error->flags))
3209 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
3212 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
3214 u32 eir;
3216 if (!IS_GEN2(dev_priv))
3217 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
3219 if (INTEL_GEN(dev_priv) < 4)
3220 I915_WRITE(IPEIR, I915_READ(IPEIR));
3221 else
3222 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
3224 I915_WRITE(EIR, I915_READ(EIR));
3225 eir = I915_READ(EIR);
3226 if (eir) {
3228 * some errors might have become stuck,
3229 * mask them.
3231 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
3232 I915_WRITE(EMR, I915_READ(EMR) | eir);
3233 I915_WRITE(IIR, I915_MASTER_ERROR_INTERRUPT);
3238 * i915_handle_error - handle a gpu error
3239 * @dev_priv: i915 device private
3240 * @engine_mask: mask representing engines that are hung
3241 * @flags: control flags
3242 * @fmt: Error message format string
3244 * Do some basic checking of register state at error time and
3245 * dump it to the syslog. Also call i915_capture_error_state() to make
3246 * sure we get a record and make it available in debugfs. Fire a uevent
3247 * so userspace knows something bad happened (should trigger collection
3248 * of a ring dump etc.).
3250 void i915_handle_error(struct drm_i915_private *dev_priv,
3251 u32 engine_mask,
3252 unsigned long flags,
3253 const char *fmt, ...)
3255 struct intel_engine_cs *engine;
3256 unsigned int tmp;
3257 char error_msg[80];
3258 char *msg = NULL;
3260 if (fmt) {
3261 va_list args;
3263 va_start(args, fmt);
3264 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3265 va_end(args);
3267 msg = error_msg;
3271 * In most cases it's guaranteed that we get here with an RPM
3272 * reference held, for example because there is a pending GPU
3273 * request that won't finish until the reset is done. This
3274 * isn't the case at least when we get here by doing a
3275 * simulated reset via debugfs, so get an RPM reference.
3277 intel_runtime_pm_get(dev_priv);
3279 engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
3281 if (flags & I915_ERROR_CAPTURE) {
3282 i915_capture_error_state(dev_priv, engine_mask, msg);
3283 i915_clear_error_registers(dev_priv);
3287 * Try engine reset when available. We fall back to full reset if
3288 * single reset fails.
3290 if (intel_has_reset_engine(dev_priv)) {
3291 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3292 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3293 if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3294 &dev_priv->gpu_error.flags))
3295 continue;
3297 if (i915_reset_engine(engine, msg) == 0)
3298 engine_mask &= ~intel_engine_flag(engine);
3300 clear_bit(I915_RESET_ENGINE + engine->id,
3301 &dev_priv->gpu_error.flags);
3302 wake_up_bit(&dev_priv->gpu_error.flags,
3303 I915_RESET_ENGINE + engine->id);
3307 if (!engine_mask)
3308 goto out;
3310 /* Full reset needs the mutex, stop any other user trying to do so. */
3311 if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3312 wait_event(dev_priv->gpu_error.reset_queue,
3313 !test_bit(I915_RESET_BACKOFF,
3314 &dev_priv->gpu_error.flags));
3315 goto out;
3318 /* Prevent any other reset-engine attempt. */
3319 for_each_engine(engine, dev_priv, tmp) {
3320 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3321 &dev_priv->gpu_error.flags))
3322 wait_on_bit(&dev_priv->gpu_error.flags,
3323 I915_RESET_ENGINE + engine->id,
3324 TASK_UNINTERRUPTIBLE);
3327 i915_reset_device(dev_priv, engine_mask, msg);
3329 for_each_engine(engine, dev_priv, tmp) {
3330 clear_bit(I915_RESET_ENGINE + engine->id,
3331 &dev_priv->gpu_error.flags);
3334 clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3335 wake_up_all(&dev_priv->gpu_error.reset_queue);
3337 out:
3338 intel_runtime_pm_put(dev_priv);
3341 /* Called from drm generic code, passed 'crtc' which
3342 * we use as a pipe index
3344 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3346 struct drm_i915_private *dev_priv = to_i915(dev);
3347 unsigned long irqflags;
3349 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3350 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3351 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3353 return 0;
3356 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3358 struct drm_i915_private *dev_priv = to_i915(dev);
3359 unsigned long irqflags;
3361 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3362 i915_enable_pipestat(dev_priv, pipe,
3363 PIPE_START_VBLANK_INTERRUPT_STATUS);
3364 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3366 return 0;
3369 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3371 struct drm_i915_private *dev_priv = to_i915(dev);
3372 unsigned long irqflags;
3373 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3374 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3376 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3377 ilk_enable_display_irq(dev_priv, bit);
3378 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3380 /* Even though there is no DMC, frame counter can get stuck when
3381 * PSR is active as no frames are generated.
3383 if (HAS_PSR(dev_priv))
3384 drm_vblank_restore(dev, pipe);
3386 return 0;
3389 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3391 struct drm_i915_private *dev_priv = to_i915(dev);
3392 unsigned long irqflags;
3394 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3395 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3396 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3398 /* Even if there is no DMC, frame counter can get stuck when
3399 * PSR is active as no frames are generated, so check only for PSR.
3401 if (HAS_PSR(dev_priv))
3402 drm_vblank_restore(dev, pipe);
3404 return 0;
3407 /* Called from drm generic code, passed 'crtc' which
3408 * we use as a pipe index
3410 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3412 struct drm_i915_private *dev_priv = to_i915(dev);
3413 unsigned long irqflags;
3415 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3416 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3417 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3420 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3422 struct drm_i915_private *dev_priv = to_i915(dev);
3423 unsigned long irqflags;
3425 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3426 i915_disable_pipestat(dev_priv, pipe,
3427 PIPE_START_VBLANK_INTERRUPT_STATUS);
3428 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3431 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3433 struct drm_i915_private *dev_priv = to_i915(dev);
3434 unsigned long irqflags;
3435 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3436 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3438 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3439 ilk_disable_display_irq(dev_priv, bit);
3440 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3443 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3445 struct drm_i915_private *dev_priv = to_i915(dev);
3446 unsigned long irqflags;
3448 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3449 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3450 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3453 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3455 if (HAS_PCH_NOP(dev_priv))
3456 return;
3458 GEN3_IRQ_RESET(SDE);
3460 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3461 I915_WRITE(SERR_INT, 0xffffffff);
3465 * SDEIER is also touched by the interrupt handler to work around missed PCH
3466 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3467 * instead we unconditionally enable all PCH interrupt sources here, but then
3468 * only unmask them as needed with SDEIMR.
