1 // SPDX-License-Identifier: GPL-2.0
3 * Kernel internal timers
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
10 * "A Kernel Model for Precision Timekeeping" by Dave Mills
11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12 * serialize accesses to xtime/lost_ticks).
13 * Copyright (C) 1998 Andrea Arcangeli
14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 #include <linux/random.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/div64.h>
51 #include <asm/timex.h>
54 #include "tick-internal.h"
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/timer.h>
59 __visible u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
61 EXPORT_SYMBOL(jiffies_64
);
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
101 * This results in the following granularity and range levels:
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
151 /* Clock divisor for the next level */
152 #define LVL_CLK_SHIFT 3
153 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
159 * The time start value for each level to select the bucket at enqueue
160 * time. We start from the last possible delta of the previous level
161 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
163 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
165 /* Size of each clock level */
167 #define LVL_SIZE (1UL << LVL_BITS)
168 #define LVL_MASK (LVL_SIZE - 1)
169 #define LVL_OFFS(n) ((n) * LVL_SIZE)
178 /* The cutoff (max. capacity of the wheel) */
179 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
180 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
183 * The resulting wheel size. If NOHZ is configured we allocate two
184 * wheels so we have a separate storage for the deferrable timers.
186 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
188 #ifdef CONFIG_NO_HZ_COMMON
200 struct timer_list
*running_timer
;
201 #ifdef CONFIG_PREEMPT_RT
202 spinlock_t expiry_lock
;
203 atomic_t timer_waiters
;
206 unsigned long next_expiry
;
208 bool next_expiry_recalc
;
210 DECLARE_BITMAP(pending_map
, WHEEL_SIZE
);
211 struct hlist_head vectors
[WHEEL_SIZE
];
212 } ____cacheline_aligned
;
214 static DEFINE_PER_CPU(struct timer_base
, timer_bases
[NR_BASES
]);
216 #ifdef CONFIG_NO_HZ_COMMON
218 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active
);
219 static DEFINE_MUTEX(timer_keys_mutex
);
221 static void timer_update_keys(struct work_struct
*work
);
222 static DECLARE_WORK(timer_update_work
, timer_update_keys
);
225 unsigned int sysctl_timer_migration
= 1;
227 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled
);
229 static void timers_update_migration(void)
231 if (sysctl_timer_migration
&& tick_nohz_active
)
232 static_branch_enable(&timers_migration_enabled
);
234 static_branch_disable(&timers_migration_enabled
);
237 static inline void timers_update_migration(void) { }
238 #endif /* !CONFIG_SMP */
240 static void timer_update_keys(struct work_struct
*work
)
242 mutex_lock(&timer_keys_mutex
);
243 timers_update_migration();
244 static_branch_enable(&timers_nohz_active
);
245 mutex_unlock(&timer_keys_mutex
);
248 void timers_update_nohz(void)
250 schedule_work(&timer_update_work
);
253 int timer_migration_handler(struct ctl_table
*table
, int write
,
254 void *buffer
, size_t *lenp
, loff_t
*ppos
)
258 mutex_lock(&timer_keys_mutex
);
259 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
261 timers_update_migration();
262 mutex_unlock(&timer_keys_mutex
);
266 static inline bool is_timers_nohz_active(void)
268 return static_branch_unlikely(&timers_nohz_active
);
271 static inline bool is_timers_nohz_active(void) { return false; }
272 #endif /* NO_HZ_COMMON */
274 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
278 unsigned long original
= j
;
281 * We don't want all cpus firing their timers at once hitting the
282 * same lock or cachelines, so we skew each extra cpu with an extra
283 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
285 * The skew is done by adding 3*cpunr, then round, then subtract this
286 * extra offset again.
293 * If the target jiffie is just after a whole second (which can happen
294 * due to delays of the timer irq, long irq off times etc etc) then
295 * we should round down to the whole second, not up. Use 1/4th second
296 * as cutoff for this rounding as an extreme upper bound for this.
297 * But never round down if @force_up is set.
