vt: vt_ioctl: fix VT_DISALLOCATE freeing in-use virtual console
[linux/fpc-iii.git] / drivers / gpu / drm / ttm / ttm_bo_util.c
blob40904e84f883acc24cb89da22714028fb46da0a3
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
27 **************************************************************************/
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
32 #include <drm/ttm/ttm_bo_driver.h>
33 #include <drm/ttm/ttm_placement.h>
34 #include <drm/drm_vma_manager.h>
35 #include <linux/io.h>
36 #include <linux/highmem.h>
37 #include <linux/wait.h>
38 #include <linux/slab.h>
39 #include <linux/vmalloc.h>
40 #include <linux/module.h>
41 #include <linux/reservation.h>
43 struct ttm_transfer_obj {
44 struct ttm_buffer_object base;
45 struct ttm_buffer_object *bo;
48 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
50 ttm_bo_mem_put(bo, &bo->mem);
53 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
54 struct ttm_operation_ctx *ctx,
55 struct ttm_mem_reg *new_mem)
57 struct ttm_tt *ttm = bo->ttm;
58 struct ttm_mem_reg *old_mem = &bo->mem;
59 int ret;
61 if (old_mem->mem_type != TTM_PL_SYSTEM) {
62 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
64 if (unlikely(ret != 0)) {
65 if (ret != -ERESTARTSYS)
66 pr_err("Failed to expire sync object before unbinding TTM\n");
67 return ret;
70 ttm_tt_unbind(ttm);
71 ttm_bo_free_old_node(bo);
72 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
73 TTM_PL_MASK_MEM);
74 old_mem->mem_type = TTM_PL_SYSTEM;
77 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
78 if (unlikely(ret != 0))
79 return ret;
81 if (new_mem->mem_type != TTM_PL_SYSTEM) {
82 ret = ttm_tt_bind(ttm, new_mem, ctx);
83 if (unlikely(ret != 0))
84 return ret;
87 *old_mem = *new_mem;
88 new_mem->mm_node = NULL;
90 return 0;
92 EXPORT_SYMBOL(ttm_bo_move_ttm);
94 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
96 if (likely(man->io_reserve_fastpath))
97 return 0;
99 if (interruptible)
100 return mutex_lock_interruptible(&man->io_reserve_mutex);
102 mutex_lock(&man->io_reserve_mutex);
103 return 0;
105 EXPORT_SYMBOL(ttm_mem_io_lock);
107 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
109 if (likely(man->io_reserve_fastpath))
110 return;
112 mutex_unlock(&man->io_reserve_mutex);
114 EXPORT_SYMBOL(ttm_mem_io_unlock);
116 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
118 struct ttm_buffer_object *bo;
120 if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
121 return -EAGAIN;
123 bo = list_first_entry(&man->io_reserve_lru,
124 struct ttm_buffer_object,
125 io_reserve_lru);
126 list_del_init(&bo->io_reserve_lru);
127 ttm_bo_unmap_virtual_locked(bo);
129 return 0;
133 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
134 struct ttm_mem_reg *mem)
136 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
137 int ret = 0;
139 if (!bdev->driver->io_mem_reserve)
140 return 0;
141 if (likely(man->io_reserve_fastpath))
142 return bdev->driver->io_mem_reserve(bdev, mem);
144 if (bdev->driver->io_mem_reserve &&
145 mem->bus.io_reserved_count++ == 0) {
146 retry:
147 ret = bdev->driver->io_mem_reserve(bdev, mem);
148 if (ret == -EAGAIN) {
149 ret = ttm_mem_io_evict(man);
150 if (ret == 0)
151 goto retry;
154 return ret;
156 EXPORT_SYMBOL(ttm_mem_io_reserve);
158 void ttm_mem_io_free(struct ttm_bo_device *bdev,
159 struct ttm_mem_reg *mem)
161 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
163 if (likely(man->io_reserve_fastpath))
164 return;
166 if (bdev->driver->io_mem_reserve &&
167 --mem->bus.io_reserved_count == 0 &&
168 bdev->driver->io_mem_free)
169 bdev->driver->io_mem_free(bdev, mem);
172 EXPORT_SYMBOL(ttm_mem_io_free);
174 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
176 struct ttm_mem_reg *mem = &bo->mem;
177 int ret;
179 if (!mem->bus.io_reserved_vm) {
180 struct ttm_mem_type_manager *man =
181 &bo->bdev->man[mem->mem_type];
183 ret = ttm_mem_io_reserve(bo->bdev, mem);
184 if (unlikely(ret != 0))
185 return ret;
186 mem->bus.io_reserved_vm = true;
187 if (man->use_io_reserve_lru)
188 list_add_tail(&bo->io_reserve_lru,
189 &man->io_reserve_lru);
191 return 0;
194 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
196 struct ttm_mem_reg *mem = &bo->mem;
198 if (mem->bus.io_reserved_vm) {
199 mem->bus.io_reserved_vm = false;
200 list_del_init(&bo->io_reserve_lru);
201 ttm_mem_io_free(bo->bdev, mem);
205 static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
206 void **virtual)
208 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