3470 * This function needs to be called before interrupts are enabled.
3472 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3474 struct drm_i915_private *dev_priv = to_i915(dev);
3476 if (HAS_PCH_NOP(dev_priv))
3477 return;
3479 WARN_ON(I915_READ(SDEIER) != 0);
3480 I915_WRITE(SDEIER, 0xffffffff);
3481 POSTING_READ(SDEIER);
3484 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3486 GEN3_IRQ_RESET(GT);
3487 if (INTEL_GEN(dev_priv) >= 6)
3488 GEN3_IRQ_RESET(GEN6_PM);
3491 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3493 if (IS_CHERRYVIEW(dev_priv))
3494 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3495 else
3496 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3498 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3499 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3501 i9xx_pipestat_irq_reset(dev_priv);
3503 GEN3_IRQ_RESET(VLV_);
3504 dev_priv->irq_mask = ~0u;
3507 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3509 u32 pipestat_mask;
3510 u32 enable_mask;
3511 enum pipe pipe;
3513 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3515 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3516 for_each_pipe(dev_priv, pipe)
3517 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3519 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3520 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3521 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3522 I915_LPE_PIPE_A_INTERRUPT |
3523 I915_LPE_PIPE_B_INTERRUPT;
3525 if (IS_CHERRYVIEW(dev_priv))
3526 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3527 I915_LPE_PIPE_C_INTERRUPT;
3529 WARN_ON(dev_priv->irq_mask != ~0u);
3531 dev_priv->irq_mask = ~enable_mask;
3533 GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3536 /* drm_dma.h hooks
3538 static void ironlake_irq_reset(struct drm_device *dev)
3540 struct drm_i915_private *dev_priv = to_i915(dev);
3542 if (IS_GEN5(dev_priv))
3543 I915_WRITE(HWSTAM, 0xffffffff);
3545 GEN3_IRQ_RESET(DE);
3546 if (IS_GEN7(dev_priv))
3547 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3549 if (IS_HASWELL(dev_priv)) {
3550 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3551 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3554 gen5_gt_irq_reset(dev_priv);
3556 ibx_irq_reset(dev_priv);
3559 static void valleyview_irq_reset(struct drm_device *dev)
3561 struct drm_i915_private *dev_priv = to_i915(dev);
3563 I915_WRITE(VLV_MASTER_IER, 0);
3564 POSTING_READ(VLV_MASTER_IER);
3566 gen5_gt_irq_reset(dev_priv);
3568 spin_lock_irq(&dev_priv->irq_lock);
3569 if (dev_priv->display_irqs_enabled)
3570 vlv_display_irq_reset(dev_priv);
3571 spin_unlock_irq(&dev_priv->irq_lock);
3574 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3576 GEN8_IRQ_RESET_NDX(GT, 0);
3577 GEN8_IRQ_RESET_NDX(GT, 1);
3578 GEN8_IRQ_RESET_NDX(GT, 2);
3579 GEN8_IRQ_RESET_NDX(GT, 3);
3582 static void gen8_irq_reset(struct drm_device *dev)
3584 struct drm_i915_private *dev_priv = to_i915(dev);
3585 int pipe;
3587 I915_WRITE(GEN8_MASTER_IRQ, 0);
3588 POSTING_READ(GEN8_MASTER_IRQ);
3590 gen8_gt_irq_reset(dev_priv);
3592 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3593 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3595 for_each_pipe(dev_priv, pipe)
3596 if (intel_display_power_is_enabled(dev_priv,
3597 POWER_DOMAIN_PIPE(pipe)))
3598 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3600 GEN3_IRQ_RESET(GEN8_DE_PORT_);
3601 GEN3_IRQ_RESET(GEN8_DE_MISC_);
3602 GEN3_IRQ_RESET(GEN8_PCU_);
3604 if (HAS_PCH_SPLIT(dev_priv))
3605 ibx_irq_reset(dev_priv);
3608 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3610 /* Disable RCS, BCS, VCS and VECS class engines. */
3611 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3612 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, 0);
3614 /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3615 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~0);
3616 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~0);
3617 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~0);
3618 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~0);
3619 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3621 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3622 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
3625 static void gen11_irq_reset(struct drm_device *dev)
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628 int pipe;
3630 I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
3631 POSTING_READ(GEN11_GFX_MSTR_IRQ);
3633 gen11_gt_irq_reset(dev_priv);
3635 I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3637 for_each_pipe(dev_priv, pipe)
3638 if (intel_display_power_is_enabled(dev_priv,
3639 POWER_DOMAIN_PIPE(pipe)))
3640 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3642 GEN3_IRQ_RESET(GEN8_DE_PORT_);
3643 GEN3_IRQ_RESET(GEN8_DE_MISC_);
3644 GEN3_IRQ_RESET(GEN11_DE_HPD_);
3645 GEN3_IRQ_RESET(GEN11_GU_MISC_);
3646 GEN3_IRQ_RESET(GEN8_PCU_);
3648 if (HAS_PCH_ICP(dev_priv))
3649 GEN3_IRQ_RESET(SDE);
3652 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3653 u8 pipe_mask)
3655 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3656 enum pipe pipe;
3658 spin_lock_irq(&dev_priv->irq_lock);
3660 if (!intel_irqs_enabled(dev_priv)) {
3661 spin_unlock_irq(&dev_priv->irq_lock);
3662 return;
3665 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3666 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3667 dev_priv->de_irq_mask[pipe],
3668 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3670 spin_unlock_irq(&dev_priv->irq_lock);
3673 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3674 u8 pipe_mask)
3676 enum pipe pipe;
3678 spin_lock_irq(&dev_priv->irq_lock);
3680 if (!intel_irqs_enabled(dev_priv)) {
3681 spin_unlock_irq(&dev_priv->irq_lock);
3682 return;
3685 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3686 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3688 spin_unlock_irq(&dev_priv->irq_lock);
3690 /* make sure we're done processing display irqs */
3691 synchronize_irq(dev_priv->drm.irq);
3694 static void cherryview_irq_reset(struct drm_device *dev)
3696 struct drm_i915_private *dev_priv = to_i915(dev);
3698 I915_WRITE(GEN8_MASTER_IRQ, 0);
3699 POSTING_READ(GEN8_MASTER_IRQ);
3701 gen8_gt_irq_reset(dev_priv);
3703 GEN3_IRQ_RESET(GEN8_PCU_);
3705 spin_lock_irq(&dev_priv->irq_lock);
3706 if (dev_priv->display_irqs_enabled)
3707 vlv_display_irq_reset(dev_priv);
3708 spin_unlock_irq(&dev_priv->irq_lock);
3711 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3712 const u32 hpd[HPD_NUM_PINS])
3714 struct intel_encoder *encoder;
3715 u32 enabled_irqs = 0;
3717 for_each_intel_encoder(&dev_priv->drm, encoder)
3718 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3719 enabled_irqs |= hpd[encoder->hpd_pin];
3721 return enabled_irqs;
3724 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3726 u32 hotplug;
3729 * Enable digital hotplug on the PCH, and configure the DP short pulse
3730 * duration to 2ms (which is the minimum in the Display Port spec).
