1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
35 #include <drm/i915_drm.h>
37 #include "i915_trace.h"
38 #include "intel_drv.h"
41 * DOC: interrupt handling
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
48 static const u32 hpd_ilk
[HPD_NUM_PINS
] = {
49 [HPD_PORT_A
] = DE_DP_A_HOTPLUG
,
52 static const u32 hpd_ivb
[HPD_NUM_PINS
] = {
53 [HPD_PORT_A
] = DE_DP_A_HOTPLUG_IVB
,
56 static const u32 hpd_bdw
[HPD_NUM_PINS
] = {
57 [HPD_PORT_A
] = GEN8_PORT_DP_A_HOTPLUG
,
60 static const u32 hpd_ibx
[HPD_NUM_PINS
] = {
61 [HPD_CRT
] = SDE_CRT_HOTPLUG
,
62 [HPD_SDVO_B
] = SDE_SDVOB_HOTPLUG
,
63 [HPD_PORT_B
] = SDE_PORTB_HOTPLUG
,
64 [HPD_PORT_C
] = SDE_PORTC_HOTPLUG
,
65 [HPD_PORT_D
] = SDE_PORTD_HOTPLUG
68 static const u32 hpd_cpt
[HPD_NUM_PINS
] = {
69 [HPD_CRT
] = SDE_CRT_HOTPLUG_CPT
,
70 [HPD_SDVO_B
] = SDE_SDVOB_HOTPLUG_CPT
,
71 [HPD_PORT_B
] = SDE_PORTB_HOTPLUG_CPT
,
72 [HPD_PORT_C
] = SDE_PORTC_HOTPLUG_CPT
,
73 [HPD_PORT_D
] = SDE_PORTD_HOTPLUG_CPT
76 static const u32 hpd_spt
[HPD_NUM_PINS
] = {
77 [HPD_PORT_A
] = SDE_PORTA_HOTPLUG_SPT
,
78 [HPD_PORT_B
] = SDE_PORTB_HOTPLUG_CPT
,
79 [HPD_PORT_C
] = SDE_PORTC_HOTPLUG_CPT
,
80 [HPD_PORT_D
] = SDE_PORTD_HOTPLUG_CPT
,
81 [HPD_PORT_E
] = SDE_PORTE_HOTPLUG_SPT
84 static const u32 hpd_mask_i915
[HPD_NUM_PINS
] = {
85 [HPD_CRT
] = CRT_HOTPLUG_INT_EN
,
86 [HPD_SDVO_B
] = SDVOB_HOTPLUG_INT_EN
,
87 [HPD_SDVO_C
] = SDVOC_HOTPLUG_INT_EN
,
88 [HPD_PORT_B
] = PORTB_HOTPLUG_INT_EN
,
89 [HPD_PORT_C
] = PORTC_HOTPLUG_INT_EN
,
90 [HPD_PORT_D
] = PORTD_HOTPLUG_INT_EN
93 static const u32 hpd_status_g4x
[HPD_NUM_PINS
] = {
94 [HPD_CRT
] = CRT_HOTPLUG_INT_STATUS
,
95 [HPD_SDVO_B
] = SDVOB_HOTPLUG_INT_STATUS_G4X
,
96 [HPD_SDVO_C
] = SDVOC_HOTPLUG_INT_STATUS_G4X
,
97 [HPD_PORT_B
] = PORTB_HOTPLUG_INT_STATUS
,
98 [HPD_PORT_C
] = PORTC_HOTPLUG_INT_STATUS
,
99 [HPD_PORT_D
] = PORTD_HOTPLUG_INT_STATUS
102 static const u32 hpd_status_i915
[HPD_NUM_PINS
] = {
103 [HPD_CRT
] = CRT_HOTPLUG_INT_STATUS
,
104 [HPD_SDVO_B
] = SDVOB_HOTPLUG_INT_STATUS_I915
,
105 [HPD_SDVO_C
] = SDVOC_HOTPLUG_INT_STATUS_I915
,
106 [HPD_PORT_B
] = PORTB_HOTPLUG_INT_STATUS
,
107 [HPD_PORT_C
] = PORTC_HOTPLUG_INT_STATUS
,
108 [HPD_PORT_D
] = PORTD_HOTPLUG_INT_STATUS
112 static const u32 hpd_bxt
[HPD_NUM_PINS
] = {
113 [HPD_PORT_A
] = BXT_DE_PORT_HP_DDIA
,
114 [HPD_PORT_B
] = BXT_DE_PORT_HP_DDIB
,
115 [HPD_PORT_C
] = BXT_DE_PORT_HP_DDIC
118 static const u32 hpd_gen11
[HPD_NUM_PINS
] = {
119 [HPD_PORT_C
] = GEN11_TC1_HOTPLUG
| GEN11_TBT1_HOTPLUG
,
120 [HPD_PORT_D
] = GEN11_TC2_HOTPLUG
| GEN11_TBT2_HOTPLUG
,
121 [HPD_PORT_E
] = GEN11_TC3_HOTPLUG
| GEN11_TBT3_HOTPLUG
,
122 [HPD_PORT_F
] = GEN11_TC4_HOTPLUG
| GEN11_TBT4_HOTPLUG
125 static const u32 hpd_icp
[HPD_NUM_PINS
] = {
126 [HPD_PORT_A
] = SDE_DDIA_HOTPLUG_ICP
,
127 [HPD_PORT_B
] = SDE_DDIB_HOTPLUG_ICP
,
128 [HPD_PORT_C
] = SDE_TC1_HOTPLUG_ICP
,
129 [HPD_PORT_D
] = SDE_TC2_HOTPLUG_ICP
,
130 [HPD_PORT_E
] = SDE_TC3_HOTPLUG_ICP
,
131 [HPD_PORT_F
] = SDE_TC4_HOTPLUG_ICP
134 /* IIR can theoretically queue up two events. Be paranoid. */
135 #define GEN8_IRQ_RESET_NDX(type, which) do { \
136 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
137 POSTING_READ(GEN8_##type##_IMR(which)); \
138 I915_WRITE(GEN8_##type##_IER(which), 0); \
139 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
140 POSTING_READ(GEN8_##type##_IIR(which)); \
141 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
142 POSTING_READ(GEN8_##type##_IIR(which)); \
145 #define GEN3_IRQ_RESET(type) do { \
146 I915_WRITE(type##IMR, 0xffffffff); \
147 POSTING_READ(type##IMR); \
148 I915_WRITE(type##IER, 0); \
149 I915_WRITE(type##IIR, 0xffffffff); \
150 POSTING_READ(type##IIR); \
151 I915_WRITE(type##IIR, 0xffffffff); \
152 POSTING_READ(type##IIR); \
155 #define GEN2_IRQ_RESET(type) do { \
156 I915_WRITE16(type##IMR, 0xffff); \
157 POSTING_READ16(type##IMR); \
158 I915_WRITE16(type##IER, 0); \
159 I915_WRITE16(type##IIR, 0xffff); \
160 POSTING_READ16(type##IIR); \
161 I915_WRITE16(type##IIR, 0xffff); \
162 POSTING_READ16(type##IIR); \
166 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
168 static void gen3_assert_iir_is_zero(struct drm_i915_private
*dev_priv
,
171 u32 val
= I915_READ(reg
);
176 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177 i915_mmio_reg_offset(reg
), val
);
178 I915_WRITE(reg
, 0xffffffff);
180 I915_WRITE(reg
, 0xffffffff);
184 static void gen2_assert_iir_is_zero(struct drm_i915_private
*dev_priv
,
187 u16 val
= I915_READ16(reg
);
192 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
193 i915_mmio_reg_offset(reg
), val
);
194 I915_WRITE16(reg
, 0xffff);
196 I915_WRITE16(reg
, 0xffff);
200 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
201 gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
202 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
203 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
204 POSTING_READ(GEN8_##type##_IMR(which)); \
207 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
208 gen3_assert_iir_is_zero(dev_priv, type##IIR); \
209 I915_WRITE(type##IER, (ier_val)); \
210 I915_WRITE(type##IMR, (imr_val)); \
211 POSTING_READ(type##IMR); \
214 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
215 gen2_assert_iir_is_zero(dev_priv, type##IIR); \
216 I915_WRITE16(type##IER, (ier_val)); \
217 I915_WRITE16(type##IMR, (imr_val)); \
218 POSTING_READ16(type##IMR); \
221 static void gen6_rps_irq_handler(struct drm_i915_private
*dev_priv
, u32 pm_iir
);
222 static void gen9_guc_irq_handler(struct drm_i915_private
*dev_priv
, u32 pm_iir
);
224 /* For display hotplug interrupt */
226 i915_hotplug_interrupt_update_locked(struct drm_i915_private
*dev_priv
,
232 lockdep_assert_held(&dev_priv
->irq_lock
);
233 WARN_ON(bits
& ~mask
);
235 val
= I915_READ(PORT_HOTPLUG_EN
);
238 I915_WRITE(PORT_HOTPLUG_EN
, val
);
242 * i915_hotplug_interrupt_update - update hotplug interrupt enable
243 * @dev_priv: driver private
244 * @mask: bits to update
245 * @bits: bits to enable
246 * NOTE: the HPD enable bits are modified both inside and outside
247 * of an interrupt context. To avoid that read-modify-write cycles
248 * interfer, these bits are protected by a spinlock. Since this
249 * function is usually not called from a context where the lock is
250 * held already, this function acquires the lock itself. A non-locking
251 * version is also available.
253 void i915_hotplug_interrupt_update(struct drm_i915_private
*dev_priv
,
257 spin_lock_irq(&dev_priv
->irq_lock
);
258 i915_hotplug_interrupt_update_locked(dev_priv
, mask
, bits
);
259 spin_unlock_irq(&dev_priv
->irq_lock
);
263 gen11_gt_engine_identity(struct drm_i915_private
* const i915
,
264 const unsigned int bank
, const unsigned int bit
);
266 static bool gen11_reset_one_iir(struct drm_i915_private
* const i915
,
267 const unsigned int bank
,
268 const unsigned int bit
)
270 void __iomem
* const regs
= i915
->regs
;
273 lockdep_assert_held(&i915
->irq_lock
);
275 dw
= raw_reg_read(regs
, GEN11_GT_INTR_DW(bank
));
278 * According to the BSpec, DW_IIR bits cannot be cleared without
279 * first servicing the Selector & Shared IIR registers.
281 gen11_gt_engine_identity(i915
, bank
, bit
);
284 * We locked GT INT DW by reading it. If we want to (try
285 * to) recover from this succesfully, we need to clear
286 * our bit, otherwise we are locking the register for
289 raw_reg_write(regs
, GEN11_GT_INTR_DW(bank
), BIT(bit
));
298 * ilk_update_display_irq - update DEIMR
299 * @dev_priv: driver private
300 * @interrupt_mask: mask of interrupt bits to update
301 * @enabled_irq_mask: mask of interrupt bits to enable
303 void ilk_update_display_irq(struct drm_i915_private
*dev_priv
,
304 uint32_t interrupt_mask
,
305 uint32_t enabled_irq_mask
)
309 lockdep_assert_held(&dev_priv
->irq_lock
);
311 WARN_ON(enabled_irq_mask
& ~interrupt_mask
);
313 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
316 new_val
= dev_priv
->irq_mask
;
317 new_val
&= ~interrupt_mask
;
318 new_val
|= (~enabled_irq_mask
& interrupt_mask
);
320 if (new_val
!= dev_priv
->irq_mask
) {
321 dev_priv
->irq_mask
= new_val
;
322 I915_WRITE(DEIMR
, dev_priv
->irq_mask
);
328 * ilk_update_gt_irq - update GTIMR
329 * @dev_priv: driver private
330 * @interrupt_mask: mask of interrupt bits to update
331 * @enabled_irq_mask: mask of interrupt bits to enable
333 static void ilk_update_gt_irq(struct drm_i915_private
*dev_priv
,
334 uint32_t interrupt_mask
,
335 uint32_t enabled_irq_mask
)
337 lockdep_assert_held(&dev_priv
->irq_lock
);
339 WARN_ON(enabled_irq_mask
& ~interrupt_mask
);
341 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
344 dev_priv
->gt_irq_mask
&= ~interrupt_mask
;
345 dev_priv
->gt_irq_mask
|= (~enabled_irq_mask
& interrupt_mask
);
346 I915_WRITE(GTIMR
, dev_priv
->gt_irq_mask
);
349 void gen5_enable_gt_irq(struct drm_i915_private
*dev_priv
, uint32_t mask
)
351 ilk_update_gt_irq(dev_priv
, mask
, mask
);
352 POSTING_READ_FW(GTIMR
);
355 void gen5_disable_gt_irq(struct drm_i915_private
*dev_priv
, uint32_t mask
)
357 ilk_update_gt_irq(dev_priv
, mask
, 0);
360 static i915_reg_t
gen6_pm_iir(struct drm_i915_private
*dev_priv
)
362 WARN_ON_ONCE(INTEL_GEN(dev_priv
) >= 11);
364 return INTEL_GEN(dev_priv
) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR
;
367 static i915_reg_t
gen6_pm_imr(struct drm_i915_private
*dev_priv
)
369 if (INTEL_GEN(dev_priv
) >= 11)
370 return GEN11_GPM_WGBOXPERF_INTR_MASK
;
371 else if (INTEL_GEN(dev_priv
) >= 8)
372 return GEN8_GT_IMR(2);
377 static i915_reg_t
gen6_pm_ier(struct drm_i915_private
*dev_priv
)
379 if (INTEL_GEN(dev_priv
) >= 11)
380 return GEN11_GPM_WGBOXPERF_INTR_ENABLE
;
381 else if (INTEL_GEN(dev_priv
) >= 8)
382 return GEN8_GT_IER(2);
388 * snb_update_pm_irq - update GEN6_PMIMR
389 * @dev_priv: driver private
390 * @interrupt_mask: mask of interrupt bits to update
391 * @enabled_irq_mask: mask of interrupt bits to enable
393 static void snb_update_pm_irq(struct drm_i915_private
*dev_priv
,
394 uint32_t interrupt_mask
,
395 uint32_t enabled_irq_mask
)
399 WARN_ON(enabled_irq_mask
& ~interrupt_mask
);
401 lockdep_assert_held(&dev_priv
->irq_lock
);
403 new_val
= dev_priv
->pm_imr
;
404 new_val
&= ~interrupt_mask
;
405 new_val
|= (~enabled_irq_mask
& interrupt_mask
);
407 if (new_val
!= dev_priv
->pm_imr
) {
408 dev_priv
->pm_imr
= new_val
;
409 I915_WRITE(gen6_pm_imr(dev_priv
), dev_priv
->pm_imr
);
410 POSTING_READ(gen6_pm_imr(dev_priv
));
414 void gen6_unmask_pm_irq(struct drm_i915_private
*dev_priv
, u32 mask
)
416 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
419 snb_update_pm_irq(dev_priv
, mask
, mask
);
422 static void __gen6_mask_pm_irq(struct drm_i915_private
*dev_priv
, u32 mask
)
424 snb_update_pm_irq(dev_priv
, mask
, 0);
427 void gen6_mask_pm_irq(struct drm_i915_private
*dev_priv
, u32 mask
)
429 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
432 __gen6_mask_pm_irq(dev_priv
, mask
);
435 static void gen6_reset_pm_iir(struct drm_i915_private
*dev_priv
, u32 reset_mask
)
437 i915_reg_t reg
= gen6_pm_iir(dev_priv
);
439 lockdep_assert_held(&dev_priv
->irq_lock
);
441 I915_WRITE(reg
, reset_mask
);
442 I915_WRITE(reg
, reset_mask
);
446 static void gen6_enable_pm_irq(struct drm_i915_private
*dev_priv
, u32 enable_mask
)
448 lockdep_assert_held(&dev_priv
->irq_lock
);
450 dev_priv
->pm_ier
|= enable_mask
;
451 I915_WRITE(gen6_pm_ier(dev_priv
), dev_priv
->pm_ier
);
452 gen6_unmask_pm_irq(dev_priv
, enable_mask
);
453 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
456 static void gen6_disable_pm_irq(struct drm_i915_private
*dev_priv
, u32 disable_mask
)
458 lockdep_assert_held(&dev_priv
->irq_lock
);
460 dev_priv
->pm_ier
&= ~disable_mask
;
461 __gen6_mask_pm_irq(dev_priv
, disable_mask
);
462 I915_WRITE(gen6_pm_ier(dev_priv
), dev_priv
->pm_ier
);
463 /* though a barrier is missing here, but don't really need a one */
466 void gen11_reset_rps_interrupts(struct drm_i915_private
*dev_priv
)
468 spin_lock_irq(&dev_priv
->irq_lock
);
470 while (gen11_reset_one_iir(dev_priv
, 0, GEN11_GTPM
))
473 dev_priv
->gt_pm
.rps
.pm_iir
= 0;
475 spin_unlock_irq(&dev_priv
->irq_lock
);
478 void gen6_reset_rps_interrupts(struct drm_i915_private
*dev_priv
)
480 spin_lock_irq(&dev_priv
->irq_lock
);
481 gen6_reset_pm_iir(dev_priv
, dev_priv
->pm_rps_events
);
482 dev_priv
->gt_pm
.rps
.pm_iir
= 0;
483 spin_unlock_irq(&dev_priv
->irq_lock
);
486 void gen6_enable_rps_interrupts(struct drm_i915_private
*dev_priv
)
488 struct intel_rps
*rps
= &dev_priv
->gt_pm
.rps
;
490 if (READ_ONCE(rps
->interrupts_enabled
))
493 spin_lock_irq(&dev_priv
->irq_lock
);
494 WARN_ON_ONCE(rps
->pm_iir
);
496 if (INTEL_GEN(dev_priv
) >= 11)
497 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv
, 0, GEN11_GTPM
));
499 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv
)) & dev_priv
->pm_rps_events
);
501 rps
->interrupts_enabled
= true;
502 gen6_enable_pm_irq(dev_priv
, dev_priv
->pm_rps_events
);
504 spin_unlock_irq(&dev_priv
->irq_lock
);
507 void gen6_disable_rps_interrupts(struct drm_i915_private
*dev_priv
)
509 struct intel_rps
*rps
= &dev_priv
->gt_pm
.rps
;
511 if (!READ_ONCE(rps
->interrupts_enabled
))
514 spin_lock_irq(&dev_priv
->irq_lock
);
515 rps
->interrupts_enabled
= false;
517 I915_WRITE(GEN6_PMINTRMSK
, gen6_sanitize_rps_pm_mask(dev_priv
, ~0u));
519 gen6_disable_pm_irq(dev_priv
, dev_priv
->pm_rps_events
);
521 spin_unlock_irq(&dev_priv
->irq_lock
);
522 synchronize_irq(dev_priv
->drm
.irq
);
524 /* Now that we will not be generating any more work, flush any
525 * outstanding tasks. As we are called on the RPS idle path,
526 * we will reset the GPU to minimum frequencies, so the current
527 * state of the worker can be discarded.
529 cancel_work_sync(&rps
->work
);
530 if (INTEL_GEN(dev_priv
) >= 11)
531 gen11_reset_rps_interrupts(dev_priv
);
533 gen6_reset_rps_interrupts(dev_priv
);
536 void gen9_reset_guc_interrupts(struct drm_i915_private
*dev_priv
)
538 assert_rpm_wakelock_held(dev_priv
);
540 spin_lock_irq(&dev_priv
->irq_lock
);
541 gen6_reset_pm_iir(dev_priv
, dev_priv
->pm_guc_events
);
542 spin_unlock_irq(&dev_priv
->irq_lock
);
545 void gen9_enable_guc_interrupts(struct drm_i915_private
*dev_priv
)
547 assert_rpm_wakelock_held(dev_priv
);
549 spin_lock_irq(&dev_priv
->irq_lock
);
550 if (!dev_priv
->guc
.interrupts_enabled
) {
551 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv
)) &
552 dev_priv
->pm_guc_events
);
553 dev_priv
->guc
.interrupts_enabled
= true;
554 gen6_enable_pm_irq(dev_priv
, dev_priv
->pm_guc_events
);
556 spin_unlock_irq(&dev_priv
->irq_lock
);
559 void gen9_disable_guc_interrupts(struct drm_i915_private
*dev_priv
)
561 assert_rpm_wakelock_held(dev_priv
);
563 spin_lock_irq(&dev_priv
->irq_lock
);
564 dev_priv
->guc
.interrupts_enabled
= false;
566 gen6_disable_pm_irq(dev_priv
, dev_priv
->pm_guc_events
);
568 spin_unlock_irq(&dev_priv
->irq_lock
);
569 synchronize_irq(dev_priv
->drm
.irq
);
571 gen9_reset_guc_interrupts(dev_priv
);
575 * bdw_update_port_irq - update DE port interrupt
576 * @dev_priv: driver private
577 * @interrupt_mask: mask of interrupt bits to update
578 * @enabled_irq_mask: mask of interrupt bits to enable
580 static void bdw_update_port_irq(struct drm_i915_private
*dev_priv
,
581 uint32_t interrupt_mask
,
582 uint32_t enabled_irq_mask
)
587 lockdep_assert_held(&dev_priv
->irq_lock
);
589 WARN_ON(enabled_irq_mask
& ~interrupt_mask
);
591 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
594 old_val
= I915_READ(GEN8_DE_PORT_IMR
);
597 new_val
&= ~interrupt_mask
;
598 new_val
|= (~enabled_irq_mask
& interrupt_mask
);
600 if (new_val
!= old_val
) {
601 I915_WRITE(GEN8_DE_PORT_IMR
, new_val
);
602 POSTING_READ(GEN8_DE_PORT_IMR
);
607 * bdw_update_pipe_irq - update DE pipe interrupt
608 * @dev_priv: driver private
609 * @pipe: pipe whose interrupt to update
610 * @interrupt_mask: mask of interrupt bits to update
611 * @enabled_irq_mask: mask of interrupt bits to enable
613 void bdw_update_pipe_irq(struct drm_i915_private
*dev_priv
,
615 uint32_t interrupt_mask
,
616 uint32_t enabled_irq_mask
)
620 lockdep_assert_held(&dev_priv
->irq_lock
);
622 WARN_ON(enabled_irq_mask
& ~interrupt_mask
);
624 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
627 new_val
= dev_priv
->de_irq_mask
[pipe
];
628 new_val
&= ~interrupt_mask
;
629 new_val
|= (~enabled_irq_mask
& interrupt_mask
);
631 if (new_val
!= dev_priv
->de_irq_mask
[pipe
]) {
632 dev_priv
->de_irq_mask
[pipe
] = new_val
;
633 I915_WRITE(GEN8_DE_PIPE_IMR(pipe
), dev_priv
->de_irq_mask
[pipe
]);
634 POSTING_READ(GEN8_DE_PIPE_IMR(pipe
));
639 * ibx_display_interrupt_update - update SDEIMR
640 * @dev_priv: driver private
641 * @interrupt_mask: mask of interrupt bits to update
642 * @enabled_irq_mask: mask of interrupt bits to enable
644 void ibx_display_interrupt_update(struct drm_i915_private
*dev_priv
,
645 uint32_t interrupt_mask
,
646 uint32_t enabled_irq_mask
)
648 uint32_t sdeimr
= I915_READ(SDEIMR
);
649 sdeimr
&= ~interrupt_mask
;
650 sdeimr
|= (~enabled_irq_mask
& interrupt_mask
);
652 WARN_ON(enabled_irq_mask
& ~interrupt_mask
);
654 lockdep_assert_held(&dev_priv
->irq_lock
);
656 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
659 I915_WRITE(SDEIMR
, sdeimr
);
660 POSTING_READ(SDEIMR
);
663 u32
i915_pipestat_enable_mask(struct drm_i915_private
*dev_priv
,
666 u32 status_mask
= dev_priv
->pipestat_irq_mask
[pipe
];
667 u32 enable_mask
= status_mask
<< 16;
669 lockdep_assert_held(&dev_priv
->irq_lock
);
671 if (INTEL_GEN(dev_priv
) < 5)
675 * On pipe A we don't support the PSR interrupt yet,
676 * on pipe B and C the same bit MBZ.
