Merge tag 'block-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / kernel / kexec_core.c
blob4f8efc278aa75bc22fc4387e11fe6b8d48548135
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kexec.c - kexec system call core code.
4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 */
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/pm.h>
30 #include <linux/cpu.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39 #include <linux/objtool.h>
41 #include <asm/page.h>
42 #include <asm/sections.h>
44 #include <crypto/hash.h>
45 #include "kexec_internal.h"
47 DEFINE_MUTEX(kexec_mutex);
49 /* Per cpu memory for storing cpu states in case of system crash. */
50 note_buf_t __percpu *crash_notes;
52 /* Flag to indicate we are going to kexec a new kernel */
53 bool kexec_in_progress = false;
56 /* Location of the reserved area for the crash kernel */
57 struct resource crashk_res = {
58 .name = "Crash kernel",
59 .start = 0,
60 .end = 0,
61 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
62 .desc = IORES_DESC_CRASH_KERNEL
64 struct resource crashk_low_res = {
65 .name = "Crash kernel",
66 .start = 0,
67 .end = 0,
68 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
69 .desc = IORES_DESC_CRASH_KERNEL
72 int kexec_should_crash(struct task_struct *p)
75 * If crash_kexec_post_notifiers is enabled, don't run
76 * crash_kexec() here yet, which must be run after panic
77 * notifiers in panic().
79 if (crash_kexec_post_notifiers)
80 return 0;
82 * There are 4 panic() calls in do_exit() path, each of which
83 * corresponds to each of these 4 conditions.
85 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
86 return 1;
87 return 0;
90 int kexec_crash_loaded(void)
92 return !!kexec_crash_image;
94 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
97 * When kexec transitions to the new kernel there is a one-to-one
98 * mapping between physical and virtual addresses. On processors
99 * where you can disable the MMU this is trivial, and easy. For
100 * others it is still a simple predictable page table to setup.
102 * In that environment kexec copies the new kernel to its final
103 * resting place. This means I can only support memory whose
104 * physical address can fit in an unsigned long. In particular
105 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
106 * If the assembly stub has more restrictive requirements
107 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
108 * defined more restrictively in <asm/kexec.h>.
110 * The code for the transition from the current kernel to the
111 * new kernel is placed in the control_code_buffer, whose size
112 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
113 * page of memory is necessary, but some architectures require more.
114 * Because this memory must be identity mapped in the transition from
115 * virtual to physical addresses it must live in the range
116 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
117 * modifiable.
119 * The assembly stub in the control code buffer is passed a linked list
120 * of descriptor pages detailing the source pages of the new kernel,
121 * and the destination addresses of those source pages. As this data
122 * structure is not used in the context of the current OS, it must
123 * be self-contained.
125 * The code has been made to work with highmem pages and will use a
126 * destination page in its final resting place (if it happens
127 * to allocate it). The end product of this is that most of the
128 * physical address space, and most of RAM can be used.
130 * Future directions include:
131 * - allocating a page table with the control code buffer identity
132 * mapped, to simplify machine_kexec and make kexec_on_panic more
133 * reliable.
137 * KIMAGE_NO_DEST is an impossible destination address..., for
138 * allocating pages whose destination address we do not care about.
140 #define KIMAGE_NO_DEST (-1UL)
141 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
143 static struct page *kimage_alloc_page(struct kimage *image,
144 gfp_t gfp_mask,
145 unsigned long dest);
147 int sanity_check_segment_list(struct kimage *image)
149 int i;
150 unsigned long nr_segments = image->nr_segments;
151 unsigned long total_pages = 0;
152 unsigned long nr_pages = totalram_pages();
155 * Verify we have good destination addresses. The caller is
156 * responsible for making certain we don't attempt to load
157 * the new image into invalid or reserved areas of RAM. This
158 * just verifies it is an address we can use.
160 * Since the kernel does everything in page size chunks ensure
161 * the destination addresses are page aligned. Too many
162 * special cases crop of when we don't do this. The most
163 * insidious is getting overlapping destination addresses
164 * simply because addresses are changed to page size
165 * granularity.