299 if (rem
< HZ
/4 && !force_up
) /* round down */
304 /* now that we have rounded, subtract the extra skew again */
308 * Make sure j is still in the future. Otherwise return the
311 return time_is_after_jiffies(j
) ? j
: original
;
315 * __round_jiffies - function to round jiffies to a full second
316 * @j: the time in (absolute) jiffies that should be rounded
317 * @cpu: the processor number on which the timeout will happen
319 * __round_jiffies() rounds an absolute time in the future (in jiffies)
320 * up or down to (approximately) full seconds. This is useful for timers
321 * for which the exact time they fire does not matter too much, as long as
322 * they fire approximately every X seconds.
324 * By rounding these timers to whole seconds, all such timers will fire
325 * at the same time, rather than at various times spread out. The goal
326 * of this is to have the CPU wake up less, which saves power.
328 * The exact rounding is skewed for each processor to avoid all
329 * processors firing at the exact same time, which could lead
330 * to lock contention or spurious cache line bouncing.
332 * The return value is the rounded version of the @j parameter.
334 unsigned long __round_jiffies(unsigned long j
, int cpu
)
336 return round_jiffies_common(j
, cpu
, false);
338 EXPORT_SYMBOL_GPL(__round_jiffies
);
341 * __round_jiffies_relative - function to round jiffies to a full second
342 * @j: the time in (relative) jiffies that should be rounded
343 * @cpu: the processor number on which the timeout will happen
345 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
346 * up or down to (approximately) full seconds. This is useful for timers
347 * for which the exact time they fire does not matter too much, as long as
348 * they fire approximately every X seconds.
350 * By rounding these timers to whole seconds, all such timers will fire
351 * at the same time, rather than at various times spread out. The goal
352 * of this is to have the CPU wake up less, which saves power.
354 * The exact rounding is skewed for each processor to avoid all
355 * processors firing at the exact same time, which could lead
356 * to lock contention or spurious cache line bouncing.
358 * The return value is the rounded version of the @j parameter.
360 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
362 unsigned long j0
= jiffies
;
364 /* Use j0 because jiffies might change while we run */
365 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
367 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
370 * round_jiffies - function to round jiffies to a full second
371 * @j: the time in (absolute) jiffies that should be rounded
373 * round_jiffies() rounds an absolute time in the future (in jiffies)
374 * up or down to (approximately) full seconds. This is useful for timers
375 * for which the exact time they fire does not matter too much, as long as
376 * they fire approximately every X seconds.
378 * By rounding these timers to whole seconds, all such timers will fire
379 * at the same time, rather than at various times spread out. The goal
380 * of this is to have the CPU wake up less, which saves power.
382 * The return value is the rounded version of the @j parameter.
384 unsigned long round_jiffies(unsigned long j
)
386 return round_jiffies_common(j
, raw_smp_processor_id(), false);
388 EXPORT_SYMBOL_GPL(round_jiffies
);
391 * round_jiffies_relative - function to round jiffies to a full second
392 * @j: the time in (relative) jiffies that should be rounded
394 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
395 * up or down to (approximately) full seconds. This is useful for timers
396 * for which the exact time they fire does not matter too much, as long as
397 * they fire approximately every X seconds.
399 * By rounding these timers to whole seconds, all such timers will fire
400 * at the same time, rather than at various times spread out. The goal
401 * of this is to have the CPU wake up less, which saves power.
403 * The return value is the rounded version of the @j parameter.
