vt: vt_ioctl: fix VT_DISALLOCATE freeing in-use virtual console
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / intel_pm.c
blob8d731eb1de69cb1177a6564d324e4a5d56d9ee75
1 /*
2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
36 /**
37 * DOC: RC6
39 * RC6 is a special power stage which allows the GPU to enter an very
40 * low-voltage mode when idle, using down to 0V while at this stage. This
41 * stage is entered automatically when the GPU is idle when RC6 support is
42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
44 * There are different RC6 modes available in Intel GPU, which differentiate
45 * among each other with the latency required to enter and leave RC6 and
46 * voltage consumed by the GPU in different states.
48 * The combination of the following flags define which states GPU is allowed
49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50 * RC6pp is deepest RC6. Their support by hardware varies according to the
51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52 * which brings the most power savings; deeper states save more power, but
53 * require higher latency to switch to and wake up.
56 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
58 if (HAS_LLC(dev_priv)) {
60 * WaCompressedResourceDisplayNewHashMode:skl,kbl
61 * Display WA #0390: skl,kbl
63 * Must match Sampler, Pixel Back End, and Media. See
64 * WaCompressedResourceSamplerPbeMediaNewHashMode.
66 I915_WRITE(CHICKEN_PAR1_1,
67 I915_READ(CHICKEN_PAR1_1) |
68 SKL_DE_COMPRESSED_HASH_MODE);
71 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
72 I915_WRITE(CHICKEN_PAR1_1,
73 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
75 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
76 I915_WRITE(GEN8_CHICKEN_DCPR_1,
77 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
79 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
80 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
81 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
82 DISP_FBC_WM_DIS |
83 DISP_FBC_MEMORY_WAKE);
85 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
86 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
87 ILK_DPFC_DISABLE_DUMMY0);
89 if (IS_SKYLAKE(dev_priv)) {
90 /* WaDisableDopClockGating */
91 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
92 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
96 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
98 gen9_init_clock_gating(dev_priv);
100 /* WaDisableSDEUnitClockGating:bxt */
101 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
102 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
105 * FIXME:
106 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
108 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
109 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
112 * Wa: Backlight PWM may stop in the asserted state, causing backlight
113 * to stay fully on.
115 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
116 PWM1_GATING_DIS | PWM2_GATING_DIS);
119 * Lower the display internal timeout.
120 * This is needed to avoid any hard hangs when DSI port PLL
121 * is off and a MMIO access is attempted by any privilege
122 * application, using batch buffers or any other means.
124 I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
127 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
129 gen9_init_clock_gating(dev_priv);
132 * WaDisablePWMClockGating:glk
133 * Backlight PWM may stop in the asserted state, causing backlight
134 * to stay fully on.
136 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
137 PWM1_GATING_DIS | PWM2_GATING_DIS);
139 /* WaDDIIOTimeout:glk */
140 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
141 u32 val = I915_READ(CHICKEN_MISC_2);
142 val &= ~(GLK_CL0_PWR_DOWN |
143 GLK_CL1_PWR_DOWN |
144 GLK_CL2_PWR_DOWN);
145 I915_WRITE(CHICKEN_MISC_2, val);
150 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
152 u32 tmp;
154 tmp = I915_READ(CLKCFG);
156 switch (tmp & CLKCFG_FSB_MASK) {
157 case CLKCFG_FSB_533:
158 dev_priv->fsb_freq = 533; /* 133*4 */
159 break;
160 case CLKCFG_FSB_800:
161 dev_priv->fsb_freq = 800; /* 200*4 */
162 break;
163 case CLKCFG_FSB_667:
164 dev_priv->fsb_freq = 667; /* 167*4 */
165 break;
166 case CLKCFG_FSB_400:
167 dev_priv->fsb_freq = 400; /* 100*4 */
168 break;
171 switch (tmp & CLKCFG_MEM_MASK) {
172 case CLKCFG_MEM_533:
173 dev_priv->mem_freq = 533;
174 break;
175 case CLKCFG_MEM_667:
176 dev_priv->mem_freq = 667;
177 break;
178 case CLKCFG_MEM_800:
179 dev_priv->mem_freq = 800;
180 break;
183 /* detect pineview DDR3 setting */
184 tmp = I915_READ(CSHRDDR3CTL);
185 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
188 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
190 u16 ddrpll, csipll;
192 ddrpll = I915_READ16(DDRMPLL1);
193 csipll = I915_READ16(CSIPLL0);
195 switch (ddrpll & 0xff) {
196 case 0xc:
197 dev_priv->mem_freq = 800;
198 break;
199 case 0x10:
200 dev_priv->mem_freq = 1066;
201 break;
202 case 0x14:
203 dev_priv->mem_freq = 1333;
204 break;
205 case 0x18:
206 dev_priv->mem_freq = 1600;
207 break;
208 default:
209 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
210 ddrpll & 0xff);
211 dev_priv->mem_freq = 0;
212 break;
215 dev_priv->ips.r_t = dev_priv->mem_freq;
217 switch (csipll & 0x3ff) {
218 case 0x00c:
219 dev_priv->fsb_freq = 3200;
220 break;
221 case 0x00e:
222 dev_priv->fsb_freq = 3733;
223 break;
224 case 0x010:
225 dev_priv->fsb_freq = 4266;
226 break;
227 case 0x012:
228 dev_priv->fsb_freq = 4800;
229 break;
230 case 0x014:
231 dev_priv->fsb_freq = 5333;
232 break;
233 case 0x016:
234 dev_priv->fsb_freq = 5866;
235 break;
236 case 0x018:
237 dev_priv->fsb_freq = 6400;
238 break;
239 default:
240 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
241 csipll & 0x3ff);
242 dev_priv->fsb_freq = 0;
243 break;
246 if (dev_priv->fsb_freq == 3200) {
247 dev_priv->ips.c_m = 0;
248 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
249 dev_priv->ips.c_m = 1;
250 } else {
251 dev_priv->ips.c_m = 2;
255 static const struct cxsr_latency cxsr_latency_table[] = {
256 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
257 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
258 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
259 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
260 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
262 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
263 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
264 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
265 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
266 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
268 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
269 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
270 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
271 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
272 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
274 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
275 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
276 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
277 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
278 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
280 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
281 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
282 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
283 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
284 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
286 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
287 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
288 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
289 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
290 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
293 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
294 bool is_ddr3,
295 int fsb,
296 int mem)
298 const struct cxsr_latency *latency;
299 int i;
301 if (fsb == 0 || mem == 0)
302 return NULL;
304 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
305 latency = &cxsr_latency_table[i];
306 if (is_desktop == latency->is_desktop &&
307 is_ddr3 == latency->is_ddr3 &&
308 fsb == latency->fsb_freq && mem == latency->mem_freq)
309 return latency;
312 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
314 return NULL;
317 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
319 u32 val;
321 mutex_lock(&dev_priv->pcu_lock);
323 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
324 if (enable)
325 val &= ~FORCE_DDR_HIGH_FREQ;
326 else
327 val |= FORCE_DDR_HIGH_FREQ;
328 val &= ~FORCE_DDR_LOW_FREQ;
329 val |= FORCE_DDR_FREQ_REQ_ACK;
330 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
332 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
333 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
334 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
336 mutex_unlock(&dev_priv->pcu_lock);
339 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
341 u32 val;
343 mutex_lock(&dev_priv->pcu_lock);
345 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
346 if (enable)
347 val |= DSP_MAXFIFO_PM5_ENABLE;
348 else
349 val &= ~DSP_MAXFIFO_PM5_ENABLE;
350 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
352 mutex_unlock(&dev_priv->pcu_lock);
355 #define FW_WM(value, plane) \
356 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
358 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
360 bool was_enabled;
361 u32 val;
363 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
364 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
365 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
366 POSTING_READ(FW_BLC_SELF_VLV);
367 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
368 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
369 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
370 POSTING_READ(FW_BLC_SELF);
371 } else if (IS_PINEVIEW(dev_priv)) {
372 val = I915_READ(DSPFW3);
373 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
374 if (enable)
375 val |= PINEVIEW_SELF_REFRESH_EN;
376 else
377 val &= ~PINEVIEW_SELF_REFRESH_EN;
378 I915_WRITE(DSPFW3, val);
379 POSTING_READ(DSPFW3);
380 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
381 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
382 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
383 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
384 I915_WRITE(FW_BLC_SELF, val);
385 POSTING_READ(FW_BLC_SELF);
386 } else if (IS_I915GM(dev_priv)) {
388 * FIXME can't find a bit like this for 915G, and
389 * and yet it does have the related watermark in
390 * FW_BLC_SELF. What's going on?
392 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
393 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
394 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
395 I915_WRITE(INSTPM, val);
396 POSTING_READ(INSTPM);
397 } else {
398 return false;
401 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
403 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
404 enableddisabled(enable),
405 enableddisabled(was_enabled));
407 return was_enabled;
411 * intel_set_memory_cxsr - Configure CxSR state
412 * @dev_priv: i915 device
413 * @enable: Allow vs. disallow CxSR
415 * Allow or disallow the system to enter a special CxSR
416 * (C-state self refresh) state. What typically happens in CxSR mode
417 * is that several display FIFOs may get combined into a single larger
418 * FIFO for a particular plane (so called max FIFO mode) to allow the
419 * system to defer memory fetches longer, and the memory will enter
420 * self refresh.
422 * Note that enabling CxSR does not guarantee that the system enter
423 * this special mode, nor does it guarantee that the system stays
424 * in that mode once entered. So this just allows/disallows the system
425 * to autonomously utilize the CxSR mode. Other factors such as core
426 * C-states will affect when/if the system actually enters/exits the
427 * CxSR mode.
429 * Note that on VLV/CHV this actually only controls the max FIFO mode,
430 * and the system is free to enter/exit memory self refresh at any time
431 * even when the use of CxSR has been disallowed.
433 * While the system is actually in the CxSR/max FIFO mode, some plane
434 * control registers will not get latched on vblank. Thus in order to
435 * guarantee the system will respond to changes in the plane registers
436 * we must always disallow CxSR prior to making changes to those registers.
437 * Unfortunately the system will re-evaluate the CxSR conditions at
438 * frame start which happens after vblank start (which is when the plane
439 * registers would get latched), so we can't proceed with the plane update
440 * during the same frame where we disallowed CxSR.
442 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
443 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
444 * the hardware w.r.t. HPLL SR when writing to plane registers.
445 * Disallowing just CxSR is sufficient.
447 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
449 bool ret;
451 mutex_lock(&dev_priv->wm.wm_mutex);
452 ret = _intel_set_memory_cxsr(dev_priv, enable);
453 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
454 dev_priv->wm.vlv.cxsr = enable;
455 else if (IS_G4X(dev_priv))
456 dev_priv->wm.g4x.cxsr = enable;
457 mutex_unlock(&dev_priv->wm.wm_mutex);
459 return ret;
463 * Latency for FIFO fetches is dependent on several factors:
464 * - memory configuration (speed, channels)
465 * - chipset
466 * - current MCH state
467 * It can be fairly high in some situations, so here we assume a fairly
468 * pessimal value. It's a tradeoff between extra memory fetches (if we
469 * set this value too high, the FIFO will fetch frequently to stay full)
470 * and power consumption (set it too low to save power and we might see
471 * FIFO underruns and display "flicker").
473 * A value of 5us seems to be a good balance; safe for very low end
474 * platforms but not overly aggressive on lower latency configs.
476 static const int pessimal_latency_ns = 5000;
478 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
479 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
481 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
483 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
484 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
485 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
486 enum pipe pipe = crtc->pipe;
487 int sprite0_start, sprite1_start;
489 switch (pipe) {
490 uint32_t dsparb, dsparb2, dsparb3;
491 case PIPE_A:
492 dsparb = I915_READ(DSPARB);
493 dsparb2 = I915_READ(DSPARB2);
494 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
495 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
496 break;
497 case PIPE_B:
498 dsparb = I915_READ(DSPARB);
499 dsparb2 = I915_READ(DSPARB2);
500 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
501 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
502 break;
503 case PIPE_C:
504 dsparb2 = I915_READ(DSPARB2);
505 dsparb3 = I915_READ(DSPARB3);
506 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
507 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
508 break;
509 default:
510 MISSING_CASE(pipe);
511 return;
514 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
515 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
516 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
517 fifo_state->plane[PLANE_CURSOR] = 63;
520 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
521 enum i9xx_plane_id i9xx_plane)
523 uint32_t dsparb = I915_READ(DSPARB);
524 int size;
526 size = dsparb & 0x7f;
527 if (i9xx_plane == PLANE_B)
528 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
530 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
531 dsparb, plane_name(i9xx_plane), size);
533 return size;
536 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
537 enum i9xx_plane_id i9xx_plane)
539 uint32_t dsparb = I915_READ(DSPARB);
540 int size;
542 size = dsparb & 0x1ff;
543 if (i9xx_plane == PLANE_B)
544 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
545 size >>= 1; /* Convert to cachelines */
547 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
548 dsparb, plane_name(i9xx_plane), size);
550 return size;
553 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
554 enum i9xx_plane_id i9xx_plane)
556 uint32_t dsparb = I915_READ(DSPARB);
557 int size;
559 size = dsparb & 0x7f;
560 size >>= 2; /* Convert to cachelines */
562 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
563 dsparb, plane_name(i9xx_plane), size);
565 return size;
568 /* Pineview has different values for various configs */
569 static const struct intel_watermark_params pineview_display_wm = {
570 .fifo_size = PINEVIEW_DISPLAY_FIFO,
571 .max_wm = PINEVIEW_MAX_WM,
572 .default_wm = PINEVIEW_DFT_WM,
573 .guard_size = PINEVIEW_GUARD_WM,
574 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
576 static const struct intel_watermark_params pineview_display_hplloff_wm = {
577 .fifo_size = PINEVIEW_DISPLAY_FIFO,
578 .max_wm = PINEVIEW_MAX_WM,
579 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
580 .guard_size = PINEVIEW_GUARD_WM,
581 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
583 static const struct intel_watermark_params pineview_cursor_wm = {
584 .fifo_size = PINEVIEW_CURSOR_FIFO,
585 .max_wm = PINEVIEW_CURSOR_MAX_WM,
586 .default_wm = PINEVIEW_CURSOR_DFT_WM,
587 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
588 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
590 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
591 .fifo_size = PINEVIEW_CURSOR_FIFO,
592 .max_wm = PINEVIEW_CURSOR_MAX_WM,
593 .default_wm = PINEVIEW_CURSOR_DFT_WM,
594 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
595 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
597 static const struct intel_watermark_params i965_cursor_wm_info = {
598 .fifo_size = I965_CURSOR_FIFO,
599 .max_wm = I965_CURSOR_MAX_WM,
600 .default_wm = I965_CURSOR_DFT_WM,
601 .guard_size = 2,
602 .cacheline_size = I915_FIFO_LINE_SIZE,
604 static const struct intel_watermark_params i945_wm_info = {
605 .fifo_size = I945_FIFO_SIZE,
606 .max_wm = I915_MAX_WM,
607 .default_wm = 1,
608 .guard_size = 2,
609 .cacheline_size = I915_FIFO_LINE_SIZE,
611 static const struct intel_watermark_params i915_wm_info = {
612 .fifo_size = I915_FIFO_SIZE,
613 .max_wm = I915_MAX_WM,
614 .default_wm = 1,
615 .guard_size = 2,
616 .cacheline_size = I915_FIFO_LINE_SIZE,
618 static const struct intel_watermark_params i830_a_wm_info = {
619 .fifo_size = I855GM_FIFO_SIZE,
620 .max_wm = I915_MAX_WM,
621 .default_wm = 1,
622 .guard_size = 2,
623 .cacheline_size = I830_FIFO_LINE_SIZE,
625 static const struct intel_watermark_params i830_bc_wm_info = {
626 .fifo_size = I855GM_FIFO_SIZE,
627 .max_wm = I915_MAX_WM/2,
628 .default_wm = 1,
629 .guard_size = 2,
630 .cacheline_size = I830_FIFO_LINE_SIZE,
632 static const struct intel_watermark_params i845_wm_info = {
633 .fifo_size = I830_FIFO_SIZE,
634 .max_wm = I915_MAX_WM,
635 .default_wm = 1,
636 .guard_size = 2,
637 .cacheline_size = I830_FIFO_LINE_SIZE,
641 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
642 * @pixel_rate: Pipe pixel rate in kHz
643 * @cpp: Plane bytes per pixel
644 * @latency: Memory wakeup latency in 0.1us units
646 * Compute the watermark using the method 1 or "small buffer"
647 * formula. The caller may additonally add extra cachelines
648 * to account for TLB misses and clock crossings.
650 * This method is concerned with the short term drain rate
651 * of the FIFO, ie. it does not account for blanking periods
652 * which would effectively reduce the average drain rate across
653 * a longer period. The name "small" refers to the fact the
654 * FIFO is relatively small compared to the amount of data
655 * fetched.
657 * The FIFO level vs. time graph might look something like:
659 * |\ |\
660 * | \ | \
661 * __---__---__ (- plane active, _ blanking)
662 * -> time
664 * or perhaps like this:
666 * |\|\ |\|\
667 * __----__----__ (- plane active, _ blanking)
668 * -> time
670 * Returns:
671 * The watermark in bytes
673 static unsigned int intel_wm_method1(unsigned int pixel_rate,
674 unsigned int cpp,
675 unsigned int latency)
677 uint64_t ret;
679 ret = (uint64_t) pixel_rate * cpp * latency;
680 ret = DIV_ROUND_UP_ULL(ret, 10000);
682 return ret;
686 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
687 * @pixel_rate: Pipe pixel rate in kHz
688 * @htotal: Pipe horizontal total
689 * @width: Plane width in pixels
690 * @cpp: Plane bytes per pixel
691 * @latency: Memory wakeup latency in 0.1us units
693 * Compute the watermark using the method 2 or "large buffer"
694 * formula. The caller may additonally add extra cachelines
695 * to account for TLB misses and clock crossings.
697 * This method is concerned with the long term drain rate
698 * of the FIFO, ie. it does account for blanking periods
699 * which effectively reduce the average drain rate across
700 * a longer period. The name "large" refers to the fact the
701 * FIFO is relatively large compared to the amount of data
702 * fetched.
704 * The FIFO level vs. time graph might look something like:
706 * |\___ |\___
707 * | \___ | \___
708 * | \ | \
709 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
710 * -> time
712 * Returns:
713 * The watermark in bytes
715 static unsigned int intel_wm_method2(unsigned int pixel_rate,
716 unsigned int htotal,
717 unsigned int width,
718 unsigned int cpp,
719 unsigned int latency)
721 unsigned int ret;
724 * FIXME remove once all users are computing
725 * watermarks in the correct place.
727 if (WARN_ON_ONCE(htotal == 0))
728 htotal = 1;
730 ret = (latency * pixel_rate) / (htotal * 10000);
731 ret = (ret + 1) * width * cpp;
733 return ret;
737 * intel_calculate_wm - calculate watermark level
738 * @pixel_rate: pixel clock
739 * @wm: chip FIFO params
740 * @fifo_size: size of the FIFO buffer
741 * @cpp: bytes per pixel
742 * @latency_ns: memory latency for the platform
744 * Calculate the watermark level (the level at which the display plane will
745 * start fetching from memory again). Each chip has a different display
746 * FIFO size and allocation, so the caller needs to figure that out and pass
747 * in the correct intel_watermark_params structure.
749 * As the pixel clock runs, the FIFO will be drained at a rate that depends
750 * on the pixel size. When it reaches the watermark level, it'll start
751 * fetching FIFO line sized based chunks from memory until the FIFO fills
752 * past the watermark point. If the FIFO drains completely, a FIFO underrun
753 * will occur, and a display engine hang could result.
755 static unsigned int intel_calculate_wm(int pixel_rate,
756 const struct intel_watermark_params *wm,
757 int fifo_size, int cpp,
758 unsigned int latency_ns)
760 int entries, wm_size;
763 * Note: we need to make sure we don't overflow for various clock &
764 * latency values.
765 * clocks go from a few thousand to several hundred thousand.
766 * latency is usually a few thousand
768 entries = intel_wm_method1(pixel_rate, cpp,
769 latency_ns / 100);
770 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
771 wm->guard_size;
772 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
774 wm_size = fifo_size - entries;
775 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
777 /* Don't promote wm_size to unsigned... */
778 if (wm_size > wm->max_wm)
779 wm_size = wm->max_wm;
780 if (wm_size <= 0)
781 wm_size = wm->default_wm;
784 * Bspec seems to indicate that the value shouldn't be lower than
785 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
786 * Lets go for 8 which is the burst size since certain platforms
787 * already use a hardcoded 8 (which is what the spec says should be
788 * done).
790 if (wm_size <= 8)
791 wm_size = 8;
793 return wm_size;
796 static bool is_disabling(int old, int new, int threshold)
798 return old >= threshold && new < threshold;
801 static bool is_enabling(int old, int new, int threshold)
803 return old < threshold && new >= threshold;
806 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
808 return dev_priv->wm.max_level + 1;
811 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
812 const struct intel_plane_state *plane_state)
814 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
816 /* FIXME check the 'enable' instead */
817 if (!crtc_state->base.active)
818 return false;
821 * Treat cursor with fb as always visible since cursor updates
822 * can happen faster than the vrefresh rate, and the current
823 * watermark code doesn't handle that correctly. Cursor updates
824 * which set/clear the fb or change the cursor size are going
825 * to get throttled by intel_legacy_cursor_update() to work
826 * around this problem with the watermark code.
828 if (plane->id == PLANE_CURSOR)
829 return plane_state->base.fb != NULL;
830 else
831 return plane_state->base.visible;
834 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
836 struct intel_crtc *crtc, *enabled = NULL;
838 for_each_intel_crtc(&dev_priv->drm, crtc) {
839 if (intel_crtc_active(crtc)) {
840 if (enabled)
841 return NULL;
842 enabled = crtc;
846 return enabled;
849 static void pineview_update_wm(struct intel_crtc *unused_crtc)
851 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
852 struct intel_crtc *crtc;
853 const struct cxsr_latency *latency;
854 u32 reg;
855 unsigned int wm;
857 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
858 dev_priv->is_ddr3,
859 dev_priv->fsb_freq,
860 dev_priv->mem_freq);
861 if (!latency) {
862 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
863 intel_set_memory_cxsr(dev_priv, false);
864 return;
867 crtc = single_enabled_crtc(dev_priv);
868 if (crtc) {
869 const struct drm_display_mode *adjusted_mode =
870 &crtc->config->base.adjusted_mode;
871 const struct drm_framebuffer *fb =
872 crtc->base.primary->state->fb;
873 int cpp = fb->format->cpp[0];
874 int clock = adjusted_mode->crtc_clock;
876 /* Display SR */
877 wm = intel_calculate_wm(clock, &pineview_display_wm,
878 pineview_display_wm.fifo_size,
879 cpp, latency->display_sr);
880 reg = I915_READ(DSPFW1);
881 reg &= ~DSPFW_SR_MASK;
882 reg |= FW_WM(wm, SR);
883 I915_WRITE(DSPFW1, reg);
884 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
886 /* cursor SR */
887 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
888 pineview_display_wm.fifo_size,
889 4, latency->cursor_sr);
890 reg = I915_READ(DSPFW3);
891 reg &= ~DSPFW_CURSOR_SR_MASK;
892 reg |= FW_WM(wm, CURSOR_SR);
893 I915_WRITE(DSPFW3, reg);
895 /* Display HPLL off SR */
896 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
897 pineview_display_hplloff_wm.fifo_size,
898 cpp, latency->display_hpll_disable);
899 reg = I915_READ(DSPFW3);
900 reg &= ~DSPFW_HPLL_SR_MASK;
901 reg |= FW_WM(wm, HPLL_SR);
902 I915_WRITE(DSPFW3, reg);
904 /* cursor HPLL off SR */
905 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
906 pineview_display_hplloff_wm.fifo_size,
907 4, latency->cursor_hpll_disable);
908 reg = I915_READ(DSPFW3);
909 reg &= ~DSPFW_HPLL_CURSOR_MASK;
910 reg |= FW_WM(wm, HPLL_CURSOR);
911 I915_WRITE(DSPFW3, reg);
912 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
914 intel_set_memory_cxsr(dev_priv, true);
915 } else {
916 intel_set_memory_cxsr(dev_priv, false);
921 * Documentation says:
922 * "If the line size is small, the TLB fetches can get in the way of the
923 * data fetches, causing some lag in the pixel data return which is not
924 * accounted for in the above formulas. The following adjustment only
925 * needs to be applied if eight whole lines fit in the buffer at once.
926 * The WM is adjusted upwards by the difference between the FIFO size
927 * and the size of 8 whole lines. This adjustment is always performed
928 * in the actual pixel depth regardless of whether FBC is enabled or not."
930 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
932 int tlb_miss = fifo_size * 64 - width * cpp * 8;
934 return max(0, tlb_miss);
937 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
938 const struct g4x_wm_values *wm)
940 enum pipe pipe;
942 for_each_pipe(dev_priv, pipe)
943 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
945 I915_WRITE(DSPFW1,
946 FW_WM(wm->sr.plane, SR) |
947 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
948 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
949 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
950 I915_WRITE(DSPFW2,
951 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
952 FW_WM(wm->sr.fbc, FBC_SR) |
953 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
954 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
955 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
956 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
957 I915_WRITE(DSPFW3,
958 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
959 FW_WM(wm->sr.cursor, CURSOR_SR) |
960 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
961 FW_WM(wm->hpll.plane, HPLL_SR));
963 POSTING_READ(DSPFW1);
966 #define FW_WM_VLV(value, plane) \
967 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
969 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
970 const struct vlv_wm_values *wm)
972 enum pipe pipe;
974 for_each_pipe(dev_priv, pipe) {
975 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
977 I915_WRITE(VLV_DDL(pipe),
978 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
979 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
980 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
981 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
985 * Zero the (unused) WM1 watermarks, and also clear all the
986 * high order bits so that there are no out of bounds values
987 * present in the registers during the reprogramming.
989 I915_WRITE(DSPHOWM, 0);
990 I915_WRITE(DSPHOWM1, 0);
991 I915_WRITE(DSPFW4, 0);
992 I915_WRITE(DSPFW5, 0);
993 I915_WRITE(DSPFW6, 0);
995 I915_WRITE(DSPFW1,
996 FW_WM(wm->sr.plane, SR) |
997 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
998 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
999 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1000 I915_WRITE(DSPFW2,
1001 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1002 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1003 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1004 I915_WRITE(DSPFW3,
1005 FW_WM(wm->sr.cursor, CURSOR_SR));
1007 if (IS_CHERRYVIEW(dev_priv)) {
1008 I915_WRITE(DSPFW7_CHV,
1009 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1010 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1011 I915_WRITE(DSPFW8_CHV,
1012 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1013 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1014 I915_WRITE(DSPFW9_CHV,
1015 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1016 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1017 I915_WRITE(DSPHOWM,
1018 FW_WM(wm->sr.plane >> 9, SR_HI) |
1019 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1020 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1021 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1022 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1023 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1024 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1025 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1026 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1027 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1028 } else {
1029 I915_WRITE(DSPFW7,
1030 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1031 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1032 I915_WRITE(DSPHOWM,
1033 FW_WM(wm->sr.plane >> 9, SR_HI) |
1034 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1035 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1036 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1037 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1038 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1039 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1042 POSTING_READ(DSPFW1);
1045 #undef FW_WM_VLV
1047 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1049 /* all latencies in usec */
1050 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1051 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1052 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1054 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1057 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1060 * DSPCNTR[13] supposedly controls whether the
1061 * primary plane can use the FIFO space otherwise
1062 * reserved for the sprite plane. It's not 100% clear
1063 * what the actual FIFO size is, but it looks like we
1064 * can happily set both primary and sprite watermarks
1065 * up to 127 cachelines. So that would seem to mean
1066 * that either DSPCNTR[13] doesn't do anything, or that
1067 * the total FIFO is >= 256 cachelines in size. Either
1068 * way, we don't seem to have to worry about this
1069 * repartitioning as the maximum watermark value the
1070 * register can hold for each plane is lower than the
1071 * minimum FIFO size.
1073 switch (plane_id) {
1074 case PLANE_CURSOR:
1075 return 63;
1076 case PLANE_PRIMARY:
1077 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1078 case PLANE_SPRITE0:
1079 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1080 default:
1081 MISSING_CASE(plane_id);
1082 return 0;
1086 static int g4x_fbc_fifo_size(int level)
1088 switch (level) {
1089 case G4X_WM_LEVEL_SR:
1090 return 7;
1091 case G4X_WM_LEVEL_HPLL:
1092 return 15;
1093 default:
1094 MISSING_CASE(level);
1095 return 0;
1099 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1100 const struct intel_plane_state *plane_state,
1101 int level)
1103 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1104 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1105 const struct drm_display_mode *adjusted_mode =
1106 &crtc_state->base.adjusted_mode;
1107 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1108 unsigned int clock, htotal, cpp, width, wm;
1110 if (latency == 0)
1111 return USHRT_MAX;
1113 if (!intel_wm_plane_visible(crtc_state, plane_state))
1114 return 0;
1117 * Not 100% sure which way ELK should go here as the
1118 * spec only says CL/CTG should assume 32bpp and BW
1119 * doesn't need to. But as these things followed the
1120 * mobile vs. desktop lines on gen3 as well, let's
1121 * assume ELK doesn't need this.
1123 * The spec also fails to list such a restriction for
1124 * the HPLL watermark, which seems a little strange.
1125 * Let's use 32bpp for the HPLL watermark as well.
1127 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1128 level != G4X_WM_LEVEL_NORMAL)
1129 cpp = 4;
1130 else
1131 cpp = plane_state->base.fb->format->cpp[0];
1133 clock = adjusted_mode->crtc_clock;
1134 htotal = adjusted_mode->crtc_htotal;
1136 if (plane->id == PLANE_CURSOR)
1137 width = plane_state->base.crtc_w;
1138 else
1139 width = drm_rect_width(&plane_state->base.dst);
1141 if (plane->id == PLANE_CURSOR) {
1142 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1143 } else if (plane->id == PLANE_PRIMARY &&
1144 level == G4X_WM_LEVEL_NORMAL) {
1145 wm = intel_wm_method1(clock, cpp, latency);
1146 } else {
1147 unsigned int small, large;
1149 small = intel_wm_method1(clock, cpp, latency);
1150 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1152 wm = min(small, large);
1155 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1156 width, cpp);
1158 wm = DIV_ROUND_UP(wm, 64) + 2;
1160 return min_t(unsigned int, wm, USHRT_MAX);
1163 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1164 int level, enum plane_id plane_id, u16 value)
1166 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1167 bool dirty = false;
1169 for (; level < intel_wm_num_levels(dev_priv); level++) {
1170 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1172 dirty |= raw->plane[plane_id] != value;
1173 raw->plane[plane_id] = value;
1176 return dirty;
1179 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1180 int level, u16 value)
1182 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1183 bool dirty = false;
1185 /* NORMAL level doesn't have an FBC watermark */
1186 level = max(level, G4X_WM_LEVEL_SR);
1188 for (; level < intel_wm_num_levels(dev_priv); level++) {
1189 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1191 dirty |= raw->fbc != value;
1192 raw->fbc = value;
1195 return dirty;
1198 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1199 const struct intel_plane_state *pstate,
1200 uint32_t pri_val);
1202 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1203 const struct intel_plane_state *plane_state)
1205 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1206 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1207 enum plane_id plane_id = plane->id;
1208 bool dirty = false;
1209 int level;
1211 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1212 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1213 if (plane_id == PLANE_PRIMARY)
1214 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1215 goto out;
1218 for (level = 0; level < num_levels; level++) {
1219 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1220 int wm, max_wm;
1222 wm = g4x_compute_wm(crtc_state, plane_state, level);
1223 max_wm = g4x_plane_fifo_size(plane_id, level);
1225 if (wm > max_wm)
1226 break;
1228 dirty |= raw->plane[plane_id] != wm;
1229 raw->plane[plane_id] = wm;
1231 if (plane_id != PLANE_PRIMARY ||
1232 level == G4X_WM_LEVEL_NORMAL)
1233 continue;
1235 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1236 raw->plane[plane_id]);
1237 max_wm = g4x_fbc_fifo_size(level);
1240 * FBC wm is not mandatory as we
1241 * can always just disable its use.