678 if (WARN_ON_ONCE(status_mask
& PIPE_A_PSR_STATUS_VLV
))
681 * On pipe B and C we don't support the PSR interrupt yet, on pipe
682 * A the same bit is for perf counters which we don't use either.
684 if (WARN_ON_ONCE(status_mask
& PIPE_B_PSR_STATUS_VLV
))
687 enable_mask
&= ~(PIPE_FIFO_UNDERRUN_STATUS
|
688 SPRITE0_FLIP_DONE_INT_EN_VLV
|
689 SPRITE1_FLIP_DONE_INT_EN_VLV
);
690 if (status_mask
& SPRITE0_FLIP_DONE_INT_STATUS_VLV
)
691 enable_mask
|= SPRITE0_FLIP_DONE_INT_EN_VLV
;
692 if (status_mask
& SPRITE1_FLIP_DONE_INT_STATUS_VLV
)
693 enable_mask
|= SPRITE1_FLIP_DONE_INT_EN_VLV
;
696 WARN_ONCE(enable_mask
& ~PIPESTAT_INT_ENABLE_MASK
||
697 status_mask
& ~PIPESTAT_INT_STATUS_MASK
,
698 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
699 pipe_name(pipe
), enable_mask
, status_mask
);
704 void i915_enable_pipestat(struct drm_i915_private
*dev_priv
,
705 enum pipe pipe
, u32 status_mask
)
707 i915_reg_t reg
= PIPESTAT(pipe
);
710 WARN_ONCE(status_mask
& ~PIPESTAT_INT_STATUS_MASK
,
711 "pipe %c: status_mask=0x%x\n",
712 pipe_name(pipe
), status_mask
);
714 lockdep_assert_held(&dev_priv
->irq_lock
);
715 WARN_ON(!intel_irqs_enabled(dev_priv
));
717 if ((dev_priv
->pipestat_irq_mask
[pipe
] & status_mask
) == status_mask
)
720 dev_priv
->pipestat_irq_mask
[pipe
] |= status_mask
;
721 enable_mask
= i915_pipestat_enable_mask(dev_priv
, pipe
);
723 I915_WRITE(reg
, enable_mask
| status_mask
);
727 void i915_disable_pipestat(struct drm_i915_private
*dev_priv
,
728 enum pipe pipe
, u32 status_mask
)
730 i915_reg_t reg
= PIPESTAT(pipe
);
733 WARN_ONCE(status_mask
& ~PIPESTAT_INT_STATUS_MASK
,
734 "pipe %c: status_mask=0x%x\n",
735 pipe_name(pipe
), status_mask
);
737 lockdep_assert_held(&dev_priv
->irq_lock
);
738 WARN_ON(!intel_irqs_enabled(dev_priv
));
740 if ((dev_priv
->pipestat_irq_mask
[pipe
] & status_mask
) == 0)
743 dev_priv
->pipestat_irq_mask
[pipe
] &= ~status_mask
;
744 enable_mask
= i915_pipestat_enable_mask(dev_priv
, pipe
);
746 I915_WRITE(reg
, enable_mask
| status_mask
);
751 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
752 * @dev_priv: i915 device private
754 static void i915_enable_asle_pipestat(struct drm_i915_private
*dev_priv
)
756 if (!dev_priv
->opregion
.asle
|| !IS_MOBILE(dev_priv
))
759 spin_lock_irq(&dev_priv
->irq_lock
);
761 i915_enable_pipestat(dev_priv
, PIPE_B
, PIPE_LEGACY_BLC_EVENT_STATUS
);
762 if (INTEL_GEN(dev_priv
) >= 4)
763 i915_enable_pipestat(dev_priv
, PIPE_A
,
764 PIPE_LEGACY_BLC_EVENT_STATUS
);
766 spin_unlock_irq(&dev_priv
->irq_lock
);
770 * This timing diagram depicts the video signal in and
771 * around the vertical blanking period.
773 * Assumptions about the fictitious mode used in this example:
775 * vsync_start = vblank_start + 1
776 * vsync_end = vblank_start + 2
777 * vtotal = vblank_start + 3
780 * latch double buffered registers
781 * increment frame counter (ctg+)
782 * generate start of vblank interrupt (gen4+)
785 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
786 * | may be shifted forward 1-3 extra lines via PIPECONF
788 * | | start of vsync:
789 * | | generate vsync interrupt
791 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
792 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
793 * ----va---> <-----------------vb--------------------> <--------va-------------
794 * | | <----vs-----> |
795 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
796 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
797 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
799 * last visible pixel first visible pixel
800 * | increment frame counter (gen3/4)
801 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
803 * x = horizontal active
804 * _ = horizontal blanking
805 * hs = horizontal sync
806 * va = vertical active
807 * vb = vertical blanking
809 * vbs = vblank_start (number)
812 * - most events happen at the start of horizontal sync
813 * - frame start happens at the start of horizontal blank, 1-4 lines
814 * (depending on PIPECONF settings) after the start of vblank
815 * - gen3/4 pixel and frame counter are synchronized with the start
816 * of horizontal active on the first line of vertical active
819 /* Called from drm generic code, passed a 'crtc', which
820 * we use as a pipe index
822 static u32
i915_get_vblank_counter(struct drm_device
*dev
, unsigned int pipe
)
824 struct drm_i915_private
*dev_priv
= to_i915(dev
);
825 i915_reg_t high_frame
, low_frame
;
826 u32 high1
, high2
, low
, pixel
, vbl_start
, hsync_start
, htotal
;
827 const struct drm_display_mode
*mode
= &dev
->vblank
[pipe
].hwmode
;
828 unsigned long irqflags
;
830 htotal
= mode
->crtc_htotal
;
831 hsync_start
= mode
->crtc_hsync_start
;
832 vbl_start
= mode
->crtc_vblank_start
;
833 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
834 vbl_start
= DIV_ROUND_UP(vbl_start
, 2);
836 /* Convert to pixel count */
839 /* Start of vblank event occurs at start of hsync */
840 vbl_start
-= htotal
- hsync_start
;
842 high_frame
= PIPEFRAME(pipe
);
843 low_frame
= PIPEFRAMEPIXEL(pipe
);
845 spin_lock_irqsave(&dev_priv
->uncore
.lock
, irqflags
);
848 * High & low register fields aren't synchronized, so make sure
849 * we get a low value that's stable across two reads of the high
853 high1
= I915_READ_FW(high_frame
) & PIPE_FRAME_HIGH_MASK
;
854 low
= I915_READ_FW(low_frame
);
855 high2
= I915_READ_FW(high_frame
) & PIPE_FRAME_HIGH_MASK
;
856 } while (high1
!= high2
);
858 spin_unlock_irqrestore(&dev_priv
->uncore
.lock
, irqflags
);
860 high1
>>= PIPE_FRAME_HIGH_SHIFT
;
861 pixel
= low
& PIPE_PIXEL_MASK
;
862 low
>>= PIPE_FRAME_LOW_SHIFT
;
865 * The frame counter increments at beginning of active.
866 * Cook up a vblank counter by also checking the pixel
867 * counter against vblank start.
869 return (((high1
<< 8) | low
) + (pixel
>= vbl_start
)) & 0xffffff;
872 static u32
g4x_get_vblank_counter(struct drm_device
*dev
, unsigned int pipe
)
874 struct drm_i915_private
*dev_priv
= to_i915(dev
);
876 return I915_READ(PIPE_FRMCOUNT_G4X(pipe
));
880 * On certain encoders on certain platforms, pipe
881 * scanline register will not work to get the scanline,
882 * since the timings are driven from the PORT or issues
883 * with scanline register updates.
884 * This function will use Framestamp and current
885 * timestamp registers to calculate the scanline.
887 static u32
__intel_get_crtc_scanline_from_timestamp(struct intel_crtc
*crtc
)
889 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
890 struct drm_vblank_crtc
*vblank
=
891 &crtc
->base
.dev
->vblank
[drm_crtc_index(&crtc
->base
)];
892 const struct drm_display_mode
*mode
= &vblank
->hwmode
;
893 u32 vblank_start
= mode
->crtc_vblank_start
;
894 u32 vtotal
= mode
->crtc_vtotal
;
895 u32 htotal
= mode
->crtc_htotal
;
896 u32 clock
= mode
->crtc_clock
;
897 u32 scanline
, scan_prev_time
, scan_curr_time
, scan_post_time
;
900 * To avoid the race condition where we might cross into the
901 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
902 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
903 * during the same frame.
907 * This field provides read back of the display
908 * pipe frame time stamp. The time stamp value
909 * is sampled at every start of vertical blank.
911 scan_prev_time
= I915_READ_FW(PIPE_FRMTMSTMP(crtc
->pipe
));
914 * The TIMESTAMP_CTR register has the current
917 scan_curr_time
= I915_READ_FW(IVB_TIMESTAMP_CTR
);
919 scan_post_time
= I915_READ_FW(PIPE_FRMTMSTMP(crtc
->pipe
));
920 } while (scan_post_time
!= scan_prev_time
);
922 scanline
= div_u64(mul_u32_u32(scan_curr_time
- scan_prev_time
,
923 clock
), 1000 * htotal
);
924 scanline
= min(scanline
, vtotal
- 1);
925 scanline
= (scanline
+ vblank_start
) % vtotal
;
930 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
931 static int __intel_get_crtc_scanline(struct intel_crtc
*crtc
)
933 struct drm_device
*dev
= crtc
->base
.dev
;
934 struct drm_i915_private
*dev_priv
= to_i915(dev
);
935 const struct drm_display_mode
*mode
;
936 struct drm_vblank_crtc
*vblank
;
937 enum pipe pipe
= crtc
->pipe
;
938 int position
, vtotal
;
943 vblank
= &crtc
->base
.dev
->vblank
[drm_crtc_index(&crtc
->base
)];
944 mode
= &vblank
->hwmode
;
946 if (mode
->private_flags
& I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP
)
947 return __intel_get_crtc_scanline_from_timestamp(crtc
);
949 vtotal
= mode
->crtc_vtotal
;
950 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
953 if (IS_GEN2(dev_priv
))
954 position
= I915_READ_FW(PIPEDSL(pipe
)) & DSL_LINEMASK_GEN2
;
956 position
= I915_READ_FW(PIPEDSL(pipe
)) & DSL_LINEMASK_GEN3
;
959 * On HSW, the DSL reg (0x70000) appears to return 0 if we
960 * read it just before the start of vblank. So try it again
961 * so we don't accidentally end up spanning a vblank frame
962 * increment, causing the pipe_update_end() code to squak at us.
964 * The nature of this problem means we can't simply check the ISR
965 * bit and return the vblank start value; nor can we use the scanline
966 * debug register in the transcoder as it appears to have the same
967 * problem. We may need to extend this to include other platforms,
968 * but so far testing only shows the problem on HSW.
970 if (HAS_DDI(dev_priv
) && !position
) {
973 for (i
= 0; i
< 100; i
++) {
975 temp
= I915_READ_FW(PIPEDSL(pipe
)) & DSL_LINEMASK_GEN3
;
976 if (temp
!= position
) {
984 * See update_scanline_offset() for the details on the
985 * scanline_offset adjustment.
987 return (position
+ crtc
->scanline_offset
) % vtotal
;
990 static bool i915_get_crtc_scanoutpos(struct drm_device
*dev
, unsigned int pipe
,
991 bool in_vblank_irq
, int *vpos
, int *hpos
,
992 ktime_t
*stime
, ktime_t
*etime
,
993 const struct drm_display_mode
*mode
)
995 struct drm_i915_private
*dev_priv
= to_i915(dev
);
996 struct intel_crtc
*intel_crtc
= intel_get_crtc_for_pipe(dev_priv
,
999 int vbl_start
, vbl_end
, hsync_start
, htotal
, vtotal
;
1000 unsigned long irqflags
;
1002 if (WARN_ON(!mode
->crtc_clock
)) {
1003 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1004 "pipe %c\n", pipe_name(pipe
));
1008 htotal
= mode
->crtc_htotal
;
1009 hsync_start
= mode
->crtc_hsync_start
;
1010 vtotal
= mode
->crtc_vtotal
;
1011 vbl_start
= mode
->crtc_vblank_start
;
1012 vbl_end
= mode
->crtc_vblank_end
;
1014 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
1015 vbl_start
= DIV_ROUND_UP(vbl_start
, 2);
1021 * Lock uncore.lock, as we will do multiple timing critical raw
1022 * register reads, potentially with preemption disabled, so the
1023 * following code must not block on uncore.lock.
1025 spin_lock_irqsave(&dev_priv
->uncore
.lock
, irqflags
);
1027 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1029 /* Get optional system timestamp before query. */
1031 *stime
= ktime_get();
1033 if (IS_GEN2(dev_priv
) || IS_G4X(dev_priv
) || INTEL_GEN(dev_priv
) >= 5) {
1034 /* No obvious pixelcount register. Only query vertical
1035 * scanout position from Display scan line register.
1037 position
= __intel_get_crtc_scanline(intel_crtc
);
1039 /* Have access to pixelcount since start of frame.
1040 * We can split this into vertical and horizontal
1043 position
= (I915_READ_FW(PIPEFRAMEPIXEL(pipe
)) & PIPE_PIXEL_MASK
) >> PIPE_PIXEL_SHIFT
;
1045 /* convert to pixel counts */
1046 vbl_start
*= htotal
;
1051 * In interlaced modes, the pixel counter counts all pixels,
1052 * so one field will have htotal more pixels. In order to avoid
1053 * the reported position from jumping backwards when the pixel
1054 * counter is beyond the length of the shorter field, just
1055 * clamp the position the length of the shorter field. This
1056 * matches how the scanline counter based position works since
1057 * the scanline counter doesn't count the two half lines.
1059 if (position
>= vtotal
)
1060 position
= vtotal
- 1;
1063 * Start of vblank interrupt is triggered at start of hsync,
1064 * just prior to the first active line of vblank. However we
1065 * consider lines to start at the leading edge of horizontal
1066 * active. So, should we get here before we've crossed into
1067 * the horizontal active of the first line in vblank, we would
1068 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1069 * always add htotal-hsync_start to the current pixel position.
1071 position
= (position
+ htotal
- hsync_start
) % vtotal
;
1074 /* Get optional system timestamp after query. */
1076 *etime
= ktime_get();
1078 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1080 spin_unlock_irqrestore(&dev_priv
->uncore
.lock
, irqflags
);
1083 * While in vblank, position will be negative
1084 * counting up towards 0 at vbl_end. And outside
1085 * vblank, position will be positive counting
1088 if (position
>= vbl_start
)
1089 position
-= vbl_end
;
1091 position
+= vtotal
- vbl_end
;
1093 if (IS_GEN2(dev_priv
) || IS_G4X(dev_priv
) || INTEL_GEN(dev_priv
) >= 5) {
1097 *vpos
= position
/ htotal
;
1098 *hpos
= position
- (*vpos
* htotal
);
1104 int intel_get_crtc_scanline(struct intel_crtc
*crtc
)
1106 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1107 unsigned long irqflags
;
1110 spin_lock_irqsave(&dev_priv
->uncore
.lock
, irqflags
);
1111 position
= __intel_get_crtc_scanline(crtc
);
1112 spin_unlock_irqrestore(&dev_priv
->uncore
.lock
, irqflags
);
1117 static void ironlake_rps_change_irq_handler(struct drm_i915_private
*dev_priv
)
1119 u32 busy_up
, busy_down
, max_avg
, min_avg
;
1122 spin_lock(&mchdev_lock
);
1124 I915_WRITE16(MEMINTRSTS
, I915_READ(MEMINTRSTS
));
1126 new_delay
= dev_priv
->ips
.cur_delay
;
1128 I915_WRITE16(MEMINTRSTS
, MEMINT_EVAL_CHG
);
1129 busy_up
= I915_READ(RCPREVBSYTUPAVG
);
1130 busy_down
= I915_READ(RCPREVBSYTDNAVG
);
1131 max_avg
= I915_READ(RCBMAXAVG
);
1132 min_avg
= I915_READ(RCBMINAVG
);
1134 /* Handle RCS change request from hw */
1135 if (busy_up
> max_avg
) {
1136 if (dev_priv
->ips
.cur_delay
!= dev_priv
->ips
.max_delay
)
1137 new_delay
= dev_priv
->ips
.cur_delay
- 1;
1138 if (new_delay
< dev_priv
->ips
.max_delay
)
1139 new_delay
= dev_priv
->ips
.max_delay
;
1140 } else if (busy_down
< min_avg
) {
1141 if (dev_priv
->ips
.cur_delay
!= dev_priv
->ips
.min_delay
)
1142 new_delay
= dev_priv
->ips
.cur_delay
+ 1;
1143 if (new_delay
> dev_priv
->ips
.min_delay
)
1144 new_delay
= dev_priv
->ips
.min_delay
;
1147 if (ironlake_set_drps(dev_priv
, new_delay
))
1148 dev_priv
->ips
.cur_delay
= new_delay
;
1150 spin_unlock(&mchdev_lock
);
1155 static void notify_ring(struct intel_engine_cs
*engine
)
1157 const u32 seqno
= intel_engine_get_seqno(engine
);
1158 struct i915_request
*rq
= NULL
;
1159 struct task_struct
*tsk
= NULL
;
1160 struct intel_wait
*wait
;
1162 if (unlikely(!engine
->breadcrumbs
.irq_armed
))
1167 spin_lock(&engine
->breadcrumbs
.irq_lock
);
1168 wait
= engine
->breadcrumbs
.irq_wait
;
1171 * We use a callback from the dma-fence to submit
1172 * requests after waiting on our own requests. To
1173 * ensure minimum delay in queuing the next request to
1174 * hardware, signal the fence now rather than wait for
1175 * the signaler to be woken up. We still wake up the
1176 * waiter in order to handle the irq-seqno coherency
1177 * issues (we may receive the interrupt before the
1178 * seqno is written, see __i915_request_irq_complete())
1179 * and to handle coalescing of multiple seqno updates
1182 if (i915_seqno_passed(seqno
, wait
->seqno
)) {
1183 struct i915_request
*waiter
= wait
->request
;
1186 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT
,
1187 &waiter
->fence
.flags
) &&
1188 intel_wait_check_request(wait
, waiter
))
1189 rq
= i915_request_get(waiter
);
1193 if (engine
->irq_seqno_barrier
&&
1194 i915_seqno_passed(seqno
, wait
->seqno
- 1)) {
1195 set_bit(ENGINE_IRQ_BREADCRUMB
,
1196 &engine
->irq_posted
);
1201 engine
->breadcrumbs
.irq_count
++;
1203 if (engine
->breadcrumbs
.irq_armed
)
1204 __intel_engine_disarm_breadcrumbs(engine
);
1206 spin_unlock(&engine
->breadcrumbs
.irq_lock
);
1209 spin_lock(&rq
->lock
);
1210 dma_fence_signal_locked(&rq
->fence
);
1211 GEM_BUG_ON(!i915_request_completed(rq
));
1212 spin_unlock(&rq
->lock
);
1214 i915_request_put(rq
);
1217 if (tsk
&& tsk
->state
& TASK_NORMAL
)
1218 wake_up_process(tsk
);
1222 trace_intel_engine_notify(engine
, wait
);
1225 static void vlv_c0_read(struct drm_i915_private
*dev_priv
,
1226 struct intel_rps_ei
*ei
)
1228 ei
->ktime
= ktime_get_raw();
1229 ei
->render_c0
= I915_READ(VLV_RENDER_C0_COUNT
);
1230 ei
->media_c0
= I915_READ(VLV_MEDIA_C0_COUNT
);
1233 void gen6_rps_reset_ei(struct drm_i915_private
*dev_priv
)
1235 memset(&dev_priv
->gt_pm
.rps
.ei
, 0, sizeof(dev_priv
->gt_pm
.rps
.ei
));
1238 static u32
vlv_wa_c0_ei(struct drm_i915_private
*dev_priv
, u32 pm_iir
)
1240 struct intel_rps
*rps
= &dev_priv
->gt_pm
.rps
;
1241 const struct intel_rps_ei
*prev
= &rps
->ei
;
1242 struct intel_rps_ei now
;
1245 if ((pm_iir
& GEN6_PM_RP_UP_EI_EXPIRED
) == 0)
1248 vlv_c0_read(dev_priv
, &now
);
1254 time
= ktime_us_delta(now
.ktime
, prev
->ktime
);
1256 time
*= dev_priv
->czclk_freq
;
1258 /* Workload can be split between render + media,
1259 * e.g. SwapBuffers being blitted in X after being rendered in
1260 * mesa. To account for this we need to combine both engines
1261 * into our activity counter.
