vt: vt_ioctl: fix VT_DISALLOCATE freeing in-use virtual console
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_request.c
blob5c2c93cbab12f8ebff29507a00953a24a9a877c6
1 /*
2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
31 #include "i915_drv.h"
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
35 return "i915";
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
41 * The timeline struct (as part of the ppgtt underneath a context)
42 * may be freed when the request is no longer in use by the GPU.
43 * We could extend the life of a context to beyond that of all
44 * fences, possibly keeping the hw resource around indefinitely,
45 * or we just give them a false name. Since
46 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
47 * lie seems justifiable.
49 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
50 return "signaled";
52 return to_request(fence)->timeline->name;
55 static bool i915_fence_signaled(struct dma_fence *fence)
57 return i915_request_completed(to_request(fence));
60 static bool i915_fence_enable_signaling(struct dma_fence *fence)
62 return intel_engine_enable_signaling(to_request(fence), true);
65 static signed long i915_fence_wait(struct dma_fence *fence,
66 bool interruptible,
67 signed long timeout)
69 return i915_request_wait(to_request(fence), interruptible, timeout);
72 static void i915_fence_release(struct dma_fence *fence)
74 struct i915_request *rq = to_request(fence);
77 * The request is put onto a RCU freelist (i.e. the address
78 * is immediately reused), mark the fences as being freed now.
79 * Otherwise the debugobjects for the fences are only marked as
80 * freed when the slab cache itself is freed, and so we would get
81 * caught trying to reuse dead objects.
83 i915_sw_fence_fini(&rq->submit);
85 kmem_cache_free(rq->i915->requests, rq);
88 const struct dma_fence_ops i915_fence_ops = {
89 .get_driver_name = i915_fence_get_driver_name,
90 .get_timeline_name = i915_fence_get_timeline_name,
91 .enable_signaling = i915_fence_enable_signaling,
92 .signaled = i915_fence_signaled,
93 .wait = i915_fence_wait,
94 .release = i915_fence_release,
97 static inline void
98 i915_request_remove_from_client(struct i915_request *request)
100 struct drm_i915_file_private *file_priv;
102 file_priv = request->file_priv;
103 if (!file_priv)
104 return;
106 spin_lock(&file_priv->mm.lock);
107 if (request->file_priv) {
108 list_del(&request->client_link);
109 request->file_priv = NULL;
111 spin_unlock(&file_priv->mm.lock);
114 static struct i915_dependency *
115 i915_dependency_alloc(struct drm_i915_private *i915)
117 return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 static void
121 i915_dependency_free(struct drm_i915_private *i915,
122 struct i915_dependency *dep)
124 kmem_cache_free(i915->dependencies, dep);
127 static void
128 __i915_sched_node_add_dependency(struct i915_sched_node *node,
129 struct i915_sched_node *signal,
130 struct i915_dependency *dep,
131 unsigned long flags)
133 INIT_LIST_HEAD(&dep->dfs_link);
134 list_add(&dep->wait_link, &signal->waiters_list);
135 list_add(&dep->signal_link, &node->signalers_list);
136 dep->signaler = signal;
137 dep->flags = flags;
140 static int
141 i915_sched_node_add_dependency(struct drm_i915_private *i915,
142 struct i915_sched_node *node,
143 struct i915_sched_node *signal)
145 struct i915_dependency *dep;
147 dep = i915_dependency_alloc(i915);
148 if (!dep)
149 return -ENOMEM;
151 __i915_sched_node_add_dependency(node, signal, dep,
152 I915_DEPENDENCY_ALLOC);
153 return 0;
156 static void
157 i915_sched_node_fini(struct drm_i915_private *i915,
158 struct i915_sched_node *node)
160 struct i915_dependency *dep, *tmp;
162 GEM_BUG_ON(!list_empty(&node->link));
165 * Everyone we depended upon (the fences we wait to be signaled)
166 * should retire before us and remove themselves from our list.
167 * However, retirement is run independently on each timeline and
168 * so we may be called out-of-order.