167 for (i = 0; i < nr_segments; i++) {
168 unsigned long mstart, mend;
170 mstart = image->segment[i].mem;
171 mend = mstart + image->segment[i].memsz;
172 if (mstart > mend)
173 return -EADDRNOTAVAIL;
174 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
175 return -EADDRNOTAVAIL;
176 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
177 return -EADDRNOTAVAIL;
180 /* Verify our destination addresses do not overlap.
181 * If we alloed overlapping destination addresses
182 * through very weird things can happen with no
183 * easy explanation as one segment stops on another.
185 for (i = 0; i < nr_segments; i++) {
186 unsigned long mstart, mend;
187 unsigned long j;
189 mstart = image->segment[i].mem;
190 mend = mstart + image->segment[i].memsz;
191 for (j = 0; j < i; j++) {
192 unsigned long pstart, pend;
194 pstart = image->segment[j].mem;
195 pend = pstart + image->segment[j].memsz;
196 /* Do the segments overlap ? */
197 if ((mend > pstart) && (mstart < pend))
198 return -EINVAL;
202 /* Ensure our buffer sizes are strictly less than
203 * our memory sizes. This should always be the case,
204 * and it is easier to check up front than to be surprised
205 * later on.
207 for (i = 0; i < nr_segments; i++) {
208 if (image->segment[i].bufsz > image->segment[i].memsz)
209 return -EINVAL;
213 * Verify that no more than half of memory will be consumed. If the
214 * request from userspace is too large, a large amount of time will be
215 * wasted allocating pages, which can cause a soft lockup.
217 for (i = 0; i < nr_segments; i++) {
218 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
219 return -EINVAL;
221 total_pages += PAGE_COUNT(image->segment[i].memsz);
224 if (total_pages > nr_pages / 2)
225 return -EINVAL;
228 * Verify we have good destination addresses. Normally
229 * the caller is responsible for making certain we don't
230 * attempt to load the new image into invalid or reserved
231 * areas of RAM. But crash kernels are preloaded into a
232 * reserved area of ram. We must ensure the addresses
233 * are in the reserved area otherwise preloading the
234 * kernel could corrupt things.
237 if (image->type == KEXEC_TYPE_CRASH) {
238 for (i = 0; i < nr_segments; i++) {
239 unsigned long mstart, mend;
241 mstart = image->segment[i].mem;
242 mend = mstart + image->segment[i].memsz - 1;
243 /* Ensure we are within the crash kernel limits */
244 if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
245 (mend > phys_to_boot_phys(crashk_res.end)))
246 return -EADDRNOTAVAIL;
250 return 0;
253 struct kimage *do_kimage_alloc_init(void)
255 struct kimage *image;
257 /* Allocate a controlling structure */
258 image = kzalloc(sizeof(*image), GFP_KERNEL);
259 if (!image)
260 return NULL;
262 image->head = 0;
263 image->entry = &image->head;
264 image->last_entry = &image->head;
265 image->control_page = ~0; /* By default this does not apply */
266 image->type = KEXEC_TYPE_DEFAULT;
268 /* Initialize the list of control pages */
269 INIT_LIST_HEAD(&image->control_pages);
271 /* Initialize the list of destination pages */
272 INIT_LIST_HEAD(&image->dest_pages);
274 /* Initialize the list of unusable pages */
275 INIT_LIST_HEAD(&image->unusable_pages);
277 return image;
280 int kimage_is_destination_range(struct kimage *image,
281 unsigned long start,
282 unsigned long end)
284 unsigned long i;
286 for (i = 0; i < image->nr_segments; i++) {
287 unsigned long mstart, mend;
289 mstart = image->segment[i].mem;
290 mend = mstart + image->segment[i].memsz;
291 if ((end > mstart) && (start < mend))
292 return 1;
295 return 0;
298 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
300 struct page *pages;
302 if (fatal_signal_pending(current))
303 return NULL;
304 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
305 if (pages) {
306 unsigned int count, i;
308 pages->mapping = NULL;
309 set_page_private(pages, order);
310 count = 1 << order;
311 for (i = 0; i < count; i++)
312 SetPageReserved(pages + i);
314 arch_kexec_post_alloc_pages(page_address(pages), count,
315 gfp_mask);
317 if (gfp_mask & __GFP_ZERO)
318 for (i = 0; i < count; i++)
319 clear_highpage(pages + i);
322 return pages;
325 static void kimage_free_pages(struct page *page)
327 unsigned int order, count, i;
329 order = page_private(page);
330 count = 1 << order;
332 arch_kexec_pre_free_pages(page_address(page), count);
334 for (i = 0; i < count; i++)
335 ClearPageReserved(page + i);
336 __free_pages(page, order);
339 void kimage_free_page_list(struct list_head *list)
341 struct page *page, *next;
343 list_for_each_entry_safe(page, next, list, lru) {
344 list_del(&page->lru);
345 kimage_free_pages(page);
349 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
350 unsigned int order)
352 /* Control pages are special, they are the intermediaries
353 * that are needed while we copy the rest of the pages
354 * to their final resting place. As such they must
355 * not conflict with either the destination addresses
356 * or memory the kernel is already using.