3731 * The pulse duration bits are reserved on LPT+.
3733 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3734 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3735 PORTC_PULSE_DURATION_MASK |
3736 PORTD_PULSE_DURATION_MASK);
3737 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3738 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3739 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3741 * When CPU and PCH are on the same package, port A
3742 * HPD must be enabled in both north and south.
3744 if (HAS_PCH_LPT_LP(dev_priv))
3745 hotplug |= PORTA_HOTPLUG_ENABLE;
3746 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3749 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3751 u32 hotplug_irqs, enabled_irqs;
3753 if (HAS_PCH_IBX(dev_priv)) {
3754 hotplug_irqs = SDE_HOTPLUG_MASK;
3755 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3756 } else {
3757 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3758 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3761 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3763 ibx_hpd_detection_setup(dev_priv);
3766 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv)
3768 u32 hotplug;
3770 hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3771 hotplug |= ICP_DDIA_HPD_ENABLE |
3772 ICP_DDIB_HPD_ENABLE;
3773 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3775 hotplug = I915_READ(SHOTPLUG_CTL_TC);
3776 hotplug |= ICP_TC_HPD_ENABLE(PORT_TC1) |
3777 ICP_TC_HPD_ENABLE(PORT_TC2) |
3778 ICP_TC_HPD_ENABLE(PORT_TC3) |
3779 ICP_TC_HPD_ENABLE(PORT_TC4);
3780 I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3783 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3785 u32 hotplug_irqs, enabled_irqs;
3787 hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3788 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3790 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3792 icp_hpd_detection_setup(dev_priv);
3795 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3797 u32 hotplug;
3799 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3800 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3801 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3802 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3803 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3804 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3806 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3807 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3808 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3809 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3810 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3811 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3814 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3816 u32 hotplug_irqs, enabled_irqs;
3817 u32 val;
3819 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_gen11);
3820 hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3822 val = I915_READ(GEN11_DE_HPD_IMR);
3823 val &= ~hotplug_irqs;
3824 I915_WRITE(GEN11_DE_HPD_IMR, val);
3825 POSTING_READ(GEN11_DE_HPD_IMR);
3827 gen11_hpd_detection_setup(dev_priv);
3829 if (HAS_PCH_ICP(dev_priv))
3830 icp_hpd_irq_setup(dev_priv);
3833 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3835 u32 val, hotplug;
3837 /* Display WA #1179 WaHardHangonHotPlug: cnp */
3838 if (HAS_PCH_CNP(dev_priv)) {
3839 val = I915_READ(SOUTH_CHICKEN1);
3840 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3841 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3842 I915_WRITE(SOUTH_CHICKEN1, val);
3845 /* Enable digital hotplug on the PCH */
3846 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3847 hotplug |= PORTA_HOTPLUG_ENABLE |
3848 PORTB_HOTPLUG_ENABLE |
3849 PORTC_HOTPLUG_ENABLE |
3850 PORTD_HOTPLUG_ENABLE;
3851 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3853 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3854 hotplug |= PORTE_HOTPLUG_ENABLE;
3855 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3858 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3860 u32 hotplug_irqs, enabled_irqs;
3862 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3863 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3865 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3867 spt_hpd_detection_setup(dev_priv);
3870 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3872 u32 hotplug;
3875 * Enable digital hotplug on the CPU, and configure the DP short pulse
3876 * duration to 2ms (which is the minimum in the Display Port spec)
3877 * The pulse duration bits are reserved on HSW+.
3879 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3880 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3881 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3882 DIGITAL_PORTA_PULSE_DURATION_2ms;
3883 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3886 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3888 u32 hotplug_irqs, enabled_irqs;
3890 if (INTEL_GEN(dev_priv) >= 8) {
3891 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3892 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3894 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3895 } else if (INTEL_GEN(dev_priv) >= 7) {
3896 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3897 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3899 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3900 } else {
3901 hotplug_irqs = DE_DP_A_HOTPLUG;
3902 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3904 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3907 ilk_hpd_detection_setup(dev_priv);
3909 ibx_hpd_irq_setup(dev_priv);
3912 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3913 u32 enabled_irqs)
3915 u32 hotplug;
3917 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3918 hotplug |= PORTA_HOTPLUG_ENABLE |
3919 PORTB_HOTPLUG_ENABLE |
3920 PORTC_HOTPLUG_ENABLE;
3922 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3923 hotplug, enabled_irqs);
3924 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3927 * For BXT invert bit has to be set based on AOB design
3928 * for HPD detection logic, update it based on VBT fields.