170 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
171 GEM_BUG_ON(!i915_sched_node_signaled(dep->signaler));
172 GEM_BUG_ON(!list_empty(&dep->dfs_link));
174 list_del(&dep->wait_link);
175 if (dep->flags & I915_DEPENDENCY_ALLOC)
176 i915_dependency_free(i915, dep);
179 /* Remove ourselves from everyone who depends upon us */
180 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
181 GEM_BUG_ON(dep->signaler != node);
182 GEM_BUG_ON(!list_empty(&dep->dfs_link));
184 list_del(&dep->signal_link);
185 if (dep->flags & I915_DEPENDENCY_ALLOC)
186 i915_dependency_free(i915, dep);
190 static void
191 i915_sched_node_init(struct i915_sched_node *node)
193 INIT_LIST_HEAD(&node->signalers_list);
194 INIT_LIST_HEAD(&node->waiters_list);
195 INIT_LIST_HEAD(&node->link);
196 node->attr.priority = I915_PRIORITY_INVALID;
199 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
201 struct intel_engine_cs *engine;
202 struct i915_timeline *timeline;
203 enum intel_engine_id id;
204 int ret;
206 /* Carefully retire all requests without writing to the rings */
207 ret = i915_gem_wait_for_idle(i915,
208 I915_WAIT_INTERRUPTIBLE |
209 I915_WAIT_LOCKED,
210 MAX_SCHEDULE_TIMEOUT);
211 if (ret)
212 return ret;
214 GEM_BUG_ON(i915->gt.active_requests);
216 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
217 for_each_engine(engine, i915, id) {
218 GEM_TRACE("%s seqno %d (current %d) -> %d\n",
219 engine->name,
220 engine->timeline.seqno,
221 intel_engine_get_seqno(engine),
222 seqno);
224 if (!i915_seqno_passed(seqno, engine->timeline.seqno)) {
225 /* Flush any waiters before we reuse the seqno */
226 intel_engine_disarm_breadcrumbs(engine);
227 intel_engine_init_hangcheck(engine);
228 GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
231 /* Check we are idle before we fiddle with hw state! */
232 GEM_BUG_ON(!intel_engine_is_idle(engine));
233 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline.last_request));
235 /* Finally reset hw state */
236 intel_engine_init_global_seqno(engine, seqno);
237 engine->timeline.seqno = seqno;
240 list_for_each_entry(timeline, &i915->gt.timelines, link)
241 memset(timeline->global_sync, 0, sizeof(timeline->global_sync));
243 i915->gt.request_serial = seqno;
245 return 0;
248 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
250 struct drm_i915_private *i915 = to_i915(dev);
252 lockdep_assert_held(&i915->drm.struct_mutex);
254 if (seqno == 0)
255 return -EINVAL;
257 /* HWS page needs to be set less than what we will inject to ring */
258 return reset_all_global_seqno(i915, seqno - 1);
261 static int reserve_gt(struct drm_i915_private *i915)
263 int ret;
266 * Reservation is fine until we may need to wrap around
268 * By incrementing the serial for every request, we know that no
269 * individual engine may exceed that serial (as each is reset to 0
270 * on any wrap). This protects even the most pessimistic of migrations
271 * of every request from all engines onto just one.
273 while (unlikely(++i915->gt.request_serial == 0)) {
274 ret = reset_all_global_seqno(i915, 0);
275 if (ret) {
276 i915->gt.request_serial--;
277 return ret;
281 if (!i915->gt.active_requests++)
282 i915_gem_unpark(i915);
284 return 0;
287 static void unreserve_gt(struct drm_i915_private *i915)
289 GEM_BUG_ON(!i915->gt.active_requests);
290 if (!--i915->gt.active_requests)
291 i915_gem_park(i915);
294 void i915_gem_retire_noop(struct i915_gem_active *active,
295 struct i915_request *request)
297 /* Space left intentionally blank */
300 static void advance_ring(struct i915_request *request)
302 struct intel_ring *ring = request->ring;
303 unsigned int tail;
306 * We know the GPU must have read the request to have
307 * sent us the seqno + interrupt, so use the position
308 * of tail of the request to update the last known position
309 * of the GPU head.
311 * Note this requires that we are always called in request
312 * completion order.
314 GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
315 if (list_is_last(&request->ring_link, &ring->request_list)) {
317 * We may race here with execlists resubmitting this request
318 * as we retire it. The resubmission will move the ring->tail
319 * forwards (to request->wa_tail). We either read the
320 * current value that was written to hw, or the value that
321 * is just about to be. Either works, if we miss the last two
322 * noops - they are safe to be replayed on a reset.
324 GEM_TRACE("marking %s as inactive\n", ring->timeline->name);
325 tail = READ_ONCE(request->tail);
326 list_del(&ring->active_link);
327 } else {
328 tail = request->postfix;
330 list_del_init(&request->ring_link);
332 ring->head = tail;
335 static void free_capture_list(struct i915_request *request)
337 struct i915_capture_list *capture;
339 capture = request->capture_list;
340 while (capture) {
341 struct i915_capture_list *next = capture->next;
343 kfree(capture);
344 capture = next;
348 static void __retire_engine_request(struct intel_engine_cs *engine,
349 struct i915_request *rq)
351 GEM_TRACE("%s(%s) fence %llx:%d, global=%d, current %d\n",
352 __func__, engine->name,
353 rq->fence.context, rq->fence.seqno,
354 rq->global_seqno,
355 intel_engine_get_seqno(engine));
357 GEM_BUG_ON(!i915_request_completed(rq));
359 local_irq_disable();
361 spin_lock(&engine->timeline.lock);
362 GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
363 list_del_init(&rq->link);
364 spin_unlock(&engine->timeline.lock);
366 spin_lock(&rq->lock);
367 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
368 dma_fence_signal_locked(&rq->fence);
369 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
370 intel_engine_cancel_signaling(rq);
371 if (rq->waitboost) {
372 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
373 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
375 spin_unlock(&rq->lock);
377 local_irq_enable();
380 * The backing object for the context is done after switching to the
381 * *next* context. Therefore we cannot retire the previous context until
382 * the next context has already started running. However, since we
383 * cannot take the required locks at i915_request_submit() we
384 * defer the unpinning of the active context to now, retirement of
385 * the subsequent request.