358 * The only case where we really need more than one of
359 * these are for architectures where we cannot disable
360 * the MMU and must instead generate an identity mapped
361 * page table for all of the memory.
363 * At worst this runs in O(N) of the image size.
365 struct list_head extra_pages;
366 struct page *pages;
367 unsigned int count;
369 count = 1 << order;
370 INIT_LIST_HEAD(&extra_pages);
372 /* Loop while I can allocate a page and the page allocated
373 * is a destination page.
375 do {
376 unsigned long pfn, epfn, addr, eaddr;
378 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
379 if (!pages)
380 break;
381 pfn = page_to_boot_pfn(pages);
382 epfn = pfn + count;
383 addr = pfn << PAGE_SHIFT;
384 eaddr = epfn << PAGE_SHIFT;
385 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
386 kimage_is_destination_range(image, addr, eaddr)) {
387 list_add(&pages->lru, &extra_pages);
388 pages = NULL;
390 } while (!pages);
392 if (pages) {
393 /* Remember the allocated page... */
394 list_add(&pages->lru, &image->control_pages);
396 /* Because the page is already in it's destination
397 * location we will never allocate another page at
398 * that address. Therefore kimage_alloc_pages
399 * will not return it (again) and we don't need
400 * to give it an entry in image->segment[].
403 /* Deal with the destination pages I have inadvertently allocated.
405 * Ideally I would convert multi-page allocations into single
406 * page allocations, and add everything to image->dest_pages.
408 * For now it is simpler to just free the pages.
410 kimage_free_page_list(&extra_pages);
412 return pages;
415 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
416 unsigned int order)
418 /* Control pages are special, they are the intermediaries
419 * that are needed while we copy the rest of the pages
420 * to their final resting place. As such they must
421 * not conflict with either the destination addresses
422 * or memory the kernel is already using.
424 * Control pages are also the only pags we must allocate
425 * when loading a crash kernel. All of the other pages
426 * are specified by the segments and we just memcpy
427 * into them directly.
429 * The only case where we really need more than one of
430 * these are for architectures where we cannot disable
431 * the MMU and must instead generate an identity mapped
432 * page table for all of the memory.
434 * Given the low demand this implements a very simple
435 * allocator that finds the first hole of the appropriate
436 * size in the reserved memory region, and allocates all
437 * of the memory up to and including the hole.