3930 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3931 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3932 hotplug |= BXT_DDIA_HPD_INVERT;
3933 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3934 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3935 hotplug |= BXT_DDIB_HPD_INVERT;
3936 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3937 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3938 hotplug |= BXT_DDIC_HPD_INVERT;
3940 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3943 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3945 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3948 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3950 u32 hotplug_irqs, enabled_irqs;
3952 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3953 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3955 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3957 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3960 static void ibx_irq_postinstall(struct drm_device *dev)
3962 struct drm_i915_private *dev_priv = to_i915(dev);
3963 u32 mask;
3965 if (HAS_PCH_NOP(dev_priv))
3966 return;
3968 if (HAS_PCH_IBX(dev_priv))
3969 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3970 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3971 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3972 else
3973 mask = SDE_GMBUS_CPT;
3975 gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3976 I915_WRITE(SDEIMR, ~mask);
3978 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3979 HAS_PCH_LPT(dev_priv))
3980 ibx_hpd_detection_setup(dev_priv);
3981 else
3982 spt_hpd_detection_setup(dev_priv);
3985 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3987 struct drm_i915_private *dev_priv = to_i915(dev);
3988 u32 pm_irqs, gt_irqs;
3990 pm_irqs = gt_irqs = 0;
3992 dev_priv->gt_irq_mask = ~0;
3993 if (HAS_L3_DPF(dev_priv)) {
3994 /* L3 parity interrupt is always unmasked. */
3995 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3996 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3999 gt_irqs |= GT_RENDER_USER_INTERRUPT;
4000 if (IS_GEN5(dev_priv)) {
4001 gt_irqs |= ILK_BSD_USER_INTERRUPT;
4002 } else {
4003 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
4006 GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
4008 if (INTEL_GEN(dev_priv) >= 6) {
4010 * RPS interrupts will get enabled/disabled on demand when RPS
4011 * itself is enabled/disabled.
4013 if (HAS_VEBOX(dev_priv)) {
4014 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
4015 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
4018 dev_priv->pm_imr = 0xffffffff;
4019 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
4023 static int ironlake_irq_postinstall(struct drm_device *dev)
4025 struct drm_i915_private *dev_priv = to_i915(dev);
4026 u32 display_mask, extra_mask;
4028 if (INTEL_GEN(dev_priv) >= 7) {
4029 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
4030 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
4031 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
4032 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
4033 DE_DP_A_HOTPLUG_IVB);
4034 } else {
4035 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
4036 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
4037 DE_PIPEA_CRC_DONE | DE_POISON);
4038 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
4039 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
4040 DE_DP_A_HOTPLUG);
4043 if (IS_HASWELL(dev_priv)) {
4044 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4045 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4046 display_mask |= DE_EDP_PSR_INT_HSW;
4049 dev_priv->irq_mask = ~display_mask;
4051 ibx_irq_pre_postinstall(dev);
4053 GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
4055 gen5_gt_irq_postinstall(dev);
4057 ilk_hpd_detection_setup(dev_priv);
4059 ibx_irq_postinstall(dev);
4061 if (IS_IRONLAKE_M(dev_priv)) {
4062 /* Enable PCU event interrupts
4064 * spinlocking not required here for correctness since interrupt
4065 * setup is guaranteed to run in single-threaded context. But we
4066 * need it to make the assert_spin_locked happy. */
4067 spin_lock_irq(&dev_priv->irq_lock);
4068 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
4069 spin_unlock_irq(&dev_priv->irq_lock);
4072 return 0;
4075 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
4077 lockdep_assert_held(&dev_priv->irq_lock);
4079 if (dev_priv->display_irqs_enabled)
4080 return;
4082 dev_priv->display_irqs_enabled = true;
4084 if (intel_irqs_enabled(dev_priv)) {
4085 vlv_display_irq_reset(dev_priv);
4086 vlv_display_irq_postinstall(dev_priv);
4090 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
4092 lockdep_assert_held(&dev_priv->irq_lock);
4094 if (!dev_priv->display_irqs_enabled)
4095 return;
4097 dev_priv->display_irqs_enabled = false;
4099 if (intel_irqs_enabled(dev_priv))
4100 vlv_display_irq_reset(dev_priv);
4104 static int valleyview_irq_postinstall(struct drm_device *dev)
4106 struct drm_i915_private *dev_priv = to_i915(dev);
4108 gen5_gt_irq_postinstall(dev);
4110 spin_lock_irq(&dev_priv->irq_lock);
4111 if (dev_priv->display_irqs_enabled)
4112 vlv_display_irq_postinstall(dev_priv);
4113 spin_unlock_irq(&dev_priv->irq_lock);
4115 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
4116 POSTING_READ(VLV_MASTER_IER);
4118 return 0;
4121 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4123 /* These are interrupts we'll toggle with the ring mask register */
4124 uint32_t gt_interrupts[] = {
4125 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4126 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
4127 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
4128 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
4129 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4130 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
4131 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
4132 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
4134 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
4135 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
4138 if (HAS_L3_DPF(dev_priv))
4139 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
4141 dev_priv->pm_ier = 0x0;
4142 dev_priv->pm_imr = ~dev_priv->pm_ier;
4143 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
4144 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
4146 * RPS interrupts will get enabled/disabled on demand when RPS itself
4147 * is enabled/disabled. Same wil be the case for GuC interrupts.