1263 render
= now
.render_c0
- prev
->render_c0
;
1264 media
= now
.media_c0
- prev
->media_c0
;
1265 c0
= max(render
, media
);
1266 c0
*= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1268 if (c0
> time
* rps
->power
.up_threshold
)
1269 events
= GEN6_PM_RP_UP_THRESHOLD
;
1270 else if (c0
< time
* rps
->power
.down_threshold
)
1271 events
= GEN6_PM_RP_DOWN_THRESHOLD
;
1278 static void gen6_pm_rps_work(struct work_struct
*work
)
1280 struct drm_i915_private
*dev_priv
=
1281 container_of(work
, struct drm_i915_private
, gt_pm
.rps
.work
);
1282 struct intel_rps
*rps
= &dev_priv
->gt_pm
.rps
;
1283 bool client_boost
= false;
1284 int new_delay
, adj
, min
, max
;
1287 spin_lock_irq(&dev_priv
->irq_lock
);
1288 if (rps
->interrupts_enabled
) {
1289 pm_iir
= fetch_and_zero(&rps
->pm_iir
);
1290 client_boost
= atomic_read(&rps
->num_waiters
);
1292 spin_unlock_irq(&dev_priv
->irq_lock
);
1294 /* Make sure we didn't queue anything we're not going to process. */
1295 WARN_ON(pm_iir
& ~dev_priv
->pm_rps_events
);
1296 if ((pm_iir
& dev_priv
->pm_rps_events
) == 0 && !client_boost
)
1299 mutex_lock(&dev_priv
->pcu_lock
);
1301 pm_iir
|= vlv_wa_c0_ei(dev_priv
, pm_iir
);
1303 adj
= rps
->last_adj
;
1304 new_delay
= rps
->cur_freq
;
1305 min
= rps
->min_freq_softlimit
;
1306 max
= rps
->max_freq_softlimit
;
1308 max
= rps
->max_freq
;
1309 if (client_boost
&& new_delay
< rps
->boost_freq
) {
1310 new_delay
= rps
->boost_freq
;
1312 } else if (pm_iir
& GEN6_PM_RP_UP_THRESHOLD
) {
1315 else /* CHV needs even encode values */
1316 adj
= IS_CHERRYVIEW(dev_priv
) ? 2 : 1;
1318 if (new_delay
>= rps
->max_freq_softlimit
)
1320 } else if (client_boost
) {
1322 } else if (pm_iir
& GEN6_PM_RP_DOWN_TIMEOUT
) {
1323 if (rps
->cur_freq
> rps
->efficient_freq
)
1324 new_delay
= rps
->efficient_freq
;
1325 else if (rps
->cur_freq
> rps
->min_freq_softlimit
)
1326 new_delay
= rps
->min_freq_softlimit
;
1328 } else if (pm_iir
& GEN6_PM_RP_DOWN_THRESHOLD
) {
1331 else /* CHV needs even encode values */
1332 adj
= IS_CHERRYVIEW(dev_priv
) ? -2 : -1;
1334 if (new_delay
<= rps
->min_freq_softlimit
)
1336 } else { /* unknown event */
1340 rps
->last_adj
= adj
;
1342 /* sysfs frequency interfaces may have snuck in while servicing the
1346 new_delay
= clamp_t(int, new_delay
, min
, max
);
1348 if (intel_set_rps(dev_priv
, new_delay
)) {
1349 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1353 mutex_unlock(&dev_priv
->pcu_lock
);
1356 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1357 spin_lock_irq(&dev_priv
->irq_lock
);
1358 if (rps
->interrupts_enabled
)
1359 gen6_unmask_pm_irq(dev_priv
, dev_priv
->pm_rps_events
);
1360 spin_unlock_irq(&dev_priv
->irq_lock
);
1365 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1367 * @work: workqueue struct
1369 * Doesn't actually do anything except notify userspace. As a consequence of
1370 * this event, userspace should try to remap the bad rows since statistically
1371 * it is likely the same row is more likely to go bad again.
1373 static void ivybridge_parity_work(struct work_struct
*work
)
1375 struct drm_i915_private
*dev_priv
=
1376 container_of(work
, typeof(*dev_priv
), l3_parity
.error_work
);
1377 u32 error_status
, row
, bank
, subbank
;
1378 char *parity_event
[6];
1382 /* We must turn off DOP level clock gating to access the L3 registers.
1383 * In order to prevent a get/put style interface, acquire struct mutex
1384 * any time we access those registers.
1386 mutex_lock(&dev_priv
->drm
.struct_mutex
);
1388 /* If we've screwed up tracking, just let the interrupt fire again */
1389 if (WARN_ON(!dev_priv
->l3_parity
.which_slice
))
1392 misccpctl
= I915_READ(GEN7_MISCCPCTL
);
1393 I915_WRITE(GEN7_MISCCPCTL
, misccpctl
& ~GEN7_DOP_CLOCK_GATE_ENABLE
);
1394 POSTING_READ(GEN7_MISCCPCTL
);
1396 while ((slice
= ffs(dev_priv
->l3_parity
.which_slice
)) != 0) {
1400 if (WARN_ON_ONCE(slice
>= NUM_L3_SLICES(dev_priv
)))
1403 dev_priv
->l3_parity
.which_slice
&= ~(1<<slice
);
1405 reg
= GEN7_L3CDERRST1(slice
);
1407 error_status
= I915_READ(reg
);
1408 row
= GEN7_PARITY_ERROR_ROW(error_status
);
1409 bank
= GEN7_PARITY_ERROR_BANK(error_status
);
1410 subbank
= GEN7_PARITY_ERROR_SUBBANK(error_status
);
1412 I915_WRITE(reg
, GEN7_PARITY_ERROR_VALID
| GEN7_L3CDERRST1_ENABLE
);
1415 parity_event
[0] = I915_L3_PARITY_UEVENT
"=1";
1416 parity_event
[1] = kasprintf(GFP_KERNEL
, "ROW=%d", row
);
1417 parity_event
[2] = kasprintf(GFP_KERNEL
, "BANK=%d", bank
);
1418 parity_event
[3] = kasprintf(GFP_KERNEL
, "SUBBANK=%d", subbank
);
1419 parity_event
[4] = kasprintf(GFP_KERNEL
, "SLICE=%d", slice
);
1420 parity_event
[5] = NULL
;
1422 kobject_uevent_env(&dev_priv
->drm
.primary
->kdev
->kobj
,
1423 KOBJ_CHANGE
, parity_event
);
1425 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1426 slice
, row
, bank
, subbank
);
1428 kfree(parity_event
[4]);
1429 kfree(parity_event
[3]);
1430 kfree(parity_event
[2]);
1431 kfree(parity_event
[1]);
1434 I915_WRITE(GEN7_MISCCPCTL
, misccpctl
);
1437 WARN_ON(dev_priv
->l3_parity
.which_slice
);
1438 spin_lock_irq(&dev_priv
->irq_lock
);
1439 gen5_enable_gt_irq(dev_priv
, GT_PARITY_ERROR(dev_priv
));
1440 spin_unlock_irq(&dev_priv
->irq_lock
);
1442 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
1445 static void ivybridge_parity_error_irq_handler(struct drm_i915_private
*dev_priv
,
1448 if (!HAS_L3_DPF(dev_priv
))
1451 spin_lock(&dev_priv
->irq_lock
);
1452 gen5_disable_gt_irq(dev_priv
, GT_PARITY_ERROR(dev_priv
));
1453 spin_unlock(&dev_priv
->irq_lock
);
1455 iir
&= GT_PARITY_ERROR(dev_priv
);
1456 if (iir
& GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1
)
1457 dev_priv
->l3_parity
.which_slice
|= 1 << 1;
1459 if (iir
& GT_RENDER_L3_PARITY_ERROR_INTERRUPT
)
1460 dev_priv
->l3_parity
.which_slice
|= 1 << 0;
1462 queue_work(dev_priv
->wq
, &dev_priv
->l3_parity
.error_work
);
1465 static void ilk_gt_irq_handler(struct drm_i915_private
*dev_priv
,
1468 if (gt_iir
& GT_RENDER_USER_INTERRUPT
)
1469 notify_ring(dev_priv
->engine
[RCS
]);
1470 if (gt_iir
& ILK_BSD_USER_INTERRUPT
)
1471 notify_ring(dev_priv
->engine
[VCS
]);
1474 static void snb_gt_irq_handler(struct drm_i915_private
*dev_priv
,
1477 if (gt_iir
& GT_RENDER_USER_INTERRUPT
)
1478 notify_ring(dev_priv
->engine
[RCS
]);
1479 if (gt_iir
& GT_BSD_USER_INTERRUPT
)
1480 notify_ring(dev_priv
->engine
[VCS
]);
1481 if (gt_iir
& GT_BLT_USER_INTERRUPT
)
1482 notify_ring(dev_priv
->engine
[BCS
]);
1484 if (gt_iir
& (GT_BLT_CS_ERROR_INTERRUPT
|
1485 GT_BSD_CS_ERROR_INTERRUPT
|
1486 GT_RENDER_CS_MASTER_ERROR_INTERRUPT
))
1487 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir
);
1489 if (gt_iir
& GT_PARITY_ERROR(dev_priv
))
1490 ivybridge_parity_error_irq_handler(dev_priv
, gt_iir
);
1494 gen8_cs_irq_handler(struct intel_engine_cs
*engine
, u32 iir
)
1496 bool tasklet
= false;
1498 if (iir
& GT_CONTEXT_SWITCH_INTERRUPT
)
1501 if (iir
& GT_RENDER_USER_INTERRUPT
) {
1502 notify_ring(engine
);
1503 tasklet
|= USES_GUC_SUBMISSION(engine
->i915
);
1507 tasklet_hi_schedule(&engine
->execlists
.tasklet
);
1510 static void gen8_gt_irq_ack(struct drm_i915_private
*i915
,
1511 u32 master_ctl
, u32 gt_iir
[4])
1513 void __iomem
* const regs
= i915
->regs
;
1515 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1517 GEN8_GT_VCS1_IRQ | \
1518 GEN8_GT_VCS2_IRQ | \
1519 GEN8_GT_VECS_IRQ | \
1523 if (master_ctl
& (GEN8_GT_RCS_IRQ
| GEN8_GT_BCS_IRQ
)) {
1524 gt_iir
[0] = raw_reg_read(regs
, GEN8_GT_IIR(0));
1525 if (likely(gt_iir
[0]))
1526 raw_reg_write(regs
, GEN8_GT_IIR(0), gt_iir
[0]);
1529 if (master_ctl
& (GEN8_GT_VCS1_IRQ
| GEN8_GT_VCS2_IRQ
)) {
1530 gt_iir
[1] = raw_reg_read(regs
, GEN8_GT_IIR(1));
1531 if (likely(gt_iir
[1]))
1532 raw_reg_write(regs
, GEN8_GT_IIR(1), gt_iir
[1]);
1535 if (master_ctl
& (GEN8_GT_PM_IRQ
| GEN8_GT_GUC_IRQ
)) {
1536 gt_iir
[2] = raw_reg_read(regs
, GEN8_GT_IIR(2));
1537 if (likely(gt_iir
[2] & (i915
->pm_rps_events
|
1538 i915
->pm_guc_events
)))
1539 raw_reg_write(regs
, GEN8_GT_IIR(2),
1540 gt_iir
[2] & (i915
->pm_rps_events
|
1541 i915
->pm_guc_events
));
1544 if (master_ctl
& GEN8_GT_VECS_IRQ
) {
1545 gt_iir
[3] = raw_reg_read(regs
, GEN8_GT_IIR(3));
1546 if (likely(gt_iir
[3]))
1547 raw_reg_write(regs
, GEN8_GT_IIR(3), gt_iir
[3]);
1551 static void gen8_gt_irq_handler(struct drm_i915_private
*i915
,
1552 u32 master_ctl
, u32 gt_iir
[4])
1554 if (master_ctl
& (GEN8_GT_RCS_IRQ
| GEN8_GT_BCS_IRQ
)) {
1555 gen8_cs_irq_handler(i915
->engine
[RCS
],
1556 gt_iir
[0] >> GEN8_RCS_IRQ_SHIFT
);
1557 gen8_cs_irq_handler(i915
->engine
[BCS
],
1558 gt_iir
[0] >> GEN8_BCS_IRQ_SHIFT
);
1561 if (master_ctl
& (GEN8_GT_VCS1_IRQ
| GEN8_GT_VCS2_IRQ
)) {
1562 gen8_cs_irq_handler(i915
->engine
[VCS
],
1563 gt_iir
[1] >> GEN8_VCS1_IRQ_SHIFT
);
1564 gen8_cs_irq_handler(i915
->engine
[VCS2
],
1565 gt_iir
[1] >> GEN8_VCS2_IRQ_SHIFT
);
1568 if (master_ctl
& GEN8_GT_VECS_IRQ
) {
1569 gen8_cs_irq_handler(i915
->engine
[VECS
],
1570 gt_iir
[3] >> GEN8_VECS_IRQ_SHIFT
);
1573 if (master_ctl
& (GEN8_GT_PM_IRQ
| GEN8_GT_GUC_IRQ
)) {
1574 gen6_rps_irq_handler(i915
, gt_iir
[2]);
1575 gen9_guc_irq_handler(i915
, gt_iir
[2]);
1579 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin
, u32 val
)
1583 return val
& GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1
);
1585 return val
& GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2
);
1587 return val
& GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3
);
1589 return val
& GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4
);
1595 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin
, u32 val
)
1599 return val
& PORTA_HOTPLUG_LONG_DETECT
;
1601 return val
& PORTB_HOTPLUG_LONG_DETECT
;
1603 return val
& PORTC_HOTPLUG_LONG_DETECT
;
1609 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin
, u32 val
)
1613 return val
& ICP_DDIA_HPD_LONG_DETECT
;
1615 return val
& ICP_DDIB_HPD_LONG_DETECT
;
1621 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin
, u32 val
)
1625 return val
& ICP_TC_HPD_LONG_DETECT(PORT_TC1
);
1627 return val
& ICP_TC_HPD_LONG_DETECT(PORT_TC2
);
1629 return val
& ICP_TC_HPD_LONG_DETECT(PORT_TC3
);
1631 return val
& ICP_TC_HPD_LONG_DETECT(PORT_TC4
);
1637 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin
, u32 val
)
1641 return val
& PORTE_HOTPLUG_LONG_DETECT
;
1647 static bool spt_port_hotplug_long_detect(enum hpd_pin pin
, u32 val
)
1651 return val
& PORTA_HOTPLUG_LONG_DETECT
;
1653 return val
& PORTB_HOTPLUG_LONG_DETECT
;
1655 return val
& PORTC_HOTPLUG_LONG_DETECT
;
1657 return val
& PORTD_HOTPLUG_LONG_DETECT
;
1663 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin
, u32 val
)
1667 return val
& DIGITAL_PORTA_HOTPLUG_LONG_DETECT
;
1673 static bool pch_port_hotplug_long_detect(enum hpd_pin pin
, u32 val
)
1677 return val
& PORTB_HOTPLUG_LONG_DETECT
;
1679 return val
& PORTC_HOTPLUG_LONG_DETECT
;
1681 return val
& PORTD_HOTPLUG_LONG_DETECT
;
1687 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin
, u32 val
)
1691 return val
& PORTB_HOTPLUG_INT_LONG_PULSE
;
1693 return val
& PORTC_HOTPLUG_INT_LONG_PULSE
;
1695 return val
& PORTD_HOTPLUG_INT_LONG_PULSE
;
1702 * Get a bit mask of pins that have triggered, and which ones may be long.
1703 * This can be called multiple times with the same masks to accumulate
1704 * hotplug detection results from several registers.
1706 * Note that the caller is expected to zero out the masks initially.
1708 static void intel_get_hpd_pins(struct drm_i915_private
*dev_priv
,
1709 u32
*pin_mask
, u32
*long_mask
,
1710 u32 hotplug_trigger
, u32 dig_hotplug_reg
,
1711 const u32 hpd
[HPD_NUM_PINS
],
1712 bool long_pulse_detect(enum hpd_pin pin
, u32 val
))
1716 for_each_hpd_pin(pin
) {
1717 if ((hpd
[pin
] & hotplug_trigger
) == 0)
1720 *pin_mask
|= BIT(pin
);
1722 if (long_pulse_detect(pin
, dig_hotplug_reg
))
1723 *long_mask
|= BIT(pin
);
1726 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1727 hotplug_trigger
, dig_hotplug_reg
, *pin_mask
, *long_mask
);
1731 static void gmbus_irq_handler(struct drm_i915_private
*dev_priv
)
1733 wake_up_all(&dev_priv
->gmbus_wait_queue
);
1736 static void dp_aux_irq_handler(struct drm_i915_private
*dev_priv
)
1738 wake_up_all(&dev_priv
->gmbus_wait_queue
);
1741 #if defined(CONFIG_DEBUG_FS)
1742 static void display_pipe_crc_irq_handler(struct drm_i915_private
*dev_priv
,
1744 uint32_t crc0
, uint32_t crc1
,
1745 uint32_t crc2
, uint32_t crc3
,
1748 struct intel_pipe_crc
*pipe_crc
= &dev_priv
->pipe_crc
[pipe
];
1749 struct intel_crtc
*crtc
= intel_get_crtc_for_pipe(dev_priv
, pipe
);
1752 spin_lock(&pipe_crc
->lock
);
1754 * For some not yet identified reason, the first CRC is
1755 * bonkers. So let's just wait for the next vblank and read
1756 * out the buggy result.
1758 * On GEN8+ sometimes the second CRC is bonkers as well, so
1759 * don't trust that one either.
1761 if (pipe_crc
->skipped
<= 0 ||
1762 (INTEL_GEN(dev_priv
) >= 8 && pipe_crc
->skipped
== 1)) {
1763 pipe_crc
->skipped
++;
1764 spin_unlock(&pipe_crc
->lock
);
1767 spin_unlock(&pipe_crc
->lock
);
1774 drm_crtc_add_crc_entry(&crtc
->base
, true,
1775 drm_crtc_accurate_vblank_count(&crtc
->base
),
1780 display_pipe_crc_irq_handler(struct drm_i915_private
*dev_priv
,
1782 uint32_t crc0
, uint32_t crc1
,
1783 uint32_t crc2
, uint32_t crc3
,
1788 static void hsw_pipe_crc_irq_handler(struct drm_i915_private
*dev_priv
,
1791 display_pipe_crc_irq_handler(dev_priv
, pipe
,
1792 I915_READ(PIPE_CRC_RES_1_IVB(pipe
)),
1796 static void ivb_pipe_crc_irq_handler(struct drm_i915_private
*dev_priv
,
1799 display_pipe_crc_irq_handler(dev_priv
, pipe
,
1800 I915_READ(PIPE_CRC_RES_1_IVB(pipe
)),
1801 I915_READ(PIPE_CRC_RES_2_IVB(pipe
)),
1802 I915_READ(PIPE_CRC_RES_3_IVB(pipe
)),
1803 I915_READ(PIPE_CRC_RES_4_IVB(pipe
)),
1804 I915_READ(PIPE_CRC_RES_5_IVB(pipe
)));
1807 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private
*dev_priv
,
1810 uint32_t res1
, res2
;
1812 if (INTEL_GEN(dev_priv
) >= 3)
1813 res1
= I915_READ(PIPE_CRC_RES_RES1_I915(pipe
));
1817 if (INTEL_GEN(dev_priv
) >= 5 || IS_G4X(dev_priv
))
1818 res2
= I915_READ(PIPE_CRC_RES_RES2_G4X(pipe
));
1822 display_pipe_crc_irq_handler(dev_priv
, pipe
,
1823 I915_READ(PIPE_CRC_RES_RED(pipe
)),
1824 I915_READ(PIPE_CRC_RES_GREEN(pipe
)),
1825 I915_READ(PIPE_CRC_RES_BLUE(pipe
)),
1829 /* The RPS events need forcewake, so we add them to a work queue and mask their
1830 * IMR bits until the work is done. Other interrupts can be processed without
1831 * the work queue. */
1832 static void gen6_rps_irq_handler(struct drm_i915_private
*dev_priv
, u32 pm_iir
)
1834 struct intel_rps
*rps
= &dev_priv
->gt_pm
.rps
;
1836 if (pm_iir
& dev_priv
->pm_rps_events
) {
1837 spin_lock(&dev_priv
->irq_lock
);
1838 gen6_mask_pm_irq(dev_priv
, pm_iir
& dev_priv
->pm_rps_events
);
1839 if (rps
->interrupts_enabled
) {
1840 rps
->pm_iir
|= pm_iir
& dev_priv
->pm_rps_events
;
1841 schedule_work(&rps
->work
);
1843 spin_unlock(&dev_priv
->irq_lock
);
1846 if (INTEL_GEN(dev_priv
) >= 8)
1849 if (HAS_VEBOX(dev_priv
)) {
1850 if (pm_iir
& PM_VEBOX_USER_INTERRUPT
)
1851 notify_ring(dev_priv
->engine
[VECS
]);
1853 if (pm_iir
& PM_VEBOX_CS_ERROR_INTERRUPT
)
1854 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir
);
1858 static void gen9_guc_irq_handler(struct drm_i915_private
*dev_priv
, u32 gt_iir
)
1860 if (gt_iir
& GEN9_GUC_TO_HOST_INT_EVENT
)
1861 intel_guc_to_host_event_handler(&dev_priv
->guc
);
1864 static void i9xx_pipestat_irq_reset(struct drm_i915_private
*dev_priv
)
1868 for_each_pipe(dev_priv
, pipe
) {
1869 I915_WRITE(PIPESTAT(pipe
),
1870 PIPESTAT_INT_STATUS_MASK
|
1871 PIPE_FIFO_UNDERRUN_STATUS
);
1873 dev_priv
->pipestat_irq_mask
[pipe
] = 0;
1877 static void i9xx_pipestat_irq_ack(struct drm_i915_private
*dev_priv
,
1878 u32 iir
, u32 pipe_stats
[I915_MAX_PIPES
])
1882 spin_lock(&dev_priv
->irq_lock
);
1884 if (!dev_priv
->display_irqs_enabled
) {
1885 spin_unlock(&dev_priv
->irq_lock
);
1889 for_each_pipe(dev_priv
, pipe
) {
1891 u32 status_mask
, enable_mask
, iir_bit
= 0;
1894 * PIPESTAT bits get signalled even when the interrupt is
1895 * disabled with the mask bits, and some of the status bits do
1896 * not generate interrupts at all (like the underrun bit). Hence
1897 * we need to be careful that we only handle what we want to
1901 /* fifo underruns are filterered in the underrun handler. */
1902 status_mask
= PIPE_FIFO_UNDERRUN_STATUS
;
1906 iir_bit
= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
;
1909 iir_bit
= I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
;
1912 iir_bit
= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT
;
1916 status_mask
|= dev_priv
->pipestat_irq_mask
[pipe
];
1921 reg
= PIPESTAT(pipe
);
1922 pipe_stats
[pipe
] = I915_READ(reg
) & status_mask
;
1923 enable_mask
= i915_pipestat_enable_mask(dev_priv
, pipe
);
1926 * Clear the PIPE*STAT regs before the IIR
1928 * Toggle the enable bits to make sure we get an
1929 * edge in the ISR pipe event bit if we don't clear
1930 * all the enabled status bits. Otherwise the edge
1931 * triggered IIR on i965/g4x wouldn't notice that
1932 * an interrupt is still pending.