387 if (engine->last_retired_context)
388 intel_context_unpin(engine->last_retired_context);
389 engine->last_retired_context = rq->hw_context;
392 static void __retire_engine_upto(struct intel_engine_cs *engine,
393 struct i915_request *rq)
395 struct i915_request *tmp;
397 if (list_empty(&rq->link))
398 return;
400 do {
401 tmp = list_first_entry(&engine->timeline.requests,
402 typeof(*tmp), link);
404 GEM_BUG_ON(tmp->engine != engine);
405 __retire_engine_request(engine, tmp);
406 } while (tmp != rq);
409 static void i915_request_retire(struct i915_request *request)
411 struct i915_gem_active *active, *next;
413 GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
414 request->engine->name,
415 request->fence.context, request->fence.seqno,
416 request->global_seqno,
417 intel_engine_get_seqno(request->engine));
419 lockdep_assert_held(&request->i915->drm.struct_mutex);
420 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
421 GEM_BUG_ON(!i915_request_completed(request));
423 trace_i915_request_retire(request);
425 advance_ring(request);
426 free_capture_list(request);
429 * Walk through the active list, calling retire on each. This allows
430 * objects to track their GPU activity and mark themselves as idle
431 * when their *last* active request is completed (updating state
432 * tracking lists for eviction, active references for GEM, etc).
434 * As the ->retire() may free the node, we decouple it first and
435 * pass along the auxiliary information (to avoid dereferencing
436 * the node after the callback).
438 list_for_each_entry_safe(active, next, &request->active_list, link) {
440 * In microbenchmarks or focusing upon time inside the kernel,
441 * we may spend an inordinate amount of time simply handling
442 * the retirement of requests and processing their callbacks.
443 * Of which, this loop itself is particularly hot due to the
444 * cache misses when jumping around the list of i915_gem_active.
445 * So we try to keep this loop as streamlined as possible and
446 * also prefetch the next i915_gem_active to try and hide
447 * the likely cache miss.
449 prefetchw(next);
451 INIT_LIST_HEAD(&active->link);
452 RCU_INIT_POINTER(active->request, NULL);
454 active->retire(active, request);
457 i915_request_remove_from_client(request);
459 /* Retirement decays the ban score as it is a sign of ctx progress */
460 atomic_dec_if_positive(&request->gem_context->ban_score);
461 intel_context_unpin(request->hw_context);
463 __retire_engine_upto(request->engine, request);
465 unreserve_gt(request->i915);
467 i915_sched_node_fini(request->i915, &request->sched);
468 i915_request_put(request);
471 void i915_request_retire_upto(struct i915_request *rq)
473 struct intel_ring *ring = rq->ring;
474 struct i915_request *tmp;
476 GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
477 rq->engine->name,
478 rq->fence.context, rq->fence.seqno,
479 rq->global_seqno,
480 intel_engine_get_seqno(rq->engine));
482 lockdep_assert_held(&rq->i915->drm.struct_mutex);
483 GEM_BUG_ON(!i915_request_completed(rq));
485 if (list_empty(&rq->ring_link))
486 return;
488 do {
489 tmp = list_first_entry(&ring->request_list,
490 typeof(*tmp), ring_link);
492 i915_request_retire(tmp);
493 } while (tmp != rq);
496 static u32 timeline_get_seqno(struct i915_timeline *tl)
498 return ++tl->seqno;
501 static void move_to_timeline(struct i915_request *request,
502 struct i915_timeline *timeline)
504 GEM_BUG_ON(request->timeline == &request->engine->timeline);
505 lockdep_assert_held(&request->engine->timeline.lock);
507 spin_lock(&request->timeline->lock);
508 list_move_tail(&request->link, &timeline->requests);
509 spin_unlock(&request->timeline->lock);
512 void __i915_request_submit(struct i915_request *request)
514 struct intel_engine_cs *engine = request->engine;
515 u32 seqno;
517 GEM_TRACE("%s fence %llx:%d -> global=%d, current %d\n",
518 engine->name,
519 request->fence.context, request->fence.seqno,
520 engine->timeline.seqno + 1,
521 intel_engine_get_seqno(engine));
523 GEM_BUG_ON(!irqs_disabled());
524 lockdep_assert_held(&engine->timeline.lock);
526 GEM_BUG_ON(request->global_seqno);
528 seqno = timeline_get_seqno(&engine->timeline);
529 GEM_BUG_ON(!seqno);
530 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
532 /* We may be recursing from the signal callback of another i915 fence */
533 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
534 request->global_seqno = seqno;
535 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
536 intel_engine_enable_signaling(request, false);
537 spin_unlock(&request->lock);
539 engine->emit_breadcrumb(request,
540 request->ring->vaddr + request->postfix);
542 /* Transfer from per-context onto the global per-engine timeline */
543 move_to_timeline(request, &engine->timeline);
545 trace_i915_request_execute(request);
547 wake_up_all(&request->execute);
550 void i915_request_submit(struct i915_request *request)
552 struct intel_engine_cs *engine = request->engine;
553 unsigned long flags;
555 /* Will be called from irq-context when using foreign fences. */
556 spin_lock_irqsave(&engine->timeline.lock, flags);
558 __i915_request_submit(request);
560 spin_unlock_irqrestore(&engine->timeline.lock, flags);
563 void __i915_request_unsubmit(struct i915_request *request)
565 struct intel_engine_cs *engine = request->engine;
567 GEM_TRACE("%s fence %llx:%d <- global=%d, current %d\n",
568 engine->name,
569 request->fence.context, request->fence.seqno,
570 request->global_seqno,
571 intel_engine_get_seqno(engine));
573 GEM_BUG_ON(!irqs_disabled());
574 lockdep_assert_held(&engine->timeline.lock);
577 * Only unwind in reverse order, required so that the per-context list
578 * is kept in seqno/ring order.