4149 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
4150 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
4153 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
4155 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
4156 uint32_t de_pipe_enables;
4157 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
4158 u32 de_port_enables;
4159 u32 de_misc_masked = GEN8_DE_EDP_PSR;
4160 enum pipe pipe;
4162 if (INTEL_GEN(dev_priv) <= 10)
4163 de_misc_masked |= GEN8_DE_MISC_GSE;
4165 if (INTEL_GEN(dev_priv) >= 9) {
4166 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
4167 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
4168 GEN9_AUX_CHANNEL_D;
4169 if (IS_GEN9_LP(dev_priv))
4170 de_port_masked |= BXT_DE_PORT_GMBUS;
4171 } else {
4172 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
4175 if (INTEL_GEN(dev_priv) >= 11)
4176 de_port_masked |= ICL_AUX_CHANNEL_E;
4178 if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
4179 de_port_masked |= CNL_AUX_CHANNEL_F;
4181 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
4182 GEN8_PIPE_FIFO_UNDERRUN;
4184 de_port_enables = de_port_masked;
4185 if (IS_GEN9_LP(dev_priv))
4186 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
4187 else if (IS_BROADWELL(dev_priv))
4188 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
4190 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
4191 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
4193 for_each_pipe(dev_priv, pipe) {
4194 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
4196 if (intel_display_power_is_enabled(dev_priv,
4197 POWER_DOMAIN_PIPE(pipe)))
4198 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
4199 dev_priv->de_irq_mask[pipe],
4200 de_pipe_enables);
4203 GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
4204 GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
4206 if (INTEL_GEN(dev_priv) >= 11) {
4207 u32 de_hpd_masked = 0;
4208 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
4209 GEN11_DE_TBT_HOTPLUG_MASK;
4211 GEN3_IRQ_INIT(GEN11_DE_HPD_, ~de_hpd_masked, de_hpd_enables);
4212 gen11_hpd_detection_setup(dev_priv);
4213 } else if (IS_GEN9_LP(dev_priv)) {
4214 bxt_hpd_detection_setup(dev_priv);
4215 } else if (IS_BROADWELL(dev_priv)) {
4216 ilk_hpd_detection_setup(dev_priv);
4220 static int gen8_irq_postinstall(struct drm_device *dev)
4222 struct drm_i915_private *dev_priv = to_i915(dev);
4224 if (HAS_PCH_SPLIT(dev_priv))
4225 ibx_irq_pre_postinstall(dev);
4227 gen8_gt_irq_postinstall(dev_priv);
4228 gen8_de_irq_postinstall(dev_priv);
4230 if (HAS_PCH_SPLIT(dev_priv))
4231 ibx_irq_postinstall(dev);
4233 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4234 POSTING_READ(GEN8_MASTER_IRQ);
4236 return 0;
4239 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4241 const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4243 BUILD_BUG_ON(irqs & 0xffff0000);
4245 /* Enable RCS, BCS, VCS and VECS class interrupts. */
4246 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4247 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE, irqs << 16 | irqs);
4249 /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4250 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK, ~(irqs << 16));
4251 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK, ~(irqs << 16));
4252 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK, ~(irqs | irqs << 16));
4253 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK, ~(irqs | irqs << 16));
4254 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
4257 * RPS interrupts will get enabled/disabled on demand when RPS itself
4258 * is enabled/disabled.
4260 dev_priv->pm_ier = 0x0;
4261 dev_priv->pm_imr = ~dev_priv->pm_ier;
4262 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4263 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
4266 static void icp_irq_postinstall(struct drm_device *dev)
4268 struct drm_i915_private *dev_priv = to_i915(dev);
4269 u32 mask = SDE_GMBUS_ICP;
4271 WARN_ON(I915_READ(SDEIER) != 0);
4272 I915_WRITE(SDEIER, 0xffffffff);
4273 POSTING_READ(SDEIER);
4275 gen3_assert_iir_is_zero(dev_priv, SDEIIR);
4276 I915_WRITE(SDEIMR, ~mask);
4278 icp_hpd_detection_setup(dev_priv);
4281 static int gen11_irq_postinstall(struct drm_device *dev)
4283 struct drm_i915_private *dev_priv = dev->dev_private;
4284 u32 gu_misc_masked = GEN11_GU_MISC_GSE;
4286 if (HAS_PCH_ICP(dev_priv))
4287 icp_irq_postinstall(dev);
4289 gen11_gt_irq_postinstall(dev_priv);
4290 gen8_de_irq_postinstall(dev_priv);
4292 GEN3_IRQ_INIT(GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
4294 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4296 I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
4297 POSTING_READ(GEN11_GFX_MSTR_IRQ);
4299 return 0;
4302 static int cherryview_irq_postinstall(struct drm_device *dev)
4304 struct drm_i915_private *dev_priv = to_i915(dev);
4306 gen8_gt_irq_postinstall(dev_priv);
4308 spin_lock_irq(&dev_priv->irq_lock);
4309 if (dev_priv->display_irqs_enabled)
4310 vlv_display_irq_postinstall(dev_priv);
4311 spin_unlock_irq(&dev_priv->irq_lock);
4313 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4314 POSTING_READ(GEN8_MASTER_IRQ);
4316 return 0;
4319 static void i8xx_irq_reset(struct drm_device *dev)
4321 struct drm_i915_private *dev_priv = to_i915(dev);
4323 i9xx_pipestat_irq_reset(dev_priv);
4325 I915_WRITE16(HWSTAM, 0xffff);
4327 GEN2_IRQ_RESET();
4330 static int i8xx_irq_postinstall(struct drm_device *dev)
4332 struct drm_i915_private *dev_priv = to_i915(dev);
4333 u16 enable_mask;
4335 I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4336 I915_ERROR_MEMORY_REFRESH));
4338 /* Unmask the interrupts that we always want on. */
4339 dev_priv->irq_mask =
4340 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4341 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4342 I915_MASTER_ERROR_INTERRUPT);
4344 enable_mask =
4345 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4346 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4347 I915_MASTER_ERROR_INTERRUPT |
4348 I915_USER_INTERRUPT;
4350 GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4352 /* Interrupt setup is already guaranteed to be single-threaded, this is
4353 * just to make the assert_spin_locked check happy. */
4354 spin_lock_irq(&dev_priv->irq_lock);
4355 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4356 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4357 spin_unlock_irq(&dev_priv->irq_lock);
4359 return 0;
4362 static void i8xx_error_irq_ack(struct drm_i915_private *dev_priv,
4363 u16 *eir, u16 *eir_stuck)
4365 u16 emr;
4367 *eir = I915_READ16(EIR);
4369 if (*eir)
4370 I915_WRITE16(EIR, *eir);
4372 *eir_stuck = I915_READ16(EIR);
4373 if (*eir_stuck == 0)
4374 return;
4377 * Toggle all EMR bits to make sure we get an edge
4378 * in the ISR master error bit if we don't clear
4379 * all the EIR bits. Otherwise the edge triggered
4380 * IIR on i965/g4x wouldn't notice that an interrupt
4381 * is still pending. Also some EIR bits can't be
4382 * cleared except by handling the underlying error
4383 * (or by a GPU reset) so we mask any bit that
4384 * remains set.