1934 if (pipe_stats
[pipe
]) {
1935 I915_WRITE(reg
, pipe_stats
[pipe
]);
1936 I915_WRITE(reg
, enable_mask
);
1939 spin_unlock(&dev_priv
->irq_lock
);
1942 static void i8xx_pipestat_irq_handler(struct drm_i915_private
*dev_priv
,
1943 u16 iir
, u32 pipe_stats
[I915_MAX_PIPES
])
1947 for_each_pipe(dev_priv
, pipe
) {
1948 if (pipe_stats
[pipe
] & PIPE_VBLANK_INTERRUPT_STATUS
)
1949 drm_handle_vblank(&dev_priv
->drm
, pipe
);
1951 if (pipe_stats
[pipe
] & PIPE_CRC_DONE_INTERRUPT_STATUS
)
1952 i9xx_pipe_crc_irq_handler(dev_priv
, pipe
);
1954 if (pipe_stats
[pipe
] & PIPE_FIFO_UNDERRUN_STATUS
)
1955 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
1959 static void i915_pipestat_irq_handler(struct drm_i915_private
*dev_priv
,
1960 u32 iir
, u32 pipe_stats
[I915_MAX_PIPES
])
1962 bool blc_event
= false;
1965 for_each_pipe(dev_priv
, pipe
) {
1966 if (pipe_stats
[pipe
] & PIPE_VBLANK_INTERRUPT_STATUS
)
1967 drm_handle_vblank(&dev_priv
->drm
, pipe
);
1969 if (pipe_stats
[pipe
] & PIPE_LEGACY_BLC_EVENT_STATUS
)
1972 if (pipe_stats
[pipe
] & PIPE_CRC_DONE_INTERRUPT_STATUS
)
1973 i9xx_pipe_crc_irq_handler(dev_priv
, pipe
);
1975 if (pipe_stats
[pipe
] & PIPE_FIFO_UNDERRUN_STATUS
)
1976 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
1979 if (blc_event
|| (iir
& I915_ASLE_INTERRUPT
))
1980 intel_opregion_asle_intr(dev_priv
);
1983 static void i965_pipestat_irq_handler(struct drm_i915_private
*dev_priv
,
1984 u32 iir
, u32 pipe_stats
[I915_MAX_PIPES
])
1986 bool blc_event
= false;
1989 for_each_pipe(dev_priv
, pipe
) {
1990 if (pipe_stats
[pipe
] & PIPE_START_VBLANK_INTERRUPT_STATUS
)
1991 drm_handle_vblank(&dev_priv
->drm
, pipe
);
1993 if (pipe_stats
[pipe
] & PIPE_LEGACY_BLC_EVENT_STATUS
)
1996 if (pipe_stats
[pipe
] & PIPE_CRC_DONE_INTERRUPT_STATUS
)
1997 i9xx_pipe_crc_irq_handler(dev_priv
, pipe
);
1999 if (pipe_stats
[pipe
] & PIPE_FIFO_UNDERRUN_STATUS
)
2000 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
2003 if (blc_event
|| (iir
& I915_ASLE_INTERRUPT
))
2004 intel_opregion_asle_intr(dev_priv
);
2006 if (pipe_stats
[0] & PIPE_GMBUS_INTERRUPT_STATUS
)
2007 gmbus_irq_handler(dev_priv
);
2010 static void valleyview_pipestat_irq_handler(struct drm_i915_private
*dev_priv
,
2011 u32 pipe_stats
[I915_MAX_PIPES
])
2015 for_each_pipe(dev_priv
, pipe
) {
2016 if (pipe_stats
[pipe
] & PIPE_START_VBLANK_INTERRUPT_STATUS
)
2017 drm_handle_vblank(&dev_priv
->drm
, pipe
);
2019 if (pipe_stats
[pipe
] & PIPE_CRC_DONE_INTERRUPT_STATUS
)
2020 i9xx_pipe_crc_irq_handler(dev_priv
, pipe
);
2022 if (pipe_stats
[pipe
] & PIPE_FIFO_UNDERRUN_STATUS
)
2023 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
2026 if (pipe_stats
[0] & PIPE_GMBUS_INTERRUPT_STATUS
)
2027 gmbus_irq_handler(dev_priv
);
2030 static u32
i9xx_hpd_irq_ack(struct drm_i915_private
*dev_priv
)
2032 u32 hotplug_status
= 0, hotplug_status_mask
;
2035 if (IS_G4X(dev_priv
) ||
2036 IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
2037 hotplug_status_mask
= HOTPLUG_INT_STATUS_G4X
|
2038 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X
;
2040 hotplug_status_mask
= HOTPLUG_INT_STATUS_I915
;
2043 * We absolutely have to clear all the pending interrupt
2044 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2045 * interrupt bit won't have an edge, and the i965/g4x
2046 * edge triggered IIR will not notice that an interrupt
2047 * is still pending. We can't use PORT_HOTPLUG_EN to
2048 * guarantee the edge as the act of toggling the enable
2049 * bits can itself generate a new hotplug interrupt :(
2051 for (i
= 0; i
< 10; i
++) {
2052 u32 tmp
= I915_READ(PORT_HOTPLUG_STAT
) & hotplug_status_mask
;
2055 return hotplug_status
;
2057 hotplug_status
|= tmp
;
2058 I915_WRITE(PORT_HOTPLUG_STAT
, hotplug_status
);
2062 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2063 I915_READ(PORT_HOTPLUG_STAT
));
2065 return hotplug_status
;
2068 static void i9xx_hpd_irq_handler(struct drm_i915_private
*dev_priv
,
2071 u32 pin_mask
= 0, long_mask
= 0;
2073 if (IS_G4X(dev_priv
) || IS_VALLEYVIEW(dev_priv
) ||
2074 IS_CHERRYVIEW(dev_priv
)) {
2075 u32 hotplug_trigger
= hotplug_status
& HOTPLUG_INT_STATUS_G4X
;
2077 if (hotplug_trigger
) {
2078 intel_get_hpd_pins(dev_priv
, &pin_mask
, &long_mask
,
2079 hotplug_trigger
, hotplug_trigger
,
2081 i9xx_port_hotplug_long_detect
);
2083 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
2086 if (hotplug_status
& DP_AUX_CHANNEL_MASK_INT_STATUS_G4X
)
2087 dp_aux_irq_handler(dev_priv
);
2089 u32 hotplug_trigger
= hotplug_status
& HOTPLUG_INT_STATUS_I915
;
2091 if (hotplug_trigger
) {
2092 intel_get_hpd_pins(dev_priv
, &pin_mask
, &long_mask
,
2093 hotplug_trigger
, hotplug_trigger
,
2095 i9xx_port_hotplug_long_detect
);
2096 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
2101 static irqreturn_t
valleyview_irq_handler(int irq
, void *arg
)
2103 struct drm_device
*dev
= arg
;
2104 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2105 irqreturn_t ret
= IRQ_NONE
;
2107 if (!intel_irqs_enabled(dev_priv
))
2110 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2111 disable_rpm_wakeref_asserts(dev_priv
);
2114 u32 iir
, gt_iir
, pm_iir
;
2115 u32 pipe_stats
[I915_MAX_PIPES
] = {};
2116 u32 hotplug_status
= 0;
2119 gt_iir
= I915_READ(GTIIR
);
2120 pm_iir
= I915_READ(GEN6_PMIIR
);
2121 iir
= I915_READ(VLV_IIR
);
2123 if (gt_iir
== 0 && pm_iir
== 0 && iir
== 0)
2129 * Theory on interrupt generation, based on empirical evidence:
2131 * x = ((VLV_IIR & VLV_IER) ||
2132 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2133 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2135 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2136 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2137 * guarantee the CPU interrupt will be raised again even if we
2138 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2139 * bits this time around.
2141 I915_WRITE(VLV_MASTER_IER
, 0);
2142 ier
= I915_READ(VLV_IER
);
2143 I915_WRITE(VLV_IER
, 0);
2146 I915_WRITE(GTIIR
, gt_iir
);
2148 I915_WRITE(GEN6_PMIIR
, pm_iir
);
2150 if (iir
& I915_DISPLAY_PORT_INTERRUPT
)
2151 hotplug_status
= i9xx_hpd_irq_ack(dev_priv
);
2153 /* Call regardless, as some status bits might not be
2154 * signalled in iir */
2155 i9xx_pipestat_irq_ack(dev_priv
, iir
, pipe_stats
);
2157 if (iir
& (I915_LPE_PIPE_A_INTERRUPT
|
2158 I915_LPE_PIPE_B_INTERRUPT
))
2159 intel_lpe_audio_irq_handler(dev_priv
);
2162 * VLV_IIR is single buffered, and reflects the level
2163 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2166 I915_WRITE(VLV_IIR
, iir
);
2168 I915_WRITE(VLV_IER
, ier
);
2169 I915_WRITE(VLV_MASTER_IER
, MASTER_INTERRUPT_ENABLE
);
2172 snb_gt_irq_handler(dev_priv
, gt_iir
);
2174 gen6_rps_irq_handler(dev_priv
, pm_iir
);
2177 i9xx_hpd_irq_handler(dev_priv
, hotplug_status
);
2179 valleyview_pipestat_irq_handler(dev_priv
, pipe_stats
);
2182 enable_rpm_wakeref_asserts(dev_priv
);
2187 static irqreturn_t
cherryview_irq_handler(int irq
, void *arg
)
2189 struct drm_device
*dev
= arg
;
2190 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2191 irqreturn_t ret
= IRQ_NONE
;
2193 if (!intel_irqs_enabled(dev_priv
))
2196 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2197 disable_rpm_wakeref_asserts(dev_priv
);
2200 u32 master_ctl
, iir
;
2201 u32 pipe_stats
[I915_MAX_PIPES
] = {};
2202 u32 hotplug_status
= 0;
2206 master_ctl
= I915_READ(GEN8_MASTER_IRQ
) & ~GEN8_MASTER_IRQ_CONTROL
;
2207 iir
= I915_READ(VLV_IIR
);
2209 if (master_ctl
== 0 && iir
== 0)
2215 * Theory on interrupt generation, based on empirical evidence:
2217 * x = ((VLV_IIR & VLV_IER) ||
2218 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2219 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2221 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2222 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2223 * guarantee the CPU interrupt will be raised again even if we
2224 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2225 * bits this time around.
2227 I915_WRITE(GEN8_MASTER_IRQ
, 0);
2228 ier
= I915_READ(VLV_IER
);
2229 I915_WRITE(VLV_IER
, 0);
2231 gen8_gt_irq_ack(dev_priv
, master_ctl
, gt_iir
);
2233 if (iir
& I915_DISPLAY_PORT_INTERRUPT
)
2234 hotplug_status
= i9xx_hpd_irq_ack(dev_priv
);
2236 /* Call regardless, as some status bits might not be
2237 * signalled in iir */
2238 i9xx_pipestat_irq_ack(dev_priv
, iir
, pipe_stats
);
2240 if (iir
& (I915_LPE_PIPE_A_INTERRUPT
|
2241 I915_LPE_PIPE_B_INTERRUPT
|
2242 I915_LPE_PIPE_C_INTERRUPT
))
2243 intel_lpe_audio_irq_handler(dev_priv
);
2246 * VLV_IIR is single buffered, and reflects the level
2247 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2250 I915_WRITE(VLV_IIR
, iir
);
2252 I915_WRITE(VLV_IER
, ier
);
2253 I915_WRITE(GEN8_MASTER_IRQ
, GEN8_MASTER_IRQ_CONTROL
);
2255 gen8_gt_irq_handler(dev_priv
, master_ctl
, gt_iir
);
2258 i9xx_hpd_irq_handler(dev_priv
, hotplug_status
);
2260 valleyview_pipestat_irq_handler(dev_priv
, pipe_stats
);
2263 enable_rpm_wakeref_asserts(dev_priv
);
2268 static void ibx_hpd_irq_handler(struct drm_i915_private
*dev_priv
,
2269 u32 hotplug_trigger
,
2270 const u32 hpd
[HPD_NUM_PINS
])
2272 u32 dig_hotplug_reg
, pin_mask
= 0, long_mask
= 0;
2275 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2276 * unless we touch the hotplug register, even if hotplug_trigger is
2277 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2280 dig_hotplug_reg
= I915_READ(PCH_PORT_HOTPLUG
);
2281 if (!hotplug_trigger
) {
2282 u32 mask
= PORTA_HOTPLUG_STATUS_MASK
|
2283 PORTD_HOTPLUG_STATUS_MASK
|
2284 PORTC_HOTPLUG_STATUS_MASK
|
2285 PORTB_HOTPLUG_STATUS_MASK
;
2286 dig_hotplug_reg
&= ~mask
;
2289 I915_WRITE(PCH_PORT_HOTPLUG
, dig_hotplug_reg
);
2290 if (!hotplug_trigger
)
2293 intel_get_hpd_pins(dev_priv
, &pin_mask
, &long_mask
, hotplug_trigger
,
2294 dig_hotplug_reg
, hpd
,
2295 pch_port_hotplug_long_detect
);
2297 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
2300 static void ibx_irq_handler(struct drm_i915_private
*dev_priv
, u32 pch_iir
)
2303 u32 hotplug_trigger
= pch_iir
& SDE_HOTPLUG_MASK
;
2305 ibx_hpd_irq_handler(dev_priv
, hotplug_trigger
, hpd_ibx
);
2307 if (pch_iir
& SDE_AUDIO_POWER_MASK
) {
2308 int port
= ffs((pch_iir
& SDE_AUDIO_POWER_MASK
) >>
2309 SDE_AUDIO_POWER_SHIFT
);
2310 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2314 if (pch_iir
& SDE_AUX_MASK
)
2315 dp_aux_irq_handler(dev_priv
);
2317 if (pch_iir
& SDE_GMBUS
)
2318 gmbus_irq_handler(dev_priv
);
2320 if (pch_iir
& SDE_AUDIO_HDCP_MASK
)
2321 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2323 if (pch_iir
& SDE_AUDIO_TRANS_MASK
)
2324 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2326 if (pch_iir
& SDE_POISON
)
2327 DRM_ERROR("PCH poison interrupt\n");
2329 if (pch_iir
& SDE_FDI_MASK
)
2330 for_each_pipe(dev_priv
, pipe
)
2331 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2333 I915_READ(FDI_RX_IIR(pipe
)));
2335 if (pch_iir
& (SDE_TRANSB_CRC_DONE
| SDE_TRANSA_CRC_DONE
))
2336 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2338 if (pch_iir
& (SDE_TRANSB_CRC_ERR
| SDE_TRANSA_CRC_ERR
))
2339 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2341 if (pch_iir
& SDE_TRANSA_FIFO_UNDER
)
2342 intel_pch_fifo_underrun_irq_handler(dev_priv
, PIPE_A
);
2344 if (pch_iir
& SDE_TRANSB_FIFO_UNDER
)
2345 intel_pch_fifo_underrun_irq_handler(dev_priv
, PIPE_B
);
2348 static void ivb_err_int_handler(struct drm_i915_private
*dev_priv
)
2350 u32 err_int
= I915_READ(GEN7_ERR_INT
);
2353 if (err_int
& ERR_INT_POISON
)
2354 DRM_ERROR("Poison interrupt\n");
2356 for_each_pipe(dev_priv
, pipe
) {
2357 if (err_int
& ERR_INT_FIFO_UNDERRUN(pipe
))
2358 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
2360 if (err_int
& ERR_INT_PIPE_CRC_DONE(pipe
)) {
2361 if (IS_IVYBRIDGE(dev_priv
))
2362 ivb_pipe_crc_irq_handler(dev_priv
, pipe
);
2364 hsw_pipe_crc_irq_handler(dev_priv
, pipe
);
2368 I915_WRITE(GEN7_ERR_INT
, err_int
);
2371 static void cpt_serr_int_handler(struct drm_i915_private
*dev_priv
)
2373 u32 serr_int
= I915_READ(SERR_INT
);
2376 if (serr_int
& SERR_INT_POISON
)
2377 DRM_ERROR("PCH poison interrupt\n");
2379 for_each_pipe(dev_priv
, pipe
)
2380 if (serr_int
& SERR_INT_TRANS_FIFO_UNDERRUN(pipe
))
2381 intel_pch_fifo_underrun_irq_handler(dev_priv
, pipe
);
2383 I915_WRITE(SERR_INT
, serr_int
);
2386 static void cpt_irq_handler(struct drm_i915_private
*dev_priv
, u32 pch_iir
)
2389 u32 hotplug_trigger
= pch_iir
& SDE_HOTPLUG_MASK_CPT
;
2391 ibx_hpd_irq_handler(dev_priv
, hotplug_trigger
, hpd_cpt
);
2393 if (pch_iir
& SDE_AUDIO_POWER_MASK_CPT
) {
2394 int port
= ffs((pch_iir
& SDE_AUDIO_POWER_MASK_CPT
) >>
2395 SDE_AUDIO_POWER_SHIFT_CPT
);
2396 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2400 if (pch_iir
& SDE_AUX_MASK_CPT
)
2401 dp_aux_irq_handler(dev_priv
);
2403 if (pch_iir
& SDE_GMBUS_CPT
)
2404 gmbus_irq_handler(dev_priv
);
2406 if (pch_iir
& SDE_AUDIO_CP_REQ_CPT
)
2407 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2409 if (pch_iir
& SDE_AUDIO_CP_CHG_CPT
)
2410 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2412 if (pch_iir
& SDE_FDI_MASK_CPT
)
2413 for_each_pipe(dev_priv
, pipe
)
2414 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2416 I915_READ(FDI_RX_IIR(pipe
)));
2418 if (pch_iir
& SDE_ERROR_CPT
)
2419 cpt_serr_int_handler(dev_priv
);
2422 static void icp_irq_handler(struct drm_i915_private
*dev_priv
, u32 pch_iir
)
2424 u32 ddi_hotplug_trigger
= pch_iir
& SDE_DDI_MASK_ICP
;
2425 u32 tc_hotplug_trigger
= pch_iir
& SDE_TC_MASK_ICP
;
2426 u32 pin_mask
= 0, long_mask
= 0;
2428 if (ddi_hotplug_trigger
) {
2429 u32 dig_hotplug_reg
;
2431 dig_hotplug_reg
= I915_READ(SHOTPLUG_CTL_DDI
);
2432 I915_WRITE(SHOTPLUG_CTL_DDI
, dig_hotplug_reg
);
2434 intel_get_hpd_pins(dev_priv
, &pin_mask
, &long_mask
,
2435 ddi_hotplug_trigger
,
2436 dig_hotplug_reg
, hpd_icp
,
2437 icp_ddi_port_hotplug_long_detect
);
2440 if (tc_hotplug_trigger
) {
2441 u32 dig_hotplug_reg
;
2443 dig_hotplug_reg
= I915_READ(SHOTPLUG_CTL_TC
);
2444 I915_WRITE(SHOTPLUG_CTL_TC
, dig_hotplug_reg
);
2446 intel_get_hpd_pins(dev_priv
, &pin_mask
, &long_mask
,
2448 dig_hotplug_reg
, hpd_icp
,
2449 icp_tc_port_hotplug_long_detect
);
2453 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
2455 if (pch_iir
& SDE_GMBUS_ICP
)
2456 gmbus_irq_handler(dev_priv
);
2459 static void spt_irq_handler(struct drm_i915_private
*dev_priv
, u32 pch_iir
)
2461 u32 hotplug_trigger
= pch_iir
& SDE_HOTPLUG_MASK_SPT
&
2462 ~SDE_PORTE_HOTPLUG_SPT
;
2463 u32 hotplug2_trigger
= pch_iir
& SDE_PORTE_HOTPLUG_SPT
;
2464 u32 pin_mask
= 0, long_mask
= 0;
2466 if (hotplug_trigger
) {
2467 u32 dig_hotplug_reg
;
2469 dig_hotplug_reg
= I915_READ(PCH_PORT_HOTPLUG
);
2470 I915_WRITE(PCH_PORT_HOTPLUG
, dig_hotplug_reg
);
2472 intel_get_hpd_pins(dev_priv
, &pin_mask
, &long_mask
,
2473 hotplug_trigger
, dig_hotplug_reg
, hpd_spt
,
2474 spt_port_hotplug_long_detect
);
2477 if (hotplug2_trigger
) {
2478 u32 dig_hotplug_reg
;
2480 dig_hotplug_reg
= I915_READ(PCH_PORT_HOTPLUG2
);
2481 I915_WRITE(PCH_PORT_HOTPLUG2
, dig_hotplug_reg
);
2483 intel_get_hpd_pins(dev_priv
, &pin_mask
, &long_mask
,
2484 hotplug2_trigger
, dig_hotplug_reg
, hpd_spt
,
2485 spt_port_hotplug2_long_detect
);
2489 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
2491 if (pch_iir
& SDE_GMBUS_CPT
)
2492 gmbus_irq_handler(dev_priv
);
2495 static void ilk_hpd_irq_handler(struct drm_i915_private
*dev_priv
,
2496 u32 hotplug_trigger
,
2497 const u32 hpd
[HPD_NUM_PINS
])
2499 u32 dig_hotplug_reg
, pin_mask
= 0, long_mask
= 0;
2501 dig_hotplug_reg
= I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL
);
2502 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL
, dig_hotplug_reg
);
2504 intel_get_hpd_pins(dev_priv
, &pin_mask
, &long_mask
, hotplug_trigger
,
2505 dig_hotplug_reg
, hpd
,
2506 ilk_port_hotplug_long_detect
);
2508 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
2511 static void ilk_display_irq_handler(struct drm_i915_private
*dev_priv
,
2515 u32 hotplug_trigger
= de_iir
& DE_DP_A_HOTPLUG
;
2517 if (hotplug_trigger
)
2518 ilk_hpd_irq_handler(dev_priv
, hotplug_trigger
, hpd_ilk
);
2520 if (de_iir
& DE_AUX_CHANNEL_A
)
2521 dp_aux_irq_handler(dev_priv
);
2523 if (de_iir
& DE_GSE
)
2524 intel_opregion_asle_intr(dev_priv
);
2526 if (de_iir
& DE_POISON
)
2527 DRM_ERROR("Poison interrupt\n");
2529 for_each_pipe(dev_priv
, pipe
) {
2530 if (de_iir
& DE_PIPE_VBLANK(pipe
))
2531 drm_handle_vblank(&dev_priv
->drm
, pipe
);
2533 if (de_iir
& DE_PIPE_FIFO_UNDERRUN(pipe
))
2534 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
2536 if (de_iir
& DE_PIPE_CRC_DONE(pipe
))
2537 i9xx_pipe_crc_irq_handler(dev_priv
, pipe
);
2540 /* check event from PCH */
2541 if (de_iir
& DE_PCH_EVENT
) {
2542 u32 pch_iir
= I915_READ(SDEIIR
);
2544 if (HAS_PCH_CPT(dev_priv
))
2545 cpt_irq_handler(dev_priv
, pch_iir
);
2547 ibx_irq_handler(dev_priv
, pch_iir
);
2549 /* should clear PCH hotplug event before clear CPU irq */
2550 I915_WRITE(SDEIIR
, pch_iir
);
2553 if (IS_GEN5(dev_priv
) && de_iir
& DE_PCU_EVENT
)
2554 ironlake_rps_change_irq_handler(dev_priv
);
2557 static void ivb_display_irq_handler(struct drm_i915_private
*dev_priv
,
2561 u32 hotplug_trigger
= de_iir
& DE_DP_A_HOTPLUG_IVB
;
2563 if (hotplug_trigger
)
2564 ilk_hpd_irq_handler(dev_priv
, hotplug_trigger
, hpd_ivb
);
2566 if (de_iir
& DE_ERR_INT_IVB
)
2567 ivb_err_int_handler(dev_priv
);
2569 if (de_iir
& DE_EDP_PSR_INT_HSW
) {
2570 u32 psr_iir
= I915_READ(EDP_PSR_IIR
);
2572 intel_psr_irq_handler(dev_priv
, psr_iir
);
2573 I915_WRITE(EDP_PSR_IIR
, psr_iir
);
2576 if (de_iir
& DE_AUX_CHANNEL_A_IVB
)
2577 dp_aux_irq_handler(dev_priv
);
2579 if (de_iir
& DE_GSE_IVB
)
2580 intel_opregion_asle_intr(dev_priv
);
2582 for_each_pipe(dev_priv
, pipe
) {
2583 if (de_iir
& (DE_PIPE_VBLANK_IVB(pipe
)))
2584 drm_handle_vblank(&dev_priv
->drm
, pipe
);
2587 /* check event from PCH */
2588 if (!HAS_PCH_NOP(dev_priv
) && (de_iir
& DE_PCH_EVENT_IVB
)) {
2589 u32 pch_iir
= I915_READ(SDEIIR
);
2591 cpt_irq_handler(dev_priv
, pch_iir
);
2593 /* clear PCH hotplug event before clear CPU irq */
2594 I915_WRITE(SDEIIR
, pch_iir
);
2599 * To handle irqs with the minimum potential races with fresh interrupts, we:
2600 * 1 - Disable Master Interrupt Control.