439 unsigned long hole_start, hole_end, size;
440 struct page *pages;
442 pages = NULL;
443 size = (1 << order) << PAGE_SHIFT;
444 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
445 hole_end = hole_start + size - 1;
446 while (hole_end <= crashk_res.end) {
447 unsigned long i;
449 cond_resched();
451 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
452 break;
453 /* See if I overlap any of the segments */
454 for (i = 0; i < image->nr_segments; i++) {
455 unsigned long mstart, mend;
457 mstart = image->segment[i].mem;
458 mend = mstart + image->segment[i].memsz - 1;
459 if ((hole_end >= mstart) && (hole_start <= mend)) {
460 /* Advance the hole to the end of the segment */
461 hole_start = (mend + (size - 1)) & ~(size - 1);
462 hole_end = hole_start + size - 1;
463 break;
466 /* If I don't overlap any segments I have found my hole! */
467 if (i == image->nr_segments) {
468 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
469 image->control_page = hole_end;
470 break;
474 /* Ensure that these pages are decrypted if SME is enabled. */
475 if (pages)
476 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
478 return pages;
482 struct page *kimage_alloc_control_pages(struct kimage *image,
483 unsigned int order)
485 struct page *pages = NULL;
487 switch (image->type) {
488 case KEXEC_TYPE_DEFAULT:
489 pages = kimage_alloc_normal_control_pages(image, order);
490 break;
491 case KEXEC_TYPE_CRASH:
492 pages = kimage_alloc_crash_control_pages(image, order);
493 break;
496 return pages;
499 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
501 struct page *vmcoreinfo_page;
502 void *safecopy;
504 if (image->type != KEXEC_TYPE_CRASH)
505 return 0;
508 * For kdump, allocate one vmcoreinfo safe copy from the
509 * crash memory. as we have arch_kexec_protect_crashkres()
510 * after kexec syscall, we naturally protect it from write
511 * (even read) access under kernel direct mapping. But on
512 * the other hand, we still need to operate it when crash
513 * happens to generate vmcoreinfo note, hereby we rely on
514 * vmap for this purpose.
516 vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
517 if (!vmcoreinfo_page) {
518 pr_warn("Could not allocate vmcoreinfo buffer\n");
519 return -ENOMEM;
521 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
522 if (!safecopy) {
523 pr_warn("Could not vmap vmcoreinfo buffer\n");
524 return -ENOMEM;
527 image->vmcoreinfo_data_copy = safecopy;
528 crash_update_vmcoreinfo_safecopy(safecopy);
530 return 0;
533 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
535 if (*image->entry != 0)
536 image->entry++;
538 if (image->entry == image->last_entry) {
539 kimage_entry_t *ind_page;
540 struct page *page;
542 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
543 if (!page)
544 return -ENOMEM;
546 ind_page = page_address(page);
547 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
548 image->entry = ind_page;
549 image->last_entry = ind_page +
550 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
552 *image->entry = entry;
553 image->entry++;
554 *image->entry = 0;
556 return 0;
559 static int kimage_set_destination(struct kimage *image,
560 unsigned long destination)
562 int result;
564 destination &= PAGE_MASK;
565 result = kimage_add_entry(image, destination | IND_DESTINATION);
567 return result;
571 static int kimage_add_page(struct kimage *image, unsigned long page)
573 int result;
575 page &= PAGE_MASK;
576 result = kimage_add_entry(image, page | IND_SOURCE);
578 return result;
582 static void kimage_free_extra_pages(struct kimage *image)
584 /* Walk through and free any extra destination pages I may have */
585 kimage_free_page_list(&image->dest_pages);
587 /* Walk through and free any unusable pages I have cached */
588 kimage_free_page_list(&image->unusable_pages);
592 int __weak machine_kexec_post_load(struct kimage *image)
594 return 0;
597 void kimage_terminate(struct kimage *image)
599 if (*image->entry != 0)
600 image->entry++;
602 *image->entry = IND_DONE;
605 #define for_each_kimage_entry(image, ptr, entry) \
606 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
607 ptr = (entry & IND_INDIRECTION) ? \
608 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
610 static void kimage_free_entry(kimage_entry_t entry)
612 struct page *page;
614 page = boot_pfn_to_page(entry >> PAGE_SHIFT);
615 kimage_free_pages(page);
618 void kimage_free(struct kimage *image)
620 kimage_entry_t *ptr, entry;
621 kimage_entry_t ind = 0;
623 if (!image)
624 return;
626 if (image->vmcoreinfo_data_copy) {
627 crash_update_vmcoreinfo_safecopy(NULL);
628 vunmap(image->vmcoreinfo_data_copy);
631 kimage_free_extra_pages(image);
632 for_each_kimage_entry(image, ptr, entry) {
633 if (entry & IND_INDIRECTION) {
634 /* Free the previous indirection page */
635 if (ind & IND_INDIRECTION)
636 kimage_free_entry(ind);
637 /* Save this indirection page until we are
638 * done with it.