4386 emr = I915_READ16(EMR);
4387 I915_WRITE16(EMR, 0xffff);
4388 I915_WRITE16(EMR, emr | *eir_stuck);
4391 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
4392 u16 eir, u16 eir_stuck)
4394 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
4396 if (eir_stuck)
4397 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
4400 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
4401 u32 *eir, u32 *eir_stuck)
4403 u32 emr;
4405 *eir = I915_READ(EIR);
4407 I915_WRITE(EIR, *eir);
4409 *eir_stuck = I915_READ(EIR);
4410 if (*eir_stuck == 0)
4411 return;
4414 * Toggle all EMR bits to make sure we get an edge
4415 * in the ISR master error bit if we don't clear
4416 * all the EIR bits. Otherwise the edge triggered
4417 * IIR on i965/g4x wouldn't notice that an interrupt
4418 * is still pending. Also some EIR bits can't be
4419 * cleared except by handling the underlying error
4420 * (or by a GPU reset) so we mask any bit that
4421 * remains set.
4423 emr = I915_READ(EMR);
4424 I915_WRITE(EMR, 0xffffffff);
4425 I915_WRITE(EMR, emr | *eir_stuck);
4428 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4429 u32 eir, u32 eir_stuck)
4431 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4433 if (eir_stuck)
4434 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4437 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4439 struct drm_device *dev = arg;
4440 struct drm_i915_private *dev_priv = to_i915(dev);
4441 irqreturn_t ret = IRQ_NONE;
4443 if (!intel_irqs_enabled(dev_priv))
4444 return IRQ_NONE;
4446 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4447 disable_rpm_wakeref_asserts(dev_priv);
4449 do {
4450 u32 pipe_stats[I915_MAX_PIPES] = {};
4451 u16 eir = 0, eir_stuck = 0;
4452 u16 iir;
4454 iir = I915_READ16(IIR);
4455 if (iir == 0)
4456 break;
4458 ret = IRQ_HANDLED;
4460 /* Call regardless, as some status bits might not be
4461 * signalled in iir */
4462 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4464 if (iir & I915_MASTER_ERROR_INTERRUPT)
4465 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4467 I915_WRITE16(IIR, iir);
4469 if (iir & I915_USER_INTERRUPT)
4470 notify_ring(dev_priv->engine[RCS]);
4472 if (iir & I915_MASTER_ERROR_INTERRUPT)
4473 i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4475 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4476 } while (0);
4478 enable_rpm_wakeref_asserts(dev_priv);
4480 return ret;
4483 static void i915_irq_reset(struct drm_device *dev)
4485 struct drm_i915_private *dev_priv = to_i915(dev);
4487 if (I915_HAS_HOTPLUG(dev_priv)) {
4488 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4489 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4492 i9xx_pipestat_irq_reset(dev_priv);
4494 I915_WRITE(HWSTAM, 0xffffffff);
4496 GEN3_IRQ_RESET();
4499 static int i915_irq_postinstall(struct drm_device *dev)
4501 struct drm_i915_private *dev_priv = to_i915(dev);
4502 u32 enable_mask;
4504 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4505 I915_ERROR_MEMORY_REFRESH));
4507 /* Unmask the interrupts that we always want on. */
4508 dev_priv->irq_mask =
4509 ~(I915_ASLE_INTERRUPT |
4510 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4511 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4512 I915_MASTER_ERROR_INTERRUPT);
4514 enable_mask =
4515 I915_ASLE_INTERRUPT |
4516 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4517 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4518 I915_MASTER_ERROR_INTERRUPT |
4519 I915_USER_INTERRUPT;
4521 if (I915_HAS_HOTPLUG(dev_priv)) {
4522 /* Enable in IER... */
4523 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4524 /* and unmask in IMR */
4525 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4528 GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4530 /* Interrupt setup is already guaranteed to be single-threaded, this is
4531 * just to make the assert_spin_locked check happy. */
4532 spin_lock_irq(&dev_priv->irq_lock);
4533 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4534 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4535 spin_unlock_irq(&dev_priv->irq_lock);
4537 i915_enable_asle_pipestat(dev_priv);
4539 return 0;
4542 static irqreturn_t i915_irq_handler(int irq, void *arg)
4544 struct drm_device *dev = arg;
4545 struct drm_i915_private *dev_priv = to_i915(dev);
4546 irqreturn_t ret = IRQ_NONE;
4548 if (!intel_irqs_enabled(dev_priv))
4549 return IRQ_NONE;
4551 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4552 disable_rpm_wakeref_asserts(dev_priv);
4554 do {
4555 u32 pipe_stats[I915_MAX_PIPES] = {};
4556 u32 eir = 0, eir_stuck = 0;
4557 u32 hotplug_status = 0;
4558 u32 iir;
4560 iir = I915_READ(IIR);
4561 if (iir == 0)
4562 break;
4564 ret = IRQ_HANDLED;
4566 if (I915_HAS_HOTPLUG(dev_priv) &&
4567 iir & I915_DISPLAY_PORT_INTERRUPT)
4568 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4570 /* Call regardless, as some status bits might not be
4571 * signalled in iir */
4572 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4574 if (iir & I915_MASTER_ERROR_INTERRUPT)
4575 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4577 I915_WRITE(IIR, iir);
4579 if (iir & I915_USER_INTERRUPT)
4580 notify_ring(dev_priv->engine[RCS]);
4582 if (iir & I915_MASTER_ERROR_INTERRUPT)
4583 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4585 if (hotplug_status)
4586 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4588 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4589 } while (0);
4591 enable_rpm_wakeref_asserts(dev_priv);
4593 return ret;
4596 static void i965_irq_reset(struct drm_device *dev)
4598 struct drm_i915_private *dev_priv = to_i915(dev);
4600 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4601 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4603 i9xx_pipestat_irq_reset(dev_priv);
4605 I915_WRITE(HWSTAM, 0xffffffff);
4607 GEN3_IRQ_RESET();
4610 static int i965_irq_postinstall(struct drm_device *dev)
4612 struct drm_i915_private *dev_priv = to_i915(dev);
4613 u32 enable_mask;
4614 u32 error_mask;
4617 * Enable some error detection, note the instruction error mask
4618 * bit is reserved, so we leave it masked.