2601 * 2 - Find the source(s) of the interrupt.
2602 * 3 - Clear the Interrupt Identity bits (IIR).
2603 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2604 * 5 - Re-enable Master Interrupt Control.
2606 static irqreturn_t
ironlake_irq_handler(int irq
, void *arg
)
2608 struct drm_device
*dev
= arg
;
2609 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2610 u32 de_iir
, gt_iir
, de_ier
, sde_ier
= 0;
2611 irqreturn_t ret
= IRQ_NONE
;
2613 if (!intel_irqs_enabled(dev_priv
))
2616 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2617 disable_rpm_wakeref_asserts(dev_priv
);
2619 /* disable master interrupt before clearing iir */
2620 de_ier
= I915_READ(DEIER
);
2621 I915_WRITE(DEIER
, de_ier
& ~DE_MASTER_IRQ_CONTROL
);
2623 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2624 * interrupts will will be stored on its back queue, and then we'll be
2625 * able to process them after we restore SDEIER (as soon as we restore
2626 * it, we'll get an interrupt if SDEIIR still has something to process
2627 * due to its back queue). */
2628 if (!HAS_PCH_NOP(dev_priv
)) {
2629 sde_ier
= I915_READ(SDEIER
);
2630 I915_WRITE(SDEIER
, 0);
2633 /* Find, clear, then process each source of interrupt */
2635 gt_iir
= I915_READ(GTIIR
);
2637 I915_WRITE(GTIIR
, gt_iir
);
2639 if (INTEL_GEN(dev_priv
) >= 6)
2640 snb_gt_irq_handler(dev_priv
, gt_iir
);
2642 ilk_gt_irq_handler(dev_priv
, gt_iir
);
2645 de_iir
= I915_READ(DEIIR
);
2647 I915_WRITE(DEIIR
, de_iir
);
2649 if (INTEL_GEN(dev_priv
) >= 7)
2650 ivb_display_irq_handler(dev_priv
, de_iir
);
2652 ilk_display_irq_handler(dev_priv
, de_iir
);
2655 if (INTEL_GEN(dev_priv
) >= 6) {
2656 u32 pm_iir
= I915_READ(GEN6_PMIIR
);
2658 I915_WRITE(GEN6_PMIIR
, pm_iir
);
2660 gen6_rps_irq_handler(dev_priv
, pm_iir
);
2664 I915_WRITE(DEIER
, de_ier
);
2665 if (!HAS_PCH_NOP(dev_priv
))
2666 I915_WRITE(SDEIER
, sde_ier
);
2668 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2669 enable_rpm_wakeref_asserts(dev_priv
);
2674 static void bxt_hpd_irq_handler(struct drm_i915_private
*dev_priv
,
2675 u32 hotplug_trigger
,
2676 const u32 hpd
[HPD_NUM_PINS
])
2678 u32 dig_hotplug_reg
, pin_mask
= 0, long_mask
= 0;
2680 dig_hotplug_reg
= I915_READ(PCH_PORT_HOTPLUG
);
2681 I915_WRITE(PCH_PORT_HOTPLUG
, dig_hotplug_reg
);
2683 intel_get_hpd_pins(dev_priv
, &pin_mask
, &long_mask
, hotplug_trigger
,
2684 dig_hotplug_reg
, hpd
,
2685 bxt_port_hotplug_long_detect
);
2687 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
2690 static void gen11_hpd_irq_handler(struct drm_i915_private
*dev_priv
, u32 iir
)
2692 u32 pin_mask
= 0, long_mask
= 0;
2693 u32 trigger_tc
= iir
& GEN11_DE_TC_HOTPLUG_MASK
;
2694 u32 trigger_tbt
= iir
& GEN11_DE_TBT_HOTPLUG_MASK
;
2697 u32 dig_hotplug_reg
;
2699 dig_hotplug_reg
= I915_READ(GEN11_TC_HOTPLUG_CTL
);
2700 I915_WRITE(GEN11_TC_HOTPLUG_CTL
, dig_hotplug_reg
);
2702 intel_get_hpd_pins(dev_priv
, &pin_mask
, &long_mask
, trigger_tc
,
2703 dig_hotplug_reg
, hpd_gen11
,
2704 gen11_port_hotplug_long_detect
);
2708 u32 dig_hotplug_reg
;
2710 dig_hotplug_reg
= I915_READ(GEN11_TBT_HOTPLUG_CTL
);
2711 I915_WRITE(GEN11_TBT_HOTPLUG_CTL
, dig_hotplug_reg
);
2713 intel_get_hpd_pins(dev_priv
, &pin_mask
, &long_mask
, trigger_tbt
,
2714 dig_hotplug_reg
, hpd_gen11
,
2715 gen11_port_hotplug_long_detect
);
2719 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
2721 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir
);
2725 gen8_de_irq_handler(struct drm_i915_private
*dev_priv
, u32 master_ctl
)
2727 irqreturn_t ret
= IRQ_NONE
;
2731 if (master_ctl
& GEN8_DE_MISC_IRQ
) {
2732 iir
= I915_READ(GEN8_DE_MISC_IIR
);
2736 I915_WRITE(GEN8_DE_MISC_IIR
, iir
);
2739 if (iir
& GEN8_DE_MISC_GSE
) {
2740 intel_opregion_asle_intr(dev_priv
);
2744 if (iir
& GEN8_DE_EDP_PSR
) {
2745 u32 psr_iir
= I915_READ(EDP_PSR_IIR
);
2747 intel_psr_irq_handler(dev_priv
, psr_iir
);
2748 I915_WRITE(EDP_PSR_IIR
, psr_iir
);
2753 DRM_ERROR("Unexpected DE Misc interrupt\n");
2756 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2759 if (INTEL_GEN(dev_priv
) >= 11 && (master_ctl
& GEN11_DE_HPD_IRQ
)) {
2760 iir
= I915_READ(GEN11_DE_HPD_IIR
);
2762 I915_WRITE(GEN11_DE_HPD_IIR
, iir
);
2764 gen11_hpd_irq_handler(dev_priv
, iir
);
2766 DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2770 if (master_ctl
& GEN8_DE_PORT_IRQ
) {
2771 iir
= I915_READ(GEN8_DE_PORT_IIR
);
2776 I915_WRITE(GEN8_DE_PORT_IIR
, iir
);
2779 tmp_mask
= GEN8_AUX_CHANNEL_A
;
2780 if (INTEL_GEN(dev_priv
) >= 9)
2781 tmp_mask
|= GEN9_AUX_CHANNEL_B
|
2782 GEN9_AUX_CHANNEL_C
|
2785 if (INTEL_GEN(dev_priv
) >= 11)
2786 tmp_mask
|= ICL_AUX_CHANNEL_E
;
2788 if (IS_CNL_WITH_PORT_F(dev_priv
) ||
2789 INTEL_GEN(dev_priv
) >= 11)
2790 tmp_mask
|= CNL_AUX_CHANNEL_F
;
2792 if (iir
& tmp_mask
) {
2793 dp_aux_irq_handler(dev_priv
);
2797 if (IS_GEN9_LP(dev_priv
)) {
2798 tmp_mask
= iir
& BXT_DE_PORT_HOTPLUG_MASK
;
2800 bxt_hpd_irq_handler(dev_priv
, tmp_mask
,
2804 } else if (IS_BROADWELL(dev_priv
)) {
2805 tmp_mask
= iir
& GEN8_PORT_DP_A_HOTPLUG
;
2807 ilk_hpd_irq_handler(dev_priv
,
2813 if (IS_GEN9_LP(dev_priv
) && (iir
& BXT_DE_PORT_GMBUS
)) {
2814 gmbus_irq_handler(dev_priv
);
2819 DRM_ERROR("Unexpected DE Port interrupt\n");
2822 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2825 for_each_pipe(dev_priv
, pipe
) {
2828 if (!(master_ctl
& GEN8_DE_PIPE_IRQ(pipe
)))
2831 iir
= I915_READ(GEN8_DE_PIPE_IIR(pipe
));
2833 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2838 I915_WRITE(GEN8_DE_PIPE_IIR(pipe
), iir
);
2840 if (iir
& GEN8_PIPE_VBLANK
)
2841 drm_handle_vblank(&dev_priv
->drm
, pipe
);
2843 if (iir
& GEN8_PIPE_CDCLK_CRC_DONE
)
2844 hsw_pipe_crc_irq_handler(dev_priv
, pipe
);
2846 if (iir
& GEN8_PIPE_FIFO_UNDERRUN
)
2847 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
2850 if (INTEL_GEN(dev_priv
) >= 9)
2851 fault_errors
&= GEN9_DE_PIPE_IRQ_FAULT_ERRORS
;
2853 fault_errors
&= GEN8_DE_PIPE_IRQ_FAULT_ERRORS
;
2856 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2861 if (HAS_PCH_SPLIT(dev_priv
) && !HAS_PCH_NOP(dev_priv
) &&
2862 master_ctl
& GEN8_DE_PCH_IRQ
) {
2864 * FIXME(BDW): Assume for now that the new interrupt handling
2865 * scheme also closed the SDE interrupt handling race we've seen
2866 * on older pch-split platforms. But this needs testing.
2868 iir
= I915_READ(SDEIIR
);
2870 I915_WRITE(SDEIIR
, iir
);
2873 if (HAS_PCH_ICP(dev_priv
))
2874 icp_irq_handler(dev_priv
, iir
);
2875 else if (HAS_PCH_SPT(dev_priv
) ||
2876 HAS_PCH_KBP(dev_priv
) ||
2877 HAS_PCH_CNP(dev_priv
))
2878 spt_irq_handler(dev_priv
, iir
);
2880 cpt_irq_handler(dev_priv
, iir
);
2883 * Like on previous PCH there seems to be something
2884 * fishy going on with forwarding PCH interrupts.
2886 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2893 static irqreturn_t
gen8_irq_handler(int irq
, void *arg
)
2895 struct drm_i915_private
*dev_priv
= to_i915(arg
);
2899 if (!intel_irqs_enabled(dev_priv
))
2902 master_ctl
= I915_READ_FW(GEN8_MASTER_IRQ
);
2903 master_ctl
&= ~GEN8_MASTER_IRQ_CONTROL
;
2907 I915_WRITE_FW(GEN8_MASTER_IRQ
, 0);
2909 /* Find, clear, then process each source of interrupt */
2910 gen8_gt_irq_ack(dev_priv
, master_ctl
, gt_iir
);
2912 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2913 if (master_ctl
& ~GEN8_GT_IRQS
) {
2914 disable_rpm_wakeref_asserts(dev_priv
);
2915 gen8_de_irq_handler(dev_priv
, master_ctl
);
2916 enable_rpm_wakeref_asserts(dev_priv
);
2919 I915_WRITE_FW(GEN8_MASTER_IRQ
, GEN8_MASTER_IRQ_CONTROL
);
2921 gen8_gt_irq_handler(dev_priv
, master_ctl
, gt_iir
);
2927 struct delayed_work work
;
2928 struct drm_i915_private
*i915
;
2932 static void wedge_me(struct work_struct
*work
)
2934 struct wedge_me
*w
= container_of(work
, typeof(*w
), work
.work
);
2936 dev_err(w
->i915
->drm
.dev
,
2937 "%s timed out, cancelling all in-flight rendering.\n",
2939 i915_gem_set_wedged(w
->i915
);
2942 static void __init_wedge(struct wedge_me
*w
,
2943 struct drm_i915_private
*i915
,
2950 INIT_DELAYED_WORK_ONSTACK(&w
->work
, wedge_me
);
2951 schedule_delayed_work(&w
->work
, timeout
);
2954 static void __fini_wedge(struct wedge_me
*w
)
2956 cancel_delayed_work_sync(&w
->work
);
2957 destroy_delayed_work_on_stack(&w
->work
);
2961 #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
2962 for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
2967 gen11_gt_engine_identity(struct drm_i915_private
* const i915
,
2968 const unsigned int bank
, const unsigned int bit
)
2970 void __iomem
* const regs
= i915
->regs
;
2974 lockdep_assert_held(&i915
->irq_lock
);
2976 raw_reg_write(regs
, GEN11_IIR_REG_SELECTOR(bank
), BIT(bit
));
2979 * NB: Specs do not specify how long to spin wait,
2980 * so we do ~100us as an educated guess.
2982 timeout_ts
= (local_clock() >> 10) + 100;
2984 ident
= raw_reg_read(regs
, GEN11_INTR_IDENTITY_REG(bank
));
2985 } while (!(ident
& GEN11_INTR_DATA_VALID
) &&
2986 !time_after32(local_clock() >> 10, timeout_ts
));
2988 if (unlikely(!(ident
& GEN11_INTR_DATA_VALID
))) {
2989 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2994 raw_reg_write(regs
, GEN11_INTR_IDENTITY_REG(bank
),
2995 GEN11_INTR_DATA_VALID
);
3001 gen11_other_irq_handler(struct drm_i915_private
* const i915
,
3002 const u8 instance
, const u16 iir
)
3004 if (instance
== OTHER_GTPM_INSTANCE
)
3005 return gen6_rps_irq_handler(i915
, iir
);
3007 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3012 gen11_engine_irq_handler(struct drm_i915_private
* const i915
,
3013 const u8
class, const u8 instance
, const u16 iir
)
3015 struct intel_engine_cs
*engine
;
3017 if (instance
<= MAX_ENGINE_INSTANCE
)
3018 engine
= i915
->engine_class
[class][instance
];
3023 return gen8_cs_irq_handler(engine
, iir
);
3025 WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3030 gen11_gt_identity_handler(struct drm_i915_private
* const i915
,
3033 const u8
class = GEN11_INTR_ENGINE_CLASS(identity
);
3034 const u8 instance
= GEN11_INTR_ENGINE_INSTANCE(identity
);
3035 const u16 intr
= GEN11_INTR_ENGINE_INTR(identity
);
3037 if (unlikely(!intr
))
3040 if (class <= COPY_ENGINE_CLASS
)
3041 return gen11_engine_irq_handler(i915
, class, instance
, intr
);
3043 if (class == OTHER_CLASS
)
3044 return gen11_other_irq_handler(i915
, instance
, intr
);
3046 WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3047 class, instance
, intr
);
3051 gen11_gt_bank_handler(struct drm_i915_private
* const i915
,
3052 const unsigned int bank
)
3054 void __iomem
* const regs
= i915
->regs
;
3055 unsigned long intr_dw
;
3058 lockdep_assert_held(&i915
->irq_lock
);
3060 intr_dw
= raw_reg_read(regs
, GEN11_GT_INTR_DW(bank
));
3062 if (unlikely(!intr_dw
)) {
3063 DRM_ERROR("GT_INTR_DW%u blank!\n", bank
);
3067 for_each_set_bit(bit
, &intr_dw
, 32) {
3068 const u32 ident
= gen11_gt_engine_identity(i915
,
3071 gen11_gt_identity_handler(i915
, ident
);
3074 /* Clear must be after shared has been served for engine */
3075 raw_reg_write(regs
, GEN11_GT_INTR_DW(bank
), intr_dw
);
3079 gen11_gt_irq_handler(struct drm_i915_private
* const i915
,
3080 const u32 master_ctl
)
3084 spin_lock(&i915
->irq_lock
);
3086 for (bank
= 0; bank
< 2; bank
++) {
3087 if (master_ctl
& GEN11_GT_DW_IRQ(bank
))
3088 gen11_gt_bank_handler(i915
, bank
);
3091 spin_unlock(&i915
->irq_lock
);
3095 gen11_gu_misc_irq_ack(struct drm_i915_private
*dev_priv
, const u32 master_ctl
)
3097 void __iomem
* const regs
= dev_priv
->regs
;
3100 if (!(master_ctl
& GEN11_GU_MISC_IRQ
))
3103 iir
= raw_reg_read(regs
, GEN11_GU_MISC_IIR
);
3105 raw_reg_write(regs
, GEN11_GU_MISC_IIR
, iir
);
3111 gen11_gu_misc_irq_handler(struct drm_i915_private
*dev_priv
, const u32 iir
)
3113 if (iir
& GEN11_GU_MISC_GSE
)
3114 intel_opregion_asle_intr(dev_priv
);
3117 static irqreturn_t
gen11_irq_handler(int irq
, void *arg
)
3119 struct drm_i915_private
* const i915
= to_i915(arg
);
3120 void __iomem
* const regs
= i915
->regs
;
3124 if (!intel_irqs_enabled(i915
))
3127 master_ctl
= raw_reg_read(regs
, GEN11_GFX_MSTR_IRQ
);
3128 master_ctl
&= ~GEN11_MASTER_IRQ
;
3132 /* Disable interrupts. */
3133 raw_reg_write(regs
, GEN11_GFX_MSTR_IRQ
, 0);
3135 /* Find, clear, then process each source of interrupt. */
3136 gen11_gt_irq_handler(i915
, master_ctl
);
3138 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3139 if (master_ctl
& GEN11_DISPLAY_IRQ
) {
3140 const u32 disp_ctl
= raw_reg_read(regs
, GEN11_DISPLAY_INT_CTL
);
3142 disable_rpm_wakeref_asserts(i915
);
3144 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3145 * for the display related bits.
3147 gen8_de_irq_handler(i915
, disp_ctl
);
3148 enable_rpm_wakeref_asserts(i915
);
3151 gu_misc_iir
= gen11_gu_misc_irq_ack(i915
, master_ctl
);
3153 /* Acknowledge and enable interrupts. */
3154 raw_reg_write(regs
, GEN11_GFX_MSTR_IRQ
, GEN11_MASTER_IRQ
| master_ctl
);
3156 gen11_gu_misc_irq_handler(i915
, gu_misc_iir
);
3161 static void i915_reset_device(struct drm_i915_private
*dev_priv
,
3165 struct i915_gpu_error
*error
= &dev_priv
->gpu_error
;
3166 struct kobject
*kobj
= &dev_priv
->drm
.primary
->kdev
->kobj
;
3167 char *error_event
[] = { I915_ERROR_UEVENT
"=1", NULL
};
3168 char *reset_event
[] = { I915_RESET_UEVENT
"=1", NULL
};
3169 char *reset_done_event
[] = { I915_ERROR_UEVENT
"=0", NULL
};
3172 kobject_uevent_env(kobj
, KOBJ_CHANGE
, error_event
);
3174 DRM_DEBUG_DRIVER("resetting chip\n");
3175 kobject_uevent_env(kobj
, KOBJ_CHANGE
, reset_event
);
3177 /* Use a watchdog to ensure that our reset completes */
3178 i915_wedge_on_timeout(&w
, dev_priv
, 5*HZ
) {
3179 intel_prepare_reset(dev_priv
);
3181 error
->reason
= reason
;
3182 error
->stalled_mask
= engine_mask
;
3184 /* Signal that locked waiters should reset the GPU */
3185 smp_mb__before_atomic();
3186 set_bit(I915_RESET_HANDOFF
, &error
->flags
);
3187 wake_up_all(&error
->wait_queue
);
3189 /* Wait for anyone holding the lock to wakeup, without
3190 * blocking indefinitely on struct_mutex.
3193 if (mutex_trylock(&dev_priv
->drm
.struct_mutex
)) {
3194 i915_reset(dev_priv
, engine_mask
, reason
);
3195 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
3197 } while (wait_on_bit_timeout(&error
->flags
,
3199 TASK_UNINTERRUPTIBLE
,
3202 error
->stalled_mask
= 0;
3203 error
->reason
= NULL
;
3205 intel_finish_reset(dev_priv
);
3208 if (!test_bit(I915_WEDGED
, &error
->flags
))
3209 kobject_uevent_env(kobj
, KOBJ_CHANGE
, reset_done_event
);
3212 static void i915_clear_error_registers(struct drm_i915_private
*dev_priv
)
3216 if (!IS_GEN2(dev_priv
))
3217 I915_WRITE(PGTBL_ER
, I915_READ(PGTBL_ER
));
3219 if (INTEL_GEN(dev_priv
) < 4)
3220 I915_WRITE(IPEIR
, I915_READ(IPEIR
));
3222 I915_WRITE(IPEIR_I965
, I915_READ(IPEIR_I965
));
3224 I915_WRITE(EIR
, I915_READ(EIR
));
3225 eir
= I915_READ(EIR
);
3228 * some errors might have become stuck,
3231 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir
);
3232 I915_WRITE(EMR
, I915_READ(EMR
) | eir
);
3233 I915_WRITE(IIR
, I915_MASTER_ERROR_INTERRUPT
);
3238 * i915_handle_error - handle a gpu error
3239 * @dev_priv: i915 device private
3240 * @engine_mask: mask representing engines that are hung
3241 * @flags: control flags
3242 * @fmt: Error message format string
3244 * Do some basic checking of register state at error time and
3245 * dump it to the syslog. Also call i915_capture_error_state() to make
3246 * sure we get a record and make it available in debugfs. Fire a uevent
3247 * so userspace knows something bad happened (should trigger collection
3248 * of a ring dump etc.).
3250 void i915_handle_error(struct drm_i915_private
*dev_priv
,
3252 unsigned long flags
,
3253 const char *fmt
, ...)