405 unsigned long round_jiffies_relative(unsigned long j
)
407 return __round_jiffies_relative(j
, raw_smp_processor_id());
409 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
412 * __round_jiffies_up - function to round jiffies up to a full second
413 * @j: the time in (absolute) jiffies that should be rounded
414 * @cpu: the processor number on which the timeout will happen
416 * This is the same as __round_jiffies() except that it will never
417 * round down. This is useful for timeouts for which the exact time
418 * of firing does not matter too much, as long as they don't fire too
421 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
423 return round_jiffies_common(j
, cpu
, true);
425 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
428 * __round_jiffies_up_relative - function to round jiffies up to a full second
429 * @j: the time in (relative) jiffies that should be rounded
430 * @cpu: the processor number on which the timeout will happen
432 * This is the same as __round_jiffies_relative() except that it will never
433 * round down. This is useful for timeouts for which the exact time
434 * of firing does not matter too much, as long as they don't fire too
437 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
439 unsigned long j0
= jiffies
;
441 /* Use j0 because jiffies might change while we run */
442 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
444 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
447 * round_jiffies_up - function to round jiffies up to a full second
448 * @j: the time in (absolute) jiffies that should be rounded
450 * This is the same as round_jiffies() except that it will never
451 * round down. This is useful for timeouts for which the exact time
452 * of firing does not matter too much, as long as they don't fire too
455 unsigned long round_jiffies_up(unsigned long j
)
457 return round_jiffies_common(j
, raw_smp_processor_id(), true);
459 EXPORT_SYMBOL_GPL(round_jiffies_up
);
462 * round_jiffies_up_relative - function to round jiffies up to a full second
463 * @j: the time in (relative) jiffies that should be rounded
465 * This is the same as round_jiffies_relative() except that it will never
466 * round down. This is useful for timeouts for which the exact time
467 * of firing does not matter too much, as long as they don't fire too
470 unsigned long round_jiffies_up_relative(unsigned long j
)
472 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
474 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
477 static inline unsigned int timer_get_idx(struct timer_list
*timer
)
479 return (timer
->flags
& TIMER_ARRAYMASK
) >> TIMER_ARRAYSHIFT
;
482 static inline void timer_set_idx(struct timer_list
*timer
, unsigned int idx
)
484 timer
->flags
= (timer
->flags
& ~TIMER_ARRAYMASK
) |
485 idx
<< TIMER_ARRAYSHIFT
;
489 * Helper function to calculate the array index for a given expiry
492 static inline unsigned calc_index(unsigned long expires
, unsigned lvl
,
493 unsigned long *bucket_expiry
)
497 * The timer wheel has to guarantee that a timer does not fire
498 * early. Early expiry can happen due to:
499 * - Timer is armed at the edge of a tick
500 * - Truncation of the expiry time in the outer wheel levels
502 * Round up with level granularity to prevent this.
504 expires
= (expires
+ LVL_GRAN(lvl
)) >> LVL_SHIFT(lvl
);
505 *bucket_expiry
= expires
<< LVL_SHIFT(lvl
);
506 return LVL_OFFS(lvl
) + (expires
& LVL_MASK
);
509 static int calc_wheel_index(unsigned long expires
, unsigned long clk
,
510 unsigned long *bucket_expiry
)
512 unsigned long delta
= expires
- clk
;
515 if (delta
< LVL_START(1)) {
516 idx
= calc_index(expires
, 0, bucket_expiry
);
517 } else if (delta
< LVL_START(2)) {
518 idx
= calc_index(expires
, 1, bucket_expiry
);
519 } else if (delta
< LVL_START(3)) {
520 idx
= calc_index(expires
, 2, bucket_expiry
);
521 } else if (delta
< LVL_START(4)) {
522 idx
= calc_index(expires
, 3, bucket_expiry
);
523 } else if (delta
< LVL_START(5)) {
524 idx
= calc_index(expires
, 4, bucket_expiry
);
525 } else if (delta
< LVL_START(6)) {
526 idx
= calc_index(expires
, 5, bucket_expiry
);
527 } else if (delta
< LVL_START(7)) {
528 idx
= calc_index(expires
, 6, bucket_expiry
);
529 } else if (LVL_DEPTH
> 8 && delta
< LVL_START(8)) {
530 idx
= calc_index(expires
, 7, bucket_expiry
);
531 } else if ((long) delta
< 0) {
532 idx
= clk
& LVL_MASK
;
533 *bucket_expiry
= clk
;
536 * Force expire obscene large timeouts to expire at the
537 * capacity limit of the wheel.
539 if (delta
>= WHEEL_TIMEOUT_CUTOFF
)
540 expires
= clk
+ WHEEL_TIMEOUT_MAX
;
542 idx
= calc_index(expires
, LVL_DEPTH
- 1, bucket_expiry
);
548 trigger_dyntick_cpu(struct timer_base
*base
, struct timer_list
*timer
)
550 if (!is_timers_nohz_active())
554 * TODO: This wants some optimizing similar to the code below, but we
555 * will do that when we switch from push to pull for deferrable timers.