580 GEM_BUG_ON(!request->global_seqno);
581 GEM_BUG_ON(request->global_seqno != engine->timeline.seqno);
582 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine),
583 request->global_seqno));
584 engine->timeline.seqno--;
586 /* We may be recursing from the signal callback of another i915 fence */
587 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
588 request->global_seqno = 0;
589 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
590 intel_engine_cancel_signaling(request);
591 spin_unlock(&request->lock);
593 /* Transfer back from the global per-engine timeline to per-context */
594 move_to_timeline(request, request->timeline);
597 * We don't need to wake_up any waiters on request->execute, they
598 * will get woken by any other event or us re-adding this request
599 * to the engine timeline (__i915_request_submit()). The waiters
600 * should be quite adapt at finding that the request now has a new
601 * global_seqno to the one they went to sleep on.
605 void i915_request_unsubmit(struct i915_request *request)
607 struct intel_engine_cs *engine = request->engine;
608 unsigned long flags;
610 /* Will be called from irq-context when using foreign fences. */
611 spin_lock_irqsave(&engine->timeline.lock, flags);
613 __i915_request_unsubmit(request);
615 spin_unlock_irqrestore(&engine->timeline.lock, flags);
618 static int __i915_sw_fence_call
619 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
621 struct i915_request *request =
622 container_of(fence, typeof(*request), submit);
624 switch (state) {
625 case FENCE_COMPLETE:
626 trace_i915_request_submit(request);
628 * We need to serialize use of the submit_request() callback
629 * with its hotplugging performed during an emergency
630 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
631 * critical section in order to force i915_gem_set_wedged() to
632 * wait until the submit_request() is completed before
633 * proceeding.
635 rcu_read_lock();
636 request->engine->submit_request(request);
637 rcu_read_unlock();
638 break;
640 case FENCE_FREE:
641 i915_request_put(request);
642 break;
645 return NOTIFY_DONE;
649 * i915_request_alloc - allocate a request structure
651 * @engine: engine that we wish to issue the request on.
652 * @ctx: context that the request will be associated with.
654 * Returns a pointer to the allocated request if successful,
655 * or an error code if not.
657 struct i915_request *
658 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
660 struct drm_i915_private *i915 = engine->i915;
661 struct i915_request *rq;
662 struct intel_context *ce;
663 int ret;
665 lockdep_assert_held(&i915->drm.struct_mutex);
668 * Preempt contexts are reserved for exclusive use to inject a
669 * preemption context switch. They are never to be used for any trivial
670 * request!
672 GEM_BUG_ON(ctx == i915->preempt_context);
675 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
676 * EIO if the GPU is already wedged.
678 if (i915_terminally_wedged(&i915->gpu_error))
679 return ERR_PTR(-EIO);
682 * Pinning the contexts may generate requests in order to acquire
683 * GGTT space, so do this first before we reserve a seqno for
684 * ourselves.
686 ce = intel_context_pin(ctx, engine);
687 if (IS_ERR(ce))
688 return ERR_CAST(ce);
690 ret = reserve_gt(i915);
691 if (ret)
692 goto err_unpin;
694 ret = intel_ring_wait_for_space(ce->ring, MIN_SPACE_FOR_ADD_REQUEST);
695 if (ret)
696 goto err_unreserve;
698 /* Move our oldest request to the slab-cache (if not in use!) */
699 rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
700 if (!list_is_last(&rq->ring_link, &ce->ring->request_list) &&
701 i915_request_completed(rq))
702 i915_request_retire(rq);
705 * Beware: Dragons be flying overhead.
707 * We use RCU to look up requests in flight. The lookups may
708 * race with the request being allocated from the slab freelist.
709 * That is the request we are writing to here, may be in the process
710 * of being read by __i915_gem_active_get_rcu(). As such,
711 * we have to be very careful when overwriting the contents. During
712 * the RCU lookup, we change chase the request->engine pointer,
713 * read the request->global_seqno and increment the reference count.
715 * The reference count is incremented atomically. If it is zero,
716 * the lookup knows the request is unallocated and complete. Otherwise,
717 * it is either still in use, or has been reallocated and reset
718 * with dma_fence_init(). This increment is safe for release as we
719 * check that the request we have a reference to and matches the active
720 * request.
722 * Before we increment the refcount, we chase the request->engine
723 * pointer. We must not call kmem_cache_zalloc() or else we set
724 * that pointer to NULL and cause a crash during the lookup. If
725 * we see the request is completed (based on the value of the
726 * old engine and seqno), the lookup is complete and reports NULL.
727 * If we decide the request is not completed (new engine or seqno),
728 * then we grab a reference and double check that it is still the
729 * active request - which it won't be and restart the lookup.
731 * Do not use kmem_cache_zalloc() here!
733 rq = kmem_cache_alloc(i915->requests,
734 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
735 if (unlikely(!rq)) {
736 /* Ratelimit ourselves to prevent oom from malicious clients */
737 ret = i915_gem_wait_for_idle(i915,
738 I915_WAIT_LOCKED |
739 I915_WAIT_INTERRUPTIBLE,
740 MAX_SCHEDULE_TIMEOUT);
741 if (ret)
742 goto err_unreserve;
745 * We've forced the client to stall and catch up with whatever
746 * backlog there might have been. As we are assuming that we
747 * caused the mempressure, now is an opportune time to
748 * recover as much memory from the request pool as is possible.