640 ind = entry;
641 } else if (entry & IND_SOURCE)
642 kimage_free_entry(entry);
644 /* Free the final indirection page */
645 if (ind & IND_INDIRECTION)
646 kimage_free_entry(ind);
648 /* Handle any machine specific cleanup */
649 machine_kexec_cleanup(image);
651 /* Free the kexec control pages... */
652 kimage_free_page_list(&image->control_pages);
655 * Free up any temporary buffers allocated. This might hit if
656 * error occurred much later after buffer allocation.
658 if (image->file_mode)
659 kimage_file_post_load_cleanup(image);
661 kfree(image);
664 static kimage_entry_t *kimage_dst_used(struct kimage *image,
665 unsigned long page)
667 kimage_entry_t *ptr, entry;
668 unsigned long destination = 0;
670 for_each_kimage_entry(image, ptr, entry) {
671 if (entry & IND_DESTINATION)
672 destination = entry & PAGE_MASK;
673 else if (entry & IND_SOURCE) {
674 if (page == destination)
675 return ptr;
676 destination += PAGE_SIZE;
680 return NULL;
683 static struct page *kimage_alloc_page(struct kimage *image,
684 gfp_t gfp_mask,
685 unsigned long destination)
688 * Here we implement safeguards to ensure that a source page
689 * is not copied to its destination page before the data on
690 * the destination page is no longer useful.
692 * To do this we maintain the invariant that a source page is
693 * either its own destination page, or it is not a
694 * destination page at all.
696 * That is slightly stronger than required, but the proof
697 * that no problems will not occur is trivial, and the
698 * implementation is simply to verify.
700 * When allocating all pages normally this algorithm will run
701 * in O(N) time, but in the worst case it will run in O(N^2)
702 * time. If the runtime is a problem the data structures can
703 * be fixed.
705 struct page *page;
706 unsigned long addr;
709 * Walk through the list of destination pages, and see if I
710 * have a match.
712 list_for_each_entry(page, &image->dest_pages, lru) {
713 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
714 if (addr == destination) {
715 list_del(&page->lru);
716 return page;
719 page = NULL;
720 while (1) {
721 kimage_entry_t *old;
723 /* Allocate a page, if we run out of memory give up */
724 page = kimage_alloc_pages(gfp_mask, 0);
725 if (!page)
726 return NULL;
727 /* If the page cannot be used file it away */
728 if (page_to_boot_pfn(page) >
729 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
730 list_add(&page->lru, &image->unusable_pages);
731 continue;
733 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
735 /* If it is the destination page we want use it */
736 if (addr == destination)
737 break;
739 /* If the page is not a destination page use it */
740 if (!kimage_is_destination_range(image, addr,
741 addr + PAGE_SIZE))
742 break;
745 * I know that the page is someones destination page.
746 * See if there is already a source page for this
747 * destination page. And if so swap the source pages.
749 old = kimage_dst_used(image, addr);
750 if (old) {
751 /* If so move it */
752 unsigned long old_addr;
753 struct page *old_page;
755 old_addr = *old & PAGE_MASK;
756 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
757 copy_highpage(page, old_page);
758 *old = addr | (*old & ~PAGE_MASK);
760 /* The old page I have found cannot be a
761 * destination page, so return it if it's
762 * gfp_flags honor the ones passed in.