4620 if (IS_G4X(dev_priv)) {
4621 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4622 GM45_ERROR_MEM_PRIV |
4623 GM45_ERROR_CP_PRIV |
4624 I915_ERROR_MEMORY_REFRESH);
4625 } else {
4626 error_mask = ~(I915_ERROR_PAGE_TABLE |
4627 I915_ERROR_MEMORY_REFRESH);
4629 I915_WRITE(EMR, error_mask);
4631 /* Unmask the interrupts that we always want on. */
4632 dev_priv->irq_mask =
4633 ~(I915_ASLE_INTERRUPT |
4634 I915_DISPLAY_PORT_INTERRUPT |
4635 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4636 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4637 I915_MASTER_ERROR_INTERRUPT);
4639 enable_mask =
4640 I915_ASLE_INTERRUPT |
4641 I915_DISPLAY_PORT_INTERRUPT |
4642 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4643 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4644 I915_MASTER_ERROR_INTERRUPT |
4645 I915_USER_INTERRUPT;
4647 if (IS_G4X(dev_priv))
4648 enable_mask |= I915_BSD_USER_INTERRUPT;
4650 GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4652 /* Interrupt setup is already guaranteed to be single-threaded, this is
4653 * just to make the assert_spin_locked check happy. */
4654 spin_lock_irq(&dev_priv->irq_lock);
4655 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4656 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4657 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4658 spin_unlock_irq(&dev_priv->irq_lock);
4660 i915_enable_asle_pipestat(dev_priv);
4662 return 0;
4665 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4667 u32 hotplug_en;
4669 lockdep_assert_held(&dev_priv->irq_lock);
4671 /* Note HDMI and DP share hotplug bits */
4672 /* enable bits are the same for all generations */
4673 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4674 /* Programming the CRT detection parameters tends
4675 to generate a spurious hotplug event about three
4676 seconds later. So just do it once.
4678 if (IS_G4X(dev_priv))
4679 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4680 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4682 /* Ignore TV since it's buggy */
4683 i915_hotplug_interrupt_update_locked(dev_priv,
4684 HOTPLUG_INT_EN_MASK |
4685 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4686 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4687 hotplug_en);
4690 static irqreturn_t i965_irq_handler(int irq, void *arg)
4692 struct drm_device *dev = arg;
4693 struct drm_i915_private *dev_priv = to_i915(dev);
4694 irqreturn_t ret = IRQ_NONE;
4696 if (!intel_irqs_enabled(dev_priv))
4697 return IRQ_NONE;
4699 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4700 disable_rpm_wakeref_asserts(dev_priv);
4702 do {
4703 u32 pipe_stats[I915_MAX_PIPES] = {};
4704 u32 eir = 0, eir_stuck = 0;
4705 u32 hotplug_status = 0;
4706 u32 iir;
4708 iir = I915_READ(IIR);
4709 if (iir == 0)
4710 break;
4712 ret = IRQ_HANDLED;
4714 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4715 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4717 /* Call regardless, as some status bits might not be
4718 * signalled in iir */
4719 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4721 if (iir & I915_MASTER_ERROR_INTERRUPT)
4722 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4724 I915_WRITE(IIR, iir);
4726 if (iir & I915_USER_INTERRUPT)
4727 notify_ring(dev_priv->engine[RCS]);
4729 if (iir & I915_BSD_USER_INTERRUPT)
4730 notify_ring(dev_priv->engine[VCS]);
4732 if (iir & I915_MASTER_ERROR_INTERRUPT)
4733 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4735 if (hotplug_status)
4736 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4738 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4739 } while (0);
4741 enable_rpm_wakeref_asserts(dev_priv);
4743 return ret;
4747 * intel_irq_init - initializes irq support
4748 * @dev_priv: i915 device instance
4750 * This function initializes all the irq support including work items, timers
4751 * and all the vtables. It does not setup the interrupt itself though.
4753 void intel_irq_init(struct drm_i915_private *dev_priv)
4755 struct drm_device *dev = &dev_priv->drm;
4756 struct intel_rps *rps = &dev_priv->gt_pm.rps;
4757 int i;
4759 intel_hpd_init_work(dev_priv);
4761 INIT_WORK(&rps->work, gen6_pm_rps_work);
4763 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4764 for (i = 0; i < MAX_L3_SLICES; ++i)
4765 dev_priv->l3_parity.remap_info[i] = NULL;
4767 if (HAS_GUC_SCHED(dev_priv))
4768 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4770 /* Let's track the enabled rps events */
4771 if (IS_VALLEYVIEW(dev_priv))
4772 /* WaGsvRC0ResidencyMethod:vlv */
4773 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4774 else
4775 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4777 rps->pm_intrmsk_mbz = 0;
4780 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4781 * if GEN6_PM_UP_EI_EXPIRED is masked.
4783 * TODO: verify if this can be reproduced on VLV,CHV.
4785 if (INTEL_GEN(dev_priv) <= 7)
4786 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4788 if (INTEL_GEN(dev_priv) >= 8)
4789 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4791 if (IS_GEN2(dev_priv)) {
4792 /* Gen2 doesn't have a hardware frame counter */
4793 dev->max_vblank_count = 0;
4794 } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4795 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4796 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4797 } else {
4798 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4799 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4803 * Opt out of the vblank disable timer on everything except gen2.
4804 * Gen2 doesn't have a hardware frame counter and so depends on
4805 * vblank interrupts to produce sane vblank seuquence numbers.
4807 if (!IS_GEN2(dev_priv))
4808 dev->vblank_disable_immediate = true;
4810 /* Most platforms treat the display irq block as an always-on
4811 * power domain. vlv/chv can disable it at runtime and need
4812 * special care to avoid writing any of the display block registers
4813 * outside of the power domain. We defer setting up the display irqs
4814 * in this case to the runtime pm.