749 * Having already penalized the client to stall, we spend
750 * a little extra time to re-optimise page allocation.
752 kmem_cache_shrink(i915->requests);
753 rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */
755 rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
756 if (!rq) {
757 ret = -ENOMEM;
758 goto err_unreserve;
762 INIT_LIST_HEAD(&rq->active_list);
763 rq->i915 = i915;
764 rq->engine = engine;
765 rq->gem_context = ctx;
766 rq->hw_context = ce;
767 rq->ring = ce->ring;
768 rq->timeline = ce->ring->timeline;
769 GEM_BUG_ON(rq->timeline == &engine->timeline);
771 spin_lock_init(&rq->lock);
772 dma_fence_init(&rq->fence,
773 &i915_fence_ops,
774 &rq->lock,
775 rq->timeline->fence_context,
776 timeline_get_seqno(rq->timeline));
778 /* We bump the ref for the fence chain */
779 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
780 init_waitqueue_head(&rq->execute);
782 i915_sched_node_init(&rq->sched);
784 /* No zalloc, must clear what we need by hand */
785 rq->global_seqno = 0;
786 rq->signaling.wait.seqno = 0;
787 rq->file_priv = NULL;
788 rq->batch = NULL;
789 rq->capture_list = NULL;
790 rq->waitboost = false;
793 * Reserve space in the ring buffer for all the commands required to
794 * eventually emit this request. This is to guarantee that the
795 * i915_request_add() call can't fail. Note that the reserve may need
796 * to be redone if the request is not actually submitted straight
797 * away, e.g. because a GPU scheduler has deferred it.
799 rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
800 GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
803 * Record the position of the start of the request so that
804 * should we detect the updated seqno part-way through the
805 * GPU processing the request, we never over-estimate the
806 * position of the head.
808 rq->head = rq->ring->emit;
810 /* Unconditionally invalidate GPU caches and TLBs. */
811 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
812 if (ret)
813 goto err_unwind;
815 ret = engine->request_alloc(rq);
816 if (ret)
817 goto err_unwind;
819 /* Keep a second pin for the dual retirement along engine and ring */
820 __intel_context_pin(ce);
822 rq->infix = rq->ring->emit; /* end of header; start of user payload */
824 /* Check that we didn't interrupt ourselves with a new request */
825 GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
826 return rq;
828 err_unwind:
829 ce->ring->emit = rq->head;
831 /* Make sure we didn't add ourselves to external state before freeing */
832 GEM_BUG_ON(!list_empty(&rq->active_list));
833 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
834 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
836 kmem_cache_free(i915->requests, rq);
837 err_unreserve:
838 unreserve_gt(i915);
839 err_unpin:
840 intel_context_unpin(ce);
841 return ERR_PTR(ret);
844 static int
845 i915_request_await_request(struct i915_request *to, struct i915_request *from)
847 int ret;
849 GEM_BUG_ON(to == from);
850 GEM_BUG_ON(to->timeline == from->timeline);
852 if (i915_request_completed(from))
853 return 0;
855 if (to->engine->schedule) {
856 ret = i915_sched_node_add_dependency(to->i915,
857 &to->sched,
858 &from->sched);
859 if (ret < 0)
860 return ret;
863 if (to->engine == from->engine) {
864 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
865 &from->submit,
866 I915_FENCE_GFP);
867 return ret < 0 ? ret : 0;
870 if (to->engine->semaphore.sync_to) {
871 u32 seqno;
873 GEM_BUG_ON(!from->engine->semaphore.signal);
875 seqno = i915_request_global_seqno(from);
876 if (!seqno)
877 goto await_dma_fence;
879 if (seqno <= to->timeline->global_sync[from->engine->id])
880 return 0;
882 trace_i915_gem_ring_sync_to(to, from);
883 ret = to->engine->semaphore.sync_to(to, from);
884 if (ret)
885 return ret;
887 to->timeline->global_sync[from->engine->id] = seqno;
888 return 0;
891 await_dma_fence:
892 ret = i915_sw_fence_await_dma_fence(&to->submit,
893 &from->fence, 0,
894 I915_FENCE_GFP);
895 return ret < 0 ? ret : 0;
899 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
901 struct dma_fence **child = &fence;
902 unsigned int nchild = 1;
903 int ret;
906 * Note that if the fence-array was created in signal-on-any mode,
907 * we should *not* decompose it into its individual fences. However,
908 * we don't currently store which mode the fence-array is operating
909 * in. Fortunately, the only user of signal-on-any is private to
910 * amdgpu and we should not see any incoming fence-array from
911 * sync-file being in signal-on-any mode.
913 if (dma_fence_is_array(fence)) {
914 struct dma_fence_array *array = to_dma_fence_array(fence);
916 child = array->fences;
917 nchild = array->num_fences;
918 GEM_BUG_ON(!nchild);
921 do {
922 fence = *child++;
923 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
924 continue;
927 * Requests on the same timeline are explicitly ordered, along
928 * with their dependencies, by i915_request_add() which ensures
929 * that requests are submitted in-order through each ring.