1243 if (wm > max_wm)
1244 wm = USHRT_MAX;
1246 dirty |= raw->fbc != wm;
1247 raw->fbc = wm;
1250 /* mark watermarks as invalid */
1251 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1253 if (plane_id == PLANE_PRIMARY)
1254 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1256 out:
1257 if (dirty) {
1258 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1259 plane->base.name,
1260 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1261 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1262 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1264 if (plane_id == PLANE_PRIMARY)
1265 DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1266 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1267 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1270 return dirty;
1273 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1274 enum plane_id plane_id, int level)
1276 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1278 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1281 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1282 int level)
1284 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1286 if (level > dev_priv->wm.max_level)
1287 return false;
1289 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1290 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1291 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1294 /* mark all levels starting from 'level' as invalid */
1295 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1296 struct g4x_wm_state *wm_state, int level)
1298 if (level <= G4X_WM_LEVEL_NORMAL) {
1299 enum plane_id plane_id;
1301 for_each_plane_id_on_crtc(crtc, plane_id)
1302 wm_state->wm.plane[plane_id] = USHRT_MAX;
1305 if (level <= G4X_WM_LEVEL_SR) {
1306 wm_state->cxsr = false;
1307 wm_state->sr.cursor = USHRT_MAX;
1308 wm_state->sr.plane = USHRT_MAX;
1309 wm_state->sr.fbc = USHRT_MAX;
1312 if (level <= G4X_WM_LEVEL_HPLL) {
1313 wm_state->hpll_en = false;
1314 wm_state->hpll.cursor = USHRT_MAX;
1315 wm_state->hpll.plane = USHRT_MAX;
1316 wm_state->hpll.fbc = USHRT_MAX;
1320 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1322 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1323 struct intel_atomic_state *state =
1324 to_intel_atomic_state(crtc_state->base.state);
1325 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1326 int num_active_planes = hweight32(crtc_state->active_planes &
1327 ~BIT(PLANE_CURSOR));
1328 const struct g4x_pipe_wm *raw;
1329 const struct intel_plane_state *old_plane_state;
1330 const struct intel_plane_state *new_plane_state;
1331 struct intel_plane *plane;
1332 enum plane_id plane_id;
1333 int i, level;
1334 unsigned int dirty = 0;
1336 for_each_oldnew_intel_plane_in_state(state, plane,
1337 old_plane_state,
1338 new_plane_state, i) {
1339 if (new_plane_state->base.crtc != &crtc->base &&
1340 old_plane_state->base.crtc != &crtc->base)
1341 continue;
1343 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1344 dirty |= BIT(plane->id);
1347 if (!dirty)
1348 return 0;
1350 level = G4X_WM_LEVEL_NORMAL;
1351 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1352 goto out;
1354 raw = &crtc_state->wm.g4x.raw[level];
1355 for_each_plane_id_on_crtc(crtc, plane_id)
1356 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1358 level = G4X_WM_LEVEL_SR;
1360 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1361 goto out;
1363 raw = &crtc_state->wm.g4x.raw[level];
1364 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1365 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1366 wm_state->sr.fbc = raw->fbc;
1368 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1370 level = G4X_WM_LEVEL_HPLL;
1372 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1373 goto out;
1375 raw = &crtc_state->wm.g4x.raw[level];
1376 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1377 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1378 wm_state->hpll.fbc = raw->fbc;
1380 wm_state->hpll_en = wm_state->cxsr;
1382 level++;
1384 out:
1385 if (level == G4X_WM_LEVEL_NORMAL)
1386 return -EINVAL;
1388 /* invalidate the higher levels */
1389 g4x_invalidate_wms(crtc, wm_state, level);
1392 * Determine if the FBC watermark(s) can be used. IF
1393 * this isn't the case we prefer to disable the FBC
1394 ( watermark(s) rather than disable the SR/HPLL
1395 * level(s) entirely.
1397 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1399 if (level >= G4X_WM_LEVEL_SR &&
1400 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1401 wm_state->fbc_en = false;
1402 else if (level >= G4X_WM_LEVEL_HPLL &&
1403 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1404 wm_state->fbc_en = false;
1406 return 0;
1409 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1410 struct intel_crtc *crtc,
1411 struct intel_crtc_state *new_crtc_state)
1413 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1414 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1415 struct intel_atomic_state *intel_state =
1416 to_intel_atomic_state(new_crtc_state->base.state);
1417 const struct intel_crtc_state *old_crtc_state =
1418 intel_atomic_get_old_crtc_state(intel_state, crtc);
1419 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1420 enum plane_id plane_id;
1422 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1423 *intermediate = *optimal;
1425 intermediate->cxsr = false;
1426 intermediate->hpll_en = false;
1427 goto out;
1430 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1431 !new_crtc_state->disable_cxsr;
1432 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1433 !new_crtc_state->disable_cxsr;
1434 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1436 for_each_plane_id_on_crtc(crtc, plane_id) {
1437 intermediate->wm.plane[plane_id] =
1438 max(optimal->wm.plane[plane_id],
1439 active->wm.plane[plane_id]);
1441 WARN_ON(intermediate->wm.plane[plane_id] >
1442 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1445 intermediate->sr.plane = max(optimal->sr.plane,
1446 active->sr.plane);
1447 intermediate->sr.cursor = max(optimal->sr.cursor,
1448 active->sr.cursor);
1449 intermediate->sr.fbc = max(optimal->sr.fbc,
1450 active->sr.fbc);
1452 intermediate->hpll.plane = max(optimal->hpll.plane,
1453 active->hpll.plane);
1454 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1455 active->hpll.cursor);
1456 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1457 active->hpll.fbc);
1459 WARN_ON((intermediate->sr.plane >
1460 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1461 intermediate->sr.cursor >
1462 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1463 intermediate->cxsr);
1464 WARN_ON((intermediate->sr.plane >
1465 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1466 intermediate->sr.cursor >
1467 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1468 intermediate->hpll_en);
1470 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1471 intermediate->fbc_en && intermediate->cxsr);
1472 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1473 intermediate->fbc_en && intermediate->hpll_en);
1475 out:
1477 * If our intermediate WM are identical to the final WM, then we can
1478 * omit the post-vblank programming; only update if it's different.
1480 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1481 new_crtc_state->wm.need_postvbl_update = true;
1483 return 0;
1486 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1487 struct g4x_wm_values *wm)
1489 struct intel_crtc *crtc;
1490 int num_active_crtcs = 0;
1492 wm->cxsr = true;
1493 wm->hpll_en = true;
1494 wm->fbc_en = true;
1496 for_each_intel_crtc(&dev_priv->drm, crtc) {
1497 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1499 if (!crtc->active)
1500 continue;
1502 if (!wm_state->cxsr)
1503 wm->cxsr = false;
1504 if (!wm_state->hpll_en)
1505 wm->hpll_en = false;
1506 if (!wm_state->fbc_en)
1507 wm->fbc_en = false;
1509 num_active_crtcs++;
1512 if (num_active_crtcs != 1) {
1513 wm->cxsr = false;
1514 wm->hpll_en = false;
1515 wm->fbc_en = false;
1518 for_each_intel_crtc(&dev_priv->drm, crtc) {
1519 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1520 enum pipe pipe = crtc->pipe;
1522 wm->pipe[pipe] = wm_state->wm;
1523 if (crtc->active && wm->cxsr)
1524 wm->sr = wm_state->sr;
1525 if (crtc->active && wm->hpll_en)
1526 wm->hpll = wm_state->hpll;
1530 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1532 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1533 struct g4x_wm_values new_wm = {};
1535 g4x_merge_wm(dev_priv, &new_wm);
1537 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1538 return;
1540 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1541 _intel_set_memory_cxsr(dev_priv, false);
1543 g4x_write_wm_values(dev_priv, &new_wm);
1545 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1546 _intel_set_memory_cxsr(dev_priv, true);
1548 *old_wm = new_wm;
1551 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1552 struct intel_crtc_state *crtc_state)
1554 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1555 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1557 mutex_lock(&dev_priv->wm.wm_mutex);
1558 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1559 g4x_program_watermarks(dev_priv);
1560 mutex_unlock(&dev_priv->wm.wm_mutex);
1563 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1564 struct intel_crtc_state *crtc_state)
1566 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1569 if (!crtc_state->wm.need_postvbl_update)
1570 return;
1572 mutex_lock(&dev_priv->wm.wm_mutex);
1573 intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1574 g4x_program_watermarks(dev_priv);
1575 mutex_unlock(&dev_priv->wm.wm_mutex);
1578 /* latency must be in 0.1us units. */
1579 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1580 unsigned int htotal,
1581 unsigned int width,
1582 unsigned int cpp,
1583 unsigned int latency)
1585 unsigned int ret;
1587 ret = intel_wm_method2(pixel_rate, htotal,
1588 width, cpp, latency);
1589 ret = DIV_ROUND_UP(ret, 64);
1591 return ret;
1594 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1596 /* all latencies in usec */
1597 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1599 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1601 if (IS_CHERRYVIEW(dev_priv)) {
1602 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1603 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1605 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1609 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1610 const struct intel_plane_state *plane_state,
1611 int level)
1613 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1614 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1615 const struct drm_display_mode *adjusted_mode =
1616 &crtc_state->base.adjusted_mode;
1617 unsigned int clock, htotal, cpp, width, wm;
1619 if (dev_priv->wm.pri_latency[level] == 0)
1620 return USHRT_MAX;
1622 if (!intel_wm_plane_visible(crtc_state, plane_state))
1623 return 0;
1625 cpp = plane_state->base.fb->format->cpp[0];
1626 clock = adjusted_mode->crtc_clock;
1627 htotal = adjusted_mode->crtc_htotal;
1628 width = crtc_state->pipe_src_w;
1630 if (plane->id == PLANE_CURSOR) {
1632 * FIXME the formula gives values that are
1633 * too big for the cursor FIFO, and hence we
1634 * would never be able to use cursors. For
1635 * now just hardcode the watermark.
1637 wm = 63;
1638 } else {
1639 wm = vlv_wm_method2(clock, htotal, width, cpp,
1640 dev_priv->wm.pri_latency[level] * 10);
1643 return min_t(unsigned int, wm, USHRT_MAX);
1646 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1648 return (active_planes & (BIT(PLANE_SPRITE0) |
1649 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1652 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1654 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1655 const struct g4x_pipe_wm *raw =
1656 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1657 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1658 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1659 int num_active_planes = hweight32(active_planes);
1660 const int fifo_size = 511;
1661 int fifo_extra, fifo_left = fifo_size;
1662 int sprite0_fifo_extra = 0;
1663 unsigned int total_rate;
1664 enum plane_id plane_id;
1667 * When enabling sprite0 after sprite1 has already been enabled
1668 * we tend to get an underrun unless sprite0 already has some
1669 * FIFO space allcoated. Hence we always allocate at least one
1670 * cacheline for sprite0 whenever sprite1 is enabled.
1672 * All other plane enable sequences appear immune to this problem.
1674 if (vlv_need_sprite0_fifo_workaround(active_planes))
1675 sprite0_fifo_extra = 1;
1677 total_rate = raw->plane[PLANE_PRIMARY] +
1678 raw->plane[PLANE_SPRITE0] +
1679 raw->plane[PLANE_SPRITE1] +
1680 sprite0_fifo_extra;
1682 if (total_rate > fifo_size)
1683 return -EINVAL;
1685 if (total_rate == 0)
1686 total_rate = 1;
1688 for_each_plane_id_on_crtc(crtc, plane_id) {
1689 unsigned int rate;
1691 if ((active_planes & BIT(plane_id)) == 0) {
1692 fifo_state->plane[plane_id] = 0;
1693 continue;
1696 rate = raw->plane[plane_id];
1697 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1698 fifo_left -= fifo_state->plane[plane_id];
1701 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1702 fifo_left -= sprite0_fifo_extra;
1704 fifo_state->plane[PLANE_CURSOR] = 63;
1706 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1708 /* spread the remainder evenly */
1709 for_each_plane_id_on_crtc(crtc, plane_id) {
1710 int plane_extra;
1712 if (fifo_left == 0)
1713 break;
1715 if ((active_planes & BIT(plane_id)) == 0)
1716 continue;
1718 plane_extra = min(fifo_extra, fifo_left);
1719 fifo_state->plane[plane_id] += plane_extra;
1720 fifo_left -= plane_extra;
1723 WARN_ON(active_planes != 0 && fifo_left != 0);
1725 /* give it all to the first plane if none are active */
1726 if (active_planes == 0) {
1727 WARN_ON(fifo_left != fifo_size);
1728 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1731 return 0;
1734 /* mark all levels starting from 'level' as invalid */
1735 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1736 struct vlv_wm_state *wm_state, int level)
1738 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1740 for (; level < intel_wm_num_levels(dev_priv); level++) {
1741 enum plane_id plane_id;
1743 for_each_plane_id_on_crtc(crtc, plane_id)
1744 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1746 wm_state->sr[level].cursor = USHRT_MAX;
1747 wm_state->sr[level].plane = USHRT_MAX;
1751 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1753 if (wm > fifo_size)
1754 return USHRT_MAX;
1755 else
1756 return fifo_size - wm;
1760 * Starting from 'level' set all higher
1761 * levels to 'value' in the "raw" watermarks.
1763 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1764 int level, enum plane_id plane_id, u16 value)
1766 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1767 int num_levels = intel_wm_num_levels(dev_priv);
1768 bool dirty = false;
1770 for (; level < num_levels; level++) {
1771 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1773 dirty |= raw->plane[plane_id] != value;
1774 raw->plane[plane_id] = value;
1777 return dirty;
1780 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1781 const struct intel_plane_state *plane_state)
1783 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1784 enum plane_id plane_id = plane->id;
1785 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1786 int level;
1787 bool dirty = false;
1789 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1790 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1791 goto out;
1794 for (level = 0; level < num_levels; level++) {
1795 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1796 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1797 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1799 if (wm > max_wm)
1800 break;
1802 dirty |= raw->plane[plane_id] != wm;
1803 raw->plane[plane_id] = wm;
1806 /* mark all higher levels as invalid */
1807 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1809 out:
1810 if (dirty)
1811 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1812 plane->base.name,
1813 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1814 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1815 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1817 return dirty;
1820 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1821 enum plane_id plane_id, int level)
1823 const struct g4x_pipe_wm *raw =
1824 &crtc_state->wm.vlv.raw[level];
1825 const struct vlv_fifo_state *fifo_state =
1826 &crtc_state->wm.vlv.fifo_state;
1828 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1831 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1833 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1834 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1835 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1836 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1839 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1841 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1842 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1843 struct intel_atomic_state *state =
1844 to_intel_atomic_state(crtc_state->base.state);
1845 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1846 const struct vlv_fifo_state *fifo_state =
1847 &crtc_state->wm.vlv.fifo_state;
1848 int num_active_planes = hweight32(crtc_state->active_planes &
1849 ~BIT(PLANE_CURSOR));
1850 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1851 const struct intel_plane_state *old_plane_state;
1852 const struct intel_plane_state *new_plane_state;
1853 struct intel_plane *plane;
1854 enum plane_id plane_id;
1855 int level, ret, i;
1856 unsigned int dirty = 0;
1858 for_each_oldnew_intel_plane_in_state(state, plane,
1859 old_plane_state,
1860 new_plane_state, i) {
1861 if (new_plane_state->base.crtc != &crtc->base &&
1862 old_plane_state->base.crtc != &crtc->base)
1863 continue;
1865 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1866 dirty |= BIT(plane->id);
1870 * DSPARB registers may have been reset due to the
1871 * power well being turned off. Make sure we restore
1872 * them to a consistent state even if no primary/sprite
1873 * planes are initially active.
1875 if (needs_modeset)
1876 crtc_state->fifo_changed = true;
1878 if (!dirty)
1879 return 0;
1881 /* cursor changes don't warrant a FIFO recompute */
1882 if (dirty & ~BIT(PLANE_CURSOR)) {
1883 const struct intel_crtc_state *old_crtc_state =
1884 intel_atomic_get_old_crtc_state(state, crtc);
1885 const struct vlv_fifo_state *old_fifo_state =
1886 &old_crtc_state->wm.vlv.fifo_state;
1888 ret = vlv_compute_fifo(crtc_state);
1889 if (ret)
1890 return ret;
1892 if (needs_modeset ||
1893 memcmp(old_fifo_state, fifo_state,
1894 sizeof(*fifo_state)) != 0)
1895 crtc_state->fifo_changed = true;
1898 /* initially allow all levels */
1899 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1901 * Note that enabling cxsr with no primary/sprite planes
1902 * enabled can wedge the pipe. Hence we only allow cxsr
1903 * with exactly one enabled primary/sprite plane.
1905 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1907 for (level = 0; level < wm_state->num_levels; level++) {
1908 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1909 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1911 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1912 break;
1914 for_each_plane_id_on_crtc(crtc, plane_id) {
1915 wm_state->wm[level].plane[plane_id] =
1916 vlv_invert_wm_value(raw->plane[plane_id],
1917 fifo_state->plane[plane_id]);
1920 wm_state->sr[level].plane =
1921 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1922 raw->plane[PLANE_SPRITE0],
1923 raw->plane[PLANE_SPRITE1]),
1924 sr_fifo_size);
1926 wm_state->sr[level].cursor =
1927 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1928 63);
1931 if (level == 0)
1932 return -EINVAL;
1934 /* limit to only levels we can actually handle */
1935 wm_state->num_levels = level;
1937 /* invalidate the higher levels */
1938 vlv_invalidate_wms(crtc, wm_state, level);
1940 return 0;
1943 #define VLV_FIFO(plane, value) \
1944 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1946 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1947 struct intel_crtc_state *crtc_state)
1949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1950 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1951 const struct vlv_fifo_state *fifo_state =
1952 &crtc_state->wm.vlv.fifo_state;
1953 int sprite0_start, sprite1_start, fifo_size;
1955 if (!crtc_state->fifo_changed)
1956 return;
1958 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1959 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1960 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1962 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1963 WARN_ON(fifo_size != 511);
1965 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1968 * uncore.lock serves a double purpose here. It allows us to
1969 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1970 * it protects the DSPARB registers from getting clobbered by
1971 * parallel updates from multiple pipes.
1973 * intel_pipe_update_start() has already disabled interrupts
1974 * for us, so a plain spin_lock() is sufficient here.
1976 spin_lock(&dev_priv->uncore.lock);
1978 switch (crtc->pipe) {
1979 uint32_t dsparb, dsparb2, dsparb3;
1980 case PIPE_A:
1981 dsparb = I915_READ_FW(DSPARB);
1982 dsparb2 = I915_READ_FW(DSPARB2);
1984 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1985 VLV_FIFO(SPRITEB, 0xff));
1986 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1987 VLV_FIFO(SPRITEB, sprite1_start));
1989 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1990 VLV_FIFO(SPRITEB_HI, 0x1));
1991 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1992 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1994 I915_WRITE_FW(DSPARB, dsparb);
1995 I915_WRITE_FW(DSPARB2, dsparb2);
1996 break;
1997 case PIPE_B:
1998 dsparb = I915_READ_FW(DSPARB);
1999 dsparb2 = I915_READ_FW(DSPARB2);
2001 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2002 VLV_FIFO(SPRITED, 0xff));
2003 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2004 VLV_FIFO(SPRITED, sprite1_start));
2006 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2007 VLV_FIFO(SPRITED_HI, 0xff));
2008 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2009 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2011 I915_WRITE_FW(DSPARB, dsparb);
2012 I915_WRITE_FW(DSPARB2, dsparb2);
2013 break;
2014 case PIPE_C:
2015 dsparb3 = I915_READ_FW(DSPARB3);
2016 dsparb2 = I915_READ_FW(DSPARB2);
2018 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2019 VLV_FIFO(SPRITEF, 0xff));
2020 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2021 VLV_FIFO(SPRITEF, sprite1_start));
2023 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2024 VLV_FIFO(SPRITEF_HI, 0xff));
2025 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2026 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2028 I915_WRITE_FW(DSPARB3, dsparb3);
2029 I915_WRITE_FW(DSPARB2, dsparb2);
2030 break;
2031 default:
2032 break;
2035 POSTING_READ_FW(DSPARB);
2037 spin_unlock(&dev_priv->uncore.lock);
2040 #undef VLV_FIFO
2042 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2043 struct intel_crtc *crtc,
2044 struct intel_crtc_state *new_crtc_state)
2046 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2047 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2048 struct intel_atomic_state *intel_state =
2049 to_intel_atomic_state(new_crtc_state->base.state);
2050 const struct intel_crtc_state *old_crtc_state =
2051 intel_atomic_get_old_crtc_state(intel_state, crtc);
2052 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2053 int level;
2055 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2056 *intermediate = *optimal;
2058 intermediate->cxsr = false;
2059 goto out;
2062 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2063 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2064 !new_crtc_state->disable_cxsr;
2066 for (level = 0; level < intermediate->num_levels; level++) {
2067 enum plane_id plane_id;
2069 for_each_plane_id_on_crtc(crtc, plane_id) {
2070 intermediate->wm[level].plane[plane_id] =
2071 min(optimal->wm[level].plane[plane_id],
2072 active->wm[level].plane[plane_id]);
2075 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2076 active->sr[level].plane);
2077 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2078 active->sr[level].cursor);
2081 vlv_invalidate_wms(crtc, intermediate, level);
2083 out:
2085 * If our intermediate WM are identical to the final WM, then we can
2086 * omit the post-vblank programming; only update if it's different.
2088 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2089 new_crtc_state->wm.need_postvbl_update = true;
2091 return 0;
2094 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2095 struct vlv_wm_values *wm)
2097 struct intel_crtc *crtc;
2098 int num_active_crtcs = 0;
2100 wm->level = dev_priv->wm.max_level;
2101 wm->cxsr = true;
2103 for_each_intel_crtc(&dev_priv->drm, crtc) {
2104 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2106 if (!crtc->active)
2107 continue;
2109 if (!wm_state->cxsr)
2110 wm->cxsr = false;
2112 num_active_crtcs++;
2113 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2116 if (num_active_crtcs != 1)
2117 wm->cxsr = false;
2119 if (num_active_crtcs > 1)
2120 wm->level = VLV_WM_LEVEL_PM2;
2122 for_each_intel_crtc(&dev_priv->drm, crtc) {
2123 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2124 enum pipe pipe = crtc->pipe;
2126 wm->pipe[pipe] = wm_state->wm[wm->level];
2127 if (crtc->active && wm->cxsr)
2128 wm->sr = wm_state->sr[wm->level];
2130 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2131 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2132 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2133 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2137 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2139 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2140 struct vlv_wm_values new_wm = {};
2142 vlv_merge_wm(dev_priv, &new_wm);
2144 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2145 return;
2147 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2148 chv_set_memory_dvfs(dev_priv, false);
2150 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2151 chv_set_memory_pm5(dev_priv, false);
2153 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2154 _intel_set_memory_cxsr(dev_priv, false);
2156 vlv_write_wm_values(dev_priv, &new_wm);
2158 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2159 _intel_set_memory_cxsr(dev_priv, true);
2161 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2162 chv_set_memory_pm5(dev_priv, true);
2164 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2165 chv_set_memory_dvfs(dev_priv, true);
2167 *old_wm = new_wm;
2170 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2171 struct intel_crtc_state *crtc_state)
2173 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2174 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2176 mutex_lock(&dev_priv->wm.wm_mutex);
2177 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2178 vlv_program_watermarks(dev_priv);
2179 mutex_unlock(&dev_priv->wm.wm_mutex);
2182 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2183 struct intel_crtc_state *crtc_state)
2185 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2186 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2188 if (!crtc_state->wm.need_postvbl_update)
2189 return;
2191 mutex_lock(&dev_priv->wm.wm_mutex);
2192 intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2193 vlv_program_watermarks(dev_priv);
2194 mutex_unlock(&dev_priv->wm.wm_mutex);
2197 static void i965_update_wm(struct intel_crtc *unused_crtc)
2199 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2200 struct intel_crtc *crtc;
2201 int srwm = 1;
2202 int cursor_sr = 16;
2203 bool cxsr_enabled;
2205 /* Calc sr entries for one plane configs */
2206 crtc = single_enabled_crtc(dev_priv);
2207 if (crtc) {
2208 /* self-refresh has much higher latency */
2209 static const int sr_latency_ns = 12000;
2210 const struct drm_display_mode *adjusted_mode =
2211 &crtc->config->base.adjusted_mode;
2212 const struct drm_framebuffer *fb =
2213 crtc->base.primary->state->fb;
2214 int clock = adjusted_mode->crtc_clock;
2215 int htotal = adjusted_mode->crtc_htotal;
2216 int hdisplay = crtc->config->pipe_src_w;
2217 int cpp = fb->format->cpp[0];
2218 int entries;
2220 entries = intel_wm_method2(clock, htotal,
2221 hdisplay, cpp, sr_latency_ns / 100);
2222 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2223 srwm = I965_FIFO_SIZE - entries;
2224 if (srwm < 0)
2225 srwm = 1;
2226 srwm &= 0x1ff;
2227 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2228 entries, srwm);
2230 entries = intel_wm_method2(clock, htotal,
2231 crtc->base.cursor->state->crtc_w, 4,
2232 sr_latency_ns / 100);
2233 entries = DIV_ROUND_UP(entries,
2234 i965_cursor_wm_info.cacheline_size) +
2235 i965_cursor_wm_info.guard_size;
2237 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2238 if (cursor_sr > i965_cursor_wm_info.max_wm)
2239 cursor_sr = i965_cursor_wm_info.max_wm;
2241 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2242 "cursor %d\n", srwm, cursor_sr);
2244 cxsr_enabled = true;
2245 } else {
2246 cxsr_enabled = false;
2247 /* Turn off self refresh if both pipes are enabled */
2248 intel_set_memory_cxsr(dev_priv, false);
2251 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2252 srwm);
2254 /* 965 has limitations... */
2255 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2256 FW_WM(8, CURSORB) |
2257 FW_WM(8, PLANEB) |
2258 FW_WM(8, PLANEA));
2259 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2260 FW_WM(8, PLANEC_OLD));
2261 /* update cursor SR watermark */
2262 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2264 if (cxsr_enabled)
2265 intel_set_memory_cxsr(dev_priv, true);
2268 #undef FW_WM
2270 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2272 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2273 const struct intel_watermark_params *wm_info;
2274 uint32_t fwater_lo;
2275 uint32_t fwater_hi;
2276 int cwm, srwm = 1;
2277 int fifo_size;
2278 int planea_wm, planeb_wm;
2279 struct intel_crtc *crtc, *enabled = NULL;
2281 if (IS_I945GM(dev_priv))
2282 wm_info = &i945_wm_info;
2283 else if (!IS_GEN2(dev_priv))
2284 wm_info = &i915_wm_info;
2285 else
2286 wm_info = &i830_a_wm_info;
2288 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2289 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2290 if (intel_crtc_active(crtc)) {
2291 const struct drm_display_mode *adjusted_mode =
2292 &crtc->config->base.adjusted_mode;
2293 const struct drm_framebuffer *fb =
2294 crtc->base.primary->state->fb;
2295 int cpp;
2297 if (IS_GEN2(dev_priv))
2298 cpp = 4;
2299 else
2300 cpp = fb->format->cpp[0];
2302 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2303 wm_info, fifo_size, cpp,
2304 pessimal_latency_ns);
2305 enabled = crtc;
2306 } else {
2307 planea_wm = fifo_size - wm_info->guard_size;
2308 if (planea_wm > (long)wm_info->max_wm)
2309 planea_wm = wm_info->max_wm;
2312 if (IS_GEN2(dev_priv))
2313 wm_info = &i830_bc_wm_info;
2315 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2316 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2317 if (intel_crtc_active(crtc)) {
2318 const struct drm_display_mode *adjusted_mode =
2319 &crtc->config->base.adjusted_mode;
2320 const struct drm_framebuffer *fb =
2321 crtc->base.primary->state->fb;
2322 int cpp;
2324 if (IS_GEN2(dev_priv))
2325 cpp = 4;
2326 else
2327 cpp = fb->format->cpp[0];
2329 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2330 wm_info, fifo_size, cpp,
2331 pessimal_latency_ns);
2332 if (enabled == NULL)
2333 enabled = crtc;
2334 else
2335 enabled = NULL;
2336 } else {
2337 planeb_wm = fifo_size - wm_info->guard_size;
2338 if (planeb_wm > (long)wm_info->max_wm)
2339 planeb_wm = wm_info->max_wm;
2342 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2344 if (IS_I915GM(dev_priv) && enabled) {
2345 struct drm_i915_gem_object *obj;
2347 obj = intel_fb_obj(enabled->base.primary->state->fb);
2349 /* self-refresh seems busted with untiled */
2350 if (!i915_gem_object_is_tiled(obj))
2351 enabled = NULL;
2355 * Overlay gets an aggressive default since video jitter is bad.
2357 cwm = 2;
2359 /* Play safe and disable self-refresh before adjusting watermarks. */
2360 intel_set_memory_cxsr(dev_priv, false);
2362 /* Calc sr entries for one plane configs */
2363 if (HAS_FW_BLC(dev_priv) && enabled) {
2364 /* self-refresh has much higher latency */
2365 static const int sr_latency_ns = 6000;
2366 const struct drm_display_mode *adjusted_mode =
2367 &enabled->config->base.adjusted_mode;
2368 const struct drm_framebuffer *fb =
2369 enabled->base.primary->state->fb;
2370 int clock = adjusted_mode->crtc_clock;
2371 int htotal = adjusted_mode->crtc_htotal;
2372 int hdisplay = enabled->config->pipe_src_w;
2373 int cpp;
2374 int entries;
2376 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2377 cpp = 4;
2378 else
2379 cpp = fb->format->cpp[0];
2381 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2382 sr_latency_ns / 100);
2383 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2384 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2385 srwm = wm_info->fifo_size - entries;
2386 if (srwm < 0)
2387 srwm = 1;
2389 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2390 I915_WRITE(FW_BLC_SELF,
2391 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2392 else
2393 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2396 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2397 planea_wm, planeb_wm, cwm, srwm);
2399 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2400 fwater_hi = (cwm & 0x1f);
2402 /* Set request length to 8 cachelines per fetch */
2403 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2404 fwater_hi = fwater_hi | (1 << 8);
2406 I915_WRITE(FW_BLC, fwater_lo);
2407 I915_WRITE(FW_BLC2, fwater_hi);
2409 if (enabled)
2410 intel_set_memory_cxsr(dev_priv, true);
2413 static void i845_update_wm(struct intel_crtc *unused_crtc)
2415 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2416 struct intel_crtc *crtc;
2417 const struct drm_display_mode *adjusted_mode;
2418 uint32_t fwater_lo;
2419 int planea_wm;
2421 crtc = single_enabled_crtc(dev_priv);
2422 if (crtc == NULL)
2423 return;
2425 adjusted_mode = &crtc->config->base.adjusted_mode;
2426 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2427 &i845_wm_info,
2428 dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2429 4, pessimal_latency_ns);
2430 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2431 fwater_lo |= (3<<8) | planea_wm;
2433 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2435 I915_WRITE(FW_BLC, fwater_lo);
2438 /* latency must be in 0.1us units. */
2439 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2440 unsigned int cpp,
2441 unsigned int latency)
2443 unsigned int ret;
2445 ret = intel_wm_method1(pixel_rate, cpp, latency);
2446 ret = DIV_ROUND_UP(ret, 64) + 2;
2448 return ret;
2451 /* latency must be in 0.1us units. */
2452 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2453 unsigned int htotal,
2454 unsigned int width,
2455 unsigned int cpp,
2456 unsigned int latency)
2458 unsigned int ret;
2460 ret = intel_wm_method2(pixel_rate, htotal,
2461 width, cpp, latency);
2462 ret = DIV_ROUND_UP(ret, 64) + 2;
2464 return ret;
2467 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2468 uint8_t cpp)
2471 * Neither of these should be possible since this function shouldn't be
2472 * called if the CRTC is off or the plane is invisible. But let's be
2473 * extra paranoid to avoid a potential divide-by-zero if we screw up
2474 * elsewhere in the driver.