764 if (!(gfp_mask & __GFP_HIGHMEM) &&
765 PageHighMem(old_page)) {
766 kimage_free_pages(old_page);
767 continue;
769 addr = old_addr;
770 page = old_page;
771 break;
773 /* Place the page on the destination list, to be used later */
774 list_add(&page->lru, &image->dest_pages);
777 return page;
780 static int kimage_load_normal_segment(struct kimage *image,
781 struct kexec_segment *segment)
783 unsigned long maddr;
784 size_t ubytes, mbytes;
785 int result;
786 unsigned char __user *buf = NULL;
787 unsigned char *kbuf = NULL;
789 result = 0;
790 if (image->file_mode)
791 kbuf = segment->kbuf;
792 else
793 buf = segment->buf;
794 ubytes = segment->bufsz;
795 mbytes = segment->memsz;
796 maddr = segment->mem;
798 result = kimage_set_destination(image, maddr);
799 if (result < 0)
800 goto out;
802 while (mbytes) {
803 struct page *page;
804 char *ptr;
805 size_t uchunk, mchunk;
807 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
808 if (!page) {
809 result = -ENOMEM;
810 goto out;
812 result = kimage_add_page(image, page_to_boot_pfn(page)
813 << PAGE_SHIFT);
814 if (result < 0)
815 goto out;
817 ptr = kmap(page);
818 /* Start with a clear page */
819 clear_page(ptr);
820 ptr += maddr & ~PAGE_MASK;
821 mchunk = min_t(size_t, mbytes,
822 PAGE_SIZE - (maddr & ~PAGE_MASK));
823 uchunk = min(ubytes, mchunk);
825 /* For file based kexec, source pages are in kernel memory */
826 if (image->file_mode)
827 memcpy(ptr, kbuf, uchunk);
828 else
829 result = copy_from_user(ptr, buf, uchunk);
830 kunmap(page);
831 if (result) {
832 result = -EFAULT;
833 goto out;
835 ubytes -= uchunk;
836 maddr += mchunk;
837 if (image->file_mode)
838 kbuf += mchunk;
839 else
840 buf += mchunk;
841 mbytes -= mchunk;
843 cond_resched();
845 out:
846 return result;
849 static int kimage_load_crash_segment(struct kimage *image,
850 struct kexec_segment *segment)
852 /* For crash dumps kernels we simply copy the data from
853 * user space to it's destination.
854 * We do things a page at a time for the sake of kmap.
856 unsigned long maddr;
857 size_t ubytes, mbytes;
858 int result;
859 unsigned char __user *buf = NULL;
860 unsigned char *kbuf = NULL;
862 result = 0;
863 if (image->file_mode)
864 kbuf = segment->kbuf;
865 else
866 buf = segment->buf;
867 ubytes = segment->bufsz;
868 mbytes = segment->memsz;
869 maddr = segment->mem;
870 while (mbytes) {
871 struct page *page;
872 char *ptr;
873 size_t uchunk, mchunk;
875 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
876 if (!page) {
877 result = -ENOMEM;
878 goto out;
880 arch_kexec_post_alloc_pages(page_address(page), 1, 0);
881 ptr = kmap(page);
882 ptr += maddr & ~PAGE_MASK;
883 mchunk = min_t(size_t, mbytes,
884 PAGE_SIZE - (maddr & ~PAGE_MASK));
885 uchunk = min(ubytes, mchunk);
886 if (mchunk > uchunk) {
887 /* Zero the trailing part of the page */
888 memset(ptr + uchunk, 0, mchunk - uchunk);
891 /* For file based kexec, source pages are in kernel memory */
892 if (image->file_mode)
893 memcpy(ptr, kbuf, uchunk);
894 else
895 result = copy_from_user(ptr, buf, uchunk);
896 kexec_flush_icache_page(page);
897 kunmap(page);
898 arch_kexec_pre_free_pages(page_address(page), 1);
899 if (result) {
900 result = -EFAULT;
901 goto out;
903 ubytes -= uchunk;
904 maddr += mchunk;
905 if (image->file_mode)
906 kbuf += mchunk;
907 else
908 buf += mchunk;
909 mbytes -= mchunk;
911 cond_resched();
913 out:
914 return result;
917 int kimage_load_segment(struct kimage *image,
918 struct kexec_segment *segment)
920 int result = -ENOMEM;
922 switch (image->type) {
923 case KEXEC_TYPE_DEFAULT:
924 result = kimage_load_normal_segment(image, segment);
925 break;
926 case KEXEC_TYPE_CRASH:
927 result = kimage_load_crash_segment(image, segment);
928 break;
931 return result;
934 struct kimage *kexec_image;
935 struct kimage *kexec_crash_image;
936 int kexec_load_disabled;
939 * No panic_cpu check version of crash_kexec(). This function is called
940 * only when panic_cpu holds the current CPU number; this is the only CPU
941 * which processes crash_kexec routines.