931 if (fence->context == rq->fence.context)
932 continue;
934 /* Squash repeated waits to the same timelines */
935 if (fence->context != rq->i915->mm.unordered_timeline &&
936 i915_timeline_sync_is_later(rq->timeline, fence))
937 continue;
939 if (dma_fence_is_i915(fence))
940 ret = i915_request_await_request(rq, to_request(fence));
941 else
942 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
943 I915_FENCE_TIMEOUT,
944 I915_FENCE_GFP);
945 if (ret < 0)
946 return ret;
948 /* Record the latest fence used against each timeline */
949 if (fence->context != rq->i915->mm.unordered_timeline)
950 i915_timeline_sync_set(rq->timeline, fence);
951 } while (--nchild);
953 return 0;
957 * i915_request_await_object - set this request to (async) wait upon a bo
958 * @to: request we are wishing to use
959 * @obj: object which may be in use on another ring.
960 * @write: whether the wait is on behalf of a writer
962 * This code is meant to abstract object synchronization with the GPU.
963 * Conceptually we serialise writes between engines inside the GPU.
964 * We only allow one engine to write into a buffer at any time, but
965 * multiple readers. To ensure each has a coherent view of memory, we must:
967 * - If there is an outstanding write request to the object, the new
968 * request must wait for it to complete (either CPU or in hw, requests
969 * on the same ring will be naturally ordered).
971 * - If we are a write request (pending_write_domain is set), the new
972 * request must wait for outstanding read requests to complete.
974 * Returns 0 if successful, else propagates up the lower layer error.
977 i915_request_await_object(struct i915_request *to,
978 struct drm_i915_gem_object *obj,
979 bool write)
981 struct dma_fence *excl;
982 int ret = 0;
984 if (write) {
985 struct dma_fence **shared;
986 unsigned int count, i;
988 ret = reservation_object_get_fences_rcu(obj->resv,
989 &excl, &count, &shared);
990 if (ret)
991 return ret;
993 for (i = 0; i < count; i++) {
994 ret = i915_request_await_dma_fence(to, shared[i]);
995 if (ret)
996 break;
998 dma_fence_put(shared[i]);
1001 for (; i < count; i++)
1002 dma_fence_put(shared[i]);
1003 kfree(shared);
1004 } else {
1005 excl = reservation_object_get_excl_rcu(obj->resv);
1008 if (excl) {
1009 if (ret == 0)
1010 ret = i915_request_await_dma_fence(to, excl);
1012 dma_fence_put(excl);
1015 return ret;
1018 void i915_request_skip(struct i915_request *rq, int error)
1020 void *vaddr = rq->ring->vaddr;
1021 u32 head;
1023 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1024 dma_fence_set_error(&rq->fence, error);
1027 * As this request likely depends on state from the lost
1028 * context, clear out all the user operations leaving the
1029 * breadcrumb at the end (so we get the fence notifications).
1031 head = rq->infix;
1032 if (rq->postfix < head) {
1033 memset(vaddr + head, 0, rq->ring->size - head);
1034 head = 0;
1036 memset(vaddr + head, 0, rq->postfix - head);
1040 * NB: This function is not allowed to fail. Doing so would mean the the
1041 * request is not being tracked for completion but the work itself is
1042 * going to happen on the hardware. This would be a Bad Thing(tm).
1044 void i915_request_add(struct i915_request *request)
1046 struct intel_engine_cs *engine = request->engine;
1047 struct i915_timeline *timeline = request->timeline;
1048 struct intel_ring *ring = request->ring;
1049 struct i915_request *prev;
1050 u32 *cs;
1052 GEM_TRACE("%s fence %llx:%d\n",
1053 engine->name, request->fence.context, request->fence.seqno);
1055 lockdep_assert_held(&request->i915->drm.struct_mutex);
1056 trace_i915_request_add(request);
1059 * Make sure that no request gazumped us - if it was allocated after
1060 * our i915_request_alloc() and called __i915_request_add() before
1061 * us, the timeline will hold its seqno which is later than ours.
1063 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1066 * To ensure that this call will not fail, space for its emissions
1067 * should already have been reserved in the ring buffer. Let the ring
1068 * know that it is time to use that space up.
1070 request->reserved_space = 0;
1071 engine->emit_flush(request, EMIT_FLUSH);
1074 * Record the position of the start of the breadcrumb so that
1075 * should we detect the updated seqno part-way through the
1076 * GPU processing the request, we never over-estimate the
1077 * position of the ring's HEAD.
1079 cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
1080 GEM_BUG_ON(IS_ERR(cs));
1081 request->postfix = intel_ring_offset(request, cs);
1084 * Seal the request and mark it as pending execution. Note that
1085 * we may inspect this state, without holding any locks, during
1086 * hangcheck. Hence we apply the barrier to ensure that we do not
1087 * see a more recent value in the hws than we are tracking.
1090 prev = i915_gem_active_raw(&timeline->last_request,
1091 &request->i915->drm.struct_mutex);
1092 if (prev && !i915_request_completed(prev)) {
1093 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1094 &request->submitq);
1095 if (engine->schedule)
1096 __i915_sched_node_add_dependency(&request->sched,
1097 &prev->sched,
1098 &request->dep,
1102 spin_lock_irq(&timeline->lock);
1103 list_add_tail(&request->link, &timeline->requests);
1104 spin_unlock_irq(&timeline->lock);
1106 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1107 i915_gem_active_set(&timeline->last_request, request);
1109 list_add_tail(&request->ring_link, &ring->request_list);
1110 if (list_is_first(&request->ring_link, &ring->request_list)) {
1111 GEM_TRACE("marking %s as active\n", ring->timeline->name);
1112 list_add(&ring->active_link, &request->i915->gt.active_rings);
1114 request->emitted_jiffies = jiffies;
1117 * Let the backend know a new request has arrived that may need
1118 * to adjust the existing execution schedule due to a high priority
1119 * request - i.e. we may want to preempt the current request in order
1120 * to run a high priority dependency chain *before* we can execute this
1121 * request.