2476 if (WARN_ON(!cpp))
2477 return 0;
2478 if (WARN_ON(!horiz_pixels))
2479 return 0;
2481 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2484 struct ilk_wm_maximums {
2485 uint16_t pri;
2486 uint16_t spr;
2487 uint16_t cur;
2488 uint16_t fbc;
2492 * For both WM_PIPE and WM_LP.
2493 * mem_value must be in 0.1us units.
2495 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2496 const struct intel_plane_state *pstate,
2497 uint32_t mem_value,
2498 bool is_lp)
2500 uint32_t method1, method2;
2501 int cpp;
2503 if (mem_value == 0)
2504 return U32_MAX;
2506 if (!intel_wm_plane_visible(cstate, pstate))
2507 return 0;
2509 cpp = pstate->base.fb->format->cpp[0];
2511 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2513 if (!is_lp)
2514 return method1;
2516 method2 = ilk_wm_method2(cstate->pixel_rate,
2517 cstate->base.adjusted_mode.crtc_htotal,
2518 drm_rect_width(&pstate->base.dst),
2519 cpp, mem_value);
2521 return min(method1, method2);
2525 * For both WM_PIPE and WM_LP.
2526 * mem_value must be in 0.1us units.
2528 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2529 const struct intel_plane_state *pstate,
2530 uint32_t mem_value)
2532 uint32_t method1, method2;
2533 int cpp;
2535 if (mem_value == 0)
2536 return U32_MAX;
2538 if (!intel_wm_plane_visible(cstate, pstate))
2539 return 0;
2541 cpp = pstate->base.fb->format->cpp[0];
2543 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2544 method2 = ilk_wm_method2(cstate->pixel_rate,
2545 cstate->base.adjusted_mode.crtc_htotal,
2546 drm_rect_width(&pstate->base.dst),
2547 cpp, mem_value);
2548 return min(method1, method2);
2552 * For both WM_PIPE and WM_LP.
2553 * mem_value must be in 0.1us units.
2555 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2556 const struct intel_plane_state *pstate,
2557 uint32_t mem_value)
2559 int cpp;
2561 if (mem_value == 0)
2562 return U32_MAX;
2564 if (!intel_wm_plane_visible(cstate, pstate))
2565 return 0;
2567 cpp = pstate->base.fb->format->cpp[0];
2569 return ilk_wm_method2(cstate->pixel_rate,
2570 cstate->base.adjusted_mode.crtc_htotal,
2571 pstate->base.crtc_w, cpp, mem_value);
2574 /* Only for WM_LP. */
2575 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2576 const struct intel_plane_state *pstate,
2577 uint32_t pri_val)
2579 int cpp;
2581 if (!intel_wm_plane_visible(cstate, pstate))
2582 return 0;
2584 cpp = pstate->base.fb->format->cpp[0];
2586 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2589 static unsigned int
2590 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2592 if (INTEL_GEN(dev_priv) >= 8)
2593 return 3072;
2594 else if (INTEL_GEN(dev_priv) >= 7)
2595 return 768;
2596 else
2597 return 512;
2600 static unsigned int
2601 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2602 int level, bool is_sprite)
2604 if (INTEL_GEN(dev_priv) >= 8)
2605 /* BDW primary/sprite plane watermarks */
2606 return level == 0 ? 255 : 2047;
2607 else if (INTEL_GEN(dev_priv) >= 7)
2608 /* IVB/HSW primary/sprite plane watermarks */
2609 return level == 0 ? 127 : 1023;
2610 else if (!is_sprite)
2611 /* ILK/SNB primary plane watermarks */
2612 return level == 0 ? 127 : 511;
2613 else
2614 /* ILK/SNB sprite plane watermarks */
2615 return level == 0 ? 63 : 255;
2618 static unsigned int
2619 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2621 if (INTEL_GEN(dev_priv) >= 7)
2622 return level == 0 ? 63 : 255;
2623 else
2624 return level == 0 ? 31 : 63;
2627 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2629 if (INTEL_GEN(dev_priv) >= 8)
2630 return 31;
2631 else
2632 return 15;
2635 /* Calculate the maximum primary/sprite plane watermark */
2636 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2637 int level,
2638 const struct intel_wm_config *config,
2639 enum intel_ddb_partitioning ddb_partitioning,
2640 bool is_sprite)
2642 struct drm_i915_private *dev_priv = to_i915(dev);
2643 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2645 /* if sprites aren't enabled, sprites get nothing */
2646 if (is_sprite && !config->sprites_enabled)
2647 return 0;
2649 /* HSW allows LP1+ watermarks even with multiple pipes */
2650 if (level == 0 || config->num_pipes_active > 1) {
2651 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2654 * For some reason the non self refresh
2655 * FIFO size is only half of the self
2656 * refresh FIFO size on ILK/SNB.
2658 if (INTEL_GEN(dev_priv) <= 6)
2659 fifo_size /= 2;
2662 if (config->sprites_enabled) {
2663 /* level 0 is always calculated with 1:1 split */
2664 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2665 if (is_sprite)
2666 fifo_size *= 5;
2667 fifo_size /= 6;
2668 } else {
2669 fifo_size /= 2;
2673 /* clamp to max that the registers can hold */
2674 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2677 /* Calculate the maximum cursor plane watermark */
2678 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2679 int level,
2680 const struct intel_wm_config *config)
2682 /* HSW LP1+ watermarks w/ multiple pipes */
2683 if (level > 0 && config->num_pipes_active > 1)
2684 return 64;
2686 /* otherwise just report max that registers can hold */
2687 return ilk_cursor_wm_reg_max(to_i915(dev), level);
2690 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2691 int level,
2692 const struct intel_wm_config *config,
2693 enum intel_ddb_partitioning ddb_partitioning,
2694 struct ilk_wm_maximums *max)
2696 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2697 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2698 max->cur = ilk_cursor_wm_max(dev, level, config);
2699 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2702 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2703 int level,
2704 struct ilk_wm_maximums *max)
2706 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2707 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2708 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2709 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2712 static bool ilk_validate_wm_level(int level,
2713 const struct ilk_wm_maximums *max,
2714 struct intel_wm_level *result)
2716 bool ret;
2718 /* already determined to be invalid? */
2719 if (!result->enable)
2720 return false;
2722 result->enable = result->pri_val <= max->pri &&
2723 result->spr_val <= max->spr &&
2724 result->cur_val <= max->cur;
2726 ret = result->enable;
2729 * HACK until we can pre-compute everything,
2730 * and thus fail gracefully if LP0 watermarks
2731 * are exceeded...
2733 if (level == 0 && !result->enable) {
2734 if (result->pri_val > max->pri)
2735 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2736 level, result->pri_val, max->pri);
2737 if (result->spr_val > max->spr)
2738 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2739 level, result->spr_val, max->spr);
2740 if (result->cur_val > max->cur)
2741 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2742 level, result->cur_val, max->cur);
2744 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2745 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2746 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2747 result->enable = true;
2750 return ret;
2753 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2754 const struct intel_crtc *intel_crtc,
2755 int level,
2756 struct intel_crtc_state *cstate,
2757 const struct intel_plane_state *pristate,
2758 const struct intel_plane_state *sprstate,
2759 const struct intel_plane_state *curstate,
2760 struct intel_wm_level *result)
2762 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2763 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2764 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2766 /* WM1+ latency values stored in 0.5us units */
2767 if (level > 0) {
2768 pri_latency *= 5;
2769 spr_latency *= 5;
2770 cur_latency *= 5;
2773 if (pristate) {
2774 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2775 pri_latency, level);
2776 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2779 if (sprstate)
2780 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2782 if (curstate)
2783 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2785 result->enable = true;
2788 static uint32_t
2789 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2791 const struct intel_atomic_state *intel_state =
2792 to_intel_atomic_state(cstate->base.state);
2793 const struct drm_display_mode *adjusted_mode =
2794 &cstate->base.adjusted_mode;
2795 u32 linetime, ips_linetime;
2797 if (!cstate->base.active)
2798 return 0;
2799 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2800 return 0;
2801 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2802 return 0;
2804 /* The WM are computed with base on how long it takes to fill a single
2805 * row at the given clock rate, multiplied by 8.
2806 * */
2807 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2808 adjusted_mode->crtc_clock);
2809 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2810 intel_state->cdclk.logical.cdclk);
2812 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2813 PIPE_WM_LINETIME_TIME(linetime);
2816 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2817 uint16_t wm[8])
2819 if (INTEL_GEN(dev_priv) >= 9) {
2820 uint32_t val;
2821 int ret, i;
2822 int level, max_level = ilk_wm_max_level(dev_priv);
2824 /* read the first set of memory latencies[0:3] */
2825 val = 0; /* data0 to be programmed to 0 for first set */
2826 mutex_lock(&dev_priv->pcu_lock);
2827 ret = sandybridge_pcode_read(dev_priv,
2828 GEN9_PCODE_READ_MEM_LATENCY,
2829 &val);
2830 mutex_unlock(&dev_priv->pcu_lock);
2832 if (ret) {
2833 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2834 return;
2837 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2838 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2839 GEN9_MEM_LATENCY_LEVEL_MASK;
2840 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2841 GEN9_MEM_LATENCY_LEVEL_MASK;
2842 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2843 GEN9_MEM_LATENCY_LEVEL_MASK;
2845 /* read the second set of memory latencies[4:7] */
2846 val = 1; /* data0 to be programmed to 1 for second set */
2847 mutex_lock(&dev_priv->pcu_lock);
2848 ret = sandybridge_pcode_read(dev_priv,
2849 GEN9_PCODE_READ_MEM_LATENCY,
2850 &val);
2851 mutex_unlock(&dev_priv->pcu_lock);
2852 if (ret) {
2853 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2854 return;
2857 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2858 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2859 GEN9_MEM_LATENCY_LEVEL_MASK;
2860 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2861 GEN9_MEM_LATENCY_LEVEL_MASK;
2862 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2863 GEN9_MEM_LATENCY_LEVEL_MASK;
2866 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2867 * need to be disabled. We make sure to sanitize the values out
2868 * of the punit to satisfy this requirement.
2870 for (level = 1; level <= max_level; level++) {
2871 if (wm[level] == 0) {
2872 for (i = level + 1; i <= max_level; i++)
2873 wm[i] = 0;
2874 break;
2879 * WaWmMemoryReadLatency:skl+,glk
2881 * punit doesn't take into account the read latency so we need
2882 * to add 2us to the various latency levels we retrieve from the
2883 * punit when level 0 response data us 0us.
2885 if (wm[0] == 0) {
2886 wm[0] += 2;
2887 for (level = 1; level <= max_level; level++) {
2888 if (wm[level] == 0)
2889 break;
2890 wm[level] += 2;
2894 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2895 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2897 wm[0] = (sskpd >> 56) & 0xFF;
2898 if (wm[0] == 0)
2899 wm[0] = sskpd & 0xF;
2900 wm[1] = (sskpd >> 4) & 0xFF;
2901 wm[2] = (sskpd >> 12) & 0xFF;
2902 wm[3] = (sskpd >> 20) & 0x1FF;
2903 wm[4] = (sskpd >> 32) & 0x1FF;
2904 } else if (INTEL_GEN(dev_priv) >= 6) {
2905 uint32_t sskpd = I915_READ(MCH_SSKPD);
2907 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2908 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2909 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2910 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2911 } else if (INTEL_GEN(dev_priv) >= 5) {
2912 uint32_t mltr = I915_READ(MLTR_ILK);
2914 /* ILK primary LP0 latency is 700 ns */
2915 wm[0] = 7;
2916 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2917 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2918 } else {
2919 MISSING_CASE(INTEL_DEVID(dev_priv));
2923 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2924 uint16_t wm[5])
2926 /* ILK sprite LP0 latency is 1300 ns */
2927 if (IS_GEN5(dev_priv))
2928 wm[0] = 13;
2931 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2932 uint16_t wm[5])
2934 /* ILK cursor LP0 latency is 1300 ns */
2935 if (IS_GEN5(dev_priv))
2936 wm[0] = 13;
2939 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2941 /* how many WM levels are we expecting */
2942 if (INTEL_GEN(dev_priv) >= 9)
2943 return 7;
2944 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2945 return 4;
2946 else if (INTEL_GEN(dev_priv) >= 6)
2947 return 3;
2948 else
2949 return 2;
2952 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2953 const char *name,
2954 const uint16_t wm[8])
2956 int level, max_level = ilk_wm_max_level(dev_priv);
2958 for (level = 0; level <= max_level; level++) {
2959 unsigned int latency = wm[level];
2961 if (latency == 0) {
2962 DRM_DEBUG_KMS("%s WM%d latency not provided\n",
2963 name, level);
2964 continue;
2968 * - latencies are in us on gen9.
2969 * - before then, WM1+ latency values are in 0.5us units
2971 if (INTEL_GEN(dev_priv) >= 9)
2972 latency *= 10;
2973 else if (level > 0)
2974 latency *= 5;
2976 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2977 name, level, wm[level],
2978 latency / 10, latency % 10);
2982 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2983 uint16_t wm[5], uint16_t min)
2985 int level, max_level = ilk_wm_max_level(dev_priv);
2987 if (wm[0] >= min)
2988 return false;
2990 wm[0] = max(wm[0], min);
2991 for (level = 1; level <= max_level; level++)
2992 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2994 return true;
2997 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2999 bool changed;
3002 * The BIOS provided WM memory latency values are often
3003 * inadequate for high resolution displays. Adjust them.
3005 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3006 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3007 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3009 if (!changed)
3010 return;
3012 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3013 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3014 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3015 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3018 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3021 * On some SNB machines (Thinkpad X220 Tablet at least)
3022 * LP3 usage can cause vblank interrupts to be lost.
3023 * The DEIIR bit will go high but it looks like the CPU
3024 * never gets interrupted.
3026 * It's not clear whether other interrupt source could
3027 * be affected or if this is somehow limited to vblank
3028 * interrupts only. To play it safe we disable LP3
3029 * watermarks entirely.
3031 if (dev_priv->wm.pri_latency[3] == 0 &&
3032 dev_priv->wm.spr_latency[3] == 0 &&
3033 dev_priv->wm.cur_latency[3] == 0)
3034 return;
3036 dev_priv->wm.pri_latency[3] = 0;
3037 dev_priv->wm.spr_latency[3] = 0;
3038 dev_priv->wm.cur_latency[3] = 0;
3040 DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
3041 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3042 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3043 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3046 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3048 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3050 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3051 sizeof(dev_priv->wm.pri_latency));
3052 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3053 sizeof(dev_priv->wm.pri_latency));
3055 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3056 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3058 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3059 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3060 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3062 if (IS_GEN6(dev_priv)) {
3063 snb_wm_latency_quirk(dev_priv);
3064 snb_wm_lp3_irq_quirk(dev_priv);
3068 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3070 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3071 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3074 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3075 struct intel_pipe_wm *pipe_wm)
3077 /* LP0 watermark maximums depend on this pipe alone */
3078 const struct intel_wm_config config = {
3079 .num_pipes_active = 1,
3080 .sprites_enabled = pipe_wm->sprites_enabled,
3081 .sprites_scaled = pipe_wm->sprites_scaled,
3083 struct ilk_wm_maximums max;
3085 /* LP0 watermarks always use 1/2 DDB partitioning */
3086 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3088 /* At least LP0 must be valid */
3089 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3090 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3091 return false;
3094 return true;
3097 /* Compute new watermarks for the pipe */
3098 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3100 struct drm_atomic_state *state = cstate->base.state;
3101 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3102 struct intel_pipe_wm *pipe_wm;
3103 struct drm_device *dev = state->dev;
3104 const struct drm_i915_private *dev_priv = to_i915(dev);
3105 struct drm_plane *plane;
3106 const struct drm_plane_state *plane_state;
3107 const struct intel_plane_state *pristate = NULL;
3108 const struct intel_plane_state *sprstate = NULL;
3109 const struct intel_plane_state *curstate = NULL;
3110 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3111 struct ilk_wm_maximums max;
3113 pipe_wm = &cstate->wm.ilk.optimal;
3115 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3116 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3118 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3119 pristate = ps;
3120 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3121 sprstate = ps;
3122 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3123 curstate = ps;
3126 pipe_wm->pipe_enabled = cstate->base.active;
3127 if (sprstate) {
3128 pipe_wm->sprites_enabled = sprstate->base.visible;
3129 pipe_wm->sprites_scaled = sprstate->base.visible &&
3130 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3131 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3134 usable_level = max_level;
3136 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3137 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3138 usable_level = 1;
3140 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3141 if (pipe_wm->sprites_scaled)
3142 usable_level = 0;
3144 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3145 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3146 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3148 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3149 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3151 if (!ilk_validate_pipe_wm(dev, pipe_wm))
3152 return -EINVAL;
3154 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3156 for (level = 1; level <= usable_level; level++) {
3157 struct intel_wm_level *wm = &pipe_wm->wm[level];
3159 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3160 pristate, sprstate, curstate, wm);
3163 * Disable any watermark level that exceeds the
3164 * register maximums since such watermarks are
3165 * always invalid.
3167 if (!ilk_validate_wm_level(level, &max, wm)) {
3168 memset(wm, 0, sizeof(*wm));
3169 break;
3173 return 0;
3177 * Build a set of 'intermediate' watermark values that satisfy both the old
3178 * state and the new state. These can be programmed to the hardware
3179 * immediately.
3181 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3182 struct intel_crtc *intel_crtc,
3183 struct intel_crtc_state *newstate)
3185 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3186 struct intel_atomic_state *intel_state =
3187 to_intel_atomic_state(newstate->base.state);
3188 const struct intel_crtc_state *oldstate =
3189 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3190 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3191 int level, max_level = ilk_wm_max_level(to_i915(dev));
3194 * Start with the final, target watermarks, then combine with the
3195 * currently active watermarks to get values that are safe both before
3196 * and after the vblank.
3198 *a = newstate->wm.ilk.optimal;
3199 if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3200 return 0;
3202 a->pipe_enabled |= b->pipe_enabled;
3203 a->sprites_enabled |= b->sprites_enabled;
3204 a->sprites_scaled |= b->sprites_scaled;
3206 for (level = 0; level <= max_level; level++) {
3207 struct intel_wm_level *a_wm = &a->wm[level];
3208 const struct intel_wm_level *b_wm = &b->wm[level];
3210 a_wm->enable &= b_wm->enable;
3211 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3212 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3213 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3214 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3218 * We need to make sure that these merged watermark values are
3219 * actually a valid configuration themselves. If they're not,
3220 * there's no safe way to transition from the old state to
3221 * the new state, so we need to fail the atomic transaction.
3223 if (!ilk_validate_pipe_wm(dev, a))
3224 return -EINVAL;
3227 * If our intermediate WM are identical to the final WM, then we can
3228 * omit the post-vblank programming; only update if it's different.
3230 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3231 newstate->wm.need_postvbl_update = true;
3233 return 0;
3237 * Merge the watermarks from all active pipes for a specific level.
3239 static void ilk_merge_wm_level(struct drm_device *dev,
3240 int level,
3241 struct intel_wm_level *ret_wm)
3243 const struct intel_crtc *intel_crtc;
3245 ret_wm->enable = true;
3247 for_each_intel_crtc(dev, intel_crtc) {
3248 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3249 const struct intel_wm_level *wm = &active->wm[level];
3251 if (!active->pipe_enabled)
3252 continue;
3255 * The watermark values may have been used in the past,
3256 * so we must maintain them in the registers for some
3257 * time even if the level is now disabled.
3259 if (!wm->enable)
3260 ret_wm->enable = false;
3262 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3263 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3264 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3265 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3270 * Merge all low power watermarks for all active pipes.
3272 static void ilk_wm_merge(struct drm_device *dev,
3273 const struct intel_wm_config *config,
3274 const struct ilk_wm_maximums *max,
3275 struct intel_pipe_wm *merged)
3277 struct drm_i915_private *dev_priv = to_i915(dev);
3278 int level, max_level = ilk_wm_max_level(dev_priv);
3279 int last_enabled_level = max_level;
3281 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3282 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3283 config->num_pipes_active > 1)
3284 last_enabled_level = 0;
3286 /* ILK: FBC WM must be disabled always */
3287 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3289 /* merge each WM1+ level */
3290 for (level = 1; level <= max_level; level++) {
3291 struct intel_wm_level *wm = &merged->wm[level];
3293 ilk_merge_wm_level(dev, level, wm);
3295 if (level > last_enabled_level)
3296 wm->enable = false;
3297 else if (!ilk_validate_wm_level(level, max, wm))
3298 /* make sure all following levels get disabled */
3299 last_enabled_level = level - 1;
3302 * The spec says it is preferred to disable
3303 * FBC WMs instead of disabling a WM level.
3305 if (wm->fbc_val > max->fbc) {
3306 if (wm->enable)
3307 merged->fbc_wm_enabled = false;
3308 wm->fbc_val = 0;
3312 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3314 * FIXME this is racy. FBC might get enabled later.
3315 * What we should check here is whether FBC can be
3316 * enabled sometime later.
3318 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3319 intel_fbc_is_active(dev_priv)) {
3320 for (level = 2; level <= max_level; level++) {
3321 struct intel_wm_level *wm = &merged->wm[level];
3323 wm->enable = false;
3328 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3330 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3331 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3334 /* The value we need to program into the WM_LPx latency field */
3335 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3337 struct drm_i915_private *dev_priv = to_i915(dev);
3339 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3340 return 2 * level;
3341 else
3342 return dev_priv->wm.pri_latency[level];
3345 static void ilk_compute_wm_results(struct drm_device *dev,
3346 const struct intel_pipe_wm *merged,
3347 enum intel_ddb_partitioning partitioning,
3348 struct ilk_wm_values *results)
3350 struct drm_i915_private *dev_priv = to_i915(dev);
3351 struct intel_crtc *intel_crtc;
3352 int level, wm_lp;
3354 results->enable_fbc_wm = merged->fbc_wm_enabled;
3355 results->partitioning = partitioning;
3357 /* LP1+ register values */
3358 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3359 const struct intel_wm_level *r;
3361 level = ilk_wm_lp_to_level(wm_lp, merged);
3363 r = &merged->wm[level];
3366 * Maintain the watermark values even if the level is
3367 * disabled. Doing otherwise could cause underruns.
3369 results->wm_lp[wm_lp - 1] =
3370 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3371 (r->pri_val << WM1_LP_SR_SHIFT) |
3372 r->cur_val;
3374 if (r->enable)
3375 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3377 if (INTEL_GEN(dev_priv) >= 8)
3378 results->wm_lp[wm_lp - 1] |=
3379 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3380 else
3381 results->wm_lp[wm_lp - 1] |=
3382 r->fbc_val << WM1_LP_FBC_SHIFT;
3385 * Always set WM1S_LP_EN when spr_val != 0, even if the
3386 * level is disabled. Doing otherwise could cause underruns.
3388 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3389 WARN_ON(wm_lp != 1);
3390 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3391 } else
3392 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3395 /* LP0 register values */
3396 for_each_intel_crtc(dev, intel_crtc) {
3397 enum pipe pipe = intel_crtc->pipe;
3398 const struct intel_wm_level *r =
3399 &intel_crtc->wm.active.ilk.wm[0];
3401 if (WARN_ON(!r->enable))
3402 continue;
3404 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3406 results->wm_pipe[pipe] =
3407 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3408 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3409 r->cur_val;
3413 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3414 * case both are at the same level. Prefer r1 in case they're the same. */
3415 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3416 struct intel_pipe_wm *r1,
3417 struct intel_pipe_wm *r2)
3419 int level, max_level = ilk_wm_max_level(to_i915(dev));
3420 int level1 = 0, level2 = 0;
3422 for (level = 1; level <= max_level; level++) {
3423 if (r1->wm[level].enable)
3424 level1 = level;
3425 if (r2->wm[level].enable)
3426 level2 = level;
3429 if (level1 == level2) {
3430 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3431 return r2;
3432 else
3433 return r1;
3434 } else if (level1 > level2) {
3435 return r1;
3436 } else {
3437 return r2;
3441 /* dirty bits used to track which watermarks need changes */
3442 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3443 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3444 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3445 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3446 #define WM_DIRTY_FBC (1 << 24)
3447 #define WM_DIRTY_DDB (1 << 25)
3449 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3450 const struct ilk_wm_values *old,
3451 const struct ilk_wm_values *new)
3453 unsigned int dirty = 0;
3454 enum pipe pipe;
3455 int wm_lp;
3457 for_each_pipe(dev_priv, pipe) {
3458 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3459 dirty |= WM_DIRTY_LINETIME(pipe);
3460 /* Must disable LP1+ watermarks too */
3461 dirty |= WM_DIRTY_LP_ALL;
3464 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3465 dirty |= WM_DIRTY_PIPE(pipe);
3466 /* Must disable LP1+ watermarks too */
3467 dirty |= WM_DIRTY_LP_ALL;
3471 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3472 dirty |= WM_DIRTY_FBC;
3473 /* Must disable LP1+ watermarks too */
3474 dirty |= WM_DIRTY_LP_ALL;
3477 if (old->partitioning != new->partitioning) {
3478 dirty |= WM_DIRTY_DDB;
3479 /* Must disable LP1+ watermarks too */
3480 dirty |= WM_DIRTY_LP_ALL;
3483 /* LP1+ watermarks already deemed dirty, no need to continue */
3484 if (dirty & WM_DIRTY_LP_ALL)
3485 return dirty;
3487 /* Find the lowest numbered LP1+ watermark in need of an update... */
3488 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3489 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3490 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3491 break;
3494 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3495 for (; wm_lp <= 3; wm_lp++)
3496 dirty |= WM_DIRTY_LP(wm_lp);
3498 return dirty;
3501 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3502 unsigned int dirty)
3504 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3505 bool changed = false;
3507 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3508 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3509 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3510 changed = true;
3512 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3513 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3514 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3515 changed = true;
3517 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3518 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3519 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3520 changed = true;
3524 * Don't touch WM1S_LP_EN here.
3525 * Doing so could cause underruns.
3528 return changed;
3532 * The spec says we shouldn't write when we don't need, because every write
3533 * causes WMs to be re-evaluated, expending some power.
3535 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3536 struct ilk_wm_values *results)
3538 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3539 unsigned int dirty;
3540 uint32_t val;
3542 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3543 if (!dirty)
3544 return;
3546 _ilk_disable_lp_wm(dev_priv, dirty);
3548 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3549 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3550 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3551 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3552 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3553 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3555 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3556 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3557 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3558 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3559 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3560 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3562 if (dirty & WM_DIRTY_DDB) {
3563 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3564 val = I915_READ(WM_MISC);
3565 if (results->partitioning == INTEL_DDB_PART_1_2)
3566 val &= ~WM_MISC_DATA_PARTITION_5_6;
3567 else
3568 val |= WM_MISC_DATA_PARTITION_5_6;
3569 I915_WRITE(WM_MISC, val);
3570 } else {
3571 val = I915_READ(DISP_ARB_CTL2);
3572 if (results->partitioning == INTEL_DDB_PART_1_2)
3573 val &= ~DISP_DATA_PARTITION_5_6;
3574 else
3575 val |= DISP_DATA_PARTITION_5_6;
3576 I915_WRITE(DISP_ARB_CTL2, val);
3580 if (dirty & WM_DIRTY_FBC) {
3581 val = I915_READ(DISP_ARB_CTL);
3582 if (results->enable_fbc_wm)
3583 val &= ~DISP_FBC_WM_DIS;
3584 else
3585 val |= DISP_FBC_WM_DIS;
3586 I915_WRITE(DISP_ARB_CTL, val);
3589 if (dirty & WM_DIRTY_LP(1) &&
3590 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3591 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3593 if (INTEL_GEN(dev_priv) >= 7) {
3594 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3595 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3596 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3597 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3600 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3601 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3602 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3603 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3604 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3605 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3607 dev_priv->wm.hw = *results;
3610 bool ilk_disable_lp_wm(struct drm_device *dev)
3612 struct drm_i915_private *dev_priv = to_i915(dev);
3614 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3617 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3619 u8 enabled_slices;
3621 /* Slice 1 will always be enabled */
3622 enabled_slices = 1;
3624 /* Gen prior to GEN11 have only one DBuf slice */
3625 if (INTEL_GEN(dev_priv) < 11)
3626 return enabled_slices;
3628 if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3629 enabled_slices++;
3631 return enabled_slices;
3635 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3636 * so assume we'll always need it in order to avoid underruns.
3638 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3640 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3642 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3643 return true;
3645 return false;
3648 static bool
3649 intel_has_sagv(struct drm_i915_private *dev_priv)
3651 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3652 IS_CANNONLAKE(dev_priv))
3653 return true;
3655 if (IS_SKYLAKE(dev_priv) &&
3656 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3657 return true;
3659 return false;
3663 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3664 * depending on power and performance requirements. The display engine access
3665 * to system memory is blocked during the adjustment time. Because of the
3666 * blocking time, having this enabled can cause full system hangs and/or pipe
3667 * underruns if we don't meet all of the following requirements:
3669 * - <= 1 pipe enabled
3670 * - All planes can enable watermarks for latencies >= SAGV engine block time
3671 * - We're not using an interlaced display configuration
3674 intel_enable_sagv(struct drm_i915_private *dev_priv)
3676 int ret;
3678 if (!intel_has_sagv(dev_priv))
3679 return 0;
3681 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3682 return 0;
3684 DRM_DEBUG_KMS("Enabling the SAGV\n");
3685 mutex_lock(&dev_priv->pcu_lock);
3687 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3688 GEN9_SAGV_ENABLE);
3690 /* We don't need to wait for the SAGV when enabling */
3691 mutex_unlock(&dev_priv->pcu_lock);
3694 * Some skl systems, pre-release machines in particular,
3695 * don't actually have an SAGV.
3697 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3698 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3699 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3700 return 0;
3701 } else if (ret < 0) {
3702 DRM_ERROR("Failed to enable the SAGV\n");
3703 return ret;
3706 dev_priv->sagv_status = I915_SAGV_ENABLED;
3707 return 0;
3711 intel_disable_sagv(struct drm_i915_private *dev_priv)
3713 int ret;
3715 if (!intel_has_sagv(dev_priv))
3716 return 0;
3718 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3719 return 0;
3721 DRM_DEBUG_KMS("Disabling the SAGV\n");
3722 mutex_lock(&dev_priv->pcu_lock);
3724 /* bspec says to keep retrying for at least 1 ms */
3725 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3726 GEN9_SAGV_DISABLE,
3727 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3729 mutex_unlock(&dev_priv->pcu_lock);
3732 * Some skl systems, pre-release machines in particular,
3733 * don't actually have an SAGV.
3735 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3736 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3737 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3738 return 0;
3739 } else if (ret < 0) {
3740 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3741 return ret;
3744 dev_priv->sagv_status = I915_SAGV_DISABLED;
3745 return 0;
3748 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3750 struct drm_device *dev = state->dev;
3751 struct drm_i915_private *dev_priv = to_i915(dev);
3752 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3753 struct intel_crtc *crtc;
3754 struct intel_plane *plane;
3755 struct intel_crtc_state *cstate;
3756 enum pipe pipe;
3757 int level, latency;
3758 int sagv_block_time_us;
3760 if (!intel_has_sagv(dev_priv))
3761 return false;
3763 if (IS_GEN9(dev_priv))
3764 sagv_block_time_us = 30;
3765 else if (IS_GEN10(dev_priv))
3766 sagv_block_time_us = 20;
3767 else
3768 sagv_block_time_us = 10;
3771 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3772 * more then one pipe enabled
3774 * If there are no active CRTCs, no additional checks need be performed
3776 if (hweight32(intel_state->active_crtcs) == 0)
3777 return true;
3778 else if (hweight32(intel_state->active_crtcs) > 1)
3779 return false;
3781 /* Since we're now guaranteed to only have one active CRTC... */
3782 pipe = ffs(intel_state->active_crtcs) - 1;
3783 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3784 cstate = to_intel_crtc_state(crtc->base.state);
3786 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3787 return false;
3789 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3790 struct skl_plane_wm *wm =
3791 &cstate->wm.skl.optimal.planes[plane->id];
3793 /* Skip this plane if it's not enabled */
3794 if (!wm->wm[0].plane_en)
3795 continue;
3797 /* Find the highest enabled wm level for this plane */
3798 for (level = ilk_wm_max_level(dev_priv);
3799 !wm->wm[level].plane_en; --level)
3802 latency = dev_priv->wm.skl_latency[level];
3804 if (skl_needs_memory_bw_wa(intel_state) &&
3805 plane->base.state->fb->modifier ==
3806 I915_FORMAT_MOD_X_TILED)
3807 latency += 15;
3810 * If any of the planes on this pipe don't enable wm levels that
3811 * incur memory latencies higher than sagv_block_time_us we
3812 * can't enable the SAGV.