3255 struct intel_engine_cs
*engine
;
3263 va_start(args
, fmt
);
3264 vscnprintf(error_msg
, sizeof(error_msg
), fmt
, args
);
3271 * In most cases it's guaranteed that we get here with an RPM
3272 * reference held, for example because there is a pending GPU
3273 * request that won't finish until the reset is done. This
3274 * isn't the case at least when we get here by doing a
3275 * simulated reset via debugfs, so get an RPM reference.
3277 intel_runtime_pm_get(dev_priv
);
3279 engine_mask
&= INTEL_INFO(dev_priv
)->ring_mask
;
3281 if (flags
& I915_ERROR_CAPTURE
) {
3282 i915_capture_error_state(dev_priv
, engine_mask
, msg
);
3283 i915_clear_error_registers(dev_priv
);
3287 * Try engine reset when available. We fall back to full reset if
3288 * single reset fails.
3290 if (intel_has_reset_engine(dev_priv
)) {
3291 for_each_engine_masked(engine
, dev_priv
, engine_mask
, tmp
) {
3292 BUILD_BUG_ON(I915_RESET_MODESET
>= I915_RESET_ENGINE
);
3293 if (test_and_set_bit(I915_RESET_ENGINE
+ engine
->id
,
3294 &dev_priv
->gpu_error
.flags
))
3297 if (i915_reset_engine(engine
, msg
) == 0)
3298 engine_mask
&= ~intel_engine_flag(engine
);
3300 clear_bit(I915_RESET_ENGINE
+ engine
->id
,
3301 &dev_priv
->gpu_error
.flags
);
3302 wake_up_bit(&dev_priv
->gpu_error
.flags
,
3303 I915_RESET_ENGINE
+ engine
->id
);
3310 /* Full reset needs the mutex, stop any other user trying to do so. */
3311 if (test_and_set_bit(I915_RESET_BACKOFF
, &dev_priv
->gpu_error
.flags
)) {
3312 wait_event(dev_priv
->gpu_error
.reset_queue
,
3313 !test_bit(I915_RESET_BACKOFF
,
3314 &dev_priv
->gpu_error
.flags
));
3318 /* Prevent any other reset-engine attempt. */
3319 for_each_engine(engine
, dev_priv
, tmp
) {
3320 while (test_and_set_bit(I915_RESET_ENGINE
+ engine
->id
,
3321 &dev_priv
->gpu_error
.flags
))
3322 wait_on_bit(&dev_priv
->gpu_error
.flags
,
3323 I915_RESET_ENGINE
+ engine
->id
,
3324 TASK_UNINTERRUPTIBLE
);
3327 i915_reset_device(dev_priv
, engine_mask
, msg
);
3329 for_each_engine(engine
, dev_priv
, tmp
) {
3330 clear_bit(I915_RESET_ENGINE
+ engine
->id
,
3331 &dev_priv
->gpu_error
.flags
);
3334 clear_bit(I915_RESET_BACKOFF
, &dev_priv
->gpu_error
.flags
);
3335 wake_up_all(&dev_priv
->gpu_error
.reset_queue
);
3338 intel_runtime_pm_put(dev_priv
);
3341 /* Called from drm generic code, passed 'crtc' which
3342 * we use as a pipe index
3344 static int i8xx_enable_vblank(struct drm_device
*dev
, unsigned int pipe
)
3346 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3347 unsigned long irqflags
;
3349 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
3350 i915_enable_pipestat(dev_priv
, pipe
, PIPE_VBLANK_INTERRUPT_STATUS
);
3351 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
3356 static int i965_enable_vblank(struct drm_device
*dev
, unsigned int pipe
)
3358 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3359 unsigned long irqflags
;
3361 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
3362 i915_enable_pipestat(dev_priv
, pipe
,
3363 PIPE_START_VBLANK_INTERRUPT_STATUS
);
3364 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
3369 static int ironlake_enable_vblank(struct drm_device
*dev
, unsigned int pipe
)
3371 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3372 unsigned long irqflags
;
3373 uint32_t bit
= INTEL_GEN(dev_priv
) >= 7 ?
3374 DE_PIPE_VBLANK_IVB(pipe
) : DE_PIPE_VBLANK(pipe
);
3376 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
3377 ilk_enable_display_irq(dev_priv
, bit
);
3378 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
3380 /* Even though there is no DMC, frame counter can get stuck when
3381 * PSR is active as no frames are generated.
3383 if (HAS_PSR(dev_priv
))
3384 drm_vblank_restore(dev
, pipe
);
3389 static int gen8_enable_vblank(struct drm_device
*dev
, unsigned int pipe
)
3391 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3392 unsigned long irqflags
;
3394 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
3395 bdw_enable_pipe_irq(dev_priv
, pipe
, GEN8_PIPE_VBLANK
);
3396 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
3398 /* Even if there is no DMC, frame counter can get stuck when
3399 * PSR is active as no frames are generated, so check only for PSR.
3401 if (HAS_PSR(dev_priv
))
3402 drm_vblank_restore(dev
, pipe
);
3407 /* Called from drm generic code, passed 'crtc' which
3408 * we use as a pipe index
3410 static void i8xx_disable_vblank(struct drm_device
*dev
, unsigned int pipe
)
3412 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3413 unsigned long irqflags
;
3415 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
3416 i915_disable_pipestat(dev_priv
, pipe
, PIPE_VBLANK_INTERRUPT_STATUS
);
3417 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
3420 static void i965_disable_vblank(struct drm_device
*dev
, unsigned int pipe
)
3422 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3423 unsigned long irqflags
;
3425 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
3426 i915_disable_pipestat(dev_priv
, pipe
,
3427 PIPE_START_VBLANK_INTERRUPT_STATUS
);
3428 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
3431 static void ironlake_disable_vblank(struct drm_device
*dev
, unsigned int pipe
)
3433 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3434 unsigned long irqflags
;
3435 uint32_t bit
= INTEL_GEN(dev_priv
) >= 7 ?
3436 DE_PIPE_VBLANK_IVB(pipe
) : DE_PIPE_VBLANK(pipe
);
3438 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
3439 ilk_disable_display_irq(dev_priv
, bit
);
3440 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
3443 static void gen8_disable_vblank(struct drm_device
*dev
, unsigned int pipe
)
3445 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3446 unsigned long irqflags
;
3448 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
3449 bdw_disable_pipe_irq(dev_priv
, pipe
, GEN8_PIPE_VBLANK
);
3450 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
3453 static void ibx_irq_reset(struct drm_i915_private
*dev_priv
)
3455 if (HAS_PCH_NOP(dev_priv
))
3458 GEN3_IRQ_RESET(SDE
);
3460 if (HAS_PCH_CPT(dev_priv
) || HAS_PCH_LPT(dev_priv
))
3461 I915_WRITE(SERR_INT
, 0xffffffff);
3465 * SDEIER is also touched by the interrupt handler to work around missed PCH
3466 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3467 * instead we unconditionally enable all PCH interrupt sources here, but then
3468 * only unmask them as needed with SDEIMR.
3470 * This function needs to be called before interrupts are enabled.
3472 static void ibx_irq_pre_postinstall(struct drm_device
*dev
)
3474 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3476 if (HAS_PCH_NOP(dev_priv
))
3479 WARN_ON(I915_READ(SDEIER
) != 0);
3480 I915_WRITE(SDEIER
, 0xffffffff);
3481 POSTING_READ(SDEIER
);
3484 static void gen5_gt_irq_reset(struct drm_i915_private
*dev_priv
)
3487 if (INTEL_GEN(dev_priv
) >= 6)
3488 GEN3_IRQ_RESET(GEN6_PM
);
3491 static void vlv_display_irq_reset(struct drm_i915_private
*dev_priv
)
3493 if (IS_CHERRYVIEW(dev_priv
))
3494 I915_WRITE(DPINVGTT
, DPINVGTT_STATUS_MASK_CHV
);
3496 I915_WRITE(DPINVGTT
, DPINVGTT_STATUS_MASK
);
3498 i915_hotplug_interrupt_update_locked(dev_priv
, 0xffffffff, 0);
3499 I915_WRITE(PORT_HOTPLUG_STAT
, I915_READ(PORT_HOTPLUG_STAT
));
3501 i9xx_pipestat_irq_reset(dev_priv
);
3503 GEN3_IRQ_RESET(VLV_
);
3504 dev_priv
->irq_mask
= ~0u;
3507 static void vlv_display_irq_postinstall(struct drm_i915_private
*dev_priv
)
3513 pipestat_mask
= PIPE_CRC_DONE_INTERRUPT_STATUS
;
3515 i915_enable_pipestat(dev_priv
, PIPE_A
, PIPE_GMBUS_INTERRUPT_STATUS
);
3516 for_each_pipe(dev_priv
, pipe
)
3517 i915_enable_pipestat(dev_priv
, pipe
, pipestat_mask
);
3519 enable_mask
= I915_DISPLAY_PORT_INTERRUPT
|
3520 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
3521 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
|
3522 I915_LPE_PIPE_A_INTERRUPT
|
3523 I915_LPE_PIPE_B_INTERRUPT
;
3525 if (IS_CHERRYVIEW(dev_priv
))
3526 enable_mask
|= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT
|
3527 I915_LPE_PIPE_C_INTERRUPT
;
3529 WARN_ON(dev_priv
->irq_mask
!= ~0u);
3531 dev_priv
->irq_mask
= ~enable_mask
;
3533 GEN3_IRQ_INIT(VLV_
, dev_priv
->irq_mask
, enable_mask
);
3538 static void ironlake_irq_reset(struct drm_device
*dev
)
3540 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3542 if (IS_GEN5(dev_priv
))
3543 I915_WRITE(HWSTAM
, 0xffffffff);
3546 if (IS_GEN7(dev_priv
))
3547 I915_WRITE(GEN7_ERR_INT
, 0xffffffff);
3549 if (IS_HASWELL(dev_priv
)) {
3550 I915_WRITE(EDP_PSR_IMR
, 0xffffffff);
3551 I915_WRITE(EDP_PSR_IIR
, 0xffffffff);
3554 gen5_gt_irq_reset(dev_priv
);
3556 ibx_irq_reset(dev_priv
);
3559 static void valleyview_irq_reset(struct drm_device
*dev
)
3561 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3563 I915_WRITE(VLV_MASTER_IER
, 0);
3564 POSTING_READ(VLV_MASTER_IER
);
3566 gen5_gt_irq_reset(dev_priv
);
3568 spin_lock_irq(&dev_priv
->irq_lock
);
3569 if (dev_priv
->display_irqs_enabled
)
3570 vlv_display_irq_reset(dev_priv
);
3571 spin_unlock_irq(&dev_priv
->irq_lock
);
3574 static void gen8_gt_irq_reset(struct drm_i915_private
*dev_priv
)
3576 GEN8_IRQ_RESET_NDX(GT
, 0);
3577 GEN8_IRQ_RESET_NDX(GT
, 1);
3578 GEN8_IRQ_RESET_NDX(GT
, 2);
3579 GEN8_IRQ_RESET_NDX(GT
, 3);
3582 static void gen8_irq_reset(struct drm_device
*dev
)
3584 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3587 I915_WRITE(GEN8_MASTER_IRQ
, 0);
3588 POSTING_READ(GEN8_MASTER_IRQ
);
3590 gen8_gt_irq_reset(dev_priv
);
3592 I915_WRITE(EDP_PSR_IMR
, 0xffffffff);
3593 I915_WRITE(EDP_PSR_IIR
, 0xffffffff);
3595 for_each_pipe(dev_priv
, pipe
)
3596 if (intel_display_power_is_enabled(dev_priv
,
3597 POWER_DOMAIN_PIPE(pipe
)))
3598 GEN8_IRQ_RESET_NDX(DE_PIPE
, pipe
);
3600 GEN3_IRQ_RESET(GEN8_DE_PORT_
);
3601 GEN3_IRQ_RESET(GEN8_DE_MISC_
);
3602 GEN3_IRQ_RESET(GEN8_PCU_
);
3604 if (HAS_PCH_SPLIT(dev_priv
))
3605 ibx_irq_reset(dev_priv
);
3608 static void gen11_gt_irq_reset(struct drm_i915_private
*dev_priv
)
3610 /* Disable RCS, BCS, VCS and VECS class engines. */
3611 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE
, 0);
3612 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE
, 0);
3614 /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3615 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK
, ~0);
3616 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK
, ~0);
3617 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK
, ~0);
3618 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK
, ~0);
3619 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK
, ~0);
3621 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE
, 0);
3622 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK
, ~0);
3625 static void gen11_irq_reset(struct drm_device
*dev
)
3627 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3630 I915_WRITE(GEN11_GFX_MSTR_IRQ
, 0);
3631 POSTING_READ(GEN11_GFX_MSTR_IRQ
);
3633 gen11_gt_irq_reset(dev_priv
);
3635 I915_WRITE(GEN11_DISPLAY_INT_CTL
, 0);
3637 for_each_pipe(dev_priv
, pipe
)
3638 if (intel_display_power_is_enabled(dev_priv
,
3639 POWER_DOMAIN_PIPE(pipe
)))
3640 GEN8_IRQ_RESET_NDX(DE_PIPE
, pipe
);
3642 GEN3_IRQ_RESET(GEN8_DE_PORT_
);
3643 GEN3_IRQ_RESET(GEN8_DE_MISC_
);
3644 GEN3_IRQ_RESET(GEN11_DE_HPD_
);
3645 GEN3_IRQ_RESET(GEN11_GU_MISC_
);
3646 GEN3_IRQ_RESET(GEN8_PCU_
);
3648 if (HAS_PCH_ICP(dev_priv
))
3649 GEN3_IRQ_RESET(SDE
);
3652 void gen8_irq_power_well_post_enable(struct drm_i915_private
*dev_priv
,
3655 uint32_t extra_ier
= GEN8_PIPE_VBLANK
| GEN8_PIPE_FIFO_UNDERRUN
;
3658 spin_lock_irq(&dev_priv
->irq_lock
);
3660 if (!intel_irqs_enabled(dev_priv
)) {
3661 spin_unlock_irq(&dev_priv
->irq_lock
);
3665 for_each_pipe_masked(dev_priv
, pipe
, pipe_mask
)
3666 GEN8_IRQ_INIT_NDX(DE_PIPE
, pipe
,
3667 dev_priv
->de_irq_mask
[pipe
],
3668 ~dev_priv
->de_irq_mask
[pipe
] | extra_ier
);
3670 spin_unlock_irq(&dev_priv
->irq_lock
);
3673 void gen8_irq_power_well_pre_disable(struct drm_i915_private
*dev_priv
,
3678 spin_lock_irq(&dev_priv
->irq_lock
);
3680 if (!intel_irqs_enabled(dev_priv
)) {
3681 spin_unlock_irq(&dev_priv
->irq_lock
);
3685 for_each_pipe_masked(dev_priv
, pipe
, pipe_mask
)
3686 GEN8_IRQ_RESET_NDX(DE_PIPE
, pipe
);
3688 spin_unlock_irq(&dev_priv
->irq_lock
);
3690 /* make sure we're done processing display irqs */
3691 synchronize_irq(dev_priv
->drm
.irq
);
3694 static void cherryview_irq_reset(struct drm_device
*dev
)
3696 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3698 I915_WRITE(GEN8_MASTER_IRQ
, 0);
3699 POSTING_READ(GEN8_MASTER_IRQ
);
3701 gen8_gt_irq_reset(dev_priv
);
3703 GEN3_IRQ_RESET(GEN8_PCU_
);
3705 spin_lock_irq(&dev_priv
->irq_lock
);
3706 if (dev_priv
->display_irqs_enabled
)
3707 vlv_display_irq_reset(dev_priv
);
3708 spin_unlock_irq(&dev_priv
->irq_lock
);
3711 static u32
intel_hpd_enabled_irqs(struct drm_i915_private
*dev_priv
,
3712 const u32 hpd
[HPD_NUM_PINS
])
3714 struct intel_encoder
*encoder
;
3715 u32 enabled_irqs
= 0;
3717 for_each_intel_encoder(&dev_priv
->drm
, encoder
)
3718 if (dev_priv
->hotplug
.stats
[encoder
->hpd_pin
].state
== HPD_ENABLED
)
3719 enabled_irqs
|= hpd
[encoder
->hpd_pin
];
3721 return enabled_irqs
;
3724 static void ibx_hpd_detection_setup(struct drm_i915_private
*dev_priv
)
3729 * Enable digital hotplug on the PCH, and configure the DP short pulse
3730 * duration to 2ms (which is the minimum in the Display Port spec).
3731 * The pulse duration bits are reserved on LPT+.
3733 hotplug
= I915_READ(PCH_PORT_HOTPLUG
);
3734 hotplug
&= ~(PORTB_PULSE_DURATION_MASK
|
3735 PORTC_PULSE_DURATION_MASK
|
3736 PORTD_PULSE_DURATION_MASK
);
3737 hotplug
|= PORTB_HOTPLUG_ENABLE
| PORTB_PULSE_DURATION_2ms
;
3738 hotplug
|= PORTC_HOTPLUG_ENABLE
| PORTC_PULSE_DURATION_2ms
;
3739 hotplug
|= PORTD_HOTPLUG_ENABLE
| PORTD_PULSE_DURATION_2ms
;
3741 * When CPU and PCH are on the same package, port A
3742 * HPD must be enabled in both north and south.
3744 if (HAS_PCH_LPT_LP(dev_priv
))
3745 hotplug
|= PORTA_HOTPLUG_ENABLE
;
3746 I915_WRITE(PCH_PORT_HOTPLUG
, hotplug
);
3749 static void ibx_hpd_irq_setup(struct drm_i915_private
*dev_priv
)
3751 u32 hotplug_irqs
, enabled_irqs
;
3753 if (HAS_PCH_IBX(dev_priv
)) {
3754 hotplug_irqs
= SDE_HOTPLUG_MASK
;
3755 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_ibx
);
3757 hotplug_irqs
= SDE_HOTPLUG_MASK_CPT
;
3758 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_cpt
);
3761 ibx_display_interrupt_update(dev_priv
, hotplug_irqs
, enabled_irqs
);
3763 ibx_hpd_detection_setup(dev_priv
);
3766 static void icp_hpd_detection_setup(struct drm_i915_private
*dev_priv
)
3770 hotplug
= I915_READ(SHOTPLUG_CTL_DDI
);
3771 hotplug
|= ICP_DDIA_HPD_ENABLE
|
3772 ICP_DDIB_HPD_ENABLE
;
3773 I915_WRITE(SHOTPLUG_CTL_DDI
, hotplug
);
3775 hotplug
= I915_READ(SHOTPLUG_CTL_TC
);
3776 hotplug
|= ICP_TC_HPD_ENABLE(PORT_TC1
) |
3777 ICP_TC_HPD_ENABLE(PORT_TC2
) |
3778 ICP_TC_HPD_ENABLE(PORT_TC3
) |
3779 ICP_TC_HPD_ENABLE(PORT_TC4
);
3780 I915_WRITE(SHOTPLUG_CTL_TC
, hotplug
);
3783 static void icp_hpd_irq_setup(struct drm_i915_private
*dev_priv
)
3785 u32 hotplug_irqs
, enabled_irqs
;
3787 hotplug_irqs
= SDE_DDI_MASK_ICP
| SDE_TC_MASK_ICP
;
3788 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_icp
);
3790 ibx_display_interrupt_update(dev_priv
, hotplug_irqs
, enabled_irqs
);
3792 icp_hpd_detection_setup(dev_priv
);
3795 static void gen11_hpd_detection_setup(struct drm_i915_private
*dev_priv
)
3799 hotplug
= I915_READ(GEN11_TC_HOTPLUG_CTL
);
3800 hotplug
|= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1
) |
3801 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2
) |
3802 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3
) |
3803 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4
);
3804 I915_WRITE(GEN11_TC_HOTPLUG_CTL
, hotplug
);
3806 hotplug
= I915_READ(GEN11_TBT_HOTPLUG_CTL
);
3807 hotplug
|= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1
) |
3808 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2
) |
3809 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3
) |
3810 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4
);
3811 I915_WRITE(GEN11_TBT_HOTPLUG_CTL
, hotplug
);
3814 static void gen11_hpd_irq_setup(struct drm_i915_private
*dev_priv
)
3816 u32 hotplug_irqs
, enabled_irqs
;
3819 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_gen11
);
3820 hotplug_irqs
= GEN11_DE_TC_HOTPLUG_MASK
| GEN11_DE_TBT_HOTPLUG_MASK
;
3822 val
= I915_READ(GEN11_DE_HPD_IMR
);
3823 val
&= ~hotplug_irqs
;
3824 I915_WRITE(GEN11_DE_HPD_IMR
, val
);
3825 POSTING_READ(GEN11_DE_HPD_IMR
);
3827 gen11_hpd_detection_setup(dev_priv
);
3829 if (HAS_PCH_ICP(dev_priv
))
3830 icp_hpd_irq_setup(dev_priv
);
3833 static void spt_hpd_detection_setup(struct drm_i915_private
*dev_priv
)
3837 /* Display WA #1179 WaHardHangonHotPlug: cnp */
3838 if (HAS_PCH_CNP(dev_priv
)) {
3839 val
= I915_READ(SOUTH_CHICKEN1
);
3840 val
&= ~CHASSIS_CLK_REQ_DURATION_MASK
;
3841 val
|= CHASSIS_CLK_REQ_DURATION(0xf);
3842 I915_WRITE(SOUTH_CHICKEN1
, val
);
3845 /* Enable digital hotplug on the PCH */
3846 hotplug
= I915_READ(PCH_PORT_HOTPLUG
);
3847 hotplug
|= PORTA_HOTPLUG_ENABLE
|
3848 PORTB_HOTPLUG_ENABLE
|
3849 PORTC_HOTPLUG_ENABLE
|
3850 PORTD_HOTPLUG_ENABLE
;
3851 I915_WRITE(PCH_PORT_HOTPLUG
, hotplug
);
3853 hotplug
= I915_READ(PCH_PORT_HOTPLUG2
);
3854 hotplug
|= PORTE_HOTPLUG_ENABLE
;
3855 I915_WRITE(PCH_PORT_HOTPLUG2
, hotplug
);
3858 static void spt_hpd_irq_setup(struct drm_i915_private
*dev_priv
)
3860 u32 hotplug_irqs
, enabled_irqs
;
3862 hotplug_irqs
= SDE_HOTPLUG_MASK_SPT
;
3863 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_spt
);
3865 ibx_display_interrupt_update(dev_priv
, hotplug_irqs
, enabled_irqs
);
3867 spt_hpd_detection_setup(dev_priv
);
3870 static void ilk_hpd_detection_setup(struct drm_i915_private
*dev_priv
)
3875 * Enable digital hotplug on the CPU, and configure the DP short pulse
3876 * duration to 2ms (which is the minimum in the Display Port spec)
3877 * The pulse duration bits are reserved on HSW+.