1123 * This is called before the request is ready to run so that we can
1124 * decide whether to preempt the entire chain so that it is ready to
1125 * run at the earliest possible convenience.
1127 local_bh_disable();
1128 rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1129 if (engine->schedule)
1130 engine->schedule(request, &request->gem_context->sched);
1131 rcu_read_unlock();
1132 i915_sw_fence_commit(&request->submit);
1133 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1136 * In typical scenarios, we do not expect the previous request on
1137 * the timeline to be still tracked by timeline->last_request if it
1138 * has been completed. If the completed request is still here, that
1139 * implies that request retirement is a long way behind submission,
1140 * suggesting that we haven't been retiring frequently enough from
1141 * the combination of retire-before-alloc, waiters and the background
1142 * retirement worker. So if the last request on this timeline was
1143 * already completed, do a catch up pass, flushing the retirement queue
1144 * up to this client. Since we have now moved the heaviest operations
1145 * during retirement onto secondary workers, such as freeing objects
1146 * or contexts, retiring a bunch of requests is mostly list management
1147 * (and cache misses), and so we should not be overly penalizing this
1148 * client by performing excess work, though we may still performing
1149 * work on behalf of others -- but instead we should benefit from
1150 * improved resource management. (Well, that's the theory at least.)
1152 if (prev && i915_request_completed(prev))
1153 i915_request_retire_upto(prev);
1156 static unsigned long local_clock_us(unsigned int *cpu)
1158 unsigned long t;
1161 * Cheaply and approximately convert from nanoseconds to microseconds.
1162 * The result and subsequent calculations are also defined in the same
1163 * approximate microseconds units. The principal source of timing
1164 * error here is from the simple truncation.
1166 * Note that local_clock() is only defined wrt to the current CPU;
1167 * the comparisons are no longer valid if we switch CPUs. Instead of
1168 * blocking preemption for the entire busywait, we can detect the CPU
1169 * switch and use that as indicator of system load and a reason to
1170 * stop busywaiting, see busywait_stop().
1172 *cpu = get_cpu();
1173 t = local_clock() >> 10;
1174 put_cpu();
1176 return t;
1179 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1181 unsigned int this_cpu;
1183 if (time_after(local_clock_us(&this_cpu), timeout))
1184 return true;
1186 return this_cpu != cpu;
1189 static bool __i915_spin_request(const struct i915_request *rq,
1190 u32 seqno, int state, unsigned long timeout_us)
1192 struct intel_engine_cs *engine = rq->engine;
1193 unsigned int irq, cpu;
1195 GEM_BUG_ON(!seqno);
1198 * Only wait for the request if we know it is likely to complete.
1200 * We don't track the timestamps around requests, nor the average
1201 * request length, so we do not have a good indicator that this
1202 * request will complete within the timeout. What we do know is the
1203 * order in which requests are executed by the engine and so we can
1204 * tell if the request has started. If the request hasn't started yet,
1205 * it is a fair assumption that it will not complete within our
1206 * relatively short timeout.
1208 if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
1209 return false;
1212 * When waiting for high frequency requests, e.g. during synchronous
1213 * rendering split between the CPU and GPU, the finite amount of time
1214 * required to set up the irq and wait upon it limits the response
1215 * rate. By busywaiting on the request completion for a short while we
1216 * can service the high frequency waits as quick as possible. However,
1217 * if it is a slow request, we want to sleep as quickly as possible.
1218 * The tradeoff between waiting and sleeping is roughly the time it
1219 * takes to sleep on a request, on the order of a microsecond.
1222 irq = READ_ONCE(engine->breadcrumbs.irq_count);
1223 timeout_us += local_clock_us(&cpu);
1224 do {
1225 if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
1226 return seqno == i915_request_global_seqno(rq);
1229 * Seqno are meant to be ordered *before* the interrupt. If
1230 * we see an interrupt without a corresponding seqno advance,
1231 * assume we won't see one in the near future but require
1232 * the engine->seqno_barrier() to fixup coherency.
1234 if (READ_ONCE(engine->breadcrumbs.irq_count) != irq)
1235 break;
1237 if (signal_pending_state(state, current))
1238 break;
1240 if (busywait_stop(timeout_us, cpu))
1241 break;
1243 cpu_relax();
1244 } while (!need_resched());
1246 return false;
1249 static bool __i915_wait_request_check_and_reset(struct i915_request *request)
1251 struct i915_gpu_error *error = &request->i915->gpu_error;
1253 if (likely(!i915_reset_handoff(error)))
1254 return false;
1256 __set_current_state(TASK_RUNNING);
1257 i915_reset(request->i915, error->stalled_mask, error->reason);
1258 return true;
1262 * i915_request_wait - wait until execution of request has finished
1263 * @rq: the request to wait upon
1264 * @flags: how to wait
1265 * @timeout: how long to wait in jiffies
1267 * i915_request_wait() waits for the request to be completed, for a
1268 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1269 * unbounded wait).