943 void __noclone __crash_kexec(struct pt_regs *regs)
945 /* Take the kexec_mutex here to prevent sys_kexec_load
946 * running on one cpu from replacing the crash kernel
947 * we are using after a panic on a different cpu.
949 * If the crash kernel was not located in a fixed area
950 * of memory the xchg(&kexec_crash_image) would be
951 * sufficient. But since I reuse the memory...
953 if (mutex_trylock(&kexec_mutex)) {
954 if (kexec_crash_image) {
955 struct pt_regs fixed_regs;
957 crash_setup_regs(&fixed_regs, regs);
958 crash_save_vmcoreinfo();
959 machine_crash_shutdown(&fixed_regs);
960 machine_kexec(kexec_crash_image);
962 mutex_unlock(&kexec_mutex);
965 STACK_FRAME_NON_STANDARD(__crash_kexec);
967 void crash_kexec(struct pt_regs *regs)
969 int old_cpu, this_cpu;
972 * Only one CPU is allowed to execute the crash_kexec() code as with
973 * panic(). Otherwise parallel calls of panic() and crash_kexec()
974 * may stop each other. To exclude them, we use panic_cpu here too.
976 this_cpu = raw_smp_processor_id();
977 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
978 if (old_cpu == PANIC_CPU_INVALID) {
979 /* This is the 1st CPU which comes here, so go ahead. */
980 printk_safe_flush_on_panic();
981 __crash_kexec(regs);
984 * Reset panic_cpu to allow another panic()/crash_kexec()
985 * call.
987 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
991 size_t crash_get_memory_size(void)
993 size_t size = 0;
995 mutex_lock(&kexec_mutex);
996 if (crashk_res.end != crashk_res.start)
997 size = resource_size(&crashk_res);
998 mutex_unlock(&kexec_mutex);
999 return size;
1002 void __weak crash_free_reserved_phys_range(unsigned long begin,
1003 unsigned long end)
1005 unsigned long addr;
1007 for (addr = begin; addr < end; addr += PAGE_SIZE)
1008 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1011 int crash_shrink_memory(unsigned long new_size)
1013 int ret = 0;
1014 unsigned long start, end;
1015 unsigned long old_size;
1016 struct resource *ram_res;
1018 mutex_lock(&kexec_mutex);
1020 if (kexec_crash_image) {
1021 ret = -ENOENT;
1022 goto unlock;
1024 start = crashk_res.start;
1025 end = crashk_res.end;
1026 old_size = (end == 0) ? 0 : end - start + 1;
1027 if (new_size >= old_size) {
1028 ret = (new_size == old_size) ? 0 : -EINVAL;
1029 goto unlock;
1032 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1033 if (!ram_res) {
1034 ret = -ENOMEM;
1035 goto unlock;
1038 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1039 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1041 crash_free_reserved_phys_range(end, crashk_res.end);
1043 if ((start == end) && (crashk_res.parent != NULL))
1044 release_resource(&crashk_res);
1046 ram_res->start = end;
1047 ram_res->end = crashk_res.end;
1048 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1049 ram_res->name = "System RAM";
1051 crashk_res.end = end - 1;
1053 insert_resource(&iomem_resource, ram_res);
1055 unlock:
1056 mutex_unlock(&kexec_mutex);
1057 return ret;
1060 void crash_save_cpu(struct pt_regs *regs, int cpu)
1062 struct elf_prstatus prstatus;
1063 u32 *buf;
1065 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1066 return;
1068 /* Using ELF notes here is opportunistic.
1069 * I need a well defined structure format
1070 * for the data I pass, and I need tags
1071 * on the data to indicate what information I have
1072 * squirrelled away. ELF notes happen to provide
1073 * all of that, so there is no need to invent something new.