209 int ret;
210 void *addr;
212 *virtual = NULL;
213 (void) ttm_mem_io_lock(man, false);
214 ret = ttm_mem_io_reserve(bdev, mem);
215 ttm_mem_io_unlock(man);
216 if (ret || !mem->bus.is_iomem)
217 return ret;
219 if (mem->bus.addr) {
220 addr = mem->bus.addr;
221 } else {
222 if (mem->placement & TTM_PL_FLAG_WC)
223 addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
224 else
225 addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
226 if (!addr) {
227 (void) ttm_mem_io_lock(man, false);
228 ttm_mem_io_free(bdev, mem);
229 ttm_mem_io_unlock(man);
230 return -ENOMEM;
233 *virtual = addr;
234 return 0;
237 static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
238 void *virtual)
240 struct ttm_mem_type_manager *man;
242 man = &bdev->man[mem->mem_type];
244 if (virtual && mem->bus.addr == NULL)
245 iounmap(virtual);
246 (void) ttm_mem_io_lock(man, false);
247 ttm_mem_io_free(bdev, mem);
248 ttm_mem_io_unlock(man);
251 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
253 uint32_t *dstP =
254 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
255 uint32_t *srcP =
256 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
258 int i;
259 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
260 iowrite32(ioread32(srcP++), dstP++);
261 return 0;
264 #ifdef CONFIG_X86
265 #define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot)
266 #define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr)
267 #else
268 #define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0, __prot)
269 #define __ttm_kunmap_atomic(__addr) vunmap(__addr)
270 #endif
274 * ttm_kmap_atomic_prot - Efficient kernel map of a single page with
275 * specified page protection.
277 * @page: The page to map.
278 * @prot: The page protection.
280 * This function maps a TTM page using the kmap_atomic api if available,
281 * otherwise falls back to vmap. The user must make sure that the
282 * specified page does not have an aliased mapping with a different caching
283 * policy unless the architecture explicitly allows it. Also mapping and
284 * unmapping using this api must be correctly nested. Unmapping should
285 * occur in the reverse order of mapping.
287 void *ttm_kmap_atomic_prot(struct page *page, pgprot_t prot)
289 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
290 return kmap_atomic(page);
291 else
292 return __ttm_kmap_atomic_prot(page, prot);
294 EXPORT_SYMBOL(ttm_kmap_atomic_prot);
297 * ttm_kunmap_atomic_prot - Unmap a page that was mapped using
298 * ttm_kmap_atomic_prot.
300 * @addr: The virtual address from the map.
301 * @prot: The page protection.
303 void ttm_kunmap_atomic_prot(void *addr, pgprot_t prot)
305 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
306 kunmap_atomic(addr);
307 else
308 __ttm_kunmap_atomic(addr);
310 EXPORT_SYMBOL(ttm_kunmap_atomic_prot);
312 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
313 unsigned long page,
314 pgprot_t prot)
316 struct page *d = ttm->pages[page];
317 void *dst;
319 if (!d)
320 return -ENOMEM;
322 src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
323 dst = ttm_kmap_atomic_prot(d, prot);
324 if (!dst)
325 return -ENOMEM;
327 memcpy_fromio(dst, src, PAGE_SIZE);
329 ttm_kunmap_atomic_prot(dst, prot);
331 return 0;
334 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
335 unsigned long page,
336 pgprot_t prot)
338 struct page *s = ttm->pages[page];
339 void *src;
341 if (!s)
342 return -ENOMEM;
344 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
345 src = ttm_kmap_atomic_prot(s, prot);
346 if (!src)
347 return -ENOMEM;
349 memcpy_toio(dst, src, PAGE_SIZE);
351 ttm_kunmap_atomic_prot(src, prot);
353 return 0;
356 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
357 struct ttm_operation_ctx *ctx,
358 struct ttm_mem_reg *new_mem)
360 struct ttm_bo_device *bdev = bo->bdev;
361 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
362 struct ttm_tt *ttm = bo->ttm;
363 struct ttm_mem_reg *old_mem = &bo->mem;
364 struct ttm_mem_reg old_copy = *old_mem;
365 void *old_iomap;
366 void *new_iomap;
367 int ret;
368 unsigned long i;
369 unsigned long page;
370 unsigned long add = 0;
371 int dir;
373 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
374 if (ret)
375 return ret;
377 ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
378 if (ret)
379 return ret;
380 ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
381 if (ret)
382 goto out;
385 * Single TTM move. NOP.