1271 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1272 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1273 * must not specify that the wait is locked.
1275 * Returns the remaining time (in jiffies) if the request completed, which may
1276 * be zero or -ETIME if the request is unfinished after the timeout expires.
1277 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1278 * pending before the request completes.
1280 long i915_request_wait(struct i915_request *rq,
1281 unsigned int flags,
1282 long timeout)
1284 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1285 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1286 wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
1287 DEFINE_WAIT_FUNC(reset, default_wake_function);
1288 DEFINE_WAIT_FUNC(exec, default_wake_function);
1289 struct intel_wait wait;
1291 might_sleep();
1292 #if IS_ENABLED(CONFIG_LOCKDEP)
1293 GEM_BUG_ON(debug_locks &&
1294 !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
1295 !!(flags & I915_WAIT_LOCKED));
1296 #endif
1297 GEM_BUG_ON(timeout < 0);
1299 if (i915_request_completed(rq))
1300 return timeout;
1302 if (!timeout)
1303 return -ETIME;
1305 trace_i915_request_wait_begin(rq, flags);
1307 add_wait_queue(&rq->execute, &exec);
1308 if (flags & I915_WAIT_LOCKED)
1309 add_wait_queue(errq, &reset);
1311 intel_wait_init(&wait);
1313 restart:
1314 do {
1315 set_current_state(state);
1316 if (intel_wait_update_request(&wait, rq))
1317 break;
1319 if (flags & I915_WAIT_LOCKED &&
1320 __i915_wait_request_check_and_reset(rq))
1321 continue;
1323 if (signal_pending_state(state, current)) {
1324 timeout = -ERESTARTSYS;
1325 goto complete;
1328 if (!timeout) {
1329 timeout = -ETIME;
1330 goto complete;
1333 timeout = io_schedule_timeout(timeout);
1334 } while (1);
1336 GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1337 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
1339 /* Optimistic short spin before touching IRQs */
1340 if (__i915_spin_request(rq, wait.seqno, state, 5))
1341 goto complete;
1343 set_current_state(state);
1344 if (intel_engine_add_wait(rq->engine, &wait))
1346 * In order to check that we haven't missed the interrupt
1347 * as we enabled it, we need to kick ourselves to do a
1348 * coherent check on the seqno before we sleep.
1350 goto wakeup;
1352 if (flags & I915_WAIT_LOCKED)
1353 __i915_wait_request_check_and_reset(rq);
1355 for (;;) {
1356 if (signal_pending_state(state, current)) {
1357 timeout = -ERESTARTSYS;
1358 break;
1361 if (!timeout) {
1362 timeout = -ETIME;
1363 break;
1366 timeout = io_schedule_timeout(timeout);
1368 if (intel_wait_complete(&wait) &&
1369 intel_wait_check_request(&wait, rq))
1370 break;
1372 set_current_state(state);
1374 wakeup:
1376 * Carefully check if the request is complete, giving time
1377 * for the seqno to be visible following the interrupt.
1378 * We also have to check in case we are kicked by the GPU
1379 * reset in order to drop the struct_mutex.
1381 if (__i915_request_irq_complete(rq))
1382 break;
1385 * If the GPU is hung, and we hold the lock, reset the GPU
1386 * and then check for completion. On a full reset, the engine's
1387 * HW seqno will be advanced passed us and we are complete.
1388 * If we do a partial reset, we have to wait for the GPU to
1389 * resume and update the breadcrumb.
1391 * If we don't hold the mutex, we can just wait for the worker
1392 * to come along and update the breadcrumb (either directly
1393 * itself, or indirectly by recovering the GPU).
1395 if (flags & I915_WAIT_LOCKED &&
1396 __i915_wait_request_check_and_reset(rq))
1397 continue;
1399 /* Only spin if we know the GPU is processing this request */
1400 if (__i915_spin_request(rq, wait.seqno, state, 2))
1401 break;
1403 if (!intel_wait_check_request(&wait, rq)) {
1404 intel_engine_remove_wait(rq->engine, &wait);
1405 goto restart;
1409 intel_engine_remove_wait(rq->engine, &wait);
1410 complete:
1411 __set_current_state(TASK_RUNNING);
1412 if (flags & I915_WAIT_LOCKED)
1413 remove_wait_queue(errq, &reset);
1414 remove_wait_queue(&rq->execute, &exec);
1415 trace_i915_request_wait_end(rq);
1417 return timeout;
1420 static void ring_retire_requests(struct intel_ring *ring)
1422 struct i915_request *request, *next;
1424 list_for_each_entry_safe(request, next,
1425 &ring->request_list, ring_link) {
1426 if (!i915_request_completed(request))
1427 break;
1429 i915_request_retire(request);
1433 void i915_retire_requests(struct drm_i915_private *i915)
1435 struct intel_ring *ring, *tmp;
1437 lockdep_assert_held(&i915->drm.struct_mutex);
1439 if (!i915->gt.active_requests)
1440 return;
1442 list_for_each_entry_safe(ring, tmp, &i915->gt.active_rings, active_link)
1443 ring_retire_requests(ring);
1446 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1447 #include "selftests/mock_request.c"
1448 #include "selftests/i915_request.c"
1449 #endif