3814 if (latency < sagv_block_time_us)
3815 return false;
3818 return true;
3821 static unsigned int intel_get_ddb_size(struct drm_i915_private *dev_priv,
3822 const struct intel_crtc_state *cstate,
3823 const unsigned int total_data_rate,
3824 const int num_active,
3825 struct skl_ddb_allocation *ddb)
3827 const struct drm_display_mode *adjusted_mode;
3828 u64 total_data_bw;
3829 u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3831 WARN_ON(ddb_size == 0);
3833 if (INTEL_GEN(dev_priv) < 11)
3834 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3836 adjusted_mode = &cstate->base.adjusted_mode;
3837 total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode);
3840 * 12GB/s is maximum BW supported by single DBuf slice.
3842 if (total_data_bw >= GBps(12) || num_active > 1) {
3843 ddb->enabled_slices = 2;
3844 } else {
3845 ddb->enabled_slices = 1;
3846 ddb_size /= 2;
3849 return ddb_size;
3852 static void
3853 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3854 const struct intel_crtc_state *cstate,
3855 const unsigned int total_data_rate,
3856 struct skl_ddb_allocation *ddb,
3857 struct skl_ddb_entry *alloc, /* out */
3858 int *num_active /* out */)
3860 struct drm_atomic_state *state = cstate->base.state;
3861 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3862 struct drm_i915_private *dev_priv = to_i915(dev);
3863 struct drm_crtc *for_crtc = cstate->base.crtc;
3864 unsigned int pipe_size, ddb_size;
3865 int nth_active_pipe;
3867 if (WARN_ON(!state) || !cstate->base.active) {
3868 alloc->start = 0;
3869 alloc->end = 0;
3870 *num_active = hweight32(dev_priv->active_crtcs);
3871 return;
3874 if (intel_state->active_pipe_changes)
3875 *num_active = hweight32(intel_state->active_crtcs);
3876 else
3877 *num_active = hweight32(dev_priv->active_crtcs);
3879 ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
3880 *num_active, ddb);
3883 * If the state doesn't change the active CRTC's, then there's
3884 * no need to recalculate; the existing pipe allocation limits
3885 * should remain unchanged. Note that we're safe from racing
3886 * commits since any racing commit that changes the active CRTC
3887 * list would need to grab _all_ crtc locks, including the one
3888 * we currently hold.
3890 if (!intel_state->active_pipe_changes) {
3892 * alloc may be cleared by clear_intel_crtc_state,
3893 * copy from old state to be sure
3895 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3896 return;
3899 nth_active_pipe = hweight32(intel_state->active_crtcs &
3900 (drm_crtc_mask(for_crtc) - 1));
3901 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3902 alloc->start = nth_active_pipe * ddb_size / *num_active;
3903 alloc->end = alloc->start + pipe_size;
3906 static unsigned int skl_cursor_allocation(int num_active)
3908 if (num_active == 1)
3909 return 32;
3911 return 8;
3914 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3915 struct skl_ddb_entry *entry, u32 reg)
3917 u16 mask;
3919 if (INTEL_GEN(dev_priv) >= 11)
3920 mask = ICL_DDB_ENTRY_MASK;
3921 else
3922 mask = SKL_DDB_ENTRY_MASK;
3923 entry->start = reg & mask;
3924 entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;
3926 if (entry->end)
3927 entry->end += 1;
3930 static void
3931 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3932 const enum pipe pipe,
3933 const enum plane_id plane_id,
3934 struct skl_ddb_allocation *ddb /* out */)
3936 u32 val, val2 = 0;
3937 int fourcc, pixel_format;
3939 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3940 if (plane_id == PLANE_CURSOR) {
3941 val = I915_READ(CUR_BUF_CFG(pipe));
3942 skl_ddb_entry_init_from_hw(dev_priv,
3943 &ddb->plane[pipe][plane_id], val);
3944 return;
3947 val = I915_READ(PLANE_CTL(pipe, plane_id));
3949 /* No DDB allocated for disabled planes */
3950 if (!(val & PLANE_CTL_ENABLE))
3951 return;
3953 pixel_format = val & PLANE_CTL_FORMAT_MASK;
3954 fourcc = skl_format_to_fourcc(pixel_format,
3955 val & PLANE_CTL_ORDER_RGBX,
3956 val & PLANE_CTL_ALPHA_MASK);
3958 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3959 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3961 if (fourcc == DRM_FORMAT_NV12) {
3962 skl_ddb_entry_init_from_hw(dev_priv,
3963 &ddb->plane[pipe][plane_id], val2);
3964 skl_ddb_entry_init_from_hw(dev_priv,
3965 &ddb->uv_plane[pipe][plane_id], val);
3966 } else {
3967 skl_ddb_entry_init_from_hw(dev_priv,
3968 &ddb->plane[pipe][plane_id], val);
3972 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3973 struct skl_ddb_allocation *ddb /* out */)
3975 struct intel_crtc *crtc;
3977 memset(ddb, 0, sizeof(*ddb));
3979 ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
3981 for_each_intel_crtc(&dev_priv->drm, crtc) {
3982 enum intel_display_power_domain power_domain;
3983 enum plane_id plane_id;
3984 enum pipe pipe = crtc->pipe;
3986 power_domain = POWER_DOMAIN_PIPE(pipe);
3987 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3988 continue;
3990 for_each_plane_id_on_crtc(crtc, plane_id)
3991 skl_ddb_get_hw_plane_state(dev_priv, pipe,
3992 plane_id, ddb);
3994 intel_display_power_put(dev_priv, power_domain);
3999 * Determines the downscale amount of a plane for the purposes of watermark calculations.
4000 * The bspec defines downscale amount as:
4002 * """
4003 * Horizontal down scale amount = maximum[1, Horizontal source size /
4004 * Horizontal destination size]
4005 * Vertical down scale amount = maximum[1, Vertical source size /
4006 * Vertical destination size]
4007 * Total down scale amount = Horizontal down scale amount *
4008 * Vertical down scale amount
4009 * """
4011 * Return value is provided in 16.16 fixed point form to retain fractional part.
4012 * Caller should take care of dividing & rounding off the value.
4014 static uint_fixed_16_16_t
4015 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
4016 const struct intel_plane_state *pstate)
4018 struct intel_plane *plane = to_intel_plane(pstate->base.plane);
4019 uint32_t src_w, src_h, dst_w, dst_h;
4020 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4021 uint_fixed_16_16_t downscale_h, downscale_w;
4023 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4024 return u32_to_fixed16(0);
4026 /* n.b., src is 16.16 fixed point, dst is whole integer */
4027 if (plane->id == PLANE_CURSOR) {
4029 * Cursors only support 0/180 degree rotation,
4030 * hence no need to account for rotation here.
4032 src_w = pstate->base.src_w >> 16;
4033 src_h = pstate->base.src_h >> 16;
4034 dst_w = pstate->base.crtc_w;
4035 dst_h = pstate->base.crtc_h;
4036 } else {
4038 * Src coordinates are already rotated by 270 degrees for
4039 * the 90/270 degree plane rotation cases (to match the
4040 * GTT mapping), hence no need to account for rotation here.
4042 src_w = drm_rect_width(&pstate->base.src) >> 16;
4043 src_h = drm_rect_height(&pstate->base.src) >> 16;
4044 dst_w = drm_rect_width(&pstate->base.dst);
4045 dst_h = drm_rect_height(&pstate->base.dst);
4048 fp_w_ratio = div_fixed16(src_w, dst_w);
4049 fp_h_ratio = div_fixed16(src_h, dst_h);
4050 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4051 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4053 return mul_fixed16(downscale_w, downscale_h);
4056 static uint_fixed_16_16_t
4057 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4059 uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4061 if (!crtc_state->base.enable)
4062 return pipe_downscale;
4064 if (crtc_state->pch_pfit.enabled) {
4065 uint32_t src_w, src_h, dst_w, dst_h;
4066 uint32_t pfit_size = crtc_state->pch_pfit.size;
4067 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4068 uint_fixed_16_16_t downscale_h, downscale_w;
4070 src_w = crtc_state->pipe_src_w;
4071 src_h = crtc_state->pipe_src_h;
4072 dst_w = pfit_size >> 16;
4073 dst_h = pfit_size & 0xffff;
4075 if (!dst_w || !dst_h)
4076 return pipe_downscale;
4078 fp_w_ratio = div_fixed16(src_w, dst_w);
4079 fp_h_ratio = div_fixed16(src_h, dst_h);
4080 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4081 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4083 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4086 return pipe_downscale;
4089 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4090 struct intel_crtc_state *cstate)
4092 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4093 struct drm_crtc_state *crtc_state = &cstate->base;
4094 struct drm_atomic_state *state = crtc_state->state;
4095 struct drm_plane *plane;
4096 const struct drm_plane_state *pstate;
4097 struct intel_plane_state *intel_pstate;
4098 int crtc_clock, dotclk;
4099 uint32_t pipe_max_pixel_rate;
4100 uint_fixed_16_16_t pipe_downscale;
4101 uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4103 if (!cstate->base.enable)
4104 return 0;
4106 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4107 uint_fixed_16_16_t plane_downscale;
4108 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4109 int bpp;
4111 if (!intel_wm_plane_visible(cstate,
4112 to_intel_plane_state(pstate)))
4113 continue;
4115 if (WARN_ON(!pstate->fb))
4116 return -EINVAL;
4118 intel_pstate = to_intel_plane_state(pstate);
4119 plane_downscale = skl_plane_downscale_amount(cstate,
4120 intel_pstate);
4121 bpp = pstate->fb->format->cpp[0] * 8;
4122 if (bpp == 64)
4123 plane_downscale = mul_fixed16(plane_downscale,
4124 fp_9_div_8);
4126 max_downscale = max_fixed16(plane_downscale, max_downscale);
4128 pipe_downscale = skl_pipe_downscale_amount(cstate);
4130 pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4132 crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4133 dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4135 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4136 dotclk *= 2;
4138 pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4140 if (pipe_max_pixel_rate < crtc_clock) {
4141 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4142 return -EINVAL;
4145 return 0;
4148 static unsigned int
4149 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4150 const struct drm_plane_state *pstate,
4151 const int plane)
4153 struct intel_plane *intel_plane = to_intel_plane(pstate->plane);
4154 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4155 uint32_t data_rate;
4156 uint32_t width = 0, height = 0;
4157 struct drm_framebuffer *fb;
4158 u32 format;
4159 uint_fixed_16_16_t down_scale_amount;
4161 if (!intel_pstate->base.visible)
4162 return 0;
4164 fb = pstate->fb;
4165 format = fb->format->format;
4167 if (intel_plane->id == PLANE_CURSOR)
4168 return 0;
4169 if (plane == 1 && format != DRM_FORMAT_NV12)
4170 return 0;
4173 * Src coordinates are already rotated by 270 degrees for
4174 * the 90/270 degree plane rotation cases (to match the
4175 * GTT mapping), hence no need to account for rotation here.
4177 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4178 height = drm_rect_height(&intel_pstate->base.src) >> 16;
4180 /* UV plane does 1/2 pixel sub-sampling */
4181 if (plane == 1 && format == DRM_FORMAT_NV12) {
4182 width /= 2;
4183 height /= 2;
4186 data_rate = width * height * fb->format->cpp[plane];
4188 down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4190 return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4194 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4195 * a 8192x4096@32bpp framebuffer:
4196 * 3 * 4096 * 8192 * 4 < 2^32
4198 static unsigned int
4199 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4200 unsigned int *plane_data_rate,
4201 unsigned int *uv_plane_data_rate)
4203 struct drm_crtc_state *cstate = &intel_cstate->base;
4204 struct drm_atomic_state *state = cstate->state;
4205 struct drm_plane *plane;
4206 const struct drm_plane_state *pstate;
4207 unsigned int total_data_rate = 0;
4209 if (WARN_ON(!state))
4210 return 0;
4212 /* Calculate and cache data rate for each plane */
4213 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4214 enum plane_id plane_id = to_intel_plane(plane)->id;
4215 unsigned int rate;
4217 /* packed/y */
4218 rate = skl_plane_relative_data_rate(intel_cstate,
4219 pstate, 0);
4220 plane_data_rate[plane_id] = rate;
4222 total_data_rate += rate;
4224 /* uv-plane */
4225 rate = skl_plane_relative_data_rate(intel_cstate,
4226 pstate, 1);
4227 uv_plane_data_rate[plane_id] = rate;
4229 total_data_rate += rate;
4232 return total_data_rate;
4235 static uint16_t
4236 skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
4238 struct drm_framebuffer *fb = pstate->fb;
4239 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4240 uint32_t src_w, src_h;
4241 uint32_t min_scanlines = 8;
4242 uint8_t plane_bpp;
4244 if (WARN_ON(!fb))
4245 return 0;
4247 /* For packed formats, and uv-plane, return 0 */
4248 if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
4249 return 0;
4251 /* For Non Y-tile return 8-blocks */
4252 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4253 fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4254 fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4255 fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4256 return 8;
4259 * Src coordinates are already rotated by 270 degrees for
4260 * the 90/270 degree plane rotation cases (to match the
4261 * GTT mapping), hence no need to account for rotation here.
4263 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4264 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4266 /* Halve UV plane width and height for NV12 */
4267 if (plane == 1) {
4268 src_w /= 2;
4269 src_h /= 2;
4272 plane_bpp = fb->format->cpp[plane];
4274 if (drm_rotation_90_or_270(pstate->rotation)) {
4275 switch (plane_bpp) {
4276 case 1:
4277 min_scanlines = 32;
4278 break;
4279 case 2:
4280 min_scanlines = 16;
4281 break;
4282 case 4:
4283 min_scanlines = 8;
4284 break;
4285 case 8:
4286 min_scanlines = 4;
4287 break;
4288 default:
4289 WARN(1, "Unsupported pixel depth %u for rotation",
4290 plane_bpp);
4291 min_scanlines = 32;
4295 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4298 static void
4299 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4300 uint16_t *minimum, uint16_t *uv_minimum)
4302 const struct drm_plane_state *pstate;
4303 struct drm_plane *plane;
4305 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4306 enum plane_id plane_id = to_intel_plane(plane)->id;
4308 if (plane_id == PLANE_CURSOR)
4309 continue;
4311 if (!pstate->visible)
4312 continue;
4314 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4315 uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4318 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4321 static int
4322 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4323 struct skl_ddb_allocation *ddb /* out */)
4325 struct drm_atomic_state *state = cstate->base.state;
4326 struct drm_crtc *crtc = cstate->base.crtc;
4327 struct drm_device *dev = crtc->dev;
4328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4329 enum pipe pipe = intel_crtc->pipe;
4330 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4331 uint16_t alloc_size, start;
4332 uint16_t minimum[I915_MAX_PLANES] = {};
4333 uint16_t uv_minimum[I915_MAX_PLANES] = {};
4334 unsigned int total_data_rate;
4335 enum plane_id plane_id;
4336 int num_active;
4337 unsigned int plane_data_rate[I915_MAX_PLANES] = {};
4338 unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {};
4339 uint16_t total_min_blocks = 0;
4341 /* Clear the partitioning for disabled planes. */
4342 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4343 memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe]));
4345 if (WARN_ON(!state))
4346 return 0;
4348 if (!cstate->base.active) {
4349 alloc->start = alloc->end = 0;
4350 return 0;
4353 total_data_rate = skl_get_total_relative_data_rate(cstate,
4354 plane_data_rate,
4355 uv_plane_data_rate);
4356 skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb,
4357 alloc, &num_active);
4358 alloc_size = skl_ddb_entry_size(alloc);
4359 if (alloc_size == 0)
4360 return 0;
4362 skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
4365 * 1. Allocate the mininum required blocks for each active plane
4366 * and allocate the cursor, it doesn't require extra allocation
4367 * proportional to the data rate.
4370 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4371 total_min_blocks += minimum[plane_id];
4372 total_min_blocks += uv_minimum[plane_id];
4375 if (total_min_blocks > alloc_size) {
4376 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4377 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4378 alloc_size);
4379 return -EINVAL;
4382 alloc_size -= total_min_blocks;
4383 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4384 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4387 * 2. Distribute the remaining space in proportion to the amount of
4388 * data each plane needs to fetch from memory.
4390 * FIXME: we may not allocate every single block here.
4392 if (total_data_rate == 0)
4393 return 0;
4395 start = alloc->start;
4396 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4397 unsigned int data_rate, uv_data_rate;
4398 uint16_t plane_blocks, uv_plane_blocks;
4400 if (plane_id == PLANE_CURSOR)
4401 continue;
4403 data_rate = plane_data_rate[plane_id];
4406 * allocation for (packed formats) or (uv-plane part of planar format):
4407 * promote the expression to 64 bits to avoid overflowing, the
4408 * result is < available as data_rate / total_data_rate < 1
4410 plane_blocks = minimum[plane_id];
4411 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4412 total_data_rate);
4414 /* Leave disabled planes at (0,0) */
4415 if (data_rate) {
4416 ddb->plane[pipe][plane_id].start = start;
4417 ddb->plane[pipe][plane_id].end = start + plane_blocks;
4420 start += plane_blocks;
4422 /* Allocate DDB for UV plane for planar format/NV12 */
4423 uv_data_rate = uv_plane_data_rate[plane_id];
4425 uv_plane_blocks = uv_minimum[plane_id];
4426 uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate,
4427 total_data_rate);
4429 if (uv_data_rate) {
4430 ddb->uv_plane[pipe][plane_id].start = start;
4431 ddb->uv_plane[pipe][plane_id].end =
4432 start + uv_plane_blocks;
4435 start += uv_plane_blocks;
4438 return 0;
4442 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4443 * for the read latency) and cpp should always be <= 8, so that
4444 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4445 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4447 static uint_fixed_16_16_t
4448 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4449 uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4451 uint32_t wm_intermediate_val;
4452 uint_fixed_16_16_t ret;
4454 if (latency == 0)
4455 return FP_16_16_MAX;
4457 wm_intermediate_val = latency * pixel_rate * cpp;
4458 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4460 if (INTEL_GEN(dev_priv) >= 10)
4461 ret = add_fixed16_u32(ret, 1);
4463 return ret;
4466 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4467 uint32_t pipe_htotal,
4468 uint32_t latency,
4469 uint_fixed_16_16_t plane_blocks_per_line)
4471 uint32_t wm_intermediate_val;
4472 uint_fixed_16_16_t ret;
4474 if (latency == 0)
4475 return FP_16_16_MAX;
4477 wm_intermediate_val = latency * pixel_rate;
4478 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4479 pipe_htotal * 1000);
4480 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4481 return ret;
4484 static uint_fixed_16_16_t
4485 intel_get_linetime_us(struct intel_crtc_state *cstate)
4487 uint32_t pixel_rate;
4488 uint32_t crtc_htotal;
4489 uint_fixed_16_16_t linetime_us;
4491 if (!cstate->base.active)
4492 return u32_to_fixed16(0);
4494 pixel_rate = cstate->pixel_rate;
4496 if (WARN_ON(pixel_rate == 0))
4497 return u32_to_fixed16(0);
4499 crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4500 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4502 return linetime_us;
4505 static uint32_t
4506 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4507 const struct intel_plane_state *pstate)
4509 uint64_t adjusted_pixel_rate;
4510 uint_fixed_16_16_t downscale_amount;
4512 /* Shouldn't reach here on disabled planes... */
4513 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4514 return 0;
4517 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4518 * with additional adjustments for plane-specific scaling.
4520 adjusted_pixel_rate = cstate->pixel_rate;
4521 downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4523 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4524 downscale_amount);
4527 static int
4528 skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4529 struct intel_crtc_state *cstate,
4530 const struct intel_plane_state *intel_pstate,
4531 struct skl_wm_params *wp, int plane_id)
4533 struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4534 const struct drm_plane_state *pstate = &intel_pstate->base;
4535 const struct drm_framebuffer *fb = pstate->fb;
4536 uint32_t interm_pbpl;
4537 struct intel_atomic_state *state =
4538 to_intel_atomic_state(cstate->base.state);
4539 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4541 if (!intel_wm_plane_visible(cstate, intel_pstate))
4542 return 0;
4544 /* only NV12 format has two planes */
4545 if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) {
4546 DRM_DEBUG_KMS("Non NV12 format have single plane\n");
4547 return -EINVAL;
4550 wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4551 fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4552 fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4553 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4554 wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4555 wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4556 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4557 wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4559 if (plane->id == PLANE_CURSOR) {
4560 wp->width = intel_pstate->base.crtc_w;
4561 } else {
4563 * Src coordinates are already rotated by 270 degrees for
4564 * the 90/270 degree plane rotation cases (to match the
4565 * GTT mapping), hence no need to account for rotation here.
4567 wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4570 if (plane_id == 1 && wp->is_planar)
4571 wp->width /= 2;
4573 wp->cpp = fb->format->cpp[plane_id];
4574 wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4575 intel_pstate);
4577 if (INTEL_GEN(dev_priv) >= 11 &&
4578 fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
4579 wp->dbuf_block_size = 256;
4580 else
4581 wp->dbuf_block_size = 512;
4583 if (drm_rotation_90_or_270(pstate->rotation)) {
4585 switch (wp->cpp) {
4586 case 1:
4587 wp->y_min_scanlines = 16;
4588 break;
4589 case 2:
4590 wp->y_min_scanlines = 8;
4591 break;
4592 case 4:
4593 wp->y_min_scanlines = 4;
4594 break;
4595 default:
4596 MISSING_CASE(wp->cpp);
4597 return -EINVAL;
4599 } else {
4600 wp->y_min_scanlines = 4;
4603 if (apply_memory_bw_wa)
4604 wp->y_min_scanlines *= 2;
4606 wp->plane_bytes_per_line = wp->width * wp->cpp;
4607 if (wp->y_tiled) {
4608 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4609 wp->y_min_scanlines,
4610 wp->dbuf_block_size);
4612 if (INTEL_GEN(dev_priv) >= 10)
4613 interm_pbpl++;
4615 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4616 wp->y_min_scanlines);
4617 } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4618 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4619 wp->dbuf_block_size);
4620 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4621 } else {
4622 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4623 wp->dbuf_block_size) + 1;
4624 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4627 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4628 wp->plane_blocks_per_line);
4629 wp->linetime_us = fixed16_to_u32_round_up(
4630 intel_get_linetime_us(cstate));
4632 return 0;
4635 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4636 struct intel_crtc_state *cstate,
4637 const struct intel_plane_state *intel_pstate,
4638 uint16_t ddb_allocation,
4639 int level,
4640 const struct skl_wm_params *wp,
4641 const struct skl_wm_level *result_prev,
4642 struct skl_wm_level *result /* out */)
4644 const struct drm_plane_state *pstate = &intel_pstate->base;
4645 uint32_t latency = dev_priv->wm.skl_latency[level];
4646 uint_fixed_16_16_t method1, method2;
4647 uint_fixed_16_16_t selected_result;
4648 uint32_t res_blocks, res_lines;
4649 struct intel_atomic_state *state =
4650 to_intel_atomic_state(cstate->base.state);
4651 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4652 uint32_t min_disp_buf_needed;
4654 if (latency == 0 ||
4655 !intel_wm_plane_visible(cstate, intel_pstate)) {
4656 result->plane_en = false;
4657 return 0;
4660 /* Display WA #1141: kbl,cfl */
4661 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4662 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4663 dev_priv->ipc_enabled)
4664 latency += 4;
4666 if (apply_memory_bw_wa && wp->x_tiled)
4667 latency += 15;
4669 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4670 wp->cpp, latency, wp->dbuf_block_size);
4671 method2 = skl_wm_method2(wp->plane_pixel_rate,
4672 cstate->base.adjusted_mode.crtc_htotal,
4673 latency,
4674 wp->plane_blocks_per_line);
4676 if (wp->y_tiled) {
4677 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4678 } else {
4679 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4680 wp->dbuf_block_size < 1) &&
4681 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4682 selected_result = method2;
4683 else if (ddb_allocation >=
4684 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4685 selected_result = min_fixed16(method1, method2);
4686 else if (latency >= wp->linetime_us)
4687 selected_result = min_fixed16(method1, method2);
4688 else
4689 selected_result = method1;
4692 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4693 res_lines = div_round_up_fixed16(selected_result,
4694 wp->plane_blocks_per_line);
4696 /* Display WA #1125: skl,bxt,kbl,glk */
4697 if (level == 0 && wp->rc_surface)
4698 res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4700 /* Display WA #1126: skl,bxt,kbl,glk */
4701 if (level >= 1 && level <= 7) {
4702 if (wp->y_tiled) {
4703 res_blocks += fixed16_to_u32_round_up(
4704 wp->y_tile_minimum);
4705 res_lines += wp->y_min_scanlines;
4706 } else {
4707 res_blocks++;
4711 * Make sure result blocks for higher latency levels are atleast
4712 * as high as level below the current level.
4713 * Assumption in DDB algorithm optimization for special cases.
4714 * Also covers Display WA #1125 for RC.
4716 if (result_prev->plane_res_b > res_blocks)
4717 res_blocks = result_prev->plane_res_b;
4720 if (INTEL_GEN(dev_priv) >= 11) {
4721 if (wp->y_tiled) {
4722 uint32_t extra_lines;
4723 uint_fixed_16_16_t fp_min_disp_buf_needed;
4725 if (res_lines % wp->y_min_scanlines == 0)
4726 extra_lines = wp->y_min_scanlines;
4727 else
4728 extra_lines = wp->y_min_scanlines * 2 -
4729 res_lines % wp->y_min_scanlines;
4731 fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
4732 extra_lines,
4733 wp->plane_blocks_per_line);
4734 min_disp_buf_needed = fixed16_to_u32_round_up(
4735 fp_min_disp_buf_needed);
4736 } else {
4737 min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
4739 } else {
4740 min_disp_buf_needed = res_blocks;
4743 if ((level > 0 && res_lines > 31) ||
4744 res_blocks >= ddb_allocation ||
4745 min_disp_buf_needed >= ddb_allocation) {
4746 result->plane_en = false;
4749 * If there are no valid level 0 watermarks, then we can't
4750 * support this display configuration.
4752 if (level) {
4753 return 0;
4754 } else {
4755 struct drm_plane *plane = pstate->plane;
4757 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4758 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4759 plane->base.id, plane->name,
4760 res_blocks, ddb_allocation, res_lines);
4761 return -EINVAL;
4766 * Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A)
4767 * disable wm level 1-7 on NV12 planes
4769 if (wp->is_planar && level >= 1 &&
4770 (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
4771 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) {
4772 result->plane_en = false;
4773 return 0;
4776 /* The number of lines are ignored for the level 0 watermark. */
4777 result->plane_res_b = res_blocks;
4778 result->plane_res_l = res_lines;
4779 result->plane_en = true;
4781 return 0;
4784 static int
4785 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4786 struct skl_ddb_allocation *ddb,
4787 struct intel_crtc_state *cstate,
4788 const struct intel_plane_state *intel_pstate,
4789 const struct skl_wm_params *wm_params,
4790 struct skl_plane_wm *wm,
4791 int plane_id)
4793 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4794 struct drm_plane *plane = intel_pstate->base.plane;
4795 struct intel_plane *intel_plane = to_intel_plane(plane);
4796 uint16_t ddb_blocks;
4797 enum pipe pipe = intel_crtc->pipe;
4798 int level, max_level = ilk_wm_max_level(dev_priv);
4799 enum plane_id intel_plane_id = intel_plane->id;
4800 int ret;
4802 if (WARN_ON(!intel_pstate->base.fb))
4803 return -EINVAL;
4805 ddb_blocks = plane_id ?
4806 skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) :
4807 skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]);
4809 for (level = 0; level <= max_level; level++) {
4810 struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] :
4811 &wm->wm[level];
4812 struct skl_wm_level *result_prev;
4814 if (level)
4815 result_prev = plane_id ? &wm->uv_wm[level - 1] :
4816 &wm->wm[level - 1];
4817 else
4818 result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0];
4820 ret = skl_compute_plane_wm(dev_priv,
4821 cstate,
4822 intel_pstate,
4823 ddb_blocks,
4824 level,
4825 wm_params,
4826 result_prev,
4827 result);
4828 if (ret)
4829 return ret;
4832 if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12)
4833 wm->is_planar = true;
4835 return 0;
4838 static uint32_t
4839 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4841 struct drm_atomic_state *state = cstate->base.state;
4842 struct drm_i915_private *dev_priv = to_i915(state->dev);
4843 uint_fixed_16_16_t linetime_us;
4844 uint32_t linetime_wm;
4846 linetime_us = intel_get_linetime_us(cstate);
4848 if (is_fixed16_zero(linetime_us))
4849 return 0;
4851 linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4853 /* Display WA #1135: bxt:ALL GLK:ALL */
4854 if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4855 dev_priv->ipc_enabled)
4856 linetime_wm /= 2;
4858 return linetime_wm;
4861 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4862 struct skl_wm_params *wp,
4863 struct skl_wm_level *wm_l0,
4864 uint16_t ddb_allocation,
4865 struct skl_wm_level *trans_wm /* out */)
4867 struct drm_device *dev = cstate->base.crtc->dev;
4868 const struct drm_i915_private *dev_priv = to_i915(dev);
4869 uint16_t trans_min, trans_y_tile_min;
4870 const uint16_t trans_amount = 10; /* This is configurable amount */
4871 uint16_t trans_offset_b, res_blocks;
4873 if (!cstate->base.active)
4874 goto exit;
4876 /* Transition WM are not recommended by HW team for GEN9 */
4877 if (INTEL_GEN(dev_priv) <= 9)
4878 goto exit;
4880 /* Transition WM don't make any sense if ipc is disabled */
4881 if (!dev_priv->ipc_enabled)
4882 goto exit;
4884 trans_min = 0;
4885 if (INTEL_GEN(dev_priv) >= 10)
4886 trans_min = 4;
4888 trans_offset_b = trans_min + trans_amount;
4890 if (wp->y_tiled) {
4891 trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4892 wp->y_tile_minimum);
4893 res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4894 trans_offset_b;
4895 } else {
4896 res_blocks = wm_l0->plane_res_b + trans_offset_b;
4898 /* WA BUG:1938466 add one block for non y-tile planes */
4899 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4900 res_blocks += 1;
4904 res_blocks += 1;
4906 if (res_blocks < ddb_allocation) {
4907 trans_wm->plane_res_b = res_blocks;
4908 trans_wm->plane_en = true;
4909 return;
4912 exit:
4913 trans_wm->plane_en = false;
4916 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4917 struct skl_ddb_allocation *ddb,
4918 struct skl_pipe_wm *pipe_wm)
4920 struct drm_device *dev = cstate->base.crtc->dev;
4921 struct drm_crtc_state *crtc_state = &cstate->base;
4922 const struct drm_i915_private *dev_priv = to_i915(dev);
4923 struct drm_plane *plane;
4924 const struct drm_plane_state *pstate;
4925 struct skl_plane_wm *wm;
4926 int ret;
4929 * We'll only calculate watermarks for planes that are actually
4930 * enabled, so make sure all other planes are set as disabled.