557 if (timer
->flags
& TIMER_DEFERRABLE
) {
558 if (tick_nohz_full_cpu(base
->cpu
))
559 wake_up_nohz_cpu(base
->cpu
);
564 * We might have to IPI the remote CPU if the base is idle and the
565 * timer is not deferrable. If the other CPU is on the way to idle
566 * then it can't set base->is_idle as we hold the base lock:
569 wake_up_nohz_cpu(base
->cpu
);
573 * Enqueue the timer into the hash bucket, mark it pending in
574 * the bitmap, store the index in the timer flags then wake up
575 * the target CPU if needed.
577 static void enqueue_timer(struct timer_base
*base
, struct timer_list
*timer
,
578 unsigned int idx
, unsigned long bucket_expiry
)
581 hlist_add_head(&timer
->entry
, base
->vectors
+ idx
);
582 __set_bit(idx
, base
->pending_map
);
583 timer_set_idx(timer
, idx
);
585 trace_timer_start(timer
, timer
->expires
, timer
->flags
);
588 * Check whether this is the new first expiring timer. The
589 * effective expiry time of the timer is required here
590 * (bucket_expiry) instead of timer->expires.
592 if (time_before(bucket_expiry
, base
->next_expiry
)) {
594 * Set the next expiry time and kick the CPU so it
595 * can reevaluate the wheel:
597 base
->next_expiry
= bucket_expiry
;
598 base
->next_expiry_recalc
= false;
599 trigger_dyntick_cpu(base
, timer
);
603 static void internal_add_timer(struct timer_base
*base
, struct timer_list
*timer
)
605 unsigned long bucket_expiry
;
608 idx
= calc_wheel_index(timer
->expires
, base
->clk
, &bucket_expiry
);
609 enqueue_timer(base
, timer
, idx
, bucket_expiry
);
612 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
614 static const struct debug_obj_descr timer_debug_descr
;
616 static void *timer_debug_hint(void *addr
)
618 return ((struct timer_list
*) addr
)->function
;
621 static bool timer_is_static_object(void *addr
)
623 struct timer_list
*timer
= addr
;
625 return (timer
->entry
.pprev
== NULL
&&
626 timer
->entry
.next
== TIMER_ENTRY_STATIC
);
630 * fixup_init is called when:
631 * - an active object is initialized
633 static bool timer_fixup_init(void *addr
, enum debug_obj_state state
)
635 struct timer_list
*timer
= addr
;
638 case ODEBUG_STATE_ACTIVE
:
639 del_timer_sync(timer
);
640 debug_object_init(timer
, &timer_debug_descr
);
647 /* Stub timer callback for improperly used timers. */
648 static void stub_timer(struct timer_list
*unused
)
654 * fixup_activate is called when:
655 * - an active object is activated
656 * - an unknown non-static object is activated
658 static bool timer_fixup_activate(void *addr
, enum debug_obj_state state
)
660 struct timer_list
*timer
= addr
;
663 case ODEBUG_STATE_NOTAVAILABLE
:
664 timer_setup(timer
, stub_timer
, 0);
667 case ODEBUG_STATE_ACTIVE
:
676 * fixup_free is called when:
677 * - an active object is freed
679 static bool timer_fixup_free(void *addr
, enum debug_obj_state state
)
681 struct timer_list
*timer
= addr
;
684 case ODEBUG_STATE_ACTIVE
:
685 del_timer_sync(timer
);
686 debug_object_free(timer
, &timer_debug_descr
);
694 * fixup_assert_init is called when:
695 * - an untracked/uninit-ed object is found
697 static bool timer_fixup_assert_init(void *addr
, enum debug_obj_state state
)
699 struct timer_list
*timer
= addr
;
702 case ODEBUG_STATE_NOTAVAILABLE
:
703 timer_setup(timer
, stub_timer
, 0);
710 static const struct debug_obj_descr timer_debug_descr
= {
711 .name
= "timer_list",
712 .debug_hint
= timer_debug_hint
,
713 .is_static_object
= timer_is_static_object
,
714 .fixup_init
= timer_fixup_init
,
715 .fixup_activate
= timer_fixup_activate
,
716 .fixup_free
= timer_fixup_free
,
717 .fixup_assert_init
= timer_fixup_assert_init
,
720 static inline void debug_timer_init(struct timer_list
*timer
)
722 debug_object_init(timer
, &timer_debug_descr
);
725 static inline void debug_timer_activate(struct timer_list
*timer
)