4816 dev_priv->display_irqs_enabled = true;
4817 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4818 dev_priv->display_irqs_enabled = false;
4820 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4822 dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4823 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4825 if (IS_CHERRYVIEW(dev_priv)) {
4826 dev->driver->irq_handler = cherryview_irq_handler;
4827 dev->driver->irq_preinstall = cherryview_irq_reset;
4828 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4829 dev->driver->irq_uninstall = cherryview_irq_reset;
4830 dev->driver->enable_vblank = i965_enable_vblank;
4831 dev->driver->disable_vblank = i965_disable_vblank;
4832 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4833 } else if (IS_VALLEYVIEW(dev_priv)) {
4834 dev->driver->irq_handler = valleyview_irq_handler;
4835 dev->driver->irq_preinstall = valleyview_irq_reset;
4836 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4837 dev->driver->irq_uninstall = valleyview_irq_reset;
4838 dev->driver->enable_vblank = i965_enable_vblank;
4839 dev->driver->disable_vblank = i965_disable_vblank;
4840 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4841 } else if (INTEL_GEN(dev_priv) >= 11) {
4842 dev->driver->irq_handler = gen11_irq_handler;
4843 dev->driver->irq_preinstall = gen11_irq_reset;
4844 dev->driver->irq_postinstall = gen11_irq_postinstall;
4845 dev->driver->irq_uninstall = gen11_irq_reset;
4846 dev->driver->enable_vblank = gen8_enable_vblank;
4847 dev->driver->disable_vblank = gen8_disable_vblank;
4848 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4849 } else if (INTEL_GEN(dev_priv) >= 8) {
4850 dev->driver->irq_handler = gen8_irq_handler;
4851 dev->driver->irq_preinstall = gen8_irq_reset;
4852 dev->driver->irq_postinstall = gen8_irq_postinstall;
4853 dev->driver->irq_uninstall = gen8_irq_reset;
4854 dev->driver->enable_vblank = gen8_enable_vblank;
4855 dev->driver->disable_vblank = gen8_disable_vblank;
4856 if (IS_GEN9_LP(dev_priv))
4857 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4858 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4859 HAS_PCH_CNP(dev_priv))
4860 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4861 else
4862 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4863 } else if (HAS_PCH_SPLIT(dev_priv)) {
4864 dev->driver->irq_handler = ironlake_irq_handler;
4865 dev->driver->irq_preinstall = ironlake_irq_reset;
4866 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4867 dev->driver->irq_uninstall = ironlake_irq_reset;
4868 dev->driver->enable_vblank = ironlake_enable_vblank;
4869 dev->driver->disable_vblank = ironlake_disable_vblank;
4870 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4871 } else {
4872 if (IS_GEN2(dev_priv)) {
4873 dev->driver->irq_preinstall = i8xx_irq_reset;
4874 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4875 dev->driver->irq_handler = i8xx_irq_handler;
4876 dev->driver->irq_uninstall = i8xx_irq_reset;
4877 dev->driver->enable_vblank = i8xx_enable_vblank;
4878 dev->driver->disable_vblank = i8xx_disable_vblank;
4879 } else if (IS_GEN3(dev_priv)) {
4880 dev->driver->irq_preinstall = i915_irq_reset;
4881 dev->driver->irq_postinstall = i915_irq_postinstall;
4882 dev->driver->irq_uninstall = i915_irq_reset;
4883 dev->driver->irq_handler = i915_irq_handler;
4884 dev->driver->enable_vblank = i8xx_enable_vblank;
4885 dev->driver->disable_vblank = i8xx_disable_vblank;
4886 } else {
4887 dev->driver->irq_preinstall = i965_irq_reset;
4888 dev->driver->irq_postinstall = i965_irq_postinstall;
4889 dev->driver->irq_uninstall = i965_irq_reset;
4890 dev->driver->irq_handler = i965_irq_handler;
4891 dev->driver->enable_vblank = i965_enable_vblank;
4892 dev->driver->disable_vblank = i965_disable_vblank;
4894 if (I915_HAS_HOTPLUG(dev_priv))
4895 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4900 * intel_irq_fini - deinitializes IRQ support
4901 * @i915: i915 device instance
4903 * This function deinitializes all the IRQ support.
4905 void intel_irq_fini(struct drm_i915_private *i915)
4907 int i;
4909 for (i = 0; i < MAX_L3_SLICES; ++i)
4910 kfree(i915->l3_parity.remap_info[i]);
4914 * intel_irq_install - enables the hardware interrupt
4915 * @dev_priv: i915 device instance
4917 * This function enables the hardware interrupt handling, but leaves the hotplug
4918 * handling still disabled. It is called after intel_irq_init().
4920 * In the driver load and resume code we need working interrupts in a few places
4921 * but don't want to deal with the hassle of concurrent probe and hotplug
4922 * workers. Hence the split into this two-stage approach.
4924 int intel_irq_install(struct drm_i915_private *dev_priv)
4927 * We enable some interrupt sources in our postinstall hooks, so mark
4928 * interrupts as enabled _before_ actually enabling them to avoid
4929 * special cases in our ordering checks.
4931 dev_priv->runtime_pm.irqs_enabled = true;
4933 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4937 * intel_irq_uninstall - finilizes all irq handling
4938 * @dev_priv: i915 device instance
4940 * This stops interrupt and hotplug handling and unregisters and frees all
4941 * resources acquired in the init functions.
4943 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4945 drm_irq_uninstall(&dev_priv->drm);
4946 intel_hpd_cancel_work(dev_priv);
4947 dev_priv->runtime_pm.irqs_enabled = false;
4951 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4952 * @dev_priv: i915 device instance
4954 * This function is used to disable interrupts at runtime, both in the runtime
4955 * pm and the system suspend/resume code.
4957 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4959 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4960 dev_priv->runtime_pm.irqs_enabled = false;
4961 synchronize_irq(dev_priv->drm.irq);
4965 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4966 * @dev_priv: i915 device instance
4968 * This function is used to enable interrupts at runtime, both in the runtime
4969 * pm and the system suspend/resume code.
4971 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4973 dev_priv->runtime_pm.irqs_enabled = true;
4974 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4975 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);