4932 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4934 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4935 const struct intel_plane_state *intel_pstate =
4936 to_intel_plane_state(pstate);
4937 enum plane_id plane_id = to_intel_plane(plane)->id;
4938 struct skl_wm_params wm_params;
4939 enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4940 uint16_t ddb_blocks;
4942 wm = &pipe_wm->planes[plane_id];
4943 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4945 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4946 intel_pstate, &wm_params, 0);
4947 if (ret)
4948 return ret;
4950 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4951 intel_pstate, &wm_params, wm, 0);
4952 if (ret)
4953 return ret;
4955 skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4956 ddb_blocks, &wm->trans_wm);
4958 /* uv plane watermarks must also be validated for NV12/Planar */
4959 if (wm_params.is_planar) {
4960 memset(&wm_params, 0, sizeof(struct skl_wm_params));
4961 wm->is_planar = true;
4963 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4964 intel_pstate,
4965 &wm_params, 1);
4966 if (ret)
4967 return ret;
4969 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4970 intel_pstate, &wm_params,
4971 wm, 1);
4972 if (ret)
4973 return ret;
4977 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4979 return 0;
4982 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4983 i915_reg_t reg,
4984 const struct skl_ddb_entry *entry)
4986 if (entry->end)
4987 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4988 else
4989 I915_WRITE(reg, 0);
4992 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4993 i915_reg_t reg,
4994 const struct skl_wm_level *level)
4996 uint32_t val = 0;
4998 if (level->plane_en) {
4999 val |= PLANE_WM_EN;
5000 val |= level->plane_res_b;
5001 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5004 I915_WRITE(reg, val);
5007 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
5008 const struct skl_plane_wm *wm,
5009 const struct skl_ddb_allocation *ddb,
5010 enum plane_id plane_id)
5012 struct drm_crtc *crtc = &intel_crtc->base;
5013 struct drm_device *dev = crtc->dev;
5014 struct drm_i915_private *dev_priv = to_i915(dev);
5015 int level, max_level = ilk_wm_max_level(dev_priv);
5016 enum pipe pipe = intel_crtc->pipe;
5018 for (level = 0; level <= max_level; level++) {
5019 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5020 &wm->wm[level]);
5022 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5023 &wm->trans_wm);
5025 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
5026 &ddb->plane[pipe][plane_id]);
5027 if (INTEL_GEN(dev_priv) >= 11)
5028 return skl_ddb_entry_write(dev_priv,
5029 PLANE_BUF_CFG(pipe, plane_id),
5030 &ddb->plane[pipe][plane_id]);
5031 if (wm->is_planar) {
5032 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
5033 &ddb->uv_plane[pipe][plane_id]);
5034 skl_ddb_entry_write(dev_priv,
5035 PLANE_NV12_BUF_CFG(pipe, plane_id),
5036 &ddb->plane[pipe][plane_id]);
5037 } else {
5038 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
5039 &ddb->plane[pipe][plane_id]);
5040 I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0);
5044 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
5045 const struct skl_plane_wm *wm,
5046 const struct skl_ddb_allocation *ddb)
5048 struct drm_crtc *crtc = &intel_crtc->base;
5049 struct drm_device *dev = crtc->dev;
5050 struct drm_i915_private *dev_priv = to_i915(dev);
5051 int level, max_level = ilk_wm_max_level(dev_priv);
5052 enum pipe pipe = intel_crtc->pipe;
5054 for (level = 0; level <= max_level; level++) {
5055 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5056 &wm->wm[level]);
5058 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5060 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
5061 &ddb->plane[pipe][PLANE_CURSOR]);
5064 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5065 const struct skl_wm_level *l2)
5067 if (l1->plane_en != l2->plane_en)
5068 return false;
5070 /* If both planes aren't enabled, the rest shouldn't matter */
5071 if (!l1->plane_en)
5072 return true;
5074 return (l1->plane_res_l == l2->plane_res_l &&
5075 l1->plane_res_b == l2->plane_res_b);
5078 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5079 const struct skl_ddb_entry *b)
5081 return a->start < b->end && b->start < a->end;
5084 bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
5085 const struct skl_ddb_entry **entries,
5086 const struct skl_ddb_entry *ddb,
5087 int ignore)
5089 enum pipe pipe;
5091 for_each_pipe(dev_priv, pipe) {
5092 if (pipe != ignore && entries[pipe] &&
5093 skl_ddb_entries_overlap(ddb, entries[pipe]))
5094 return true;
5097 return false;
5100 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
5101 const struct skl_pipe_wm *old_pipe_wm,
5102 struct skl_pipe_wm *pipe_wm, /* out */
5103 struct skl_ddb_allocation *ddb, /* out */
5104 bool *changed /* out */)
5106 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
5107 int ret;
5109 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
5110 if (ret)
5111 return ret;
5113 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5114 *changed = false;
5115 else
5116 *changed = true;
5118 return 0;
5121 static uint32_t
5122 pipes_modified(struct drm_atomic_state *state)
5124 struct drm_crtc *crtc;
5125 struct drm_crtc_state *cstate;
5126 uint32_t i, ret = 0;
5128 for_each_new_crtc_in_state(state, crtc, cstate, i)
5129 ret |= drm_crtc_mask(crtc);
5131 return ret;
5134 static int
5135 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
5137 struct drm_atomic_state *state = cstate->base.state;
5138 struct drm_device *dev = state->dev;
5139 struct drm_crtc *crtc = cstate->base.crtc;
5140 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5141 struct drm_i915_private *dev_priv = to_i915(dev);
5142 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5143 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5144 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
5145 struct drm_plane_state *plane_state;
5146 struct drm_plane *plane;
5147 enum pipe pipe = intel_crtc->pipe;
5149 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
5150 enum plane_id plane_id = to_intel_plane(plane)->id;
5152 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
5153 &new_ddb->plane[pipe][plane_id]) &&
5154 skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id],
5155 &new_ddb->uv_plane[pipe][plane_id]))
5156 continue;
5158 plane_state = drm_atomic_get_plane_state(state, plane);
5159 if (IS_ERR(plane_state))
5160 return PTR_ERR(plane_state);
5163 return 0;
5166 static int
5167 skl_compute_ddb(struct drm_atomic_state *state)
5169 const struct drm_i915_private *dev_priv = to_i915(state->dev);
5170 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5171 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
5172 struct intel_crtc *crtc;
5173 struct intel_crtc_state *cstate;
5174 int ret, i;
5176 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5178 for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) {
5179 ret = skl_allocate_pipe_ddb(cstate, ddb);
5180 if (ret)
5181 return ret;
5183 ret = skl_ddb_add_affected_planes(cstate);
5184 if (ret)
5185 return ret;
5188 return 0;
5191 static void
5192 skl_copy_ddb_for_pipe(struct skl_ddb_values *dst,
5193 struct skl_ddb_values *src,
5194 enum pipe pipe)
5196 memcpy(dst->ddb.uv_plane[pipe], src->ddb.uv_plane[pipe],
5197 sizeof(dst->ddb.uv_plane[pipe]));
5198 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
5199 sizeof(dst->ddb.plane[pipe]));
5202 static void
5203 skl_print_wm_changes(const struct drm_atomic_state *state)
5205 const struct drm_device *dev = state->dev;
5206 const struct drm_i915_private *dev_priv = to_i915(dev);
5207 const struct intel_atomic_state *intel_state =
5208 to_intel_atomic_state(state);
5209 const struct drm_crtc *crtc;
5210 const struct drm_crtc_state *cstate;
5211 const struct intel_plane *intel_plane;
5212 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
5213 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5214 int i;
5216 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5217 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5218 enum pipe pipe = intel_crtc->pipe;
5220 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5221 enum plane_id plane_id = intel_plane->id;
5222 const struct skl_ddb_entry *old, *new;
5224 old = &old_ddb->plane[pipe][plane_id];
5225 new = &new_ddb->plane[pipe][plane_id];
5227 if (skl_ddb_entry_equal(old, new))
5228 continue;
5230 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5231 intel_plane->base.base.id,
5232 intel_plane->base.name,
5233 old->start, old->end,
5234 new->start, new->end);
5239 static int
5240 skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
5242 struct drm_device *dev = state->dev;
5243 const struct drm_i915_private *dev_priv = to_i915(dev);
5244 const struct drm_crtc *crtc;
5245 const struct drm_crtc_state *cstate;
5246 struct intel_crtc *intel_crtc;
5247 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5248 uint32_t realloc_pipes = pipes_modified(state);
5249 int ret, i;
5252 * When we distrust bios wm we always need to recompute to set the
5253 * expected DDB allocations for each CRTC.
5255 if (dev_priv->wm.distrust_bios_wm)
5256 (*changed) = true;
5259 * If this transaction isn't actually touching any CRTC's, don't
5260 * bother with watermark calculation. Note that if we pass this
5261 * test, we're guaranteed to hold at least one CRTC state mutex,
5262 * which means we can safely use values like dev_priv->active_crtcs
5263 * since any racing commits that want to update them would need to
5264 * hold _all_ CRTC state mutexes.
5266 for_each_new_crtc_in_state(state, crtc, cstate, i)
5267 (*changed) = true;
5269 if (!*changed)
5270 return 0;
5273 * If this is our first atomic update following hardware readout,
5274 * we can't trust the DDB that the BIOS programmed for us. Let's
5275 * pretend that all pipes switched active status so that we'll
5276 * ensure a full DDB recompute.
5278 if (dev_priv->wm.distrust_bios_wm) {
5279 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5280 state->acquire_ctx);
5281 if (ret)
5282 return ret;
5284 intel_state->active_pipe_changes = ~0;
5287 * We usually only initialize intel_state->active_crtcs if we
5288 * we're doing a modeset; make sure this field is always
5289 * initialized during the sanitization process that happens
5290 * on the first commit too.
5292 if (!intel_state->modeset)
5293 intel_state->active_crtcs = dev_priv->active_crtcs;
5297 * If the modeset changes which CRTC's are active, we need to
5298 * recompute the DDB allocation for *all* active pipes, even
5299 * those that weren't otherwise being modified in any way by this
5300 * atomic commit. Due to the shrinking of the per-pipe allocations
5301 * when new active CRTC's are added, it's possible for a pipe that
5302 * we were already using and aren't changing at all here to suddenly
5303 * become invalid if its DDB needs exceeds its new allocation.
5305 * Note that if we wind up doing a full DDB recompute, we can't let
5306 * any other display updates race with this transaction, so we need
5307 * to grab the lock on *all* CRTC's.
5309 if (intel_state->active_pipe_changes) {
5310 realloc_pipes = ~0;
5311 intel_state->wm_results.dirty_pipes = ~0;
5315 * We're not recomputing for the pipes not included in the commit, so
5316 * make sure we start with the current state.
5318 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
5319 struct intel_crtc_state *cstate;
5321 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
5322 if (IS_ERR(cstate))
5323 return PTR_ERR(cstate);
5326 return 0;
5329 static int
5330 skl_compute_wm(struct drm_atomic_state *state)
5332 struct drm_crtc *crtc;
5333 struct drm_crtc_state *cstate;
5334 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5335 struct skl_ddb_values *results = &intel_state->wm_results;
5336 struct skl_pipe_wm *pipe_wm;
5337 bool changed = false;
5338 int ret, i;
5340 /* Clear all dirty flags */
5341 results->dirty_pipes = 0;
5343 ret = skl_ddb_add_affected_pipes(state, &changed);
5344 if (ret || !changed)
5345 return ret;
5347 ret = skl_compute_ddb(state);
5348 if (ret)
5349 return ret;
5352 * Calculate WM's for all pipes that are part of this transaction.
5353 * Note that the DDB allocation above may have added more CRTC's that
5354 * weren't otherwise being modified (and set bits in dirty_pipes) if
5355 * pipe allocations had to change.
5357 * FIXME: Now that we're doing this in the atomic check phase, we
5358 * should allow skl_update_pipe_wm() to return failure in cases where
5359 * no suitable watermark values can be found.
5361 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5362 struct intel_crtc_state *intel_cstate =
5363 to_intel_crtc_state(cstate);
5364 const struct skl_pipe_wm *old_pipe_wm =
5365 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5367 pipe_wm = &intel_cstate->wm.skl.optimal;
5368 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5369 &results->ddb, &changed);
5370 if (ret)
5371 return ret;
5373 if (changed)
5374 results->dirty_pipes |= drm_crtc_mask(crtc);
5376 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5377 /* This pipe's WM's did not change */
5378 continue;
5380 intel_cstate->update_wm_pre = true;
5383 skl_print_wm_changes(state);
5385 return 0;
5388 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5389 struct intel_crtc_state *cstate)
5391 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5392 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5393 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5394 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5395 enum pipe pipe = crtc->pipe;
5396 enum plane_id plane_id;
5398 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5399 return;
5401 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5403 for_each_plane_id_on_crtc(crtc, plane_id) {
5404 if (plane_id != PLANE_CURSOR)
5405 skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5406 ddb, plane_id);
5407 else
5408 skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5409 ddb);
5413 static void skl_initial_wm(struct intel_atomic_state *state,
5414 struct intel_crtc_state *cstate)
5416 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5417 struct drm_device *dev = intel_crtc->base.dev;
5418 struct drm_i915_private *dev_priv = to_i915(dev);
5419 struct skl_ddb_values *results = &state->wm_results;
5420 struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw;
5421 enum pipe pipe = intel_crtc->pipe;
5423 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5424 return;
5426 mutex_lock(&dev_priv->wm.wm_mutex);
5428 if (cstate->base.active_changed)
5429 skl_atomic_update_crtc_wm(state, cstate);
5431 skl_copy_ddb_for_pipe(hw_vals, results, pipe);
5433 mutex_unlock(&dev_priv->wm.wm_mutex);
5436 static void ilk_compute_wm_config(struct drm_device *dev,
5437 struct intel_wm_config *config)
5439 struct intel_crtc *crtc;
5441 /* Compute the currently _active_ config */
5442 for_each_intel_crtc(dev, crtc) {
5443 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5445 if (!wm->pipe_enabled)
5446 continue;
5448 config->sprites_enabled |= wm->sprites_enabled;
5449 config->sprites_scaled |= wm->sprites_scaled;
5450 config->num_pipes_active++;
5454 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5456 struct drm_device *dev = &dev_priv->drm;
5457 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5458 struct ilk_wm_maximums max;
5459 struct intel_wm_config config = {};
5460 struct ilk_wm_values results = {};
5461 enum intel_ddb_partitioning partitioning;
5463 ilk_compute_wm_config(dev, &config);
5465 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5466 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5468 /* 5/6 split only in single pipe config on IVB+ */
5469 if (INTEL_GEN(dev_priv) >= 7 &&
5470 config.num_pipes_active == 1 && config.sprites_enabled) {
5471 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5472 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5474 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5475 } else {
5476 best_lp_wm = &lp_wm_1_2;
5479 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5480 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5482 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5484 ilk_write_wm_values(dev_priv, &results);
5487 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5488 struct intel_crtc_state *cstate)
5490 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5491 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5493 mutex_lock(&dev_priv->wm.wm_mutex);
5494 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5495 ilk_program_watermarks(dev_priv);
5496 mutex_unlock(&dev_priv->wm.wm_mutex);
5499 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5500 struct intel_crtc_state *cstate)
5502 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5503 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5505 mutex_lock(&dev_priv->wm.wm_mutex);
5506 if (cstate->wm.need_postvbl_update) {
5507 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5508 ilk_program_watermarks(dev_priv);
5510 mutex_unlock(&dev_priv->wm.wm_mutex);
5513 static inline void skl_wm_level_from_reg_val(uint32_t val,
5514 struct skl_wm_level *level)
5516 level->plane_en = val & PLANE_WM_EN;
5517 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5518 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5519 PLANE_WM_LINES_MASK;
5522 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5523 struct skl_pipe_wm *out)
5525 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5526 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5527 enum pipe pipe = intel_crtc->pipe;
5528 int level, max_level;
5529 enum plane_id plane_id;
5530 uint32_t val;
5532 max_level = ilk_wm_max_level(dev_priv);
5534 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5535 struct skl_plane_wm *wm = &out->planes[plane_id];
5537 for (level = 0; level <= max_level; level++) {
5538 if (plane_id != PLANE_CURSOR)
5539 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5540 else
5541 val = I915_READ(CUR_WM(pipe, level));
5543 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5546 if (plane_id != PLANE_CURSOR)
5547 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5548 else
5549 val = I915_READ(CUR_WM_TRANS(pipe));
5551 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5554 if (!intel_crtc->active)
5555 return;
5557 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5560 void skl_wm_get_hw_state(struct drm_device *dev)
5562 struct drm_i915_private *dev_priv = to_i915(dev);
5563 struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5564 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5565 struct drm_crtc *crtc;
5566 struct intel_crtc *intel_crtc;
5567 struct intel_crtc_state *cstate;
5569 skl_ddb_get_hw_state(dev_priv, ddb);
5570 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5571 intel_crtc = to_intel_crtc(crtc);
5572 cstate = to_intel_crtc_state(crtc->state);
5574 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5576 if (intel_crtc->active)
5577 hw->dirty_pipes |= drm_crtc_mask(crtc);
5580 if (dev_priv->active_crtcs) {
5581 /* Fully recompute DDB on first atomic commit */
5582 dev_priv->wm.distrust_bios_wm = true;
5583 } else {
5585 * Easy/common case; just sanitize DDB now if everything off
5586 * Keep dbuf slice info intact
5588 memset(ddb->plane, 0, sizeof(ddb->plane));
5589 memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane));
5593 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5595 struct drm_device *dev = crtc->dev;
5596 struct drm_i915_private *dev_priv = to_i915(dev);
5597 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5598 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5599 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5600 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5601 enum pipe pipe = intel_crtc->pipe;
5602 static const i915_reg_t wm0_pipe_reg[] = {
5603 [PIPE_A] = WM0_PIPEA_ILK,
5604 [PIPE_B] = WM0_PIPEB_ILK,
5605 [PIPE_C] = WM0_PIPEC_IVB,
5608 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5609 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5610 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5612 memset(active, 0, sizeof(*active));
5614 active->pipe_enabled = intel_crtc->active;
5616 if (active->pipe_enabled) {
5617 u32 tmp = hw->wm_pipe[pipe];
5620 * For active pipes LP0 watermark is marked as
5621 * enabled, and LP1+ watermaks as disabled since
5622 * we can't really reverse compute them in case
5623 * multiple pipes are active.
5625 active->wm[0].enable = true;
5626 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5627 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5628 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5629 active->linetime = hw->wm_linetime[pipe];
5630 } else {
5631 int level, max_level = ilk_wm_max_level(dev_priv);
5634 * For inactive pipes, all watermark levels
5635 * should be marked as enabled but zeroed,
5636 * which is what we'd compute them to.
5638 for (level = 0; level <= max_level; level++)
5639 active->wm[level].enable = true;
5642 intel_crtc->wm.active.ilk = *active;
5645 #define _FW_WM(value, plane) \
5646 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5647 #define _FW_WM_VLV(value, plane) \
5648 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5650 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5651 struct g4x_wm_values *wm)
5653 uint32_t tmp;
5655 tmp = I915_READ(DSPFW1);
5656 wm->sr.plane = _FW_WM(tmp, SR);
5657 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5658 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5659 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5661 tmp = I915_READ(DSPFW2);
5662 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5663 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5664 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5665 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5666 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5667 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5669 tmp = I915_READ(DSPFW3);
5670 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5671 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5672 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5673 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5676 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5677 struct vlv_wm_values *wm)
5679 enum pipe pipe;
5680 uint32_t tmp;
5682 for_each_pipe(dev_priv, pipe) {
5683 tmp = I915_READ(VLV_DDL(pipe));
5685 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5686 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5687 wm->ddl[pipe].plane[PLANE_CURSOR] =
5688 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5689 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5690 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5691 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5692 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5695 tmp = I915_READ(DSPFW1);
5696 wm->sr.plane = _FW_WM(tmp, SR);
5697 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5698 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5699 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5701 tmp = I915_READ(DSPFW2);
5702 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5703 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5704 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5706 tmp = I915_READ(DSPFW3);
5707 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5709 if (IS_CHERRYVIEW(dev_priv)) {
5710 tmp = I915_READ(DSPFW7_CHV);
5711 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5712 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5714 tmp = I915_READ(DSPFW8_CHV);
5715 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5716 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5718 tmp = I915_READ(DSPFW9_CHV);
5719 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5720 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5722 tmp = I915_READ(DSPHOWM);
5723 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5724 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5725 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5726 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5727 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5728 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5729 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5730 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5731 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5732 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5733 } else {
5734 tmp = I915_READ(DSPFW7);
5735 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5736 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5738 tmp = I915_READ(DSPHOWM);
5739 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5740 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5741 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5742 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5743 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5744 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5745 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5749 #undef _FW_WM
5750 #undef _FW_WM_VLV
5752 void g4x_wm_get_hw_state(struct drm_device *dev)
5754 struct drm_i915_private *dev_priv = to_i915(dev);
5755 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5756 struct intel_crtc *crtc;
5758 g4x_read_wm_values(dev_priv, wm);
5760 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5762 for_each_intel_crtc(dev, crtc) {
5763 struct intel_crtc_state *crtc_state =
5764 to_intel_crtc_state(crtc->base.state);
5765 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5766 struct g4x_pipe_wm *raw;
5767 enum pipe pipe = crtc->pipe;
5768 enum plane_id plane_id;
5769 int level, max_level;
5771 active->cxsr = wm->cxsr;
5772 active->hpll_en = wm->hpll_en;
5773 active->fbc_en = wm->fbc_en;
5775 active->sr = wm->sr;
5776 active->hpll = wm->hpll;
5778 for_each_plane_id_on_crtc(crtc, plane_id) {
5779 active->wm.plane[plane_id] =
5780 wm->pipe[pipe].plane[plane_id];
5783 if (wm->cxsr && wm->hpll_en)
5784 max_level = G4X_WM_LEVEL_HPLL;
5785 else if (wm->cxsr)
5786 max_level = G4X_WM_LEVEL_SR;
5787 else
5788 max_level = G4X_WM_LEVEL_NORMAL;
5790 level = G4X_WM_LEVEL_NORMAL;
5791 raw = &crtc_state->wm.g4x.raw[level];
5792 for_each_plane_id_on_crtc(crtc, plane_id)
5793 raw->plane[plane_id] = active->wm.plane[plane_id];
5795 if (++level > max_level)
5796 goto out;
5798 raw = &crtc_state->wm.g4x.raw[level];
5799 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5800 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5801 raw->plane[PLANE_SPRITE0] = 0;
5802 raw->fbc = active->sr.fbc;
5804 if (++level > max_level)
5805 goto out;
5807 raw = &crtc_state->wm.g4x.raw[level];
5808 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5809 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5810 raw->plane[PLANE_SPRITE0] = 0;
5811 raw->fbc = active->hpll.fbc;
5813 out:
5814 for_each_plane_id_on_crtc(crtc, plane_id)
5815 g4x_raw_plane_wm_set(crtc_state, level,
5816 plane_id, USHRT_MAX);
5817 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5819 crtc_state->wm.g4x.optimal = *active;
5820 crtc_state->wm.g4x.intermediate = *active;
5822 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5823 pipe_name(pipe),
5824 wm->pipe[pipe].plane[PLANE_PRIMARY],
5825 wm->pipe[pipe].plane[PLANE_CURSOR],
5826 wm->pipe[pipe].plane[PLANE_SPRITE0]);
5829 DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5830 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5831 DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5832 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5833 DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5834 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5837 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5839 struct intel_plane *plane;
5840 struct intel_crtc *crtc;
5842 mutex_lock(&dev_priv->wm.wm_mutex);
5844 for_each_intel_plane(&dev_priv->drm, plane) {
5845 struct intel_crtc *crtc =
5846 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5847 struct intel_crtc_state *crtc_state =
5848 to_intel_crtc_state(crtc->base.state);
5849 struct intel_plane_state *plane_state =
5850 to_intel_plane_state(plane->base.state);
5851 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5852 enum plane_id plane_id = plane->id;
5853 int level;
5855 if (plane_state->base.visible)
5856 continue;
5858 for (level = 0; level < 3; level++) {
5859 struct g4x_pipe_wm *raw =
5860 &crtc_state->wm.g4x.raw[level];
5862 raw->plane[plane_id] = 0;
5863 wm_state->wm.plane[plane_id] = 0;
5866 if (plane_id == PLANE_PRIMARY) {
5867 for (level = 0; level < 3; level++) {
5868 struct g4x_pipe_wm *raw =
5869 &crtc_state->wm.g4x.raw[level];
5870 raw->fbc = 0;
5873 wm_state->sr.fbc = 0;
5874 wm_state->hpll.fbc = 0;
5875 wm_state->fbc_en = false;
5879 for_each_intel_crtc(&dev_priv->drm, crtc) {
5880 struct intel_crtc_state *crtc_state =
5881 to_intel_crtc_state(crtc->base.state);
5883 crtc_state->wm.g4x.intermediate =
5884 crtc_state->wm.g4x.optimal;
5885 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5888 g4x_program_watermarks(dev_priv);
5890 mutex_unlock(&dev_priv->wm.wm_mutex);
5893 void vlv_wm_get_hw_state(struct drm_device *dev)
5895 struct drm_i915_private *dev_priv = to_i915(dev);
5896 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5897 struct intel_crtc *crtc;
5898 u32 val;
5900 vlv_read_wm_values(dev_priv, wm);
5902 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5903 wm->level = VLV_WM_LEVEL_PM2;
5905 if (IS_CHERRYVIEW(dev_priv)) {
5906 mutex_lock(&dev_priv->pcu_lock);
5908 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5909 if (val & DSP_MAXFIFO_PM5_ENABLE)
5910 wm->level = VLV_WM_LEVEL_PM5;
5913 * If DDR DVFS is disabled in the BIOS, Punit
5914 * will never ack the request. So if that happens
5915 * assume we don't have to enable/disable DDR DVFS
5916 * dynamically. To test that just set the REQ_ACK
5917 * bit to poke the Punit, but don't change the
5918 * HIGH/LOW bits so that we don't actually change
5919 * the current state.
5921 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5922 val |= FORCE_DDR_FREQ_REQ_ACK;
5923 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5925 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5926 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5927 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5928 "assuming DDR DVFS is disabled\n");
5929 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5930 } else {
5931 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5932 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5933 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5936 mutex_unlock(&dev_priv->pcu_lock);
5939 for_each_intel_crtc(dev, crtc) {
5940 struct intel_crtc_state *crtc_state =
5941 to_intel_crtc_state(crtc->base.state);
5942 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5943 const struct vlv_fifo_state *fifo_state =
5944 &crtc_state->wm.vlv.fifo_state;
5945 enum pipe pipe = crtc->pipe;
5946 enum plane_id plane_id;
5947 int level;
5949 vlv_get_fifo_size(crtc_state);
5951 active->num_levels = wm->level + 1;
5952 active->cxsr = wm->cxsr;
5954 for (level = 0; level < active->num_levels; level++) {
5955 struct g4x_pipe_wm *raw =
5956 &crtc_state->wm.vlv.raw[level];
5958 active->sr[level].plane = wm->sr.plane;
5959 active->sr[level].cursor = wm->sr.cursor;
5961 for_each_plane_id_on_crtc(crtc, plane_id) {
5962 active->wm[level].plane[plane_id] =
5963 wm->pipe[pipe].plane[plane_id];
5965 raw->plane[plane_id] =
5966 vlv_invert_wm_value(active->wm[level].plane[plane_id],
5967 fifo_state->plane[plane_id]);
5971 for_each_plane_id_on_crtc(crtc, plane_id)
5972 vlv_raw_plane_wm_set(crtc_state, level,
5973 plane_id, USHRT_MAX);
5974 vlv_invalidate_wms(crtc, active, level);
5976 crtc_state->wm.vlv.optimal = *active;
5977 crtc_state->wm.vlv.intermediate = *active;
5979 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5980 pipe_name(pipe),
5981 wm->pipe[pipe].plane[PLANE_PRIMARY],
5982 wm->pipe[pipe].plane[PLANE_CURSOR],
5983 wm->pipe[pipe].plane[PLANE_SPRITE0],
5984 wm->pipe[pipe].plane[PLANE_SPRITE1]);
5987 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5988 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5991 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5993 struct intel_plane *plane;
5994 struct intel_crtc *crtc;
5996 mutex_lock(&dev_priv->wm.wm_mutex);
5998 for_each_intel_plane(&dev_priv->drm, plane) {
5999 struct intel_crtc *crtc =
6000 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6001 struct intel_crtc_state *crtc_state =
6002 to_intel_crtc_state(crtc->base.state);
6003 struct intel_plane_state *plane_state =
6004 to_intel_plane_state(plane->base.state);
6005 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6006 const struct vlv_fifo_state *fifo_state =
6007 &crtc_state->wm.vlv.fifo_state;
6008 enum plane_id plane_id = plane->id;
6009 int level;
6011 if (plane_state->base.visible)
6012 continue;
6014 for (level = 0; level < wm_state->num_levels; level++) {
6015 struct g4x_pipe_wm *raw =
6016 &crtc_state->wm.vlv.raw[level];
6018 raw->plane[plane_id] = 0;
6020 wm_state->wm[level].plane[plane_id] =
6021 vlv_invert_wm_value(raw->plane[plane_id],
6022 fifo_state->plane[plane_id]);
6026 for_each_intel_crtc(&dev_priv->drm, crtc) {
6027 struct intel_crtc_state *crtc_state =
6028 to_intel_crtc_state(crtc->base.state);
6030 crtc_state->wm.vlv.intermediate =
6031 crtc_state->wm.vlv.optimal;
6032 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6035 vlv_program_watermarks(dev_priv);
6037 mutex_unlock(&dev_priv->wm.wm_mutex);
6041 * FIXME should probably kill this and improve
6042 * the real watermark readout/sanitation instead
6044 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6046 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6047 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6048 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6051 * Don't touch WM1S_LP_EN here.
6052 * Doing so could cause underruns.
6056 void ilk_wm_get_hw_state(struct drm_device *dev)
6058 struct drm_i915_private *dev_priv = to_i915(dev);
6059 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6060 struct drm_crtc *crtc;
6062 ilk_init_lp_watermarks(dev_priv);
6064 for_each_crtc(dev, crtc)
6065 ilk_pipe_wm_get_hw_state(crtc);
6067 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6068 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6069 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6071 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6072 if (INTEL_GEN(dev_priv) >= 7) {
6073 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6074 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6077 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6078 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6079 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6080 else if (IS_IVYBRIDGE(dev_priv))
6081 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6082 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6084 hw->enable_fbc_wm =
6085 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6089 * intel_update_watermarks - update FIFO watermark values based on current modes
6090 * @crtc: the #intel_crtc on which to compute the WM
6092 * Calculate watermark values for the various WM regs based on current mode
6093 * and plane configuration.
6095 * There are several cases to deal with here:
6096 * - normal (i.e. non-self-refresh)
6097 * - self-refresh (SR) mode
6098 * - lines are large relative to FIFO size (buffer can hold up to 2)
6099 * - lines are small relative to FIFO size (buffer can hold more than 2
6100 * lines), so need to account for TLB latency
6102 * The normal calculation is:
6103 * watermark = dotclock * bytes per pixel * latency
6104 * where latency is platform & configuration dependent (we assume pessimal
6105 * values here).
6107 * The SR calculation is:
6108 * watermark = (trunc(latency/line time)+1) * surface width *
6109 * bytes per pixel
6110 * where
6111 * line time = htotal / dotclock
6112 * surface width = hdisplay for normal plane and 64 for cursor
6113 * and latency is assumed to be high, as above.
6115 * The final value programmed to the register should always be rounded up,
6116 * and include an extra 2 entries to account for clock crossings.
6118 * We don't use the sprite, so we can ignore that. And on Crestline we have
6119 * to set the non-SR watermarks to 8.