3879 hotplug
= I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL
);
3880 hotplug
&= ~DIGITAL_PORTA_PULSE_DURATION_MASK
;
3881 hotplug
|= DIGITAL_PORTA_HOTPLUG_ENABLE
|
3882 DIGITAL_PORTA_PULSE_DURATION_2ms
;
3883 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL
, hotplug
);
3886 static void ilk_hpd_irq_setup(struct drm_i915_private
*dev_priv
)
3888 u32 hotplug_irqs
, enabled_irqs
;
3890 if (INTEL_GEN(dev_priv
) >= 8) {
3891 hotplug_irqs
= GEN8_PORT_DP_A_HOTPLUG
;
3892 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_bdw
);
3894 bdw_update_port_irq(dev_priv
, hotplug_irqs
, enabled_irqs
);
3895 } else if (INTEL_GEN(dev_priv
) >= 7) {
3896 hotplug_irqs
= DE_DP_A_HOTPLUG_IVB
;
3897 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_ivb
);
3899 ilk_update_display_irq(dev_priv
, hotplug_irqs
, enabled_irqs
);
3901 hotplug_irqs
= DE_DP_A_HOTPLUG
;
3902 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_ilk
);
3904 ilk_update_display_irq(dev_priv
, hotplug_irqs
, enabled_irqs
);
3907 ilk_hpd_detection_setup(dev_priv
);
3909 ibx_hpd_irq_setup(dev_priv
);
3912 static void __bxt_hpd_detection_setup(struct drm_i915_private
*dev_priv
,
3917 hotplug
= I915_READ(PCH_PORT_HOTPLUG
);
3918 hotplug
|= PORTA_HOTPLUG_ENABLE
|
3919 PORTB_HOTPLUG_ENABLE
|
3920 PORTC_HOTPLUG_ENABLE
;
3922 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3923 hotplug
, enabled_irqs
);
3924 hotplug
&= ~BXT_DDI_HPD_INVERT_MASK
;
3927 * For BXT invert bit has to be set based on AOB design
3928 * for HPD detection logic, update it based on VBT fields.
3930 if ((enabled_irqs
& BXT_DE_PORT_HP_DDIA
) &&
3931 intel_bios_is_port_hpd_inverted(dev_priv
, PORT_A
))
3932 hotplug
|= BXT_DDIA_HPD_INVERT
;
3933 if ((enabled_irqs
& BXT_DE_PORT_HP_DDIB
) &&
3934 intel_bios_is_port_hpd_inverted(dev_priv
, PORT_B
))
3935 hotplug
|= BXT_DDIB_HPD_INVERT
;
3936 if ((enabled_irqs
& BXT_DE_PORT_HP_DDIC
) &&
3937 intel_bios_is_port_hpd_inverted(dev_priv
, PORT_C
))
3938 hotplug
|= BXT_DDIC_HPD_INVERT
;
3940 I915_WRITE(PCH_PORT_HOTPLUG
, hotplug
);
3943 static void bxt_hpd_detection_setup(struct drm_i915_private
*dev_priv
)
3945 __bxt_hpd_detection_setup(dev_priv
, BXT_DE_PORT_HOTPLUG_MASK
);
3948 static void bxt_hpd_irq_setup(struct drm_i915_private
*dev_priv
)
3950 u32 hotplug_irqs
, enabled_irqs
;
3952 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_bxt
);
3953 hotplug_irqs
= BXT_DE_PORT_HOTPLUG_MASK
;
3955 bdw_update_port_irq(dev_priv
, hotplug_irqs
, enabled_irqs
);
3957 __bxt_hpd_detection_setup(dev_priv
, enabled_irqs
);
3960 static void ibx_irq_postinstall(struct drm_device
*dev
)
3962 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3965 if (HAS_PCH_NOP(dev_priv
))
3968 if (HAS_PCH_IBX(dev_priv
))
3969 mask
= SDE_GMBUS
| SDE_AUX_MASK
| SDE_POISON
;
3970 else if (HAS_PCH_CPT(dev_priv
) || HAS_PCH_LPT(dev_priv
))
3971 mask
= SDE_GMBUS_CPT
| SDE_AUX_MASK_CPT
;
3973 mask
= SDE_GMBUS_CPT
;
3975 gen3_assert_iir_is_zero(dev_priv
, SDEIIR
);
3976 I915_WRITE(SDEIMR
, ~mask
);
3978 if (HAS_PCH_IBX(dev_priv
) || HAS_PCH_CPT(dev_priv
) ||
3979 HAS_PCH_LPT(dev_priv
))
3980 ibx_hpd_detection_setup(dev_priv
);
3982 spt_hpd_detection_setup(dev_priv
);
3985 static void gen5_gt_irq_postinstall(struct drm_device
*dev
)
3987 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3988 u32 pm_irqs
, gt_irqs
;
3990 pm_irqs
= gt_irqs
= 0;
3992 dev_priv
->gt_irq_mask
= ~0;
3993 if (HAS_L3_DPF(dev_priv
)) {
3994 /* L3 parity interrupt is always unmasked. */
3995 dev_priv
->gt_irq_mask
= ~GT_PARITY_ERROR(dev_priv
);
3996 gt_irqs
|= GT_PARITY_ERROR(dev_priv
);
3999 gt_irqs
|= GT_RENDER_USER_INTERRUPT
;
4000 if (IS_GEN5(dev_priv
)) {
4001 gt_irqs
|= ILK_BSD_USER_INTERRUPT
;
4003 gt_irqs
|= GT_BLT_USER_INTERRUPT
| GT_BSD_USER_INTERRUPT
;
4006 GEN3_IRQ_INIT(GT
, dev_priv
->gt_irq_mask
, gt_irqs
);
4008 if (INTEL_GEN(dev_priv
) >= 6) {
4010 * RPS interrupts will get enabled/disabled on demand when RPS
4011 * itself is enabled/disabled.
4013 if (HAS_VEBOX(dev_priv
)) {
4014 pm_irqs
|= PM_VEBOX_USER_INTERRUPT
;
4015 dev_priv
->pm_ier
|= PM_VEBOX_USER_INTERRUPT
;
4018 dev_priv
->pm_imr
= 0xffffffff;
4019 GEN3_IRQ_INIT(GEN6_PM
, dev_priv
->pm_imr
, pm_irqs
);
4023 static int ironlake_irq_postinstall(struct drm_device
*dev
)
4025 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4026 u32 display_mask
, extra_mask
;
4028 if (INTEL_GEN(dev_priv
) >= 7) {
4029 display_mask
= (DE_MASTER_IRQ_CONTROL
| DE_GSE_IVB
|
4030 DE_PCH_EVENT_IVB
| DE_AUX_CHANNEL_A_IVB
);
4031 extra_mask
= (DE_PIPEC_VBLANK_IVB
| DE_PIPEB_VBLANK_IVB
|
4032 DE_PIPEA_VBLANK_IVB
| DE_ERR_INT_IVB
|
4033 DE_DP_A_HOTPLUG_IVB
);
4035 display_mask
= (DE_MASTER_IRQ_CONTROL
| DE_GSE
| DE_PCH_EVENT
|
4036 DE_AUX_CHANNEL_A
| DE_PIPEB_CRC_DONE
|
4037 DE_PIPEA_CRC_DONE
| DE_POISON
);
4038 extra_mask
= (DE_PIPEA_VBLANK
| DE_PIPEB_VBLANK
| DE_PCU_EVENT
|
4039 DE_PIPEB_FIFO_UNDERRUN
| DE_PIPEA_FIFO_UNDERRUN
|
4043 if (IS_HASWELL(dev_priv
)) {
4044 gen3_assert_iir_is_zero(dev_priv
, EDP_PSR_IIR
);
4045 intel_psr_irq_control(dev_priv
, dev_priv
->psr
.debug
);
4046 display_mask
|= DE_EDP_PSR_INT_HSW
;
4049 dev_priv
->irq_mask
= ~display_mask
;
4051 ibx_irq_pre_postinstall(dev
);
4053 GEN3_IRQ_INIT(DE
, dev_priv
->irq_mask
, display_mask
| extra_mask
);
4055 gen5_gt_irq_postinstall(dev
);
4057 ilk_hpd_detection_setup(dev_priv
);
4059 ibx_irq_postinstall(dev
);
4061 if (IS_IRONLAKE_M(dev_priv
)) {
4062 /* Enable PCU event interrupts
4064 * spinlocking not required here for correctness since interrupt
4065 * setup is guaranteed to run in single-threaded context. But we
4066 * need it to make the assert_spin_locked happy. */
4067 spin_lock_irq(&dev_priv
->irq_lock
);
4068 ilk_enable_display_irq(dev_priv
, DE_PCU_EVENT
);
4069 spin_unlock_irq(&dev_priv
->irq_lock
);
4075 void valleyview_enable_display_irqs(struct drm_i915_private
*dev_priv
)
4077 lockdep_assert_held(&dev_priv
->irq_lock
);
4079 if (dev_priv
->display_irqs_enabled
)
4082 dev_priv
->display_irqs_enabled
= true;
4084 if (intel_irqs_enabled(dev_priv
)) {
4085 vlv_display_irq_reset(dev_priv
);
4086 vlv_display_irq_postinstall(dev_priv
);
4090 void valleyview_disable_display_irqs(struct drm_i915_private
*dev_priv
)
4092 lockdep_assert_held(&dev_priv
->irq_lock
);
4094 if (!dev_priv
->display_irqs_enabled
)
4097 dev_priv
->display_irqs_enabled
= false;
4099 if (intel_irqs_enabled(dev_priv
))
4100 vlv_display_irq_reset(dev_priv
);
4104 static int valleyview_irq_postinstall(struct drm_device
*dev
)
4106 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4108 gen5_gt_irq_postinstall(dev
);
4110 spin_lock_irq(&dev_priv
->irq_lock
);
4111 if (dev_priv
->display_irqs_enabled
)
4112 vlv_display_irq_postinstall(dev_priv
);
4113 spin_unlock_irq(&dev_priv
->irq_lock
);
4115 I915_WRITE(VLV_MASTER_IER
, MASTER_INTERRUPT_ENABLE
);
4116 POSTING_READ(VLV_MASTER_IER
);
4121 static void gen8_gt_irq_postinstall(struct drm_i915_private
*dev_priv
)
4123 /* These are interrupts we'll toggle with the ring mask register */
4124 uint32_t gt_interrupts
[] = {
4125 GT_RENDER_USER_INTERRUPT
<< GEN8_RCS_IRQ_SHIFT
|
4126 GT_CONTEXT_SWITCH_INTERRUPT
<< GEN8_RCS_IRQ_SHIFT
|
4127 GT_RENDER_USER_INTERRUPT
<< GEN8_BCS_IRQ_SHIFT
|
4128 GT_CONTEXT_SWITCH_INTERRUPT
<< GEN8_BCS_IRQ_SHIFT
,
4129 GT_RENDER_USER_INTERRUPT
<< GEN8_VCS1_IRQ_SHIFT
|
4130 GT_CONTEXT_SWITCH_INTERRUPT
<< GEN8_VCS1_IRQ_SHIFT
|
4131 GT_RENDER_USER_INTERRUPT
<< GEN8_VCS2_IRQ_SHIFT
|
4132 GT_CONTEXT_SWITCH_INTERRUPT
<< GEN8_VCS2_IRQ_SHIFT
,
4134 GT_RENDER_USER_INTERRUPT
<< GEN8_VECS_IRQ_SHIFT
|
4135 GT_CONTEXT_SWITCH_INTERRUPT
<< GEN8_VECS_IRQ_SHIFT
4138 if (HAS_L3_DPF(dev_priv
))
4139 gt_interrupts
[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT
;
4141 dev_priv
->pm_ier
= 0x0;
4142 dev_priv
->pm_imr
= ~dev_priv
->pm_ier
;
4143 GEN8_IRQ_INIT_NDX(GT
, 0, ~gt_interrupts
[0], gt_interrupts
[0]);
4144 GEN8_IRQ_INIT_NDX(GT
, 1, ~gt_interrupts
[1], gt_interrupts
[1]);
4146 * RPS interrupts will get enabled/disabled on demand when RPS itself
4147 * is enabled/disabled. Same wil be the case for GuC interrupts.
4149 GEN8_IRQ_INIT_NDX(GT
, 2, dev_priv
->pm_imr
, dev_priv
->pm_ier
);
4150 GEN8_IRQ_INIT_NDX(GT
, 3, ~gt_interrupts
[3], gt_interrupts
[3]);
4153 static void gen8_de_irq_postinstall(struct drm_i915_private
*dev_priv
)
4155 uint32_t de_pipe_masked
= GEN8_PIPE_CDCLK_CRC_DONE
;
4156 uint32_t de_pipe_enables
;
4157 u32 de_port_masked
= GEN8_AUX_CHANNEL_A
;
4158 u32 de_port_enables
;
4159 u32 de_misc_masked
= GEN8_DE_EDP_PSR
;
4162 if (INTEL_GEN(dev_priv
) <= 10)
4163 de_misc_masked
|= GEN8_DE_MISC_GSE
;
4165 if (INTEL_GEN(dev_priv
) >= 9) {
4166 de_pipe_masked
|= GEN9_DE_PIPE_IRQ_FAULT_ERRORS
;
4167 de_port_masked
|= GEN9_AUX_CHANNEL_B
| GEN9_AUX_CHANNEL_C
|
4169 if (IS_GEN9_LP(dev_priv
))
4170 de_port_masked
|= BXT_DE_PORT_GMBUS
;
4172 de_pipe_masked
|= GEN8_DE_PIPE_IRQ_FAULT_ERRORS
;
4175 if (INTEL_GEN(dev_priv
) >= 11)
4176 de_port_masked
|= ICL_AUX_CHANNEL_E
;
4178 if (IS_CNL_WITH_PORT_F(dev_priv
) || INTEL_GEN(dev_priv
) >= 11)
4179 de_port_masked
|= CNL_AUX_CHANNEL_F
;
4181 de_pipe_enables
= de_pipe_masked
| GEN8_PIPE_VBLANK
|
4182 GEN8_PIPE_FIFO_UNDERRUN
;
4184 de_port_enables
= de_port_masked
;
4185 if (IS_GEN9_LP(dev_priv
))
4186 de_port_enables
|= BXT_DE_PORT_HOTPLUG_MASK
;
4187 else if (IS_BROADWELL(dev_priv
))
4188 de_port_enables
|= GEN8_PORT_DP_A_HOTPLUG
;
4190 gen3_assert_iir_is_zero(dev_priv
, EDP_PSR_IIR
);
4191 intel_psr_irq_control(dev_priv
, dev_priv
->psr
.debug
);
4193 for_each_pipe(dev_priv
, pipe
) {
4194 dev_priv
->de_irq_mask
[pipe
] = ~de_pipe_masked
;
4196 if (intel_display_power_is_enabled(dev_priv
,
4197 POWER_DOMAIN_PIPE(pipe
)))
4198 GEN8_IRQ_INIT_NDX(DE_PIPE
, pipe
,
4199 dev_priv
->de_irq_mask
[pipe
],
4203 GEN3_IRQ_INIT(GEN8_DE_PORT_
, ~de_port_masked
, de_port_enables
);
4204 GEN3_IRQ_INIT(GEN8_DE_MISC_
, ~de_misc_masked
, de_misc_masked
);
4206 if (INTEL_GEN(dev_priv
) >= 11) {
4207 u32 de_hpd_masked
= 0;
4208 u32 de_hpd_enables
= GEN11_DE_TC_HOTPLUG_MASK
|
4209 GEN11_DE_TBT_HOTPLUG_MASK
;
4211 GEN3_IRQ_INIT(GEN11_DE_HPD_
, ~de_hpd_masked
, de_hpd_enables
);
4212 gen11_hpd_detection_setup(dev_priv
);
4213 } else if (IS_GEN9_LP(dev_priv
)) {
4214 bxt_hpd_detection_setup(dev_priv
);
4215 } else if (IS_BROADWELL(dev_priv
)) {
4216 ilk_hpd_detection_setup(dev_priv
);
4220 static int gen8_irq_postinstall(struct drm_device
*dev
)
4222 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4224 if (HAS_PCH_SPLIT(dev_priv
))
4225 ibx_irq_pre_postinstall(dev
);
4227 gen8_gt_irq_postinstall(dev_priv
);
4228 gen8_de_irq_postinstall(dev_priv
);
4230 if (HAS_PCH_SPLIT(dev_priv
))
4231 ibx_irq_postinstall(dev
);
4233 I915_WRITE(GEN8_MASTER_IRQ
, GEN8_MASTER_IRQ_CONTROL
);
4234 POSTING_READ(GEN8_MASTER_IRQ
);
4239 static void gen11_gt_irq_postinstall(struct drm_i915_private
*dev_priv
)
4241 const u32 irqs
= GT_RENDER_USER_INTERRUPT
| GT_CONTEXT_SWITCH_INTERRUPT
;
4243 BUILD_BUG_ON(irqs
& 0xffff0000);
4245 /* Enable RCS, BCS, VCS and VECS class interrupts. */
4246 I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE
, irqs
<< 16 | irqs
);
4247 I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE
, irqs
<< 16 | irqs
);
4249 /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4250 I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK
, ~(irqs
<< 16));
4251 I915_WRITE(GEN11_BCS_RSVD_INTR_MASK
, ~(irqs
<< 16));
4252 I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK
, ~(irqs
| irqs
<< 16));
4253 I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK
, ~(irqs
| irqs
<< 16));
4254 I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK
, ~(irqs
| irqs
<< 16));
4257 * RPS interrupts will get enabled/disabled on demand when RPS itself
4258 * is enabled/disabled.