1075 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1076 if (!buf)
1077 return;
1078 memset(&prstatus, 0, sizeof(prstatus));
1079 prstatus.pr_pid = current->pid;
1080 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1081 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1082 &prstatus, sizeof(prstatus));
1083 final_note(buf);
1086 static int __init crash_notes_memory_init(void)
1088 /* Allocate memory for saving cpu registers. */
1089 size_t size, align;
1092 * crash_notes could be allocated across 2 vmalloc pages when percpu
1093 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1094 * pages are also on 2 continuous physical pages. In this case the
1095 * 2nd part of crash_notes in 2nd page could be lost since only the
1096 * starting address and size of crash_notes are exported through sysfs.
1097 * Here round up the size of crash_notes to the nearest power of two
1098 * and pass it to __alloc_percpu as align value. This can make sure
1099 * crash_notes is allocated inside one physical page.
1101 size = sizeof(note_buf_t);
1102 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1105 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1106 * definitely will be in 2 pages with that.
1108 BUILD_BUG_ON(size > PAGE_SIZE);
1110 crash_notes = __alloc_percpu(size, align);
1111 if (!crash_notes) {
1112 pr_warn("Memory allocation for saving cpu register states failed\n");
1113 return -ENOMEM;
1115 return 0;
1117 subsys_initcall(crash_notes_memory_init);
1121 * Move into place and start executing a preloaded standalone
1122 * executable. If nothing was preloaded return an error.
1124 int kernel_kexec(void)
1126 int error = 0;
1128 if (!mutex_trylock(&kexec_mutex))
1129 return -EBUSY;
1130 if (!kexec_image) {
1131 error = -EINVAL;
1132 goto Unlock;
1135 #ifdef CONFIG_KEXEC_JUMP
1136 if (kexec_image->preserve_context) {
1137 lock_system_sleep();
1138 pm_prepare_console();
1139 error = freeze_processes();
1140 if (error) {
1141 error = -EBUSY;
1142 goto Restore_console;
1144 suspend_console();
1145 error = dpm_suspend_start(PMSG_FREEZE);
1146 if (error)
1147 goto Resume_console;
1148 /* At this point, dpm_suspend_start() has been called,
1149 * but *not* dpm_suspend_end(). We *must* call
1150 * dpm_suspend_end() now. Otherwise, drivers for
1151 * some devices (e.g. interrupt controllers) become
1152 * desynchronized with the actual state of the
1153 * hardware at resume time, and evil weirdness ensues.
1155 error = dpm_suspend_end(PMSG_FREEZE);
1156 if (error)
1157 goto Resume_devices;
1158 error = suspend_disable_secondary_cpus();
1159 if (error)
1160 goto Enable_cpus;
1161 local_irq_disable();
1162 error = syscore_suspend();
1163 if (error)
1164 goto Enable_irqs;
1165 } else
1166 #endif
1168 kexec_in_progress = true;
1169 kernel_restart_prepare(NULL);
1170 migrate_to_reboot_cpu();
1173 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1174 * no further code needs to use CPU hotplug (which is true in
1175 * the reboot case). However, the kexec path depends on using
1176 * CPU hotplug again; so re-enable it here.
1178 cpu_hotplug_enable();
1179 pr_notice("Starting new kernel\n");
1180 machine_shutdown();
1183 machine_kexec(kexec_image);
1185 #ifdef CONFIG_KEXEC_JUMP
1186 if (kexec_image->preserve_context) {
1187 syscore_resume();
1188 Enable_irqs:
1189 local_irq_enable();
1190 Enable_cpus:
1191 suspend_enable_secondary_cpus();
1192 dpm_resume_start(PMSG_RESTORE);
1193 Resume_devices:
1194 dpm_resume_end(PMSG_RESTORE);
1195 Resume_console:
1196 resume_console();
1197 thaw_processes();
1198 Restore_console:
1199 pm_restore_console();
1200 unlock_system_sleep();
1202 #endif
1204 Unlock:
1205 mutex_unlock(&kexec_mutex);
1206 return error;
1210 * Protection mechanism for crashkernel reserved memory after
1211 * the kdump kernel is loaded.
1213 * Provide an empty default implementation here -- architecture
1214 * code may override this
1216 void __weak arch_kexec_protect_crashkres(void)
1219 void __weak arch_kexec_unprotect_crashkres(void)