387 if (old_iomap == NULL && new_iomap == NULL)
388 goto out2;
391 * Don't move nonexistent data. Clear destination instead.
393 if (old_iomap == NULL &&
394 (ttm == NULL || (ttm->state == tt_unpopulated &&
395 !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
396 memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
397 goto out2;
401 * TTM might be null for moves within the same region.
403 if (ttm) {
404 ret = ttm_tt_populate(ttm, ctx);
405 if (ret)
406 goto out1;
409 add = 0;
410 dir = 1;
412 if ((old_mem->mem_type == new_mem->mem_type) &&
413 (new_mem->start < old_mem->start + old_mem->size)) {
414 dir = -1;
415 add = new_mem->num_pages - 1;
418 for (i = 0; i < new_mem->num_pages; ++i) {
419 page = i * dir + add;
420 if (old_iomap == NULL) {
421 pgprot_t prot = ttm_io_prot(old_mem->placement,
422 PAGE_KERNEL);
423 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
424 prot);
425 } else if (new_iomap == NULL) {
426 pgprot_t prot = ttm_io_prot(new_mem->placement,
427 PAGE_KERNEL);
428 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
429 prot);
430 } else {
431 ret = ttm_copy_io_page(new_iomap, old_iomap, page);
433 if (ret)
434 goto out1;
436 mb();
437 out2:
438 old_copy = *old_mem;
439 *old_mem = *new_mem;
440 new_mem->mm_node = NULL;
442 if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
443 ttm_tt_destroy(ttm);
444 bo->ttm = NULL;
447 out1:
448 ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
449 out:
450 ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
453 * On error, keep the mm node!
455 if (!ret)
456 ttm_bo_mem_put(bo, &old_copy);
457 return ret;
459 EXPORT_SYMBOL(ttm_bo_move_memcpy);
461 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
463 struct ttm_transfer_obj *fbo;
465 fbo = container_of(bo, struct ttm_transfer_obj, base);
466 ttm_bo_put(fbo->bo);
467 kfree(fbo);
471 * ttm_buffer_object_transfer
473 * @bo: A pointer to a struct ttm_buffer_object.
474 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
475 * holding the data of @bo with the old placement.
477 * This is a utility function that may be called after an accelerated move
478 * has been scheduled. A new buffer object is created as a placeholder for
479 * the old data while it's being copied. When that buffer object is idle,
480 * it can be destroyed, releasing the space of the old placement.
481 * Returns:
482 * !0: Failure.
485 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
486 struct ttm_buffer_object **new_obj)
488 struct ttm_transfer_obj *fbo;
489 int ret;
491 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
492 if (!fbo)
493 return -ENOMEM;
495 fbo->base = *bo;
496 fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT;
498 ttm_bo_get(bo);
499 fbo->bo = bo;
502 * Fix up members that we shouldn't copy directly:
503 * TODO: Explicit member copy would probably be better here.