4260 dev_priv
->pm_ier
= 0x0;
4261 dev_priv
->pm_imr
= ~dev_priv
->pm_ier
;
4262 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE
, 0);
4263 I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK
, ~0);
4266 static void icp_irq_postinstall(struct drm_device
*dev
)
4268 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4269 u32 mask
= SDE_GMBUS_ICP
;
4271 WARN_ON(I915_READ(SDEIER
) != 0);
4272 I915_WRITE(SDEIER
, 0xffffffff);
4273 POSTING_READ(SDEIER
);
4275 gen3_assert_iir_is_zero(dev_priv
, SDEIIR
);
4276 I915_WRITE(SDEIMR
, ~mask
);
4278 icp_hpd_detection_setup(dev_priv
);
4281 static int gen11_irq_postinstall(struct drm_device
*dev
)
4283 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4284 u32 gu_misc_masked
= GEN11_GU_MISC_GSE
;
4286 if (HAS_PCH_ICP(dev_priv
))
4287 icp_irq_postinstall(dev
);
4289 gen11_gt_irq_postinstall(dev_priv
);
4290 gen8_de_irq_postinstall(dev_priv
);
4292 GEN3_IRQ_INIT(GEN11_GU_MISC_
, ~gu_misc_masked
, gu_misc_masked
);
4294 I915_WRITE(GEN11_DISPLAY_INT_CTL
, GEN11_DISPLAY_IRQ_ENABLE
);
4296 I915_WRITE(GEN11_GFX_MSTR_IRQ
, GEN11_MASTER_IRQ
);
4297 POSTING_READ(GEN11_GFX_MSTR_IRQ
);
4302 static int cherryview_irq_postinstall(struct drm_device
*dev
)
4304 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4306 gen8_gt_irq_postinstall(dev_priv
);
4308 spin_lock_irq(&dev_priv
->irq_lock
);
4309 if (dev_priv
->display_irqs_enabled
)
4310 vlv_display_irq_postinstall(dev_priv
);
4311 spin_unlock_irq(&dev_priv
->irq_lock
);
4313 I915_WRITE(GEN8_MASTER_IRQ
, GEN8_MASTER_IRQ_CONTROL
);
4314 POSTING_READ(GEN8_MASTER_IRQ
);
4319 static void i8xx_irq_reset(struct drm_device
*dev
)
4321 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4323 i9xx_pipestat_irq_reset(dev_priv
);
4325 I915_WRITE16(HWSTAM
, 0xffff);
4330 static int i8xx_irq_postinstall(struct drm_device
*dev
)
4332 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4335 I915_WRITE16(EMR
, ~(I915_ERROR_PAGE_TABLE
|
4336 I915_ERROR_MEMORY_REFRESH
));
4338 /* Unmask the interrupts that we always want on. */
4339 dev_priv
->irq_mask
=
4340 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
4341 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
|
4342 I915_MASTER_ERROR_INTERRUPT
);
4345 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
4346 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
|
4347 I915_MASTER_ERROR_INTERRUPT
|
4348 I915_USER_INTERRUPT
;
4350 GEN2_IRQ_INIT(, dev_priv
->irq_mask
, enable_mask
);
4352 /* Interrupt setup is already guaranteed to be single-threaded, this is
4353 * just to make the assert_spin_locked check happy. */
4354 spin_lock_irq(&dev_priv
->irq_lock
);
4355 i915_enable_pipestat(dev_priv
, PIPE_A
, PIPE_CRC_DONE_INTERRUPT_STATUS
);
4356 i915_enable_pipestat(dev_priv
, PIPE_B
, PIPE_CRC_DONE_INTERRUPT_STATUS
);
4357 spin_unlock_irq(&dev_priv
->irq_lock
);
4362 static void i8xx_error_irq_ack(struct drm_i915_private
*dev_priv
,
4363 u16
*eir
, u16
*eir_stuck
)
4367 *eir
= I915_READ16(EIR
);
4370 I915_WRITE16(EIR
, *eir
);
4372 *eir_stuck
= I915_READ16(EIR
);
4373 if (*eir_stuck
== 0)
4377 * Toggle all EMR bits to make sure we get an edge
4378 * in the ISR master error bit if we don't clear
4379 * all the EIR bits. Otherwise the edge triggered
4380 * IIR on i965/g4x wouldn't notice that an interrupt
4381 * is still pending. Also some EIR bits can't be
4382 * cleared except by handling the underlying error
4383 * (or by a GPU reset) so we mask any bit that
4386 emr
= I915_READ16(EMR
);
4387 I915_WRITE16(EMR
, 0xffff);
4388 I915_WRITE16(EMR
, emr
| *eir_stuck
);
4391 static void i8xx_error_irq_handler(struct drm_i915_private
*dev_priv
,
4392 u16 eir
, u16 eir_stuck
)
4394 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir
);
4397 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck
);
4400 static void i9xx_error_irq_ack(struct drm_i915_private
*dev_priv
,
4401 u32
*eir
, u32
*eir_stuck
)
4405 *eir
= I915_READ(EIR
);
4407 I915_WRITE(EIR
, *eir
);
4409 *eir_stuck
= I915_READ(EIR
);
4410 if (*eir_stuck
== 0)
4414 * Toggle all EMR bits to make sure we get an edge
4415 * in the ISR master error bit if we don't clear
4416 * all the EIR bits. Otherwise the edge triggered
4417 * IIR on i965/g4x wouldn't notice that an interrupt
4418 * is still pending. Also some EIR bits can't be
4419 * cleared except by handling the underlying error
4420 * (or by a GPU reset) so we mask any bit that
4423 emr
= I915_READ(EMR
);
4424 I915_WRITE(EMR
, 0xffffffff);
4425 I915_WRITE(EMR
, emr
| *eir_stuck
);
4428 static void i9xx_error_irq_handler(struct drm_i915_private
*dev_priv
,
4429 u32 eir
, u32 eir_stuck
)
4431 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir
);
4434 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck
);
4437 static irqreturn_t
i8xx_irq_handler(int irq
, void *arg
)
4439 struct drm_device
*dev
= arg
;
4440 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4441 irqreturn_t ret
= IRQ_NONE
;
4443 if (!intel_irqs_enabled(dev_priv
))
4446 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4447 disable_rpm_wakeref_asserts(dev_priv
);
4450 u32 pipe_stats
[I915_MAX_PIPES
] = {};
4451 u16 eir
= 0, eir_stuck
= 0;
4454 iir
= I915_READ16(IIR
);
4460 /* Call regardless, as some status bits might not be
4461 * signalled in iir */
4462 i9xx_pipestat_irq_ack(dev_priv
, iir
, pipe_stats
);
4464 if (iir
& I915_MASTER_ERROR_INTERRUPT
)
4465 i8xx_error_irq_ack(dev_priv
, &eir
, &eir_stuck
);
4467 I915_WRITE16(IIR
, iir
);
4469 if (iir
& I915_USER_INTERRUPT
)
4470 notify_ring(dev_priv
->engine
[RCS
]);
4472 if (iir
& I915_MASTER_ERROR_INTERRUPT
)
4473 i8xx_error_irq_handler(dev_priv
, eir
, eir_stuck
);
4475 i8xx_pipestat_irq_handler(dev_priv
, iir
, pipe_stats
);
4478 enable_rpm_wakeref_asserts(dev_priv
);
4483 static void i915_irq_reset(struct drm_device
*dev
)
4485 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4487 if (I915_HAS_HOTPLUG(dev_priv
)) {
4488 i915_hotplug_interrupt_update(dev_priv
, 0xffffffff, 0);
4489 I915_WRITE(PORT_HOTPLUG_STAT
, I915_READ(PORT_HOTPLUG_STAT
));
4492 i9xx_pipestat_irq_reset(dev_priv
);
4494 I915_WRITE(HWSTAM
, 0xffffffff);
4499 static int i915_irq_postinstall(struct drm_device
*dev
)
4501 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4504 I915_WRITE(EMR
, ~(I915_ERROR_PAGE_TABLE
|
4505 I915_ERROR_MEMORY_REFRESH
));
4507 /* Unmask the interrupts that we always want on. */
4508 dev_priv
->irq_mask
=
4509 ~(I915_ASLE_INTERRUPT
|
4510 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
4511 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
|
4512 I915_MASTER_ERROR_INTERRUPT
);
4515 I915_ASLE_INTERRUPT
|
4516 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
4517 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
|
4518 I915_MASTER_ERROR_INTERRUPT
|
4519 I915_USER_INTERRUPT
;
4521 if (I915_HAS_HOTPLUG(dev_priv
)) {
4522 /* Enable in IER... */
4523 enable_mask
|= I915_DISPLAY_PORT_INTERRUPT
;
4524 /* and unmask in IMR */
4525 dev_priv
->irq_mask
&= ~I915_DISPLAY_PORT_INTERRUPT
;
4528 GEN3_IRQ_INIT(, dev_priv
->irq_mask
, enable_mask
);
4530 /* Interrupt setup is already guaranteed to be single-threaded, this is
4531 * just to make the assert_spin_locked check happy. */
4532 spin_lock_irq(&dev_priv
->irq_lock
);
4533 i915_enable_pipestat(dev_priv
, PIPE_A
, PIPE_CRC_DONE_INTERRUPT_STATUS
);
4534 i915_enable_pipestat(dev_priv
, PIPE_B
, PIPE_CRC_DONE_INTERRUPT_STATUS
);
4535 spin_unlock_irq(&dev_priv
->irq_lock
);
4537 i915_enable_asle_pipestat(dev_priv
);
4542 static irqreturn_t
i915_irq_handler(int irq
, void *arg
)
4544 struct drm_device
*dev
= arg
;
4545 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4546 irqreturn_t ret
= IRQ_NONE
;
4548 if (!intel_irqs_enabled(dev_priv
))
4551 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4552 disable_rpm_wakeref_asserts(dev_priv
);
4555 u32 pipe_stats
[I915_MAX_PIPES
] = {};
4556 u32 eir
= 0, eir_stuck
= 0;
4557 u32 hotplug_status
= 0;
4560 iir
= I915_READ(IIR
);
4566 if (I915_HAS_HOTPLUG(dev_priv
) &&
4567 iir
& I915_DISPLAY_PORT_INTERRUPT
)
4568 hotplug_status
= i9xx_hpd_irq_ack(dev_priv
);
4570 /* Call regardless, as some status bits might not be
4571 * signalled in iir */
4572 i9xx_pipestat_irq_ack(dev_priv
, iir
, pipe_stats
);
4574 if (iir
& I915_MASTER_ERROR_INTERRUPT
)
4575 i9xx_error_irq_ack(dev_priv
, &eir
, &eir_stuck
);
4577 I915_WRITE(IIR
, iir
);
4579 if (iir
& I915_USER_INTERRUPT
)
4580 notify_ring(dev_priv
->engine
[RCS
]);
4582 if (iir
& I915_MASTER_ERROR_INTERRUPT
)
4583 i9xx_error_irq_handler(dev_priv
, eir
, eir_stuck
);
4586 i9xx_hpd_irq_handler(dev_priv
, hotplug_status
);
4588 i915_pipestat_irq_handler(dev_priv
, iir
, pipe_stats
);
4591 enable_rpm_wakeref_asserts(dev_priv
);
4596 static void i965_irq_reset(struct drm_device
*dev
)
4598 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4600 i915_hotplug_interrupt_update(dev_priv
, 0xffffffff, 0);
4601 I915_WRITE(PORT_HOTPLUG_STAT
, I915_READ(PORT_HOTPLUG_STAT
));
4603 i9xx_pipestat_irq_reset(dev_priv
);
4605 I915_WRITE(HWSTAM
, 0xffffffff);
4610 static int i965_irq_postinstall(struct drm_device
*dev
)
4612 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4617 * Enable some error detection, note the instruction error mask
4618 * bit is reserved, so we leave it masked.
4620 if (IS_G4X(dev_priv
)) {
4621 error_mask
= ~(GM45_ERROR_PAGE_TABLE
|
4622 GM45_ERROR_MEM_PRIV
|
4623 GM45_ERROR_CP_PRIV
|
4624 I915_ERROR_MEMORY_REFRESH
);
4626 error_mask
= ~(I915_ERROR_PAGE_TABLE
|
4627 I915_ERROR_MEMORY_REFRESH
);
4629 I915_WRITE(EMR
, error_mask
);
4631 /* Unmask the interrupts that we always want on. */
4632 dev_priv
->irq_mask
=
4633 ~(I915_ASLE_INTERRUPT
|
4634 I915_DISPLAY_PORT_INTERRUPT
|
4635 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
4636 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
|
4637 I915_MASTER_ERROR_INTERRUPT
);
4640 I915_ASLE_INTERRUPT
|
4641 I915_DISPLAY_PORT_INTERRUPT
|
4642 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
4643 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
|
4644 I915_MASTER_ERROR_INTERRUPT
|
4645 I915_USER_INTERRUPT
;
4647 if (IS_G4X(dev_priv
))
4648 enable_mask
|= I915_BSD_USER_INTERRUPT
;
4650 GEN3_IRQ_INIT(, dev_priv
->irq_mask
, enable_mask
);
4652 /* Interrupt setup is already guaranteed to be single-threaded, this is
4653 * just to make the assert_spin_locked check happy. */
4654 spin_lock_irq(&dev_priv
->irq_lock
);
4655 i915_enable_pipestat(dev_priv
, PIPE_A
, PIPE_GMBUS_INTERRUPT_STATUS
);
4656 i915_enable_pipestat(dev_priv
, PIPE_A
, PIPE_CRC_DONE_INTERRUPT_STATUS
);
4657 i915_enable_pipestat(dev_priv
, PIPE_B
, PIPE_CRC_DONE_INTERRUPT_STATUS
);
4658 spin_unlock_irq(&dev_priv
->irq_lock
);
4660 i915_enable_asle_pipestat(dev_priv
);
4665 static void i915_hpd_irq_setup(struct drm_i915_private
*dev_priv
)
4669 lockdep_assert_held(&dev_priv
->irq_lock
);
4671 /* Note HDMI and DP share hotplug bits */
4672 /* enable bits are the same for all generations */
4673 hotplug_en
= intel_hpd_enabled_irqs(dev_priv
, hpd_mask_i915
);
4674 /* Programming the CRT detection parameters tends
4675 to generate a spurious hotplug event about three
4676 seconds later. So just do it once.
4678 if (IS_G4X(dev_priv
))
4679 hotplug_en
|= CRT_HOTPLUG_ACTIVATION_PERIOD_64
;
4680 hotplug_en
|= CRT_HOTPLUG_VOLTAGE_COMPARE_50
;
4682 /* Ignore TV since it's buggy */
4683 i915_hotplug_interrupt_update_locked(dev_priv
,
4684 HOTPLUG_INT_EN_MASK
|
4685 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK
|
4686 CRT_HOTPLUG_ACTIVATION_PERIOD_64
,
4690 static irqreturn_t
i965_irq_handler(int irq
, void *arg
)
4692 struct drm_device
*dev
= arg
;
4693 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4694 irqreturn_t ret
= IRQ_NONE
;
4696 if (!intel_irqs_enabled(dev_priv
))
4699 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4700 disable_rpm_wakeref_asserts(dev_priv
);
4703 u32 pipe_stats
[I915_MAX_PIPES
] = {};
4704 u32 eir
= 0, eir_stuck
= 0;
4705 u32 hotplug_status
= 0;
4708 iir
= I915_READ(IIR
);
4714 if (iir
& I915_DISPLAY_PORT_INTERRUPT
)
4715 hotplug_status
= i9xx_hpd_irq_ack(dev_priv
);
4717 /* Call regardless, as some status bits might not be
4718 * signalled in iir */
4719 i9xx_pipestat_irq_ack(dev_priv
, iir
, pipe_stats
);
4721 if (iir
& I915_MASTER_ERROR_INTERRUPT
)
4722 i9xx_error_irq_ack(dev_priv
, &eir
, &eir_stuck
);
4724 I915_WRITE(IIR
, iir
);
4726 if (iir
& I915_USER_INTERRUPT
)
4727 notify_ring(dev_priv
->engine
[RCS
]);
4729 if (iir
& I915_BSD_USER_INTERRUPT
)
4730 notify_ring(dev_priv
->engine
[VCS
]);
4732 if (iir
& I915_MASTER_ERROR_INTERRUPT
)
4733 i9xx_error_irq_handler(dev_priv
, eir
, eir_stuck
);
4736 i9xx_hpd_irq_handler(dev_priv
, hotplug_status
);
4738 i965_pipestat_irq_handler(dev_priv
, iir
, pipe_stats
);
4741 enable_rpm_wakeref_asserts(dev_priv
);
4747 * intel_irq_init - initializes irq support
4748 * @dev_priv: i915 device instance
4750 * This function initializes all the irq support including work items, timers
4751 * and all the vtables. It does not setup the interrupt itself though.
4753 void intel_irq_init(struct drm_i915_private
*dev_priv
)
4755 struct drm_device
*dev
= &dev_priv
->drm
;
4756 struct intel_rps
*rps
= &dev_priv
->gt_pm
.rps
;
4759 intel_hpd_init_work(dev_priv
);
4761 INIT_WORK(&rps
->work
, gen6_pm_rps_work
);
4763 INIT_WORK(&dev_priv
->l3_parity
.error_work
, ivybridge_parity_work
);
4764 for (i
= 0; i
< MAX_L3_SLICES
; ++i
)
4765 dev_priv
->l3_parity
.remap_info
[i
] = NULL
;
4767 if (HAS_GUC_SCHED(dev_priv
))
4768 dev_priv
->pm_guc_events
= GEN9_GUC_TO_HOST_INT_EVENT
;
4770 /* Let's track the enabled rps events */
4771 if (IS_VALLEYVIEW(dev_priv
))
4772 /* WaGsvRC0ResidencyMethod:vlv */
4773 dev_priv
->pm_rps_events
= GEN6_PM_RP_UP_EI_EXPIRED
;
4775 dev_priv
->pm_rps_events
= GEN6_PM_RPS_EVENTS
;
4777 rps
->pm_intrmsk_mbz
= 0;
4780 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4781 * if GEN6_PM_UP_EI_EXPIRED is masked.
4783 * TODO: verify if this can be reproduced on VLV,CHV.
4785 if (INTEL_GEN(dev_priv
) <= 7)
4786 rps
->pm_intrmsk_mbz
|= GEN6_PM_RP_UP_EI_EXPIRED
;
4788 if (INTEL_GEN(dev_priv
) >= 8)
4789 rps
->pm_intrmsk_mbz
|= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC
;
4791 if (IS_GEN2(dev_priv
)) {
4792 /* Gen2 doesn't have a hardware frame counter */
4793 dev
->max_vblank_count
= 0;
4794 } else if (IS_G4X(dev_priv
) || INTEL_GEN(dev_priv
) >= 5) {
4795 dev
->max_vblank_count
= 0xffffffff; /* full 32 bit counter */
4796 dev
->driver
->get_vblank_counter
= g4x_get_vblank_counter
;
4798 dev
->driver
->get_vblank_counter
= i915_get_vblank_counter
;
4799 dev
->max_vblank_count
= 0xffffff; /* only 24 bits of frame count */
4803 * Opt out of the vblank disable timer on everything except gen2.
4804 * Gen2 doesn't have a hardware frame counter and so depends on
4805 * vblank interrupts to produce sane vblank seuquence numbers.
4807 if (!IS_GEN2(dev_priv
))
4808 dev
->vblank_disable_immediate
= true;
4810 /* Most platforms treat the display irq block as an always-on
4811 * power domain. vlv/chv can disable it at runtime and need
4812 * special care to avoid writing any of the display block registers
4813 * outside of the power domain. We defer setting up the display irqs
4814 * in this case to the runtime pm.
4816 dev_priv
->display_irqs_enabled
= true;
4817 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
4818 dev_priv
->display_irqs_enabled
= false;
4820 dev_priv
->hotplug
.hpd_storm_threshold
= HPD_STORM_DEFAULT_THRESHOLD
;
4822 dev
->driver
->get_vblank_timestamp
= drm_calc_vbltimestamp_from_scanoutpos
;
4823 dev
->driver
->get_scanout_position
= i915_get_crtc_scanoutpos
;
4825 if (IS_CHERRYVIEW(dev_priv
)) {
4826 dev
->driver
->irq_handler
= cherryview_irq_handler
;
4827 dev
->driver
->irq_preinstall
= cherryview_irq_reset
;
4828 dev
->driver
->irq_postinstall
= cherryview_irq_postinstall
;
4829 dev
->driver
->irq_uninstall
= cherryview_irq_reset
;
4830 dev
->driver
->enable_vblank
= i965_enable_vblank
;
4831 dev
->driver
->disable_vblank
= i965_disable_vblank
;
4832 dev_priv
->display
.hpd_irq_setup
= i915_hpd_irq_setup
;
4833 } else if (IS_VALLEYVIEW(dev_priv
)) {
4834 dev
->driver
->irq_handler
= valleyview_irq_handler
;
4835 dev
->driver
->irq_preinstall
= valleyview_irq_reset
;
4836 dev
->driver
->irq_postinstall
= valleyview_irq_postinstall
;
4837 dev
->driver
->irq_uninstall
= valleyview_irq_reset
;
4838 dev
->driver
->enable_vblank
= i965_enable_vblank
;
4839 dev
->driver
->disable_vblank
= i965_disable_vblank
;
4840 dev_priv
->display
.hpd_irq_setup
= i915_hpd_irq_setup
;
4841 } else if (INTEL_GEN(dev_priv
) >= 11) {
4842 dev
->driver
->irq_handler
= gen11_irq_handler
;
4843 dev
->driver
->irq_preinstall
= gen11_irq_reset
;
4844 dev
->driver
->irq_postinstall
= gen11_irq_postinstall
;
4845 dev
->driver
->irq_uninstall
= gen11_irq_reset
;
4846 dev
->driver
->enable_vblank
= gen8_enable_vblank
;
4847 dev
->driver
->disable_vblank
= gen8_disable_vblank
;
4848 dev_priv
->display
.hpd_irq_setup
= gen11_hpd_irq_setup
;
4849 } else if (INTEL_GEN(dev_priv
) >= 8) {
4850 dev
->driver
->irq_handler
= gen8_irq_handler
;
4851 dev
->driver
->irq_preinstall
= gen8_irq_reset
;
4852 dev
->driver
->irq_postinstall
= gen8_irq_postinstall
;
4853 dev
->driver
->irq_uninstall
= gen8_irq_reset
;
4854 dev
->driver
->enable_vblank
= gen8_enable_vblank
;
4855 dev
->driver
->disable_vblank
= gen8_disable_vblank
;
4856 if (IS_GEN9_LP(dev_priv
))
4857 dev_priv
->display
.hpd_irq_setup
= bxt_hpd_irq_setup
;
4858 else if (HAS_PCH_SPT(dev_priv
) || HAS_PCH_KBP(dev_priv
) ||
4859 HAS_PCH_CNP(dev_priv
))
4860 dev_priv
->display
.hpd_irq_setup
= spt_hpd_irq_setup
;
4862 dev_priv
->display
.hpd_irq_setup
= ilk_hpd_irq_setup
;
4863 } else if (HAS_PCH_SPLIT(dev_priv
)) {
4864 dev
->driver
->irq_handler
= ironlake_irq_handler
;
4865 dev
->driver
->irq_preinstall
= ironlake_irq_reset
;
4866 dev
->driver
->irq_postinstall
= ironlake_irq_postinstall
;
4867 dev
->driver
->irq_uninstall
= ironlake_irq_reset
;
4868 dev
->driver
->enable_vblank
= ironlake_enable_vblank
;
4869 dev
->driver
->disable_vblank
= ironlake_disable_vblank
;
4870 dev_priv
->display
.hpd_irq_setup
= ilk_hpd_irq_setup
;
4872 if (IS_GEN2(dev_priv
)) {
4873 dev
->driver
->irq_preinstall
= i8xx_irq_reset
;
4874 dev
->driver
->irq_postinstall
= i8xx_irq_postinstall
;
4875 dev
->driver
->irq_handler
= i8xx_irq_handler
;
4876 dev
->driver
->irq_uninstall
= i8xx_irq_reset
;
4877 dev
->driver
->enable_vblank
= i8xx_enable_vblank
;
4878 dev
->driver
->disable_vblank
= i8xx_disable_vblank
;
4879 } else if (IS_GEN3(dev_priv
)) {
4880 dev
->driver
->irq_preinstall
= i915_irq_reset
;
4881 dev
->driver
->irq_postinstall
= i915_irq_postinstall
;
4882 dev
->driver
->irq_uninstall
= i915_irq_reset
;
4883 dev
->driver
->irq_handler
= i915_irq_handler
;
4884 dev
->driver
->enable_vblank
= i8xx_enable_vblank
;
4885 dev
->driver
->disable_vblank
= i8xx_disable_vblank
;
4887 dev
->driver
->irq_preinstall
= i965_irq_reset
;
4888 dev
->driver
->irq_postinstall
= i965_irq_postinstall
;
4889 dev
->driver
->irq_uninstall
= i965_irq_reset
;
4890 dev
->driver
->irq_handler
= i965_irq_handler
;
4891 dev
->driver
->enable_vblank
= i965_enable_vblank
;
4892 dev
->driver
->disable_vblank
= i965_disable_vblank
;
4894 if (I915_HAS_HOTPLUG(dev_priv
))
4895 dev_priv
->display
.hpd_irq_setup
= i915_hpd_irq_setup
;
4900 * intel_irq_fini - deinitializes IRQ support
4901 * @i915: i915 device instance
4903 * This function deinitializes all the IRQ support.
4905 void intel_irq_fini(struct drm_i915_private
*i915
)
4909 for (i
= 0; i
< MAX_L3_SLICES
; ++i
)
4910 kfree(i915
->l3_parity
.remap_info
[i
]);
4914 * intel_irq_install - enables the hardware interrupt
4915 * @dev_priv: i915 device instance
4917 * This function enables the hardware interrupt handling, but leaves the hotplug
4918 * handling still disabled. It is called after intel_irq_init().
4920 * In the driver load and resume code we need working interrupts in a few places
4921 * but don't want to deal with the hassle of concurrent probe and hotplug
4922 * workers. Hence the split into this two-stage approach.
4924 int intel_irq_install(struct drm_i915_private
*dev_priv
)
4927 * We enable some interrupt sources in our postinstall hooks, so mark
4928 * interrupts as enabled _before_ actually enabling them to avoid
4929 * special cases in our ordering checks.
4931 dev_priv
->runtime_pm
.irqs_enabled
= true;
4933 return drm_irq_install(&dev_priv
->drm
, dev_priv
->drm
.pdev
->irq
);
4937 * intel_irq_uninstall - finilizes all irq handling
4938 * @dev_priv: i915 device instance
4940 * This stops interrupt and hotplug handling and unregisters and frees all
4941 * resources acquired in the init functions.
4943 void intel_irq_uninstall(struct drm_i915_private
*dev_priv
)
4945 drm_irq_uninstall(&dev_priv
->drm
);
4946 intel_hpd_cancel_work(dev_priv
);
4947 dev_priv
->runtime_pm
.irqs_enabled
= false;
4951 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4952 * @dev_priv: i915 device instance
4954 * This function is used to disable interrupts at runtime, both in the runtime
4955 * pm and the system suspend/resume code.
4957 void intel_runtime_pm_disable_interrupts(struct drm_i915_private
*dev_priv
)
4959 dev_priv
->drm
.driver
->irq_uninstall(&dev_priv
->drm
);
4960 dev_priv
->runtime_pm
.irqs_enabled
= false;
4961 synchronize_irq(dev_priv
->drm
.irq
);
4965 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4966 * @dev_priv: i915 device instance
4968 * This function is used to enable interrupts at runtime, both in the runtime
4969 * pm and the system suspend/resume code.
4971 void intel_runtime_pm_enable_interrupts(struct drm_i915_private
*dev_priv
)
4973 dev_priv
->runtime_pm
.irqs_enabled
= true;
4974 dev_priv
->drm
.driver
->irq_preinstall(&dev_priv
->drm
);
4975 dev_priv
->drm
.driver
->irq_postinstall(&dev_priv
->drm
);