6121 void intel_update_watermarks(struct intel_crtc *crtc)
6123 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6125 if (dev_priv->display.update_wm)
6126 dev_priv->display.update_wm(crtc);
6129 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6131 u32 val;
6133 /* Display WA #0477 WaDisableIPC: skl */
6134 if (IS_SKYLAKE(dev_priv)) {
6135 dev_priv->ipc_enabled = false;
6136 return;
6139 val = I915_READ(DISP_ARB_CTL2);
6141 if (dev_priv->ipc_enabled)
6142 val |= DISP_IPC_ENABLE;
6143 else
6144 val &= ~DISP_IPC_ENABLE;
6146 I915_WRITE(DISP_ARB_CTL2, val);
6149 void intel_init_ipc(struct drm_i915_private *dev_priv)
6151 dev_priv->ipc_enabled = false;
6152 if (!HAS_IPC(dev_priv))
6153 return;
6155 dev_priv->ipc_enabled = true;
6156 intel_enable_ipc(dev_priv);
6160 * Lock protecting IPS related data structures
6162 DEFINE_SPINLOCK(mchdev_lock);
6164 /* Global for IPS driver to get at the current i915 device. Protected by
6165 * mchdev_lock. */
6166 static struct drm_i915_private *i915_mch_dev;
6168 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6170 u16 rgvswctl;
6172 lockdep_assert_held(&mchdev_lock);
6174 rgvswctl = I915_READ16(MEMSWCTL);
6175 if (rgvswctl & MEMCTL_CMD_STS) {
6176 DRM_DEBUG("gpu busy, RCS change rejected\n");
6177 return false; /* still busy with another command */
6180 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6181 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6182 I915_WRITE16(MEMSWCTL, rgvswctl);
6183 POSTING_READ16(MEMSWCTL);
6185 rgvswctl |= MEMCTL_CMD_STS;
6186 I915_WRITE16(MEMSWCTL, rgvswctl);
6188 return true;
6191 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6193 u32 rgvmodectl;
6194 u8 fmax, fmin, fstart, vstart;
6196 spin_lock_irq(&mchdev_lock);
6198 rgvmodectl = I915_READ(MEMMODECTL);
6200 /* Enable temp reporting */
6201 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6202 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6204 /* 100ms RC evaluation intervals */
6205 I915_WRITE(RCUPEI, 100000);
6206 I915_WRITE(RCDNEI, 100000);
6208 /* Set max/min thresholds to 90ms and 80ms respectively */
6209 I915_WRITE(RCBMAXAVG, 90000);
6210 I915_WRITE(RCBMINAVG, 80000);
6212 I915_WRITE(MEMIHYST, 1);
6214 /* Set up min, max, and cur for interrupt handling */
6215 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6216 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6217 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6218 MEMMODE_FSTART_SHIFT;
6220 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6221 PXVFREQ_PX_SHIFT;
6223 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6224 dev_priv->ips.fstart = fstart;
6226 dev_priv->ips.max_delay = fstart;
6227 dev_priv->ips.min_delay = fmin;
6228 dev_priv->ips.cur_delay = fstart;
6230 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6231 fmax, fmin, fstart);
6233 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6236 * Interrupts will be enabled in ironlake_irq_postinstall
6239 I915_WRITE(VIDSTART, vstart);
6240 POSTING_READ(VIDSTART);
6242 rgvmodectl |= MEMMODE_SWMODE_EN;
6243 I915_WRITE(MEMMODECTL, rgvmodectl);
6245 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6246 DRM_ERROR("stuck trying to change perf mode\n");
6247 mdelay(1);
6249 ironlake_set_drps(dev_priv, fstart);
6251 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6252 I915_READ(DDREC) + I915_READ(CSIEC);
6253 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6254 dev_priv->ips.last_count2 = I915_READ(GFXEC);
6255 dev_priv->ips.last_time2 = ktime_get_raw_ns();
6257 spin_unlock_irq(&mchdev_lock);
6260 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6262 u16 rgvswctl;
6264 spin_lock_irq(&mchdev_lock);
6266 rgvswctl = I915_READ16(MEMSWCTL);
6268 /* Ack interrupts, disable EFC interrupt */
6269 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6270 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6271 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6272 I915_WRITE(DEIIR, DE_PCU_EVENT);
6273 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6275 /* Go back to the starting frequency */
6276 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6277 mdelay(1);
6278 rgvswctl |= MEMCTL_CMD_STS;
6279 I915_WRITE(MEMSWCTL, rgvswctl);
6280 mdelay(1);
6282 spin_unlock_irq(&mchdev_lock);
6285 /* There's a funny hw issue where the hw returns all 0 when reading from
6286 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6287 * ourselves, instead of doing a rmw cycle (which might result in us clearing
6288 * all limits and the gpu stuck at whatever frequency it is at atm).
6290 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6292 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6293 u32 limits;
6295 /* Only set the down limit when we've reached the lowest level to avoid
6296 * getting more interrupts, otherwise leave this clear. This prevents a
6297 * race in the hw when coming out of rc6: There's a tiny window where
6298 * the hw runs at the minimal clock before selecting the desired
6299 * frequency, if the down threshold expires in that window we will not
6300 * receive a down interrupt. */
6301 if (INTEL_GEN(dev_priv) >= 9) {
6302 limits = (rps->max_freq_softlimit) << 23;
6303 if (val <= rps->min_freq_softlimit)
6304 limits |= (rps->min_freq_softlimit) << 14;
6305 } else {
6306 limits = rps->max_freq_softlimit << 24;
6307 if (val <= rps->min_freq_softlimit)
6308 limits |= rps->min_freq_softlimit << 16;
6311 return limits;
6314 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6316 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6317 u32 threshold_up = 0, threshold_down = 0; /* in % */
6318 u32 ei_up = 0, ei_down = 0;
6320 lockdep_assert_held(&rps->power.mutex);
6322 if (new_power == rps->power.mode)
6323 return;
6325 /* Note the units here are not exactly 1us, but 1280ns. */
6326 switch (new_power) {
6327 case LOW_POWER:
6328 /* Upclock if more than 95% busy over 16ms */
6329 ei_up = 16000;
6330 threshold_up = 95;
6332 /* Downclock if less than 85% busy over 32ms */
6333 ei_down = 32000;
6334 threshold_down = 85;
6335 break;
6337 case BETWEEN:
6338 /* Upclock if more than 90% busy over 13ms */
6339 ei_up = 13000;
6340 threshold_up = 90;
6342 /* Downclock if less than 75% busy over 32ms */
6343 ei_down = 32000;
6344 threshold_down = 75;
6345 break;
6347 case HIGH_POWER:
6348 /* Upclock if more than 85% busy over 10ms */
6349 ei_up = 10000;
6350 threshold_up = 85;
6352 /* Downclock if less than 60% busy over 32ms */
6353 ei_down = 32000;
6354 threshold_down = 60;
6355 break;
6358 /* When byt can survive without system hang with dynamic
6359 * sw freq adjustments, this restriction can be lifted.
6361 if (IS_VALLEYVIEW(dev_priv))
6362 goto skip_hw_write;
6364 I915_WRITE(GEN6_RP_UP_EI,
6365 GT_INTERVAL_FROM_US(dev_priv, ei_up));
6366 I915_WRITE(GEN6_RP_UP_THRESHOLD,
6367 GT_INTERVAL_FROM_US(dev_priv,
6368 ei_up * threshold_up / 100));
6370 I915_WRITE(GEN6_RP_DOWN_EI,
6371 GT_INTERVAL_FROM_US(dev_priv, ei_down));
6372 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6373 GT_INTERVAL_FROM_US(dev_priv,
6374 ei_down * threshold_down / 100));
6376 I915_WRITE(GEN6_RP_CONTROL,
6377 GEN6_RP_MEDIA_TURBO |
6378 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6379 GEN6_RP_MEDIA_IS_GFX |
6380 GEN6_RP_ENABLE |
6381 GEN6_RP_UP_BUSY_AVG |
6382 GEN6_RP_DOWN_IDLE_AVG);
6384 skip_hw_write:
6385 rps->power.mode = new_power;
6386 rps->power.up_threshold = threshold_up;
6387 rps->power.down_threshold = threshold_down;
6390 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6392 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6393 int new_power;
6395 new_power = rps->power.mode;
6396 switch (rps->power.mode) {
6397 case LOW_POWER:
6398 if (val > rps->efficient_freq + 1 &&
6399 val > rps->cur_freq)
6400 new_power = BETWEEN;
6401 break;
6403 case BETWEEN:
6404 if (val <= rps->efficient_freq &&
6405 val < rps->cur_freq)
6406 new_power = LOW_POWER;
6407 else if (val >= rps->rp0_freq &&
6408 val > rps->cur_freq)
6409 new_power = HIGH_POWER;
6410 break;
6412 case HIGH_POWER:
6413 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6414 val < rps->cur_freq)
6415 new_power = BETWEEN;
6416 break;
6418 /* Max/min bins are special */
6419 if (val <= rps->min_freq_softlimit)
6420 new_power = LOW_POWER;
6421 if (val >= rps->max_freq_softlimit)
6422 new_power = HIGH_POWER;
6424 mutex_lock(&rps->power.mutex);
6425 if (rps->power.interactive)
6426 new_power = HIGH_POWER;
6427 rps_set_power(dev_priv, new_power);
6428 mutex_unlock(&rps->power.mutex);
6429 rps->last_adj = 0;
6432 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6434 struct intel_rps *rps = &i915->gt_pm.rps;
6436 if (INTEL_GEN(i915) < 6)
6437 return;
6439 mutex_lock(&rps->power.mutex);
6440 if (interactive) {
6441 if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6442 rps_set_power(i915, HIGH_POWER);
6443 } else {
6444 GEM_BUG_ON(!rps->power.interactive);
6445 rps->power.interactive--;
6447 mutex_unlock(&rps->power.mutex);
6450 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6452 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6453 u32 mask = 0;
6455 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6456 if (val > rps->min_freq_softlimit)
6457 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6458 if (val < rps->max_freq_softlimit)
6459 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6461 mask &= dev_priv->pm_rps_events;
6463 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6466 /* gen6_set_rps is called to update the frequency request, but should also be
6467 * called when the range (min_delay and max_delay) is modified so that we can
6468 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6469 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6471 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6473 /* min/max delay may still have been modified so be sure to
6474 * write the limits value.
6476 if (val != rps->cur_freq) {
6477 gen6_set_rps_thresholds(dev_priv, val);
6479 if (INTEL_GEN(dev_priv) >= 9)
6480 I915_WRITE(GEN6_RPNSWREQ,
6481 GEN9_FREQUENCY(val));
6482 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6483 I915_WRITE(GEN6_RPNSWREQ,
6484 HSW_FREQUENCY(val));
6485 else
6486 I915_WRITE(GEN6_RPNSWREQ,
6487 GEN6_FREQUENCY(val) |
6488 GEN6_OFFSET(0) |
6489 GEN6_AGGRESSIVE_TURBO);
6492 /* Make sure we continue to get interrupts
6493 * until we hit the minimum or maximum frequencies.
6495 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6496 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6498 rps->cur_freq = val;
6499 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6501 return 0;
6504 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6506 int err;
6508 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6509 "Odd GPU freq value\n"))
6510 val &= ~1;
6512 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6514 if (val != dev_priv->gt_pm.rps.cur_freq) {
6515 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6516 if (err)
6517 return err;
6519 gen6_set_rps_thresholds(dev_priv, val);
6522 dev_priv->gt_pm.rps.cur_freq = val;
6523 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6525 return 0;
6528 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6530 * * If Gfx is Idle, then
6531 * 1. Forcewake Media well.
6532 * 2. Request idle freq.
6533 * 3. Release Forcewake of Media well.
6535 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6537 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6538 u32 val = rps->idle_freq;
6539 int err;
6541 if (rps->cur_freq <= val)
6542 return;
6544 /* The punit delays the write of the frequency and voltage until it
6545 * determines the GPU is awake. During normal usage we don't want to
6546 * waste power changing the frequency if the GPU is sleeping (rc6).
6547 * However, the GPU and driver is now idle and we do not want to delay
6548 * switching to minimum voltage (reducing power whilst idle) as we do
6549 * not expect to be woken in the near future and so must flush the
6550 * change by waking the device.
6552 * We choose to take the media powerwell (either would do to trick the
6553 * punit into committing the voltage change) as that takes a lot less
6554 * power than the render powerwell.
6556 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6557 err = valleyview_set_rps(dev_priv, val);
6558 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6560 if (err)
6561 DRM_ERROR("Failed to set RPS for idle\n");
6564 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6566 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6568 mutex_lock(&dev_priv->pcu_lock);
6569 if (rps->enabled) {
6570 u8 freq;
6572 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6573 gen6_rps_reset_ei(dev_priv);
6574 I915_WRITE(GEN6_PMINTRMSK,
6575 gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6577 gen6_enable_rps_interrupts(dev_priv);
6579 /* Use the user's desired frequency as a guide, but for better
6580 * performance, jump directly to RPe as our starting frequency.
6582 freq = max(rps->cur_freq,
6583 rps->efficient_freq);
6585 if (intel_set_rps(dev_priv,
6586 clamp(freq,
6587 rps->min_freq_softlimit,
6588 rps->max_freq_softlimit)))
6589 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6591 mutex_unlock(&dev_priv->pcu_lock);
6594 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6596 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6598 /* Flush our bottom-half so that it does not race with us
6599 * setting the idle frequency and so that it is bounded by
6600 * our rpm wakeref. And then disable the interrupts to stop any
6601 * futher RPS reclocking whilst we are asleep.
6603 gen6_disable_rps_interrupts(dev_priv);
6605 mutex_lock(&dev_priv->pcu_lock);
6606 if (rps->enabled) {
6607 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6608 vlv_set_rps_idle(dev_priv);
6609 else
6610 gen6_set_rps(dev_priv, rps->idle_freq);
6611 rps->last_adj = 0;
6612 I915_WRITE(GEN6_PMINTRMSK,
6613 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6615 mutex_unlock(&dev_priv->pcu_lock);
6618 void gen6_rps_boost(struct i915_request *rq,
6619 struct intel_rps_client *rps_client)
6621 struct intel_rps *rps = &rq->i915->gt_pm.rps;
6622 unsigned long flags;
6623 bool boost;
6625 /* This is intentionally racy! We peek at the state here, then
6626 * validate inside the RPS worker.
6628 if (!rps->enabled)
6629 return;
6631 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
6632 return;
6634 /* Serializes with i915_request_retire() */
6635 boost = false;
6636 spin_lock_irqsave(&rq->lock, flags);
6637 if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6638 boost = !atomic_fetch_inc(&rps->num_waiters);
6639 rq->waitboost = true;
6641 spin_unlock_irqrestore(&rq->lock, flags);
6642 if (!boost)
6643 return;
6645 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6646 schedule_work(&rps->work);
6648 atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6651 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6653 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6654 int err;
6656 lockdep_assert_held(&dev_priv->pcu_lock);
6657 GEM_BUG_ON(val > rps->max_freq);
6658 GEM_BUG_ON(val < rps->min_freq);
6660 if (!rps->enabled) {
6661 rps->cur_freq = val;
6662 return 0;
6665 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6666 err = valleyview_set_rps(dev_priv, val);
6667 else
6668 err = gen6_set_rps(dev_priv, val);
6670 return err;
6673 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6675 I915_WRITE(GEN6_RC_CONTROL, 0);
6676 I915_WRITE(GEN9_PG_ENABLE, 0);
6679 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6681 I915_WRITE(GEN6_RP_CONTROL, 0);
6684 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6686 I915_WRITE(GEN6_RC_CONTROL, 0);
6689 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6691 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6692 I915_WRITE(GEN6_RP_CONTROL, 0);
6695 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6697 I915_WRITE(GEN6_RC_CONTROL, 0);
6700 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6702 I915_WRITE(GEN6_RP_CONTROL, 0);
6705 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6707 /* We're doing forcewake before Disabling RC6,
6708 * This what the BIOS expects when going into suspend */
6709 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6711 I915_WRITE(GEN6_RC_CONTROL, 0);
6713 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6716 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6718 I915_WRITE(GEN6_RP_CONTROL, 0);
6721 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6723 bool enable_rc6 = true;
6724 unsigned long rc6_ctx_base;
6725 u32 rc_ctl;
6726 int rc_sw_target;
6728 rc_ctl = I915_READ(GEN6_RC_CONTROL);
6729 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6730 RC_SW_TARGET_STATE_SHIFT;
6731 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6732 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6733 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6734 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6735 rc_sw_target);
6737 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6738 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6739 enable_rc6 = false;
6743 * The exact context size is not known for BXT, so assume a page size
6744 * for this check.
6746 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6747 if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6748 (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6749 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6750 enable_rc6 = false;
6753 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6754 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6755 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6756 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6757 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6758 enable_rc6 = false;
6761 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6762 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6763 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6764 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6765 enable_rc6 = false;
6768 if (!I915_READ(GEN6_GFXPAUSE)) {
6769 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6770 enable_rc6 = false;
6773 if (!I915_READ(GEN8_MISC_CTRL0)) {
6774 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6775 enable_rc6 = false;
6778 return enable_rc6;
6781 static bool sanitize_rc6(struct drm_i915_private *i915)
6783 struct intel_device_info *info = mkwrite_device_info(i915);
6785 /* Powersaving is controlled by the host when inside a VM */
6786 if (intel_vgpu_active(i915))
6787 info->has_rc6 = 0;
6789 if (info->has_rc6 &&
6790 IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6791 DRM_INFO("RC6 disabled by BIOS\n");
6792 info->has_rc6 = 0;
6796 * We assume that we do not have any deep rc6 levels if we don't have
6797 * have the previous rc6 level supported, i.e. we use HAS_RC6()
6798 * as the initial coarse check for rc6 in general, moving on to
6799 * progressively finer/deeper levels.
6801 if (!info->has_rc6 && info->has_rc6p)
6802 info->has_rc6p = 0;
6804 return info->has_rc6;
6807 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6809 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6811 /* All of these values are in units of 50MHz */
6813 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6814 if (IS_GEN9_LP(dev_priv)) {
6815 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6816 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6817 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6818 rps->min_freq = (rp_state_cap >> 0) & 0xff;
6819 } else {
6820 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6821 rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
6822 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6823 rps->min_freq = (rp_state_cap >> 16) & 0xff;
6825 /* hw_max = RP0 until we check for overclocking */
6826 rps->max_freq = rps->rp0_freq;
6828 rps->efficient_freq = rps->rp1_freq;
6829 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6830 IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6831 u32 ddcc_status = 0;
6833 if (sandybridge_pcode_read(dev_priv,
6834 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6835 &ddcc_status) == 0)
6836 rps->efficient_freq =
6837 clamp_t(u8,
6838 ((ddcc_status >> 8) & 0xff),
6839 rps->min_freq,
6840 rps->max_freq);
6843 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6844 /* Store the frequency values in 16.66 MHZ units, which is
6845 * the natural hardware unit for SKL
6847 rps->rp0_freq *= GEN9_FREQ_SCALER;
6848 rps->rp1_freq *= GEN9_FREQ_SCALER;
6849 rps->min_freq *= GEN9_FREQ_SCALER;
6850 rps->max_freq *= GEN9_FREQ_SCALER;
6851 rps->efficient_freq *= GEN9_FREQ_SCALER;
6855 static void reset_rps(struct drm_i915_private *dev_priv,
6856 int (*set)(struct drm_i915_private *, u8))
6858 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6859 u8 freq = rps->cur_freq;
6861 /* force a reset */
6862 rps->power.mode = -1;
6863 rps->cur_freq = -1;
6865 if (set(dev_priv, freq))
6866 DRM_ERROR("Failed to reset RPS to initial values\n");
6869 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6870 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6872 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6874 /* Program defaults and thresholds for RPS */
6875 if (IS_GEN9(dev_priv))
6876 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6877 GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6879 /* 1 second timeout*/
6880 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6881 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6883 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6885 /* Leaning on the below call to gen6_set_rps to program/setup the
6886 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6887 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6888 reset_rps(dev_priv, gen6_set_rps);
6890 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6893 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6895 struct intel_engine_cs *engine;
6896 enum intel_engine_id id;
6897 u32 rc6_mode;
6899 /* 1a: Software RC state - RC0 */
6900 I915_WRITE(GEN6_RC_STATE, 0);
6902 /* 1b: Get forcewake during program sequence. Although the driver
6903 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6904 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6906 /* 2a: Disable RC states. */
6907 I915_WRITE(GEN6_RC_CONTROL, 0);
6909 /* 2b: Program RC6 thresholds.*/
6910 if (INTEL_GEN(dev_priv) >= 10) {
6911 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
6912 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
6913 } else if (IS_SKYLAKE(dev_priv)) {
6915 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
6916 * when CPG is enabled
6918 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6919 } else {
6920 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6923 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6924 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6925 for_each_engine(engine, dev_priv, id)
6926 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6928 if (HAS_GUC(dev_priv))
6929 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6931 I915_WRITE(GEN6_RC_SLEEP, 0);
6934 * 2c: Program Coarse Power Gating Policies.
6936 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
6937 * use instead is a more conservative estimate for the maximum time
6938 * it takes us to service a CS interrupt and submit a new ELSP - that
6939 * is the time which the GPU is idle waiting for the CPU to select the
6940 * next request to execute. If the idle hysteresis is less than that
6941 * interrupt service latency, the hardware will automatically gate
6942 * the power well and we will then incur the wake up cost on top of
6943 * the service latency. A similar guide from intel_pstate is that we
6944 * do not want the enable hysteresis to less than the wakeup latency.
6946 * igt/gem_exec_nop/sequential provides a rough estimate for the
6947 * service latency, and puts it around 10us for Broadwell (and other
6948 * big core) and around 40us for Broxton (and other low power cores).
6949 * [Note that for legacy ringbuffer submission, this is less than 1us!]
6950 * However, the wakeup latency on Broxton is closer to 100us. To be
6951 * conservative, we have to factor in a context switch on top (due
6952 * to ksoftirqd).
6954 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
6955 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6957 /* 3a: Enable RC6 */
6958 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6960 /* WaRsUseTimeoutMode:cnl (pre-prod) */
6961 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6962 rc6_mode = GEN7_RC_CTL_TO_MODE;
6963 else
6964 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6966 I915_WRITE(GEN6_RC_CONTROL,
6967 GEN6_RC_CTL_HW_ENABLE |
6968 GEN6_RC_CTL_RC6_ENABLE |
6969 rc6_mode);
6972 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6973 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
6975 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6976 I915_WRITE(GEN9_PG_ENABLE, 0);
6977 else
6978 I915_WRITE(GEN9_PG_ENABLE,
6979 GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6981 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6984 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6986 struct intel_engine_cs *engine;
6987 enum intel_engine_id id;
6989 /* 1a: Software RC state - RC0 */
6990 I915_WRITE(GEN6_RC_STATE, 0);
6992 /* 1b: Get forcewake during program sequence. Although the driver
6993 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6994 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6996 /* 2a: Disable RC states. */
6997 I915_WRITE(GEN6_RC_CONTROL, 0);
6999 /* 2b: Program RC6 thresholds.*/
7000 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7001 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7002 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7003 for_each_engine(engine, dev_priv, id)
7004 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7005 I915_WRITE(GEN6_RC_SLEEP, 0);
7006 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7008 /* 3: Enable RC6 */
7010 I915_WRITE(GEN6_RC_CONTROL,
7011 GEN6_RC_CTL_HW_ENABLE |
7012 GEN7_RC_CTL_TO_MODE |
7013 GEN6_RC_CTL_RC6_ENABLE);
7015 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7018 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
7020 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7022 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7024 /* 1 Program defaults and thresholds for RPS*/
7025 I915_WRITE(GEN6_RPNSWREQ,
7026 HSW_FREQUENCY(rps->rp1_freq));
7027 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7028 HSW_FREQUENCY(rps->rp1_freq));
7029 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
7030 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
7032 /* Docs recommend 900MHz, and 300 MHz respectively */
7033 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7034 rps->max_freq_softlimit << 24 |
7035 rps->min_freq_softlimit << 16);
7037 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
7038 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
7039 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
7040 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
7042 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7044 /* 2: Enable RPS */
7045 I915_WRITE(GEN6_RP_CONTROL,
7046 GEN6_RP_MEDIA_TURBO |
7047 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7048 GEN6_RP_MEDIA_IS_GFX |
7049 GEN6_RP_ENABLE |
7050 GEN6_RP_UP_BUSY_AVG |
7051 GEN6_RP_DOWN_IDLE_AVG);
7053 reset_rps(dev_priv, gen6_set_rps);
7055 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7058 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7060 struct intel_engine_cs *engine;
7061 enum intel_engine_id id;
7062 u32 rc6vids, rc6_mask;
7063 u32 gtfifodbg;
7064 int ret;
7066 I915_WRITE(GEN6_RC_STATE, 0);
7068 /* Clear the DBG now so we don't confuse earlier errors */
7069 gtfifodbg = I915_READ(GTFIFODBG);
7070 if (gtfifodbg) {
7071 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7072 I915_WRITE(GTFIFODBG, gtfifodbg);
7075 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7077 /* disable the counters and set deterministic thresholds */
7078 I915_WRITE(GEN6_RC_CONTROL, 0);
7080 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7081 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7082 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7083 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7084 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7086 for_each_engine(engine, dev_priv, id)
7087 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7089 I915_WRITE(GEN6_RC_SLEEP, 0);
7090 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7091 if (IS_IVYBRIDGE(dev_priv))
7092 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7093 else
7094 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7095 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7096 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7098 /* We don't use those on Haswell */
7099 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7100 if (HAS_RC6p(dev_priv))
7101 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7102 if (HAS_RC6pp(dev_priv))
7103 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7104 I915_WRITE(GEN6_RC_CONTROL,
7105 rc6_mask |
7106 GEN6_RC_CTL_EI_MODE(1) |
7107 GEN6_RC_CTL_HW_ENABLE);
7109 rc6vids = 0;
7110 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7111 if (IS_GEN6(dev_priv) && ret) {
7112 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7113 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7114 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7115 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7116 rc6vids &= 0xffff00;
7117 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7118 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7119 if (ret)
7120 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7123 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7126 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7128 /* Here begins a magic sequence of register writes to enable
7129 * auto-downclocking.
7131 * Perhaps there might be some value in exposing these to
7132 * userspace...
7134 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7136 /* Power down if completely idle for over 50ms */
7137 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7138 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7140 reset_rps(dev_priv, gen6_set_rps);
7142 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7145 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7147 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7148 const int min_freq = 15;
7149 const int scaling_factor = 180;
7150 unsigned int gpu_freq;
7151 unsigned int max_ia_freq, min_ring_freq;
7152 unsigned int max_gpu_freq, min_gpu_freq;
7153 struct cpufreq_policy *policy;
7155 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7157 if (rps->max_freq <= rps->min_freq)
7158 return;
7160 policy = cpufreq_cpu_get(0);
7161 if (policy) {
7162 max_ia_freq = policy->cpuinfo.max_freq;
7163 cpufreq_cpu_put(policy);
7164 } else {
7166 * Default to measured freq if none found, PCU will ensure we
7167 * don't go over
7169 max_ia_freq = tsc_khz;
7172 /* Convert from kHz to MHz */
7173 max_ia_freq /= 1000;
7175 min_ring_freq = I915_READ(DCLK) & 0xf;
7176 /* convert DDR frequency from units of 266.6MHz to bandwidth */
7177 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7179 min_gpu_freq = rps->min_freq;
7180 max_gpu_freq = rps->max_freq;
7181 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7182 /* Convert GT frequency to 50 HZ units */
7183 min_gpu_freq /= GEN9_FREQ_SCALER;
7184 max_gpu_freq /= GEN9_FREQ_SCALER;
7188 * For each potential GPU frequency, load a ring frequency we'd like
7189 * to use for memory access. We do this by specifying the IA frequency
7190 * the PCU should use as a reference to determine the ring frequency.
7192 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7193 const int diff = max_gpu_freq - gpu_freq;
7194 unsigned int ia_freq = 0, ring_freq = 0;
7196 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7198 * ring_freq = 2 * GT. ring_freq is in 100MHz units
7199 * No floor required for ring frequency on SKL.
7201 ring_freq = gpu_freq;
7202 } else if (INTEL_GEN(dev_priv) >= 8) {
7203 /* max(2 * GT, DDR). NB: GT is 50MHz units */
7204 ring_freq = max(min_ring_freq, gpu_freq);
7205 } else if (IS_HASWELL(dev_priv)) {
7206 ring_freq = mult_frac(gpu_freq, 5, 4);
7207 ring_freq = max(min_ring_freq, ring_freq);
7208 /* leave ia_freq as the default, chosen by cpufreq */
7209 } else {
7210 /* On older processors, there is no separate ring
7211 * clock domain, so in order to boost the bandwidth
7212 * of the ring, we need to upclock the CPU (ia_freq).
7214 * For GPU frequencies less than 750MHz,
7215 * just use the lowest ring freq.
7217 if (gpu_freq < min_freq)
7218 ia_freq = 800;
7219 else
7220 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7221 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7224 sandybridge_pcode_write(dev_priv,
7225 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7226 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7227 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7228 gpu_freq);
7232 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7234 u32 val, rp0;
7236 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7238 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7239 case 8:
7240 /* (2 * 4) config */
7241 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7242 break;
7243 case 12:
7244 /* (2 * 6) config */
7245 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7246 break;
7247 case 16:
7248 /* (2 * 8) config */
7249 default:
7250 /* Setting (2 * 8) Min RP0 for any other combination */
7251 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7252 break;
7255 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7257 return rp0;
7260 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7262 u32 val, rpe;
7264 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7265 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7267 return rpe;
7270 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7272 u32 val, rp1;
7274 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7275 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7277 return rp1;
7280 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7282 u32 val, rpn;
7284 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7285 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7286 FB_GFX_FREQ_FUSE_MASK);
7288 return rpn;
7291 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7293 u32 val, rp1;
7295 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7297 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7299 return rp1;
7302 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7304 u32 val, rp0;
7306 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7308 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7309 /* Clamp to max */
7310 rp0 = min_t(u32, rp0, 0xea);
7312 return rp0;
7315 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7317 u32 val, rpe;
7319 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7320 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7321 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7322 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7324 return rpe;
7327 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7329 u32 val;
7331 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7333 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7334 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7335 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7336 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7337 * to make sure it matches what Punit accepts.
7339 return max_t(u32, val, 0xc0);
7342 /* Check that the pctx buffer wasn't move under us. */
7343 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7345 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7347 WARN_ON(pctx_addr != dev_priv->dsm.start +
7348 dev_priv->vlv_pctx->stolen->start);
7352 /* Check that the pcbr address is not empty. */
7353 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7355 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7357 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7360 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7362 resource_size_t pctx_paddr, paddr;
7363 resource_size_t pctx_size = 32*1024;
7364 u32 pcbr;
7366 pcbr = I915_READ(VLV_PCBR);
7367 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7368 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7369 paddr = dev_priv->dsm.end + 1 - pctx_size;
7370 GEM_BUG_ON(paddr > U32_MAX);
7372 pctx_paddr = (paddr & (~4095));
7373 I915_WRITE(VLV_PCBR, pctx_paddr);
7376 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7379 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7381 struct drm_i915_gem_object *pctx;
7382 resource_size_t pctx_paddr;
7383 resource_size_t pctx_size = 24*1024;
7384 u32 pcbr;
7386 pcbr = I915_READ(VLV_PCBR);
7387 if (pcbr) {
7388 /* BIOS set it up already, grab the pre-alloc'd space */
7389 resource_size_t pcbr_offset;
7391 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7392 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7393 pcbr_offset,
7394 I915_GTT_OFFSET_NONE,
7395 pctx_size);
7396 goto out;
7399 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7402 * From the Gunit register HAS:
7403 * The Gfx driver is expected to program this register and ensure
7404 * proper allocation within Gfx stolen memory. For example, this
7405 * register should be programmed such than the PCBR range does not
7406 * overlap with other ranges, such as the frame buffer, protected
7407 * memory, or any other relevant ranges.