727 debug_object_activate(timer
, &timer_debug_descr
);
730 static inline void debug_timer_deactivate(struct timer_list
*timer
)
732 debug_object_deactivate(timer
, &timer_debug_descr
);
735 static inline void debug_timer_assert_init(struct timer_list
*timer
)
737 debug_object_assert_init(timer
, &timer_debug_descr
);
740 static void do_init_timer(struct timer_list
*timer
,
741 void (*func
)(struct timer_list
*),
743 const char *name
, struct lock_class_key
*key
);
745 void init_timer_on_stack_key(struct timer_list
*timer
,
746 void (*func
)(struct timer_list
*),
748 const char *name
, struct lock_class_key
*key
)
750 debug_object_init_on_stack(timer
, &timer_debug_descr
);
751 do_init_timer(timer
, func
, flags
, name
, key
);
753 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
755 void destroy_timer_on_stack(struct timer_list
*timer
)
757 debug_object_free(timer
, &timer_debug_descr
);
759 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
762 static inline void debug_timer_init(struct timer_list
*timer
) { }
763 static inline void debug_timer_activate(struct timer_list
*timer
) { }
764 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
765 static inline void debug_timer_assert_init(struct timer_list
*timer
) { }
768 static inline void debug_init(struct timer_list
*timer
)
770 debug_timer_init(timer
);
771 trace_timer_init(timer
);
774 static inline void debug_deactivate(struct timer_list
*timer
)
776 debug_timer_deactivate(timer
);
777 trace_timer_cancel(timer
);
780 static inline void debug_assert_init(struct timer_list
*timer
)
782 debug_timer_assert_init(timer
);
785 static void do_init_timer(struct timer_list
*timer
,
786 void (*func
)(struct timer_list
*),
788 const char *name
, struct lock_class_key
*key
)
790 timer
->entry
.pprev
= NULL
;
791 timer
->function
= func
;
792 if (WARN_ON_ONCE(flags
& ~TIMER_INIT_FLAGS
))
793 flags
&= TIMER_INIT_FLAGS
;
794 timer
->flags
= flags
| raw_smp_processor_id();
795 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
799 * init_timer_key - initialize a timer
800 * @timer: the timer to be initialized
801 * @func: timer callback function
802 * @flags: timer flags
803 * @name: name of the timer
804 * @key: lockdep class key of the fake lock used for tracking timer
805 * sync lock dependencies
807 * init_timer_key() must be done to a timer prior calling *any* of the
808 * other timer functions.
810 void init_timer_key(struct timer_list
*timer
,
811 void (*func
)(struct timer_list
*), unsigned int flags
,
812 const char *name
, struct lock_class_key
*key
)
815 do_init_timer(timer
, func
, flags
, name
, key
);
817 EXPORT_SYMBOL(init_timer_key
);
819 static inline void detach_timer(struct timer_list
*timer
, bool clear_pending
)
821 struct hlist_node
*entry
= &timer
->entry
;
823 debug_deactivate(timer
);
828 entry
->next
= LIST_POISON2
;
831 static int detach_if_pending(struct timer_list
*timer
, struct timer_base
*base
,
834 unsigned idx
= timer_get_idx(timer
);
836 if (!timer_pending(timer
))
839 if (hlist_is_singular_node(&timer
->entry
, base
->vectors
+ idx
)) {
840 __clear_bit(idx
, base
->pending_map
);
841 base
->next_expiry_recalc
= true;
844 detach_timer(timer
, clear_pending
);
848 static inline struct timer_base
*get_timer_cpu_base(u32 tflags
, u32 cpu
)
850 struct timer_base
*base
= per_cpu_ptr(&timer_bases
[BASE_STD
], cpu
);
853 * If the timer is deferrable and NO_HZ_COMMON is set then we need
854 * to use the deferrable base.
856 if (IS_ENABLED(CONFIG_NO_HZ_COMMON
) && (tflags
& TIMER_DEFERRABLE
))
857 base
= per_cpu_ptr(&timer_bases
[BASE_DEF
], cpu
);
861 static inline struct timer_base
*get_timer_this_cpu_base(u32 tflags
)
863 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
866 * If the timer is deferrable and NO_HZ_COMMON is set then we need
867 * to use the deferrable base.
