2 * Aptina Sensor PLL Configuration
4 * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * version 2 as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
16 #include <linux/device.h>
17 #include <linux/gcd.h>
18 #include <linux/kernel.h>
19 #include <linux/lcm.h>
20 #include <linux/module.h>
22 #include "aptina-pll.h"
24 int aptina_pll_calculate(struct device
*dev
,
25 const struct aptina_pll_limits
*limits
,
26 struct aptina_pll
*pll
)
35 dev_dbg(dev
, "PLL: ext clock %u pix clock %u\n",
36 pll
->ext_clock
, pll
->pix_clock
);
38 if (pll
->ext_clock
< limits
->ext_clock_min
||
39 pll
->ext_clock
> limits
->ext_clock_max
) {
40 dev_err(dev
, "pll: invalid external clock frequency.\n");
44 if (pll
->pix_clock
== 0 || pll
->pix_clock
> limits
->pix_clock_max
) {
45 dev_err(dev
, "pll: invalid pixel clock frequency.\n");
49 /* Compute the multiplier M and combined N*P1 divisor. */
50 div
= gcd(pll
->pix_clock
, pll
->ext_clock
);
51 pll
->m
= pll
->pix_clock
/ div
;
52 div
= pll
->ext_clock
/ div
;
54 /* We now have the smallest M and N*P1 values that will result in the
55 * desired pixel clock frequency, but they might be out of the valid
56 * range. Compute the factor by which we should multiply them given the
57 * following constraints:
59 * - minimum/maximum multiplier
60 * - minimum/maximum multiplier output clock frequency assuming the
61 * minimum/maximum N value
62 * - minimum/maximum combined N*P1 divisor
64 mf_min
= DIV_ROUND_UP(limits
->m_min
, pll
->m
);
65 mf_min
= max(mf_min
, limits
->out_clock_min
/
66 (pll
->ext_clock
/ limits
->n_min
* pll
->m
));
67 mf_min
= max(mf_min
, limits
->n_min
* limits
->p1_min
/ div
);
68 mf_max
= limits
->m_max
/ pll
->m
;
69 mf_max
= min(mf_max
, limits
->out_clock_max
/
70 (pll
->ext_clock
/ limits
->n_max
* pll
->m
));
71 mf_max
= min(mf_max
, DIV_ROUND_UP(limits
->n_max
* limits
->p1_max
, div
));
73 dev_dbg(dev
, "pll: mf min %u max %u\n", mf_min
, mf_max
);
74 if (mf_min
> mf_max
) {
75 dev_err(dev
, "pll: no valid combined N*P1 divisor.\n");
80 * We're looking for the highest acceptable P1 value for which a
81 * multiplier factor MF exists that fulfills the following conditions:
83 * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
85 * 2. mf is in the [mf_min, mf_max] range computed above
86 * 3. div * mf is a multiple of p1, in order to compute
89 * 4. the internal clock frequency, given by ext_clock / n, is in the
90 * [int_clock_min, int_clock_max] range given by the limits
91 * 5. the output clock frequency, given by ext_clock / n * m, is in the
92 * [out_clock_min, out_clock_max] range given by the limits
94 * The first naive approach is to iterate over all p1 values acceptable
95 * according to (1) and all mf values acceptable according to (2), and
96 * stop at the first combination that fulfills (3), (4) and (5). This
97 * has a O(n^2) complexity.
99 * Instead of iterating over all mf values in the [mf_min, mf_max] range
100 * we can compute the mf increment between two acceptable values
101 * according to (3) with
103 * mf_inc = p1 / gcd(div, p1) (6)
105 * and round the minimum up to the nearest multiple of mf_inc. This will
106 * restrict the number of mf values to be checked.
108 * Furthermore, conditions (4) and (5) only restrict the range of
109 * acceptable p1 and mf values by modifying the minimum and maximum
110 * limits. (5) can be expressed as
112 * ext_clock / (div * mf / p1) * m * mf >= out_clock_min
113 * ext_clock / (div * mf / p1) * m * mf <= out_clock_max
117 * p1 >= out_clock_min * div / (ext_clock * m) (7)
118 * p1 <= out_clock_max * div / (ext_clock * m)
120 * Similarly, (4) can be expressed as
122 * mf >= ext_clock * p1 / (int_clock_max * div) (8)
123 * mf <= ext_clock * p1 / (int_clock_min * div)
125 * We can thus iterate over the restricted p1 range defined by the
126 * combination of (1) and (7), and then compute the restricted mf range
127 * defined by the combination of (2), (6) and (8). If the resulting mf
128 * range is not empty, any value in the mf range is acceptable. We thus
129 * select the mf lwoer bound and the corresponding p1 value.
131 if (limits
->p1_min
== 0) {
132 dev_err(dev
, "pll: P1 minimum value must be >0.\n");
136 p1_min
= max(limits
->p1_min
, DIV_ROUND_UP(limits
->out_clock_min
* div
,
137 pll
->ext_clock
* pll
->m
));
138 p1_max
= min(limits
->p1_max
, limits
->out_clock_max
* div
/
139 (pll
->ext_clock
* pll
->m
));
141 for (p1
= p1_max
& ~1; p1
>= p1_min
; p1
-= 2) {
142 unsigned int mf_inc
= p1
/ gcd(div
, p1
);
143 unsigned int mf_high
;
146 mf_low
= roundup(max(mf_min
, DIV_ROUND_UP(pll
->ext_clock
* p1
,
147 limits
->int_clock_max
* div
)), mf_inc
);
148 mf_high
= min(mf_max
, pll
->ext_clock
* p1
/
149 (limits
->int_clock_min
* div
));
151 if (mf_low
> mf_high
)
154 pll
->n
= div
* mf_low
/ p1
;
157 dev_dbg(dev
, "PLL: N %u M %u P1 %u\n", pll
->n
, pll
->m
, pll
->p1
);
161 dev_err(dev
, "pll: no valid N and P1 divisors found.\n");
164 EXPORT_SYMBOL_GPL(aptina_pll_calculate
);
166 MODULE_DESCRIPTION("Aptina PLL Helpers");
167 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
168 MODULE_LICENSE("GPL v2");