7409 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7410 if (!pctx) {
7411 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7412 goto out;
7415 GEM_BUG_ON(range_overflows_t(u64,
7416 dev_priv->dsm.start,
7417 pctx->stolen->start,
7418 U32_MAX));
7419 pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7420 I915_WRITE(VLV_PCBR, pctx_paddr);
7422 out:
7423 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7424 dev_priv->vlv_pctx = pctx;
7427 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7429 struct drm_i915_gem_object *pctx;
7431 pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7432 if (pctx)
7433 i915_gem_object_put(pctx);
7436 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7438 dev_priv->gt_pm.rps.gpll_ref_freq =
7439 vlv_get_cck_clock(dev_priv, "GPLL ref",
7440 CCK_GPLL_CLOCK_CONTROL,
7441 dev_priv->czclk_freq);
7443 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7444 dev_priv->gt_pm.rps.gpll_ref_freq);
7447 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7449 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7450 u32 val;
7452 valleyview_setup_pctx(dev_priv);
7454 vlv_init_gpll_ref_freq(dev_priv);
7456 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7457 switch ((val >> 6) & 3) {
7458 case 0:
7459 case 1:
7460 dev_priv->mem_freq = 800;
7461 break;
7462 case 2:
7463 dev_priv->mem_freq = 1066;
7464 break;
7465 case 3:
7466 dev_priv->mem_freq = 1333;
7467 break;
7469 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7471 rps->max_freq = valleyview_rps_max_freq(dev_priv);
7472 rps->rp0_freq = rps->max_freq;
7473 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7474 intel_gpu_freq(dev_priv, rps->max_freq),
7475 rps->max_freq);
7477 rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7478 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7479 intel_gpu_freq(dev_priv, rps->efficient_freq),
7480 rps->efficient_freq);
7482 rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7483 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7484 intel_gpu_freq(dev_priv, rps->rp1_freq),
7485 rps->rp1_freq);
7487 rps->min_freq = valleyview_rps_min_freq(dev_priv);
7488 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7489 intel_gpu_freq(dev_priv, rps->min_freq),
7490 rps->min_freq);
7493 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7495 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7496 u32 val;
7498 cherryview_setup_pctx(dev_priv);
7500 vlv_init_gpll_ref_freq(dev_priv);
7502 mutex_lock(&dev_priv->sb_lock);
7503 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7504 mutex_unlock(&dev_priv->sb_lock);
7506 switch ((val >> 2) & 0x7) {
7507 case 3:
7508 dev_priv->mem_freq = 2000;
7509 break;
7510 default:
7511 dev_priv->mem_freq = 1600;
7512 break;
7514 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7516 rps->max_freq = cherryview_rps_max_freq(dev_priv);
7517 rps->rp0_freq = rps->max_freq;
7518 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7519 intel_gpu_freq(dev_priv, rps->max_freq),
7520 rps->max_freq);
7522 rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7523 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7524 intel_gpu_freq(dev_priv, rps->efficient_freq),
7525 rps->efficient_freq);
7527 rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7528 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7529 intel_gpu_freq(dev_priv, rps->rp1_freq),
7530 rps->rp1_freq);
7532 rps->min_freq = cherryview_rps_min_freq(dev_priv);
7533 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7534 intel_gpu_freq(dev_priv, rps->min_freq),
7535 rps->min_freq);
7537 WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7538 rps->min_freq) & 1,
7539 "Odd GPU freq values\n");
7542 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7544 valleyview_cleanup_pctx(dev_priv);
7547 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7549 struct intel_engine_cs *engine;
7550 enum intel_engine_id id;
7551 u32 gtfifodbg, rc6_mode, pcbr;
7553 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7554 GT_FIFO_FREE_ENTRIES_CHV);
7555 if (gtfifodbg) {
7556 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7557 gtfifodbg);
7558 I915_WRITE(GTFIFODBG, gtfifodbg);
7561 cherryview_check_pctx(dev_priv);
7563 /* 1a & 1b: Get forcewake during program sequence. Although the driver
7564 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7565 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7567 /* Disable RC states. */
7568 I915_WRITE(GEN6_RC_CONTROL, 0);
7570 /* 2a: Program RC6 thresholds.*/
7571 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7572 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7573 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7575 for_each_engine(engine, dev_priv, id)
7576 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7577 I915_WRITE(GEN6_RC_SLEEP, 0);
7579 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7580 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7582 /* Allows RC6 residency counter to work */
7583 I915_WRITE(VLV_COUNTER_CONTROL,
7584 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7585 VLV_MEDIA_RC6_COUNT_EN |
7586 VLV_RENDER_RC6_COUNT_EN));
7588 /* For now we assume BIOS is allocating and populating the PCBR */
7589 pcbr = I915_READ(VLV_PCBR);
7591 /* 3: Enable RC6 */
7592 rc6_mode = 0;
7593 if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7594 rc6_mode = GEN7_RC_CTL_TO_MODE;
7595 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7597 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7600 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7602 u32 val;
7604 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7606 /* 1: Program defaults and thresholds for RPS*/
7607 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7608 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7609 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7610 I915_WRITE(GEN6_RP_UP_EI, 66000);
7611 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7613 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7615 /* 2: Enable RPS */
7616 I915_WRITE(GEN6_RP_CONTROL,
7617 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7618 GEN6_RP_MEDIA_IS_GFX |
7619 GEN6_RP_ENABLE |
7620 GEN6_RP_UP_BUSY_AVG |
7621 GEN6_RP_DOWN_IDLE_AVG);
7623 /* Setting Fixed Bias */
7624 val = VLV_OVERRIDE_EN |
7625 VLV_SOC_TDP_EN |
7626 CHV_BIAS_CPU_50_SOC_50;
7627 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7629 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7631 /* RPS code assumes GPLL is used */
7632 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7634 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7635 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7637 reset_rps(dev_priv, valleyview_set_rps);
7639 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7642 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7644 struct intel_engine_cs *engine;
7645 enum intel_engine_id id;
7646 u32 gtfifodbg;
7648 valleyview_check_pctx(dev_priv);
7650 gtfifodbg = I915_READ(GTFIFODBG);
7651 if (gtfifodbg) {
7652 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7653 gtfifodbg);
7654 I915_WRITE(GTFIFODBG, gtfifodbg);
7657 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7659 /* Disable RC states. */
7660 I915_WRITE(GEN6_RC_CONTROL, 0);
7662 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7663 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7664 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7666 for_each_engine(engine, dev_priv, id)
7667 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7669 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7671 /* Allows RC6 residency counter to work */
7672 I915_WRITE(VLV_COUNTER_CONTROL,
7673 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7674 VLV_MEDIA_RC0_COUNT_EN |
7675 VLV_RENDER_RC0_COUNT_EN |
7676 VLV_MEDIA_RC6_COUNT_EN |
7677 VLV_RENDER_RC6_COUNT_EN));
7679 I915_WRITE(GEN6_RC_CONTROL,
7680 GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7682 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7685 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7687 u32 val;
7689 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7691 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7692 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7693 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7694 I915_WRITE(GEN6_RP_UP_EI, 66000);
7695 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7697 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7699 I915_WRITE(GEN6_RP_CONTROL,
7700 GEN6_RP_MEDIA_TURBO |
7701 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7702 GEN6_RP_MEDIA_IS_GFX |
7703 GEN6_RP_ENABLE |
7704 GEN6_RP_UP_BUSY_AVG |
7705 GEN6_RP_DOWN_IDLE_CONT);
7707 /* Setting Fixed Bias */
7708 val = VLV_OVERRIDE_EN |
7709 VLV_SOC_TDP_EN |
7710 VLV_BIAS_CPU_125_SOC_875;
7711 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7713 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7715 /* RPS code assumes GPLL is used */
7716 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7718 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7719 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7721 reset_rps(dev_priv, valleyview_set_rps);
7723 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7726 static unsigned long intel_pxfreq(u32 vidfreq)
7728 unsigned long freq;
7729 int div = (vidfreq & 0x3f0000) >> 16;
7730 int post = (vidfreq & 0x3000) >> 12;
7731 int pre = (vidfreq & 0x7);
7733 if (!pre)
7734 return 0;
7736 freq = ((div * 133333) / ((1<<post) * pre));
7738 return freq;
7741 static const struct cparams {
7742 u16 i;
7743 u16 t;
7744 u16 m;
7745 u16 c;
7746 } cparams[] = {
7747 { 1, 1333, 301, 28664 },
7748 { 1, 1066, 294, 24460 },
7749 { 1, 800, 294, 25192 },
7750 { 0, 1333, 276, 27605 },
7751 { 0, 1066, 276, 27605 },
7752 { 0, 800, 231, 23784 },
7755 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7757 u64 total_count, diff, ret;
7758 u32 count1, count2, count3, m = 0, c = 0;
7759 unsigned long now = jiffies_to_msecs(jiffies), diff1;
7760 int i;
7762 lockdep_assert_held(&mchdev_lock);
7764 diff1 = now - dev_priv->ips.last_time1;
7766 /* Prevent division-by-zero if we are asking too fast.
7767 * Also, we don't get interesting results if we are polling
7768 * faster than once in 10ms, so just return the saved value
7769 * in such cases.
7771 if (diff1 <= 10)
7772 return dev_priv->ips.chipset_power;
7774 count1 = I915_READ(DMIEC);
7775 count2 = I915_READ(DDREC);
7776 count3 = I915_READ(CSIEC);
7778 total_count = count1 + count2 + count3;
7780 /* FIXME: handle per-counter overflow */
7781 if (total_count < dev_priv->ips.last_count1) {
7782 diff = ~0UL - dev_priv->ips.last_count1;
7783 diff += total_count;
7784 } else {
7785 diff = total_count - dev_priv->ips.last_count1;
7788 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7789 if (cparams[i].i == dev_priv->ips.c_m &&
7790 cparams[i].t == dev_priv->ips.r_t) {
7791 m = cparams[i].m;
7792 c = cparams[i].c;
7793 break;
7797 diff = div_u64(diff, diff1);
7798 ret = ((m * diff) + c);
7799 ret = div_u64(ret, 10);
7801 dev_priv->ips.last_count1 = total_count;
7802 dev_priv->ips.last_time1 = now;
7804 dev_priv->ips.chipset_power = ret;
7806 return ret;
7809 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7811 unsigned long val;
7813 if (!IS_GEN5(dev_priv))
7814 return 0;
7816 spin_lock_irq(&mchdev_lock);
7818 val = __i915_chipset_val(dev_priv);
7820 spin_unlock_irq(&mchdev_lock);
7822 return val;
7825 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7827 unsigned long m, x, b;
7828 u32 tsfs;
7830 tsfs = I915_READ(TSFS);
7832 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7833 x = I915_READ8(TR1);
7835 b = tsfs & TSFS_INTR_MASK;
7837 return ((m * x) / 127) - b;
7840 static int _pxvid_to_vd(u8 pxvid)
7842 if (pxvid == 0)
7843 return 0;
7845 if (pxvid >= 8 && pxvid < 31)
7846 pxvid = 31;
7848 return (pxvid + 2) * 125;
7851 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7853 const int vd = _pxvid_to_vd(pxvid);
7854 const int vm = vd - 1125;
7856 if (INTEL_INFO(dev_priv)->is_mobile)
7857 return vm > 0 ? vm : 0;
7859 return vd;
7862 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7864 u64 now, diff, diffms;
7865 u32 count;
7867 lockdep_assert_held(&mchdev_lock);
7869 now = ktime_get_raw_ns();
7870 diffms = now - dev_priv->ips.last_time2;
7871 do_div(diffms, NSEC_PER_MSEC);
7873 /* Don't divide by 0 */
7874 if (!diffms)
7875 return;
7877 count = I915_READ(GFXEC);
7879 if (count < dev_priv->ips.last_count2) {
7880 diff = ~0UL - dev_priv->ips.last_count2;
7881 diff += count;
7882 } else {
7883 diff = count - dev_priv->ips.last_count2;
7886 dev_priv->ips.last_count2 = count;
7887 dev_priv->ips.last_time2 = now;
7889 /* More magic constants... */
7890 diff = diff * 1181;
7891 diff = div_u64(diff, diffms * 10);
7892 dev_priv->ips.gfx_power = diff;
7895 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7897 if (!IS_GEN5(dev_priv))
7898 return;
7900 spin_lock_irq(&mchdev_lock);
7902 __i915_update_gfx_val(dev_priv);
7904 spin_unlock_irq(&mchdev_lock);
7907 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7909 unsigned long t, corr, state1, corr2, state2;
7910 u32 pxvid, ext_v;
7912 lockdep_assert_held(&mchdev_lock);
7914 pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7915 pxvid = (pxvid >> 24) & 0x7f;
7916 ext_v = pvid_to_extvid(dev_priv, pxvid);
7918 state1 = ext_v;
7920 t = i915_mch_val(dev_priv);
7922 /* Revel in the empirically derived constants */
7924 /* Correction factor in 1/100000 units */
7925 if (t > 80)
7926 corr = ((t * 2349) + 135940);
7927 else if (t >= 50)
7928 corr = ((t * 964) + 29317);
7929 else /* < 50 */
7930 corr = ((t * 301) + 1004);
7932 corr = corr * ((150142 * state1) / 10000 - 78642);
7933 corr /= 100000;
7934 corr2 = (corr * dev_priv->ips.corr);
7936 state2 = (corr2 * state1) / 10000;
7937 state2 /= 100; /* convert to mW */
7939 __i915_update_gfx_val(dev_priv);
7941 return dev_priv->ips.gfx_power + state2;
7944 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7946 unsigned long val;
7948 if (!IS_GEN5(dev_priv))
7949 return 0;
7951 spin_lock_irq(&mchdev_lock);
7953 val = __i915_gfx_val(dev_priv);
7955 spin_unlock_irq(&mchdev_lock);
7957 return val;
7961 * i915_read_mch_val - return value for IPS use
7963 * Calculate and return a value for the IPS driver to use when deciding whether
7964 * we have thermal and power headroom to increase CPU or GPU power budget.
7966 unsigned long i915_read_mch_val(void)
7968 struct drm_i915_private *dev_priv;
7969 unsigned long chipset_val, graphics_val, ret = 0;
7971 spin_lock_irq(&mchdev_lock);
7972 if (!i915_mch_dev)
7973 goto out_unlock;
7974 dev_priv = i915_mch_dev;
7976 chipset_val = __i915_chipset_val(dev_priv);
7977 graphics_val = __i915_gfx_val(dev_priv);
7979 ret = chipset_val + graphics_val;
7981 out_unlock:
7982 spin_unlock_irq(&mchdev_lock);
7984 return ret;
7986 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7989 * i915_gpu_raise - raise GPU frequency limit
7991 * Raise the limit; IPS indicates we have thermal headroom.
7993 bool i915_gpu_raise(void)
7995 struct drm_i915_private *dev_priv;
7996 bool ret = true;
7998 spin_lock_irq(&mchdev_lock);
7999 if (!i915_mch_dev) {
8000 ret = false;
8001 goto out_unlock;
8003 dev_priv = i915_mch_dev;
8005 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
8006 dev_priv->ips.max_delay--;
8008 out_unlock:
8009 spin_unlock_irq(&mchdev_lock);
8011 return ret;
8013 EXPORT_SYMBOL_GPL(i915_gpu_raise);
8016 * i915_gpu_lower - lower GPU frequency limit
8018 * IPS indicates we're close to a thermal limit, so throttle back the GPU
8019 * frequency maximum.
8021 bool i915_gpu_lower(void)
8023 struct drm_i915_private *dev_priv;
8024 bool ret = true;
8026 spin_lock_irq(&mchdev_lock);
8027 if (!i915_mch_dev) {
8028 ret = false;
8029 goto out_unlock;
8031 dev_priv = i915_mch_dev;
8033 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
8034 dev_priv->ips.max_delay++;
8036 out_unlock:
8037 spin_unlock_irq(&mchdev_lock);
8039 return ret;
8041 EXPORT_SYMBOL_GPL(i915_gpu_lower);
8044 * i915_gpu_busy - indicate GPU business to IPS
8046 * Tell the IPS driver whether or not the GPU is busy.
8048 bool i915_gpu_busy(void)
8050 bool ret = false;
8052 spin_lock_irq(&mchdev_lock);
8053 if (i915_mch_dev)
8054 ret = i915_mch_dev->gt.awake;
8055 spin_unlock_irq(&mchdev_lock);
8057 return ret;
8059 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8062 * i915_gpu_turbo_disable - disable graphics turbo
8064 * Disable graphics turbo by resetting the max frequency and setting the
8065 * current frequency to the default.
8067 bool i915_gpu_turbo_disable(void)
8069 struct drm_i915_private *dev_priv;
8070 bool ret = true;
8072 spin_lock_irq(&mchdev_lock);
8073 if (!i915_mch_dev) {
8074 ret = false;
8075 goto out_unlock;
8077 dev_priv = i915_mch_dev;
8079 dev_priv->ips.max_delay = dev_priv->ips.fstart;
8081 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8082 ret = false;
8084 out_unlock:
8085 spin_unlock_irq(&mchdev_lock);
8087 return ret;
8089 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8092 * Tells the intel_ips driver that the i915 driver is now loaded, if
8093 * IPS got loaded first.
8095 * This awkward dance is so that neither module has to depend on the
8096 * other in order for IPS to do the appropriate communication of
8097 * GPU turbo limits to i915.
8099 static void
8100 ips_ping_for_i915_load(void)
8102 void (*link)(void);
8104 link = symbol_get(ips_link_to_i915_driver);
8105 if (link) {
8106 link();
8107 symbol_put(ips_link_to_i915_driver);
8111 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8113 /* We only register the i915 ips part with intel-ips once everything is
8114 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8115 spin_lock_irq(&mchdev_lock);
8116 i915_mch_dev = dev_priv;
8117 spin_unlock_irq(&mchdev_lock);
8119 ips_ping_for_i915_load();
8122 void intel_gpu_ips_teardown(void)
8124 spin_lock_irq(&mchdev_lock);
8125 i915_mch_dev = NULL;
8126 spin_unlock_irq(&mchdev_lock);
8129 static void intel_init_emon(struct drm_i915_private *dev_priv)
8131 u32 lcfuse;
8132 u8 pxw[16];
8133 int i;
8135 /* Disable to program */
8136 I915_WRITE(ECR, 0);
8137 POSTING_READ(ECR);
8139 /* Program energy weights for various events */
8140 I915_WRITE(SDEW, 0x15040d00);
8141 I915_WRITE(CSIEW0, 0x007f0000);
8142 I915_WRITE(CSIEW1, 0x1e220004);
8143 I915_WRITE(CSIEW2, 0x04000004);
8145 for (i = 0; i < 5; i++)
8146 I915_WRITE(PEW(i), 0);
8147 for (i = 0; i < 3; i++)
8148 I915_WRITE(DEW(i), 0);
8150 /* Program P-state weights to account for frequency power adjustment */
8151 for (i = 0; i < 16; i++) {
8152 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8153 unsigned long freq = intel_pxfreq(pxvidfreq);
8154 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8155 PXVFREQ_PX_SHIFT;
8156 unsigned long val;
8158 val = vid * vid;
8159 val *= (freq / 1000);
8160 val *= 255;
8161 val /= (127*127*900);
8162 if (val > 0xff)
8163 DRM_ERROR("bad pxval: %ld\n", val);
8164 pxw[i] = val;
8166 /* Render standby states get 0 weight */
8167 pxw[14] = 0;
8168 pxw[15] = 0;
8170 for (i = 0; i < 4; i++) {
8171 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8172 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8173 I915_WRITE(PXW(i), val);
8176 /* Adjust magic regs to magic values (more experimental results) */
8177 I915_WRITE(OGW0, 0);
8178 I915_WRITE(OGW1, 0);
8179 I915_WRITE(EG0, 0x00007f00);
8180 I915_WRITE(EG1, 0x0000000e);
8181 I915_WRITE(EG2, 0x000e0000);
8182 I915_WRITE(EG3, 0x68000300);
8183 I915_WRITE(EG4, 0x42000000);
8184 I915_WRITE(EG5, 0x00140031);
8185 I915_WRITE(EG6, 0);
8186 I915_WRITE(EG7, 0);
8188 for (i = 0; i < 8; i++)
8189 I915_WRITE(PXWL(i), 0);
8191 /* Enable PMON + select events */
8192 I915_WRITE(ECR, 0x80000019);
8194 lcfuse = I915_READ(LCFUSE02);
8196 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8199 static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
8201 return !I915_READ(GEN8_RC6_CTX_INFO);
8204 static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
8206 if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
8207 return;
8209 if (i915_rc6_ctx_corrupted(i915)) {
8210 DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
8211 i915->gt_pm.rc6.ctx_corrupted = true;
8212 intel_runtime_pm_get(i915);
8216 static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
8218 if (i915->gt_pm.rc6.ctx_corrupted) {
8219 intel_runtime_pm_put(i915);
8220 i915->gt_pm.rc6.ctx_corrupted = false;
8225 * i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
8226 * @i915: i915 device
8228 * Perform any steps needed to clean up the RC6 CTX WA before system suspend.
8230 void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
8232 if (i915->gt_pm.rc6.ctx_corrupted)
8233 intel_runtime_pm_put(i915);
8237 * i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
8238 * @i915: i915 device
8240 * Perform any steps needed to re-init the RC6 CTX WA after system resume.
8242 void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
8244 if (!i915->gt_pm.rc6.ctx_corrupted)
8245 return;
8247 if (i915_rc6_ctx_corrupted(i915)) {
8248 intel_runtime_pm_get(i915);
8249 return;
8252 DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
8253 i915->gt_pm.rc6.ctx_corrupted = false;
8256 static void intel_disable_rc6(struct drm_i915_private *dev_priv);
8259 * i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
8260 * @i915: i915 device
8262 * Check if an RC6 CTX corruption has happened since the last check and if so
8263 * disable RC6 and runtime power management.
8265 * Return false if no context corruption has happened since the last call of
8266 * this function, true otherwise.
8268 bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
8270 if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
8271 return false;
8273 if (i915->gt_pm.rc6.ctx_corrupted)
8274 return false;
8276 if (!i915_rc6_ctx_corrupted(i915))
8277 return false;
8279 DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
8281 intel_disable_rc6(i915);
8282 i915->gt_pm.rc6.ctx_corrupted = true;
8283 intel_runtime_pm_get_noresume(i915);
8285 return true;
8288 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8290 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8293 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8294 * requirement.
8296 if (!sanitize_rc6(dev_priv)) {
8297 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8298 intel_runtime_pm_get(dev_priv);
8301 mutex_lock(&dev_priv->pcu_lock);
8303 i915_rc6_ctx_wa_init(dev_priv);
8305 /* Initialize RPS limits (for userspace) */
8306 if (IS_CHERRYVIEW(dev_priv))
8307 cherryview_init_gt_powersave(dev_priv);
8308 else if (IS_VALLEYVIEW(dev_priv))
8309 valleyview_init_gt_powersave(dev_priv);
8310 else if (INTEL_GEN(dev_priv) >= 6)
8311 gen6_init_rps_frequencies(dev_priv);
8313 /* Derive initial user preferences/limits from the hardware limits */
8314 rps->idle_freq = rps->min_freq;
8315 rps->cur_freq = rps->idle_freq;
8317 rps->max_freq_softlimit = rps->max_freq;
8318 rps->min_freq_softlimit = rps->min_freq;
8320 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8321 rps->min_freq_softlimit =
8322 max_t(int,
8323 rps->efficient_freq,
8324 intel_freq_opcode(dev_priv, 450));
8326 /* After setting max-softlimit, find the overclock max freq */
8327 if (IS_GEN6(dev_priv) ||
8328 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8329 u32 params = 0;
8331 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
8332 if (params & BIT(31)) { /* OC supported */
8333 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8334 (rps->max_freq & 0xff) * 50,
8335 (params & 0xff) * 50);
8336 rps->max_freq = params & 0xff;
8340 /* Finally allow us to boost to max by default */
8341 rps->boost_freq = rps->max_freq;
8343 mutex_unlock(&dev_priv->pcu_lock);
8346 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8348 if (IS_VALLEYVIEW(dev_priv))
8349 valleyview_cleanup_gt_powersave(dev_priv);
8351 i915_rc6_ctx_wa_cleanup(dev_priv);
8353 if (!HAS_RC6(dev_priv))
8354 intel_runtime_pm_put(dev_priv);
8358 * intel_suspend_gt_powersave - suspend PM work and helper threads
8359 * @dev_priv: i915 device
8361 * We don't want to disable RC6 or other features here, we just want
8362 * to make sure any work we've queued has finished and won't bother
8363 * us while we're suspended.
8365 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
8367 if (INTEL_GEN(dev_priv) < 6)
8368 return;
8370 /* gen6_rps_idle() will be called later to disable interrupts */
8373 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8375 dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8376 dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8377 intel_disable_gt_powersave(dev_priv);
8379 if (INTEL_GEN(dev_priv) >= 11)
8380 gen11_reset_rps_interrupts(dev_priv);
8381 else
8382 gen6_reset_rps_interrupts(dev_priv);
8385 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8387 lockdep_assert_held(&i915->pcu_lock);
8389 if (!i915->gt_pm.llc_pstate.enabled)
8390 return;
8392 /* Currently there is no HW configuration to be done to disable. */
8394 i915->gt_pm.llc_pstate.enabled = false;
8397 static void __intel_disable_rc6(struct drm_i915_private *dev_priv)
8399 lockdep_assert_held(&dev_priv->pcu_lock);
8401 if (!dev_priv->gt_pm.rc6.enabled)
8402 return;
8404 if (INTEL_GEN(dev_priv) >= 9)
8405 gen9_disable_rc6(dev_priv);
8406 else if (IS_CHERRYVIEW(dev_priv))
8407 cherryview_disable_rc6(dev_priv);
8408 else if (IS_VALLEYVIEW(dev_priv))
8409 valleyview_disable_rc6(dev_priv);
8410 else if (INTEL_GEN(dev_priv) >= 6)
8411 gen6_disable_rc6(dev_priv);
8413 dev_priv->gt_pm.rc6.enabled = false;
8416 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8418 mutex_lock(&dev_priv->pcu_lock);
8419 __intel_disable_rc6(dev_priv);
8420 mutex_unlock(&dev_priv->pcu_lock);
8423 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8425 lockdep_assert_held(&dev_priv->pcu_lock);
8427 if (!dev_priv->gt_pm.rps.enabled)
8428 return;
8430 if (INTEL_GEN(dev_priv) >= 9)
8431 gen9_disable_rps(dev_priv);
8432 else if (IS_CHERRYVIEW(dev_priv))
8433 cherryview_disable_rps(dev_priv);
8434 else if (IS_VALLEYVIEW(dev_priv))
8435 valleyview_disable_rps(dev_priv);
8436 else if (INTEL_GEN(dev_priv) >= 6)
8437 gen6_disable_rps(dev_priv);
8438 else if (IS_IRONLAKE_M(dev_priv))
8439 ironlake_disable_drps(dev_priv);
8441 dev_priv->gt_pm.rps.enabled = false;
8444 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8446 mutex_lock(&dev_priv->pcu_lock);
8448 __intel_disable_rc6(dev_priv);
8449 intel_disable_rps(dev_priv);
8450 if (HAS_LLC(dev_priv))
8451 intel_disable_llc_pstate(dev_priv);
8453 mutex_unlock(&dev_priv->pcu_lock);
8456 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8458 lockdep_assert_held(&i915->pcu_lock);
8460 if (i915->gt_pm.llc_pstate.enabled)
8461 return;
8463 gen6_update_ring_freq(i915);
8465 i915->gt_pm.llc_pstate.enabled = true;
8468 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8470 lockdep_assert_held(&dev_priv->pcu_lock);
8472 if (dev_priv->gt_pm.rc6.enabled)
8473 return;
8475 if (dev_priv->gt_pm.rc6.ctx_corrupted)
8476 return;
8478 if (IS_CHERRYVIEW(dev_priv))
8479 cherryview_enable_rc6(dev_priv);
8480 else if (IS_VALLEYVIEW(dev_priv))
8481 valleyview_enable_rc6(dev_priv);
8482 else if (INTEL_GEN(dev_priv) >= 9)
8483 gen9_enable_rc6(dev_priv);
8484 else if (IS_BROADWELL(dev_priv))
8485 gen8_enable_rc6(dev_priv);
8486 else if (INTEL_GEN(dev_priv) >= 6)
8487 gen6_enable_rc6(dev_priv);
8489 dev_priv->gt_pm.rc6.enabled = true;
8492 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8494 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8496 lockdep_assert_held(&dev_priv->pcu_lock);
8498 if (rps->enabled)
8499 return;
8501 if (IS_CHERRYVIEW(dev_priv)) {
8502 cherryview_enable_rps(dev_priv);
8503 } else if (IS_VALLEYVIEW(dev_priv)) {
8504 valleyview_enable_rps(dev_priv);
8505 } else if (INTEL_GEN(dev_priv) >= 9) {
8506 gen9_enable_rps(dev_priv);
8507 } else if (IS_BROADWELL(dev_priv)) {
8508 gen8_enable_rps(dev_priv);
8509 } else if (INTEL_GEN(dev_priv) >= 6) {
8510 gen6_enable_rps(dev_priv);
8511 } else if (IS_IRONLAKE_M(dev_priv)) {
8512 ironlake_enable_drps(dev_priv);
8513 intel_init_emon(dev_priv);
8516 WARN_ON(rps->max_freq < rps->min_freq);
8517 WARN_ON(rps->idle_freq > rps->max_freq);
8519 WARN_ON(rps->efficient_freq < rps->min_freq);
8520 WARN_ON(rps->efficient_freq > rps->max_freq);
8522 rps->enabled = true;
8525 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8527 /* Powersaving is controlled by the host when inside a VM */
8528 if (intel_vgpu_active(dev_priv))
8529 return;
8531 mutex_lock(&dev_priv->pcu_lock);
8533 if (HAS_RC6(dev_priv))
8534 intel_enable_rc6(dev_priv);
8535 intel_enable_rps(dev_priv);
8536 if (HAS_LLC(dev_priv))
8537 intel_enable_llc_pstate(dev_priv);
8539 mutex_unlock(&dev_priv->pcu_lock);
8542 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8545 * On Ibex Peak and Cougar Point, we need to disable clock
8546 * gating for the panel power sequencer or it will fail to
8547 * start up when no ports are active.
8549 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8552 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8554 enum pipe pipe;
8556 for_each_pipe(dev_priv, pipe) {
8557 I915_WRITE(DSPCNTR(pipe),
8558 I915_READ(DSPCNTR(pipe)) |
8559 DISPPLANE_TRICKLE_FEED_DISABLE);
8561 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8562 POSTING_READ(DSPSURF(pipe));
8566 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8568 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8571 * Required for FBC
8572 * WaFbcDisableDpfcClockGating:ilk
8574 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8575 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8576 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8578 I915_WRITE(PCH_3DCGDIS0,
8579 MARIUNIT_CLOCK_GATE_DISABLE |
8580 SVSMUNIT_CLOCK_GATE_DISABLE);
8581 I915_WRITE(PCH_3DCGDIS1,
8582 VFMUNIT_CLOCK_GATE_DISABLE);
8585 * According to the spec the following bits should be set in
8586 * order to enable memory self-refresh
8587 * The bit 22/21 of 0x42004
8588 * The bit 5 of 0x42020
8589 * The bit 15 of 0x45000
8591 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8592 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8593 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8594 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8595 I915_WRITE(DISP_ARB_CTL,
8596 (I915_READ(DISP_ARB_CTL) |
8597 DISP_FBC_WM_DIS));
8600 * Based on the document from hardware guys the following bits
8601 * should be set unconditionally in order to enable FBC.
8602 * The bit 22 of 0x42000
8603 * The bit 22 of 0x42004
8604 * The bit 7,8,9 of 0x42020.
8606 if (IS_IRONLAKE_M(dev_priv)) {
8607 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8608 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8609 I915_READ(ILK_DISPLAY_CHICKEN1) |
8610 ILK_FBCQ_DIS);
8611 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8612 I915_READ(ILK_DISPLAY_CHICKEN2) |
8613 ILK_DPARB_GATE);
8616 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8618 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8619 I915_READ(ILK_DISPLAY_CHICKEN2) |
8620 ILK_ELPIN_409_SELECT);
8621 I915_WRITE(_3D_CHICKEN2,
8622 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8623 _3D_CHICKEN2_WM_READ_PIPELINED);
8625 /* WaDisableRenderCachePipelinedFlush:ilk */
8626 I915_WRITE(CACHE_MODE_0,
8627 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8629 /* WaDisable_RenderCache_OperationalFlush:ilk */
8630 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8632 g4x_disable_trickle_feed(dev_priv);
8634 ibx_init_clock_gating(dev_priv);
8637 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8639 int pipe;
8640 uint32_t val;
8643 * On Ibex Peak and Cougar Point, we need to disable clock
8644 * gating for the panel power sequencer or it will fail to
8645 * start up when no ports are active.