506 atomic_inc(&bo->bdev->glob->bo_count);
507 INIT_LIST_HEAD(&fbo->base.ddestroy);
508 INIT_LIST_HEAD(&fbo->base.lru);
509 INIT_LIST_HEAD(&fbo->base.swap);
510 INIT_LIST_HEAD(&fbo->base.io_reserve_lru);
511 mutex_init(&fbo->base.wu_mutex);
512 fbo->base.moving = NULL;
513 drm_vma_node_reset(&fbo->base.vma_node);
514 atomic_set(&fbo->base.cpu_writers, 0);
516 kref_init(&fbo->base.list_kref);
517 kref_init(&fbo->base.kref);
518 fbo->base.destroy = &ttm_transfered_destroy;
519 fbo->base.acc_size = 0;
520 fbo->base.resv = &fbo->base.ttm_resv;
521 reservation_object_init(fbo->base.resv);
522 ret = reservation_object_trylock(fbo->base.resv);
523 WARN_ON(!ret);
525 *new_obj = &fbo->base;
526 return 0;
529 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
531 /* Cached mappings need no adjustment */
532 if (caching_flags & TTM_PL_FLAG_CACHED)
533 return tmp;
535 #if defined(__i386__) || defined(__x86_64__)
536 if (caching_flags & TTM_PL_FLAG_WC)
537 tmp = pgprot_writecombine(tmp);
538 else if (boot_cpu_data.x86 > 3)
539 tmp = pgprot_noncached(tmp);
540 #endif
541 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
542 defined(__powerpc__)
543 if (caching_flags & TTM_PL_FLAG_WC)
544 tmp = pgprot_writecombine(tmp);
545 else
546 tmp = pgprot_noncached(tmp);
547 #endif
548 #if defined(__sparc__) || defined(__mips__)
549 tmp = pgprot_noncached(tmp);
550 #endif
551 return tmp;
553 EXPORT_SYMBOL(ttm_io_prot);
555 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
556 unsigned long offset,
557 unsigned long size,
558 struct ttm_bo_kmap_obj *map)
560 struct ttm_mem_reg *mem = &bo->mem;
562 if (bo->mem.bus.addr) {
563 map->bo_kmap_type = ttm_bo_map_premapped;
564 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
565 } else {
566 map->bo_kmap_type = ttm_bo_map_iomap;
567 if (mem->placement & TTM_PL_FLAG_WC)
568 map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
569 size);
570 else
571 map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
572 size);
574 return (!map->virtual) ? -ENOMEM : 0;
577 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
578 unsigned long start_page,
579 unsigned long num_pages,
580 struct ttm_bo_kmap_obj *map)
582 struct ttm_mem_reg *mem = &bo->mem;
583 struct ttm_operation_ctx ctx = {
584 .interruptible = false,
585 .no_wait_gpu = false
587 struct ttm_tt *ttm = bo->ttm;
588 pgprot_t prot;
589 int ret;
591 BUG_ON(!ttm);
593 ret = ttm_tt_populate(ttm, &ctx);
594 if (ret)
595 return ret;
597 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
599 * We're mapping a single page, and the desired
600 * page protection is consistent with the bo.
603 map->bo_kmap_type = ttm_bo_map_kmap;
604 map->page = ttm->pages[start_page];
605 map->virtual = kmap(map->page);
606 } else {
608 * We need to use vmap to get the desired page protection
609 * or to make the buffer object look contiguous.
611 prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
612 map->bo_kmap_type = ttm_bo_map_vmap;
613 map->virtual = vmap(ttm->pages + start_page, num_pages,
614 0, prot);
616 return (!map->virtual) ? -ENOMEM : 0;
619 int ttm_bo_kmap(struct ttm_buffer_object *bo,
620 unsigned long start_page, unsigned long num_pages,
621 struct ttm_bo_kmap_obj *map)
623 struct ttm_mem_type_manager *man =
624 &bo->bdev->man[bo->mem.mem_type];
625 unsigned long offset, size;
626 int ret;
628 map->virtual = NULL;
629 map->bo = bo;
630 if (num_pages > bo->num_pages)
631 return -EINVAL;
632 if (start_page > bo->num_pages)
633 return -EINVAL;
634 #if 0
635 if (num_pages > 1 && !capable(CAP_SYS_ADMIN))
636 return -EPERM;
637 #endif
638 (void) ttm_mem_io_lock(man, false);
639 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
640 ttm_mem_io_unlock(man);
641 if (ret)
642 return ret;
643 if (!bo->mem.bus.is_iomem) {
644 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
645 } else {
646 offset = start_page << PAGE_SHIFT;
647 size = num_pages << PAGE_SHIFT;
648 return ttm_bo_ioremap(bo, offset, size, map);
651 EXPORT_SYMBOL(ttm_bo_kmap);
653 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
655 struct ttm_buffer_object *bo = map->bo;
656 struct ttm_mem_type_manager *man =
657 &bo->bdev->man[bo->mem.mem_type];
659 if (!map->virtual)
660 return;
661 switch (map->bo_kmap_type) {
662 case ttm_bo_map_iomap:
663 iounmap(map->virtual);
664 break;
665 case ttm_bo_map_vmap:
666 vunmap(map->virtual);
667 break;
668 case ttm_bo_map_kmap:
669 kunmap(map->page);
670 break;
671 case ttm_bo_map_premapped:
672 break;
673 default:
674 BUG();
676 (void) ttm_mem_io_lock(man, false);
677 ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
678 ttm_mem_io_unlock(man);
679 map->virtual = NULL;
680 map->page = NULL;
682 EXPORT_SYMBOL(ttm_bo_kunmap);
684 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
685 struct dma_fence *fence,
686 bool evict,
687 struct ttm_mem_reg *new_mem)
689 struct ttm_bo_device *bdev = bo->bdev;
690 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
691 struct ttm_mem_reg *old_mem = &bo->mem;
692 int ret;
693 struct ttm_buffer_object *ghost_obj;
695 reservation_object_add_excl_fence(bo->resv, fence);
696 if (evict) {
697 ret = ttm_bo_wait(bo, false, false);
698 if (ret)
699 return ret;
701 if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
702 ttm_tt_destroy(bo->ttm);
703 bo->ttm = NULL;
705 ttm_bo_free_old_node(bo);
706 } else {
708 * This should help pipeline ordinary buffer moves.