869 if (IS_ENABLED(CONFIG_NO_HZ_COMMON
) && (tflags
& TIMER_DEFERRABLE
))
870 base
= this_cpu_ptr(&timer_bases
[BASE_DEF
]);
874 static inline struct timer_base
*get_timer_base(u32 tflags
)
876 return get_timer_cpu_base(tflags
, tflags
& TIMER_CPUMASK
);
879 static inline struct timer_base
*
880 get_target_base(struct timer_base
*base
, unsigned tflags
)
882 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
883 if (static_branch_likely(&timers_migration_enabled
) &&
884 !(tflags
& TIMER_PINNED
))
885 return get_timer_cpu_base(tflags
, get_nohz_timer_target());
887 return get_timer_this_cpu_base(tflags
);
890 static inline void forward_timer_base(struct timer_base
*base
)
892 unsigned long jnow
= READ_ONCE(jiffies
);
895 * No need to forward if we are close enough below jiffies.
896 * Also while executing timers, base->clk is 1 offset ahead
897 * of jiffies to avoid endless requeuing to current jffies.
899 if ((long)(jnow
- base
->clk
) < 1)
903 * If the next expiry value is > jiffies, then we fast forward to
904 * jiffies otherwise we forward to the next expiry value.
906 if (time_after(base
->next_expiry
, jnow
)) {
909 if (WARN_ON_ONCE(time_before(base
->next_expiry
, base
->clk
)))
911 base
->clk
= base
->next_expiry
;
917 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
918 * that all timers which are tied to this base are locked, and the base itself
921 * So __run_timers/migrate_timers can safely modify all timers which could
922 * be found in the base->vectors array.
924 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
925 * to wait until the migration is done.
927 static struct timer_base
*lock_timer_base(struct timer_list
*timer
,
928 unsigned long *flags
)
929 __acquires(timer
->base
->lock
)
932 struct timer_base
*base
;
936 * We need to use READ_ONCE() here, otherwise the compiler
937 * might re-read @tf between the check for TIMER_MIGRATING
940 tf
= READ_ONCE(timer
->flags
);
942 if (!(tf
& TIMER_MIGRATING
)) {
943 base
= get_timer_base(tf
);
944 raw_spin_lock_irqsave(&base
->lock
, *flags
);
945 if (timer
->flags
== tf
)
947 raw_spin_unlock_irqrestore(&base
->lock
, *flags
);
953 #define MOD_TIMER_PENDING_ONLY 0x01
954 #define MOD_TIMER_REDUCE 0x02
955 #define MOD_TIMER_NOTPENDING 0x04
958 __mod_timer(struct timer_list
*timer
, unsigned long expires
, unsigned int options
)
960 unsigned long clk
= 0, flags
, bucket_expiry
;
961 struct timer_base
*base
, *new_base
;
962 unsigned int idx
= UINT_MAX
;
965 BUG_ON(!timer
->function
);
968 * This is a common optimization triggered by the networking code - if
969 * the timer is re-modified to have the same timeout or ends up in the
970 * same array bucket then just return:
972 if (!(options
& MOD_TIMER_NOTPENDING
) && timer_pending(timer
)) {
974 * The downside of this optimization is that it can result in
975 * larger granularity than you would get from adding a new
976 * timer with this expiry.
978 long diff
= timer
->expires
- expires
;
982 if (options
& MOD_TIMER_REDUCE
&& diff
<= 0)
986 * We lock timer base and calculate the bucket index right
987 * here. If the timer ends up in the same bucket, then we
988 * just update the expiry time and avoid the whole
989 * dequeue/enqueue dance.
991 base
= lock_timer_base(timer
, &flags
);
992 forward_timer_base(base
);
994 if (timer_pending(timer
) && (options
& MOD_TIMER_REDUCE
) &&
995 time_before_eq(timer
->expires
, expires
)) {
1001 idx
= calc_wheel_index(expires
, clk
, &bucket_expiry
);
1004 * Retrieve and compare the array index of the pending
1005 * timer. If it matches set the expiry to the new value so a
1006 * subsequent call will exit in the expires check above.