8647 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8648 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8649 PCH_CPUNIT_CLOCK_GATE_DISABLE);
8650 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8651 DPLS_EDP_PPS_FIX_DIS);
8652 /* The below fixes the weird display corruption, a few pixels shifted
8653 * downward, on (only) LVDS of some HP laptops with IVY.
8655 for_each_pipe(dev_priv, pipe) {
8656 val = I915_READ(TRANS_CHICKEN2(pipe));
8657 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8658 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8659 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8660 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8661 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8662 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8663 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8664 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8666 /* WADP0ClockGatingDisable */
8667 for_each_pipe(dev_priv, pipe) {
8668 I915_WRITE(TRANS_CHICKEN1(pipe),
8669 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8673 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8675 uint32_t tmp;
8677 tmp = I915_READ(MCH_SSKPD);
8678 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8679 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8680 tmp);
8683 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8685 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8687 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8689 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8690 I915_READ(ILK_DISPLAY_CHICKEN2) |
8691 ILK_ELPIN_409_SELECT);
8693 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8694 I915_WRITE(_3D_CHICKEN,
8695 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8697 /* WaDisable_RenderCache_OperationalFlush:snb */
8698 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8701 * BSpec recoomends 8x4 when MSAA is used,
8702 * however in practice 16x4 seems fastest.
8704 * Note that PS/WM thread counts depend on the WIZ hashing
8705 * disable bit, which we don't touch here, but it's good
8706 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8708 I915_WRITE(GEN6_GT_MODE,
8709 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8711 I915_WRITE(CACHE_MODE_0,
8712 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8714 I915_WRITE(GEN6_UCGCTL1,
8715 I915_READ(GEN6_UCGCTL1) |
8716 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8717 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8719 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8720 * gating disable must be set. Failure to set it results in
8721 * flickering pixels due to Z write ordering failures after
8722 * some amount of runtime in the Mesa "fire" demo, and Unigine
8723 * Sanctuary and Tropics, and apparently anything else with
8724 * alpha test or pixel discard.
8726 * According to the spec, bit 11 (RCCUNIT) must also be set,
8727 * but we didn't debug actual testcases to find it out.
8729 * WaDisableRCCUnitClockGating:snb
8730 * WaDisableRCPBUnitClockGating:snb
8732 I915_WRITE(GEN6_UCGCTL2,
8733 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8734 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8736 /* WaStripsFansDisableFastClipPerformanceFix:snb */
8737 I915_WRITE(_3D_CHICKEN3,
8738 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8741 * Bspec says:
8742 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8743 * 3DSTATE_SF number of SF output attributes is more than 16."
8745 I915_WRITE(_3D_CHICKEN3,
8746 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8749 * According to the spec the following bits should be
8750 * set in order to enable memory self-refresh and fbc:
8751 * The bit21 and bit22 of 0x42000
8752 * The bit21 and bit22 of 0x42004
8753 * The bit5 and bit7 of 0x42020
8754 * The bit14 of 0x70180
8755 * The bit14 of 0x71180
8757 * WaFbcAsynchFlipDisableFbcQueue:snb
8759 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8760 I915_READ(ILK_DISPLAY_CHICKEN1) |
8761 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8762 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8763 I915_READ(ILK_DISPLAY_CHICKEN2) |
8764 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8765 I915_WRITE(ILK_DSPCLK_GATE_D,
8766 I915_READ(ILK_DSPCLK_GATE_D) |
8767 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
8768 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8770 g4x_disable_trickle_feed(dev_priv);
8772 cpt_init_clock_gating(dev_priv);
8774 gen6_check_mch_setup(dev_priv);
8777 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8779 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8782 * WaVSThreadDispatchOverride:ivb,vlv
8784 * This actually overrides the dispatch
8785 * mode for all thread types.
8787 reg &= ~GEN7_FF_SCHED_MASK;
8788 reg |= GEN7_FF_TS_SCHED_HW;
8789 reg |= GEN7_FF_VS_SCHED_HW;
8790 reg |= GEN7_FF_DS_SCHED_HW;
8792 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8795 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8798 * TODO: this bit should only be enabled when really needed, then
8799 * disabled when not needed anymore in order to save power.
8801 if (HAS_PCH_LPT_LP(dev_priv))
8802 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8803 I915_READ(SOUTH_DSPCLK_GATE_D) |
8804 PCH_LP_PARTITION_LEVEL_DISABLE);
8806 /* WADPOClockGatingDisable:hsw */
8807 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8808 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8809 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8812 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8814 if (HAS_PCH_LPT_LP(dev_priv)) {
8815 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8817 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8818 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8822 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8823 int general_prio_credits,
8824 int high_prio_credits)
8826 u32 misccpctl;
8827 u32 val;
8829 /* WaTempDisableDOPClkGating:bdw */
8830 misccpctl = I915_READ(GEN7_MISCCPCTL);
8831 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8833 val = I915_READ(GEN8_L3SQCREG1);
8834 val &= ~L3_PRIO_CREDITS_MASK;
8835 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8836 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8837 I915_WRITE(GEN8_L3SQCREG1, val);
8840 * Wait at least 100 clocks before re-enabling clock gating.
8841 * See the definition of L3SQCREG1 in BSpec.
8843 POSTING_READ(GEN8_L3SQCREG1);
8844 udelay(1);
8845 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8848 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
8850 /* This is not an Wa. Enable to reduce Sampler power */
8851 I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
8852 I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8855 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8857 if (!HAS_PCH_CNP(dev_priv))
8858 return;
8860 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8861 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8862 CNP_PWM_CGE_GATING_DISABLE);
8865 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8867 u32 val;
8868 cnp_init_clock_gating(dev_priv);
8870 /* This is not an Wa. Enable for better image quality */
8871 I915_WRITE(_3D_CHICKEN3,
8872 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8874 /* WaEnableChickenDCPR:cnl */
8875 I915_WRITE(GEN8_CHICKEN_DCPR_1,
8876 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8878 /* WaFbcWakeMemOn:cnl */
8879 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8880 DISP_FBC_MEMORY_WAKE);
8882 val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
8883 /* ReadHitWriteOnlyDisable:cnl */
8884 val |= RCCUNIT_CLKGATE_DIS;
8885 /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8886 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8887 val |= SARBUNIT_CLKGATE_DIS;
8888 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8890 /* Wa_2201832410:cnl */
8891 val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
8892 val |= GWUNIT_CLKGATE_DIS;
8893 I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
8895 /* WaDisableVFclkgate:cnl */
8896 /* WaVFUnitClockGatingDisable:cnl */
8897 val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
8898 val |= VFUNIT_CLKGATE_DIS;
8899 I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8902 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8904 cnp_init_clock_gating(dev_priv);
8905 gen9_init_clock_gating(dev_priv);
8907 /* WaFbcNukeOnHostModify:cfl */
8908 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8909 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8912 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8914 gen9_init_clock_gating(dev_priv);
8916 /* WaDisableSDEUnitClockGating:kbl */
8917 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8918 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8919 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8921 /* WaDisableGamClockGating:kbl */
8922 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8923 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8924 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8926 /* WaFbcNukeOnHostModify:kbl */
8927 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8928 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8931 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8933 gen9_init_clock_gating(dev_priv);
8935 /* WAC6entrylatency:skl */
8936 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8937 FBC_LLC_FULLY_OPEN);
8939 /* WaFbcNukeOnHostModify:skl */
8940 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8941 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8944 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8946 /* The GTT cache must be disabled if the system is using 2M pages. */
8947 bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8948 I915_GTT_PAGE_SIZE_2M);
8949 enum pipe pipe;
8951 /* WaSwitchSolVfFArbitrationPriority:bdw */
8952 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8954 /* WaPsrDPAMaskVBlankInSRD:bdw */
8955 I915_WRITE(CHICKEN_PAR1_1,
8956 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8958 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8959 for_each_pipe(dev_priv, pipe) {
8960 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8961 I915_READ(CHICKEN_PIPESL_1(pipe)) |
8962 BDW_DPRS_MASK_VBLANK_SRD);
8965 /* WaVSRefCountFullforceMissDisable:bdw */
8966 /* WaDSRefCountFullforceMissDisable:bdw */
8967 I915_WRITE(GEN7_FF_THREAD_MODE,
8968 I915_READ(GEN7_FF_THREAD_MODE) &
8969 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8971 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8972 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8974 /* WaDisableSDEUnitClockGating:bdw */
8975 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8976 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8978 /* WaProgramL3SqcReg1Default:bdw */
8979 gen8_set_l3sqc_credits(dev_priv, 30, 2);
8981 /* WaGttCachingOffByDefault:bdw */
8982 I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8984 /* WaKVMNotificationOnConfigChange:bdw */
8985 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8986 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8988 lpt_init_clock_gating(dev_priv);
8990 /* WaDisableDopClockGating:bdw
8992 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8993 * clock gating.
8995 I915_WRITE(GEN6_UCGCTL1,
8996 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8999 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9001 /* L3 caching of data atomics doesn't work -- disable it. */
9002 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
9003 I915_WRITE(HSW_ROW_CHICKEN3,
9004 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
9006 /* This is required by WaCatErrorRejectionIssue:hsw */
9007 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9008 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9009 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9011 /* WaVSRefCountFullforceMissDisable:hsw */
9012 I915_WRITE(GEN7_FF_THREAD_MODE,
9013 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9015 /* WaDisable_RenderCache_OperationalFlush:hsw */
9016 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9018 /* enable HiZ Raw Stall Optimization */
9019 I915_WRITE(CACHE_MODE_0_GEN7,
9020 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9022 /* WaDisable4x2SubspanOptimization:hsw */
9023 I915_WRITE(CACHE_MODE_1,
9024 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9027 * BSpec recommends 8x4 when MSAA is used,
9028 * however in practice 16x4 seems fastest.
9030 * Note that PS/WM thread counts depend on the WIZ hashing
9031 * disable bit, which we don't touch here, but it's good
9032 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9034 I915_WRITE(GEN7_GT_MODE,
9035 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9037 /* WaSampleCChickenBitEnable:hsw */
9038 I915_WRITE(HALF_SLICE_CHICKEN3,
9039 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
9041 /* WaSwitchSolVfFArbitrationPriority:hsw */
9042 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9044 lpt_init_clock_gating(dev_priv);
9047 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9049 uint32_t snpcr;
9051 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9053 /* WaDisableEarlyCull:ivb */
9054 I915_WRITE(_3D_CHICKEN3,
9055 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9057 /* WaDisableBackToBackFlipFix:ivb */
9058 I915_WRITE(IVB_CHICKEN3,
9059 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9060 CHICKEN3_DGMG_DONE_FIX_DISABLE);
9062 /* WaDisablePSDDualDispatchEnable:ivb */
9063 if (IS_IVB_GT1(dev_priv))
9064 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9065 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9067 /* WaDisable_RenderCache_OperationalFlush:ivb */
9068 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9070 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9071 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
9072 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
9074 /* WaApplyL3ControlAndL3ChickenMode:ivb */
9075 I915_WRITE(GEN7_L3CNTLREG1,
9076 GEN7_WA_FOR_GEN7_L3_CONTROL);
9077 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9078 GEN7_WA_L3_CHICKEN_MODE);
9079 if (IS_IVB_GT1(dev_priv))
9080 I915_WRITE(GEN7_ROW_CHICKEN2,
9081 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9082 else {
9083 /* must write both registers */
9084 I915_WRITE(GEN7_ROW_CHICKEN2,
9085 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9086 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
9087 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9090 /* WaForceL3Serialization:ivb */
9091 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9092 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9095 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9096 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9098 I915_WRITE(GEN6_UCGCTL2,
9099 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9101 /* This is required by WaCatErrorRejectionIssue:ivb */
9102 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9103 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9104 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9106 g4x_disable_trickle_feed(dev_priv);
9108 gen7_setup_fixed_func_scheduler(dev_priv);
9110 if (0) { /* causes HiZ corruption on ivb:gt1 */
9111 /* enable HiZ Raw Stall Optimization */
9112 I915_WRITE(CACHE_MODE_0_GEN7,
9113 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9116 /* WaDisable4x2SubspanOptimization:ivb */
9117 I915_WRITE(CACHE_MODE_1,
9118 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9121 * BSpec recommends 8x4 when MSAA is used,
9122 * however in practice 16x4 seems fastest.
9124 * Note that PS/WM thread counts depend on the WIZ hashing
9125 * disable bit, which we don't touch here, but it's good
9126 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9128 I915_WRITE(GEN7_GT_MODE,
9129 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9131 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
9132 snpcr &= ~GEN6_MBC_SNPCR_MASK;
9133 snpcr |= GEN6_MBC_SNPCR_MED;
9134 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9136 if (!HAS_PCH_NOP(dev_priv))
9137 cpt_init_clock_gating(dev_priv);
9139 gen6_check_mch_setup(dev_priv);
9142 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9144 /* WaDisableEarlyCull:vlv */
9145 I915_WRITE(_3D_CHICKEN3,
9146 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9148 /* WaDisableBackToBackFlipFix:vlv */
9149 I915_WRITE(IVB_CHICKEN3,
9150 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9151 CHICKEN3_DGMG_DONE_FIX_DISABLE);
9153 /* WaPsdDispatchEnable:vlv */
9154 /* WaDisablePSDDualDispatchEnable:vlv */
9155 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9156 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9157 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9159 /* WaDisable_RenderCache_OperationalFlush:vlv */
9160 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9162 /* WaForceL3Serialization:vlv */
9163 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9164 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9166 /* WaDisableDopClockGating:vlv */
9167 I915_WRITE(GEN7_ROW_CHICKEN2,
9168 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9170 /* This is required by WaCatErrorRejectionIssue:vlv */
9171 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9172 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9173 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9175 gen7_setup_fixed_func_scheduler(dev_priv);
9178 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9179 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9181 I915_WRITE(GEN6_UCGCTL2,
9182 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9184 /* WaDisableL3Bank2xClockGate:vlv
9185 * Disabling L3 clock gating- MMIO 940c[25] = 1
9186 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9187 I915_WRITE(GEN7_UCGCTL4,
9188 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9191 * BSpec says this must be set, even though
9192 * WaDisable4x2SubspanOptimization isn't listed for VLV.
9194 I915_WRITE(CACHE_MODE_1,
9195 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9198 * BSpec recommends 8x4 when MSAA is used,
9199 * however in practice 16x4 seems fastest.
9201 * Note that PS/WM thread counts depend on the WIZ hashing
9202 * disable bit, which we don't touch here, but it's good
9203 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9205 I915_WRITE(GEN7_GT_MODE,
9206 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9209 * WaIncreaseL3CreditsForVLVB0:vlv
9210 * This is the hardware default actually.
9212 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9215 * WaDisableVLVClockGating_VBIIssue:vlv
9216 * Disable clock gating on th GCFG unit to prevent a delay
9217 * in the reporting of vblank events.
9219 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9222 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9224 /* WaVSRefCountFullforceMissDisable:chv */
9225 /* WaDSRefCountFullforceMissDisable:chv */
9226 I915_WRITE(GEN7_FF_THREAD_MODE,
9227 I915_READ(GEN7_FF_THREAD_MODE) &
9228 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9230 /* WaDisableSemaphoreAndSyncFlipWait:chv */
9231 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9232 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9234 /* WaDisableCSUnitClockGating:chv */
9235 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9236 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9238 /* WaDisableSDEUnitClockGating:chv */
9239 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9240 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9243 * WaProgramL3SqcReg1Default:chv
9244 * See gfxspecs/Related Documents/Performance Guide/
9245 * LSQC Setting Recommendations.
9247 gen8_set_l3sqc_credits(dev_priv, 38, 2);
9250 * GTT cache may not work with big pages, so if those
9251 * are ever enabled GTT cache may need to be disabled.
9253 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9256 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9258 uint32_t dspclk_gate;
9260 I915_WRITE(RENCLK_GATE_D1, 0);
9261 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9262 GS_UNIT_CLOCK_GATE_DISABLE |
9263 CL_UNIT_CLOCK_GATE_DISABLE);
9264 I915_WRITE(RAMCLK_GATE_D, 0);
9265 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9266 OVRUNIT_CLOCK_GATE_DISABLE |
9267 OVCUNIT_CLOCK_GATE_DISABLE;
9268 if (IS_GM45(dev_priv))
9269 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9270 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9272 /* WaDisableRenderCachePipelinedFlush */
9273 I915_WRITE(CACHE_MODE_0,
9274 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9276 /* WaDisable_RenderCache_OperationalFlush:g4x */
9277 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9279 g4x_disable_trickle_feed(dev_priv);
9282 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9284 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9285 I915_WRITE(RENCLK_GATE_D2, 0);
9286 I915_WRITE(DSPCLK_GATE_D, 0);
9287 I915_WRITE(RAMCLK_GATE_D, 0);
9288 I915_WRITE16(DEUC, 0);
9289 I915_WRITE(MI_ARB_STATE,
9290 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9292 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9293 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9296 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9298 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9299 I965_RCC_CLOCK_GATE_DISABLE |
9300 I965_RCPB_CLOCK_GATE_DISABLE |
9301 I965_ISC_CLOCK_GATE_DISABLE |
9302 I965_FBC_CLOCK_GATE_DISABLE);
9303 I915_WRITE(RENCLK_GATE_D2, 0);
9304 I915_WRITE(MI_ARB_STATE,
9305 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9307 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9308 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9311 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9313 u32 dstate = I915_READ(D_STATE);
9315 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9316 DSTATE_DOT_CLOCK_GATING;
9317 I915_WRITE(D_STATE, dstate);
9319 if (IS_PINEVIEW(dev_priv))
9320 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9322 /* IIR "flip pending" means done if this bit is set */
9323 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9325 /* interrupts should cause a wake up from C3 */
9326 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9328 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9329 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9331 I915_WRITE(MI_ARB_STATE,
9332 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9335 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9337 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9339 /* interrupts should cause a wake up from C3 */
9340 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9341 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9343 I915_WRITE(MEM_MODE,
9344 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9347 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9349 I915_WRITE(MEM_MODE,
9350 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9351 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9354 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9356 dev_priv->display.init_clock_gating(dev_priv);
9359 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9361 if (HAS_PCH_LPT(dev_priv))
9362 lpt_suspend_hw(dev_priv);
9365 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9367 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9371 * intel_init_clock_gating_hooks - setup the clock gating hooks
9372 * @dev_priv: device private
9374 * Setup the hooks that configure which clocks of a given platform can be
9375 * gated and also apply various GT and display specific workarounds for these
9376 * platforms. Note that some GT specific workarounds are applied separately
9377 * when GPU contexts or batchbuffers start their execution.
9379 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9381 if (IS_ICELAKE(dev_priv))
9382 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9383 else if (IS_CANNONLAKE(dev_priv))
9384 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9385 else if (IS_COFFEELAKE(dev_priv))
9386 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9387 else if (IS_SKYLAKE(dev_priv))
9388 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9389 else if (IS_KABYLAKE(dev_priv))
9390 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9391 else if (IS_BROXTON(dev_priv))
9392 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9393 else if (IS_GEMINILAKE(dev_priv))
9394 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9395 else if (IS_BROADWELL(dev_priv))
9396 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9397 else if (IS_CHERRYVIEW(dev_priv))
9398 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9399 else if (IS_HASWELL(dev_priv))
9400 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9401 else if (IS_IVYBRIDGE(dev_priv))
9402 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9403 else if (IS_VALLEYVIEW(dev_priv))
9404 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9405 else if (IS_GEN6(dev_priv))
9406 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9407 else if (IS_GEN5(dev_priv))
9408 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9409 else if (IS_G4X(dev_priv))
9410 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9411 else if (IS_I965GM(dev_priv))
9412 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9413 else if (IS_I965G(dev_priv))
9414 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9415 else if (IS_GEN3(dev_priv))
9416 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9417 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9418 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9419 else if (IS_GEN2(dev_priv))
9420 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9421 else {
9422 MISSING_CASE(INTEL_DEVID(dev_priv));
9423 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9427 /* Set up chip specific power management-related functions */
9428 void intel_init_pm(struct drm_i915_private *dev_priv)
9430 intel_fbc_init(dev_priv);
9432 /* For cxsr */
9433 if (IS_PINEVIEW(dev_priv))
9434 i915_pineview_get_mem_freq(dev_priv);
9435 else if (IS_GEN5(dev_priv))
9436 i915_ironlake_get_mem_freq(dev_priv);
9438 /* For FIFO watermark updates */
9439 if (INTEL_GEN(dev_priv) >= 9) {
9440 skl_setup_wm_latency(dev_priv);
9441 dev_priv->display.initial_watermarks = skl_initial_wm;
9442 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9443 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9444 } else if (HAS_PCH_SPLIT(dev_priv)) {
9445 ilk_setup_wm_latency(dev_priv);
9447 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9448 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9449 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9450 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9451 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9452 dev_priv->display.compute_intermediate_wm =
9453 ilk_compute_intermediate_wm;
9454 dev_priv->display.initial_watermarks =
9455 ilk_initial_watermarks;
9456 dev_priv->display.optimize_watermarks =
9457 ilk_optimize_watermarks;
9458 } else {
9459 DRM_DEBUG_KMS("Failed to read display plane latency. "
9460 "Disable CxSR\n");
9462 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9463 vlv_setup_wm_latency(dev_priv);
9464 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9465 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9466 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9467 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9468 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9469 } else if (IS_G4X(dev_priv)) {
9470 g4x_setup_wm_latency(dev_priv);
9471 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9472 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9473 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9474 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9475 } else if (IS_PINEVIEW(dev_priv)) {
9476 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9477 dev_priv->is_ddr3,
9478 dev_priv->fsb_freq,
9479 dev_priv->mem_freq)) {
9480 DRM_INFO("failed to find known CxSR latency "
9481 "(found ddr%s fsb freq %d, mem freq %d), "
9482 "disabling CxSR\n",
9483 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9484 dev_priv->fsb_freq, dev_priv->mem_freq);
9485 /* Disable CxSR and never update its watermark again */
9486 intel_set_memory_cxsr(dev_priv, false);
9487 dev_priv->display.update_wm = NULL;
9488 } else
9489 dev_priv->display.update_wm = pineview_update_wm;
9490 } else if (IS_GEN4(dev_priv)) {
9491 dev_priv->display.update_wm = i965_update_wm;
9492 } else if (IS_GEN3(dev_priv)) {
9493 dev_priv->display.update_wm = i9xx_update_wm;
9494 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9495 } else if (IS_GEN2(dev_priv)) {
9496 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9497 dev_priv->display.update_wm = i845_update_wm;
9498 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9499 } else {
9500 dev_priv->display.update_wm = i9xx_update_wm;
9501 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9503 } else {
9504 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9508 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9510 uint32_t flags =
9511 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9513 switch (flags) {
9514 case GEN6_PCODE_SUCCESS:
9515 return 0;
9516 case GEN6_PCODE_UNIMPLEMENTED_CMD:
9517 return -ENODEV;
9518 case GEN6_PCODE_ILLEGAL_CMD:
9519 return -ENXIO;
9520 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9521 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9522 return -EOVERFLOW;
9523 case GEN6_PCODE_TIMEOUT:
9524 return -ETIMEDOUT;
9525 default:
9526 MISSING_CASE(flags);
9527 return 0;
9531 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9533 uint32_t flags =
9534 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9536 switch (flags) {
9537 case GEN6_PCODE_SUCCESS:
9538 return 0;
9539 case GEN6_PCODE_ILLEGAL_CMD:
9540 return -ENXIO;
9541 case GEN7_PCODE_TIMEOUT:
9542 return -ETIMEDOUT;
9543 case GEN7_PCODE_ILLEGAL_DATA:
9544 return -EINVAL;
9545 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9546 return -EOVERFLOW;
9547 default:
9548 MISSING_CASE(flags);
9549 return 0;
9553 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9555 int status;
9557 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9559 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9560 * use te fw I915_READ variants to reduce the amount of work
9561 * required when reading/writing.
9564 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9565 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9566 mbox, __builtin_return_address(0));
9567 return -EAGAIN;
9570 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9571 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9572 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9574 if (__intel_wait_for_register_fw(dev_priv,
9575 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9576 500, 0, NULL)) {
9577 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9578 mbox, __builtin_return_address(0));
9579 return -ETIMEDOUT;
9582 *val = I915_READ_FW(GEN6_PCODE_DATA);
9583 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9585 if (INTEL_GEN(dev_priv) > 6)
9586 status = gen7_check_mailbox_status(dev_priv);
9587 else
9588 status = gen6_check_mailbox_status(dev_priv);
9590 if (status) {
9591 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9592 mbox, __builtin_return_address(0), status);
9593 return status;
9596 return 0;
9599 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9600 u32 mbox, u32 val,
9601 int fast_timeout_us, int slow_timeout_ms)
9603 int status;
9605 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9607 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9608 * use te fw I915_READ variants to reduce the amount of work
9609 * required when reading/writing.
9612 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9613 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9614 val, mbox, __builtin_return_address(0));
9615 return -EAGAIN;
9618 I915_WRITE_FW(GEN6_PCODE_DATA, val);
9619 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9620 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9622 if (__intel_wait_for_register_fw(dev_priv,
9623 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9624 fast_timeout_us, slow_timeout_ms,
9625 NULL)) {
9626 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9627 val, mbox, __builtin_return_address(0));
9628 return -ETIMEDOUT;
9631 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9633 if (INTEL_GEN(dev_priv) > 6)
9634 status = gen7_check_mailbox_status(dev_priv);
9635 else
9636 status = gen6_check_mailbox_status(dev_priv);
9638 if (status) {
9639 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9640 val, mbox, __builtin_return_address(0), status);
9641 return status;
9644 return 0;
9647 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9648 u32 request, u32 reply_mask, u32 reply,
9649 u32 *status)
9651 u32 val = request;
9653 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9655 return *status || ((val & reply_mask) == reply);
9659 * skl_pcode_request - send PCODE request until acknowledgment
9660 * @dev_priv: device private
9661 * @mbox: PCODE mailbox ID the request is targeted for
9662 * @request: request ID
9663 * @reply_mask: mask used to check for request acknowledgment
9664 * @reply: value used to check for request acknowledgment
9665 * @timeout_base_ms: timeout for polling with preemption enabled
9667 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9668 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9669 * The request is acknowledged once the PCODE reply dword equals @reply after
9670 * applying @reply_mask. Polling is first attempted with preemption enabled
9671 * for @timeout_base_ms and if this times out for another 50 ms with
9672 * preemption disabled.
9674 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9675 * other error as reported by PCODE.
9677 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9678 u32 reply_mask, u32 reply, int timeout_base_ms)
9680 u32 status;
9681 int ret;
9683 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9685 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9686 &status)
9689 * Prime the PCODE by doing a request first. Normally it guarantees
9690 * that a subsequent request, at most @timeout_base_ms later, succeeds.
9691 * _wait_for() doesn't guarantee when its passed condition is evaluated
9692 * first, so send the first request explicitly.
9694 if (COND) {
9695 ret = 0;
9696 goto out;
9698 ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9699 if (!ret)
9700 goto out;
9703 * The above can time out if the number of requests was low (2 in the
9704 * worst case) _and_ PCODE was busy for some reason even after a
9705 * (queued) request and @timeout_base_ms delay. As a workaround retry
9706 * the poll with preemption disabled to maximize the number of
9707 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9708 * account for interrupts that could reduce the number of these
9709 * requests, and for any quirks of the PCODE firmware that delays
9710 * the request completion.
9712 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9713 WARN_ON_ONCE(timeout_base_ms > 3);
9714 preempt_disable();
9715 ret = wait_for_atomic(COND, 50);
9716 preempt_enable();
9718 out:
9719 return ret ? ret : status;
9720 #undef COND
9723 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9725 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9728 * N = val - 0xb7
9729 * Slow = Fast = GPLL ref * N
9731 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9734 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9736 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9738 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9741 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9743 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9746 * N = val / 2
9747 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9749 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9752 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9754 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9756 /* CHV needs even values */
9757 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9760 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9762 if (INTEL_GEN(dev_priv) >= 9)
9763 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9764 GEN9_FREQ_SCALER);
9765 else if (IS_CHERRYVIEW(dev_priv))
9766 return chv_gpu_freq(dev_priv, val);
9767 else if (IS_VALLEYVIEW(dev_priv))
9768 return byt_gpu_freq(dev_priv, val);
9769 else
9770 return val * GT_FREQUENCY_MULTIPLIER;
9773 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9775 if (INTEL_GEN(dev_priv) >= 9)
9776 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9777 GT_FREQUENCY_MULTIPLIER);
9778 else if (IS_CHERRYVIEW(dev_priv))
9779 return chv_freq_opcode(dev_priv, val);
9780 else if (IS_VALLEYVIEW(dev_priv))
9781 return byt_freq_opcode(dev_priv, val);
9782 else
9783 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9786 void intel_pm_setup(struct drm_i915_private *dev_priv)
9788 mutex_init(&dev_priv->pcu_lock);
9789 mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9791 atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9793 dev_priv->runtime_pm.suspended = false;
9794 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9797 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9798 const i915_reg_t reg)
9800 u32 lower, upper, tmp;
9801 int loop = 2;
9804 * The register accessed do not need forcewake. We borrow
9805 * uncore lock to prevent concurrent access to range reg.
9807 lockdep_assert_held(&dev_priv->uncore.lock);
9810 * vlv and chv residency counters are 40 bits in width.
9811 * With a control bit, we can choose between upper or lower
9812 * 32bit window into this counter.
9814 * Although we always use the counter in high-range mode elsewhere,
9815 * userspace may attempt to read the value before rc6 is initialised,
9816 * before we have set the default VLV_COUNTER_CONTROL value. So always
9817 * set the high bit to be safe.
9819 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9820 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9821 upper = I915_READ_FW(reg);
9822 do {
9823 tmp = upper;
9825 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9826 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9827 lower = I915_READ_FW(reg);
9829 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9830 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9831 upper = I915_READ_FW(reg);
9832 } while (upper != tmp && --loop);
9835 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9836 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9837 * now.
9840 return lower | (u64)upper << 8;
9843 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9844 const i915_reg_t reg)
9846 u64 time_hw, prev_hw, overflow_hw;
9847 unsigned int fw_domains;
9848 unsigned long flags;
9849 unsigned int i;
9850 u32 mul, div;
9852 if (!HAS_RC6(dev_priv))
9853 return 0;
9856 * Store previous hw counter values for counter wrap-around handling.
9858 * There are only four interesting registers and they live next to each
9859 * other so we can use the relative address, compared to the smallest
9860 * one as the index into driver storage.
9862 i = (i915_mmio_reg_offset(reg) -
9863 i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9864 if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9865 return 0;
9867 fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);
9869 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
9870 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
9872 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9873 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9874 mul = 1000000;
9875 div = dev_priv->czclk_freq;
9876 overflow_hw = BIT_ULL(40);
9877 time_hw = vlv_residency_raw(dev_priv, reg);
9878 } else {
9879 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9880 if (IS_GEN9_LP(dev_priv)) {
9881 mul = 10000;
9882 div = 12;
9883 } else {
9884 mul = 1280;
9885 div = 1;
9888 overflow_hw = BIT_ULL(32);
9889 time_hw = I915_READ_FW(reg);
9893 * Counter wrap handling.
9895 * But relying on a sufficient frequency of queries otherwise counters
9896 * can still wrap.
9898 prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9899 dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9901 /* RC6 delta from last sample. */
9902 if (time_hw >= prev_hw)
9903 time_hw -= prev_hw;
9904 else
9905 time_hw += overflow_hw - prev_hw;
9907 /* Add delta to RC6 extended raw driver copy. */
9908 time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9909 dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9911 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
9912 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
9914 return mul_u64_u32_div(time_hw, mul, div);
9917 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9919 u32 cagf;
9921 if (INTEL_GEN(dev_priv) >= 9)
9922 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9923 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
9924 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
9925 else
9926 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
9928 return cagf;