Merge tag 'block-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / crypto / lrw.c
blobbcf09fbc750af33d8c91a018ed218efec27d870e
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* LRW: as defined by Cyril Guyot in
3 * http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
5 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
7 * Based on ecb.c
8 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
9 */
10 /* This implementation is checked against the test vectors in the above
11 * document and by a test vector provided by Ken Buchanan at
12 * https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
14 * The test vectors are included in the testing module tcrypt.[ch] */
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
25 #include <crypto/b128ops.h>
26 #include <crypto/gf128mul.h>
28 #define LRW_BLOCK_SIZE 16
30 struct lrw_tfm_ctx {
31 struct crypto_skcipher *child;
34 * optimizes multiplying a random (non incrementing, as at the
35 * start of a new sector) value with key2, we could also have
36 * used 4k optimization tables or no optimization at all. In the
37 * latter case we would have to store key2 here
39 struct gf128mul_64k *table;
42 * stores:
43 * key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
44 * key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
45 * key2*{ 0,0,...1,1,1,1,1 }, etc
46 * needed for optimized multiplication of incrementing values
47 * with key2
49 be128 mulinc[128];
52 struct lrw_request_ctx {
53 be128 t;
54 struct skcipher_request subreq;
57 static inline void lrw_setbit128_bbe(void *b, int bit)
59 __set_bit(bit ^ (0x80 -
60 #ifdef __BIG_ENDIAN
61 BITS_PER_LONG
62 #else
63 BITS_PER_BYTE
64 #endif
65 ), b);
68 static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key,
69 unsigned int keylen)
71 struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
72 struct crypto_skcipher *child = ctx->child;
73 int err, bsize = LRW_BLOCK_SIZE;
74 const u8 *tweak = key + keylen - bsize;
75 be128 tmp = { 0 };
76 int i;
78 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
79 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
80 CRYPTO_TFM_REQ_MASK);
81 err = crypto_skcipher_setkey(child, key, keylen - bsize);
82 if (err)
83 return err;
85 if (ctx->table)
86 gf128mul_free_64k(ctx->table);
88 /* initialize multiplication table for Key2 */
89 ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
90 if (!ctx->table)
91 return -ENOMEM;
93 /* initialize optimization table */
94 for (i = 0; i < 128; i++) {
95 lrw_setbit128_bbe(&tmp, i);
96 ctx->mulinc[i] = tmp;
97 gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
100 return 0;
104 * Returns the number of trailing '1' bits in the words of the counter, which is
105 * represented by 4 32-bit words, arranged from least to most significant.
106 * At the same time, increments the counter by one.
108 * For example:
110 * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
111 * int i = lrw_next_index(&counter);
112 * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
114 static int lrw_next_index(u32 *counter)
116 int i, res = 0;
118 for (i = 0; i < 4; i++) {
119 if (counter[i] + 1 != 0)
120 return res + ffz(counter[i]++);
122 counter[i] = 0;
123 res += 32;
127 * If we get here, then x == 128 and we are incrementing the counter
128 * from all ones to all zeros. This means we must return index 127, i.e.
129 * the one corresponding to key2*{ 1,...,1 }.
131 return 127;
135 * We compute the tweak masks twice (both before and after the ECB encryption or
136 * decryption) to avoid having to allocate a temporary buffer and/or make
137 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
138 * just doing the lrw_next_index() calls again.
140 static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass)
142 const int bs = LRW_BLOCK_SIZE;
143 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
144 const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
145 struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
146 be128 t = rctx->t;
147 struct skcipher_walk w;
148 __be32 *iv;
149 u32 counter[4];
150 int err;
152 if (second_pass) {
153 req = &rctx->subreq;
154 /* set to our TFM to enforce correct alignment: */
155 skcipher_request_set_tfm(req, tfm);
158 err = skcipher_walk_virt(&w, req, false);
159 if (err)
160 return err;
162 iv = (__be32 *)w.iv;
163 counter[0] = be32_to_cpu(iv[3]);
164 counter[1] = be32_to_cpu(iv[2]);
165 counter[2] = be32_to_cpu(iv[1]);
166 counter[3] = be32_to_cpu(iv[0]);
168 while (w.nbytes) {
169 unsigned int avail = w.nbytes;
170 be128 *wsrc;
171 be128 *wdst;
173 wsrc = w.src.virt.addr;
174 wdst = w.dst.virt.addr;
176 do {
177 be128_xor(wdst++, &t, wsrc++);
179 /* T <- I*Key2, using the optimization
180 * discussed in the specification */
181 be128_xor(&t, &t,
182 &ctx->mulinc[lrw_next_index(counter)]);
183 } while ((avail -= bs) >= bs);
185 if (second_pass && w.nbytes == w.total) {
186 iv[0] = cpu_to_be32(counter[3]);
187 iv[1] = cpu_to_be32(counter[2]);
188 iv[2] = cpu_to_be32(counter[1]);
189 iv[3] = cpu_to_be32(counter[0]);
192 err = skcipher_walk_done(&w, avail);
195 return err;
198 static int lrw_xor_tweak_pre(struct skcipher_request *req)
200 return lrw_xor_tweak(req, false);
203 static int lrw_xor_tweak_post(struct skcipher_request *req)
205 return lrw_xor_tweak(req, true);
208 static void lrw_crypt_done(struct crypto_async_request *areq, int err)
210 struct skcipher_request *req = areq->data;
212 if (!err) {
213 struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