710 * Hang old buffer memory on a new buffer object,
711 * and leave it to be released when the GPU
712 * operation has completed.
715 dma_fence_put(bo->moving);
716 bo->moving = dma_fence_get(fence);
718 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
719 if (ret)
720 return ret;
722 reservation_object_add_excl_fence(ghost_obj->resv, fence);
725 * If we're not moving to fixed memory, the TTM object
726 * needs to stay alive. Otherwhise hang it on the ghost
727 * bo to be unbound and destroyed.
730 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
731 ghost_obj->ttm = NULL;
732 else
733 bo->ttm = NULL;
735 ttm_bo_unreserve(ghost_obj);
736 ttm_bo_put(ghost_obj);
739 *old_mem = *new_mem;
740 new_mem->mm_node = NULL;
742 return 0;
744 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
746 int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
747 struct dma_fence *fence, bool evict,
748 struct ttm_mem_reg *new_mem)
750 struct ttm_bo_device *bdev = bo->bdev;
751 struct ttm_mem_reg *old_mem = &bo->mem;
753 struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
754 struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
756 int ret;
758 reservation_object_add_excl_fence(bo->resv, fence);
760 if (!evict) {
761 struct ttm_buffer_object *ghost_obj;
764 * This should help pipeline ordinary buffer moves.
766 * Hang old buffer memory on a new buffer object,
767 * and leave it to be released when the GPU
768 * operation has completed.
771 dma_fence_put(bo->moving);
772 bo->moving = dma_fence_get(fence);
774 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
775 if (ret)
776 return ret;
778 reservation_object_add_excl_fence(ghost_obj->resv, fence);
781 * If we're not moving to fixed memory, the TTM object
782 * needs to stay alive. Otherwhise hang it on the ghost
783 * bo to be unbound and destroyed.
786 if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
787 ghost_obj->ttm = NULL;
788 else
789 bo->ttm = NULL;
791 ttm_bo_unreserve(ghost_obj);
792 ttm_bo_put(ghost_obj);
794 } else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
797 * BO doesn't have a TTM we need to bind/unbind. Just remember
798 * this eviction and free up the allocation
801 spin_lock(&from->move_lock);
802 if (!from->move || dma_fence_is_later(fence, from->move)) {
803 dma_fence_put(from->move);
804 from->move = dma_fence_get(fence);
806 spin_unlock(&from->move_lock);
808 ttm_bo_free_old_node(bo);
810 dma_fence_put(bo->moving);
811 bo->moving = dma_fence_get(fence);
813 } else {
815 * Last resort, wait for the move to be completed.
817 * Should never happen in pratice.
820 ret = ttm_bo_wait(bo, false, false);
821 if (ret)
822 return ret;
824 if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
825 ttm_tt_destroy(bo->ttm);
826 bo->ttm = NULL;
828 ttm_bo_free_old_node(bo);
831 *old_mem = *new_mem;
832 new_mem->mm_node = NULL;
834 return 0;
836 EXPORT_SYMBOL(ttm_bo_pipeline_move);
838 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
840 struct ttm_buffer_object *ghost;
841 int ret;
843 ret = ttm_buffer_object_transfer(bo, &ghost);
844 if (ret)
845 return ret;
847 ret = reservation_object_copy_fences(ghost->resv, bo->resv);
848 /* Last resort, wait for the BO to be idle when we are OOM */
849 if (ret)
850 ttm_bo_wait(bo, false, false);
852 memset(&bo->mem, 0, sizeof(bo->mem));
853 bo->mem.mem_type = TTM_PL_SYSTEM;
854 bo->ttm = NULL;
856 ttm_bo_unreserve(ghost);
857 ttm_bo_put(ghost);
859 return 0;