215 rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
216 err = lrw_xor_tweak_post(req);
219 skcipher_request_complete(req, err);
222 static void lrw_init_crypt(struct skcipher_request *req)
224 const struct lrw_tfm_ctx *ctx =
225 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
226 struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
227 struct skcipher_request *subreq = &rctx->subreq;
229 skcipher_request_set_tfm(subreq, ctx->child);
230 skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done,
231 req);
232 /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
233 skcipher_request_set_crypt(subreq, req->dst, req->dst,
234 req->cryptlen, req->iv);
236 /* calculate first value of T */
237 memcpy(&rctx->t, req->iv, sizeof(rctx->t));
239 /* T <- I*Key2 */
240 gf128mul_64k_bbe(&rctx->t, ctx->table);
243 static int lrw_encrypt(struct skcipher_request *req)
245 struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
246 struct skcipher_request *subreq = &rctx->subreq;
248 lrw_init_crypt(req);
249 return lrw_xor_tweak_pre(req) ?:
250 crypto_skcipher_encrypt(subreq) ?:
251 lrw_xor_tweak_post(req);
254 static int lrw_decrypt(struct skcipher_request *req)
256 struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
257 struct skcipher_request *subreq = &rctx->subreq;
259 lrw_init_crypt(req);
260 return lrw_xor_tweak_pre(req) ?:
261 crypto_skcipher_decrypt(subreq) ?:
262 lrw_xor_tweak_post(req);
265 static int lrw_init_tfm(struct crypto_skcipher *tfm)
267 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
268 struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
269 struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
270 struct crypto_skcipher *cipher;
272 cipher = crypto_spawn_skcipher(spawn);
273 if (IS_ERR(cipher))
274 return PTR_ERR(cipher);
276 ctx->child = cipher;
278 crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
279 sizeof(struct lrw_request_ctx));
281 return 0;
284 static void lrw_exit_tfm(struct crypto_skcipher *tfm)
286 struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
288 if (ctx->table)
289 gf128mul_free_64k(ctx->table);
290 crypto_free_skcipher(ctx->child);
293 static void lrw_free_instance(struct skcipher_instance *inst)
295 crypto_drop_skcipher(skcipher_instance_ctx(inst));
296 kfree(inst);
299 static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb)
301 struct crypto_skcipher_spawn *spawn;
302 struct skcipher_instance *inst;
303 struct skcipher_alg *alg;
304 const char *cipher_name;
305 char ecb_name[CRYPTO_MAX_ALG_NAME];
306 u32 mask;
307 int err;
309 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
310 if (err)
311 return err;
313 cipher_name = crypto_attr_alg_name(tb[1]);
314 if (IS_ERR(cipher_name))
315 return PTR_ERR(cipher_name);
317 inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
318 if (!inst)
319 return -ENOMEM;
321 spawn = skcipher_instance_ctx(inst);
323 err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst),
324 cipher_name, 0, mask);
325 if (err == -ENOENT) {
326 err = -ENAMETOOLONG;
327 if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
328 cipher_name) >= CRYPTO_MAX_ALG_NAME)
329 goto err_free_inst;
331 err = crypto_grab_skcipher(spawn,
332 skcipher_crypto_instance(inst),
333 ecb_name, 0, mask);
336 if (err)
337 goto err_free_inst;
339 alg = crypto_skcipher_spawn_alg(spawn);
341 err = -EINVAL;
342 if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
343 goto err_free_inst;
345 if (crypto_skcipher_alg_ivsize(alg))
346 goto err_free_inst;
348 err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
349 &alg->base);
350 if (err)
351 goto err_free_inst;
353 err = -EINVAL;
354 cipher_name = alg->base.cra_name;
356 /* Alas we screwed up the naming so we have to mangle the
357 * cipher name.
359 if (!strncmp(cipher_name, "ecb(", 4)) {
360 unsigned len;
362 len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
363 if (len < 2 || len >= sizeof(ecb_name))
364 goto err_free_inst;
366 if (ecb_name[len - 1] != ')')
367 goto err_free_inst;
369 ecb_name[len - 1] = 0;
371 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
372 "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
373 err = -ENAMETOOLONG;
374 goto err_free_inst;
376 } else
377 goto err_free_inst;
379 inst->alg.base.cra_priority = alg->base.cra_priority;
380 inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
381 inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
382 (__alignof__(be128) - 1);
384 inst->alg.ivsize = LRW_BLOCK_SIZE;
385 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
386 LRW_BLOCK_SIZE;
387 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
388 LRW_BLOCK_SIZE;
390 inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx);
392 inst->alg.init = lrw_init_tfm;
393 inst->alg.exit = lrw_exit_tfm;
395 inst->alg.setkey = lrw_setkey;
396 inst->alg.encrypt = lrw_encrypt;
397 inst->alg.decrypt = lrw_decrypt;
399 inst->free = lrw_free_instance;
401 err = skcipher_register_instance(tmpl, inst);
402 if (err) {
403 err_free_inst:
404 lrw_free_instance(inst);
406 return err;
409 static struct crypto_template lrw_tmpl = {
410 .name = "lrw",
411 .create = lrw_create,
412 .module = THIS_MODULE,
415 static int __init lrw_module_init(void)
417 return crypto_register_template(&lrw_tmpl);
420 static void __exit lrw_module_exit(void)
422 crypto_unregister_template(&lrw_tmpl);
425 subsys_initcall(lrw_module_init);
426 module_exit(lrw_module_exit);
428 MODULE_LICENSE("GPL");
429 MODULE_DESCRIPTION("LRW block cipher mode");
430 MODULE_ALIAS_CRYPTO("lrw");