1008 if (idx
== timer_get_idx(timer
)) {
1009 if (!(options
& MOD_TIMER_REDUCE
))
1010 timer
->expires
= expires
;
1011 else if (time_after(timer
->expires
, expires
))
1012 timer
->expires
= expires
;
1017 base
= lock_timer_base(timer
, &flags
);
1018 forward_timer_base(base
);
1021 ret
= detach_if_pending(timer
, base
, false);
1022 if (!ret
&& (options
& MOD_TIMER_PENDING_ONLY
))
1025 new_base
= get_target_base(base
, timer
->flags
);
1027 if (base
!= new_base
) {
1029 * We are trying to schedule the timer on the new base.
1030 * However we can't change timer's base while it is running,
1031 * otherwise del_timer_sync() can't detect that the timer's
1032 * handler yet has not finished. This also guarantees that the
1033 * timer is serialized wrt itself.
1035 if (likely(base
->running_timer
!= timer
)) {
1036 /* See the comment in lock_timer_base() */
1037 timer
->flags
|= TIMER_MIGRATING
;
1039 raw_spin_unlock(&base
->lock
);
1041 raw_spin_lock(&base
->lock
);
1042 WRITE_ONCE(timer
->flags
,
1043 (timer
->flags
& ~TIMER_BASEMASK
) | base
->cpu
);
1044 forward_timer_base(base
);
1048 debug_timer_activate(timer
);
1050 timer
->expires
= expires
;
1052 * If 'idx' was calculated above and the base time did not advance
1053 * between calculating 'idx' and possibly switching the base, only
1054 * enqueue_timer() is required. Otherwise we need to (re)calculate
1055 * the wheel index via internal_add_timer().
1057 if (idx
!= UINT_MAX
&& clk
== base
->clk
)
1058 enqueue_timer(base
, timer
, idx
, bucket_expiry
);
1060 internal_add_timer(base
, timer
);
1063 raw_spin_unlock_irqrestore(&base
->lock
, flags
);
1069 * mod_timer_pending - modify a pending timer's timeout
1070 * @timer: the pending timer to be modified
1071 * @expires: new timeout in jiffies
1073 * mod_timer_pending() is the same for pending timers as mod_timer(),
1074 * but will not re-activate and modify already deleted timers.
1076 * It is useful for unserialized use of timers.
1078 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
1080 return __mod_timer(timer
, expires
, MOD_TIMER_PENDING_ONLY
);
1082 EXPORT_SYMBOL(mod_timer_pending
);
1085 * mod_timer - modify a timer's timeout
1086 * @timer: the timer to be modified
1087 * @expires: new timeout in jiffies
1089 * mod_timer() is a more efficient way to update the expire field of an
1090 * active timer (if the timer is inactive it will be activated)
1092 * mod_timer(timer, expires) is equivalent to:
1094 * del_timer(timer); timer->expires = expires; add_timer(timer);
1096 * Note that if there are multiple unserialized concurrent users of the
1097 * same timer, then mod_timer() is the only safe way to modify the timeout,
1098 * since add_timer() cannot modify an already running timer.
1100 * The function returns whether it has modified a pending timer or not.
1101 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1102 * active timer returns 1.)
1104 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
1106 return __mod_timer(timer
, expires
, 0);
1108 EXPORT_SYMBOL(mod_timer
);
1111 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1112 * @timer: The timer to be modified
1113 * @expires: New timeout in jiffies
1115 * timer_reduce() is very similar to mod_timer(), except that it will only
1116 * modify a running timer if that would reduce the expiration time (it will
1117 * start a timer that isn't running).
1119 int timer_reduce(struct timer_list
*timer
, unsigned long expires
)
1121 return __mod_timer(timer
, expires
, MOD_TIMER_REDUCE
);
1123 EXPORT_SYMBOL(timer_reduce
);
1126 * add_timer - start a timer
1127 * @timer: the timer to be added
1129 * The kernel will do a ->function(@timer) callback from the
1130 * timer interrupt at the ->expires point in the future. The
1131 * current time is 'jiffies'.
1133 * The timer's ->expires, ->function fields must be set prior calling this
1136 * Timers with an ->expires field in the past will be executed in the next
1139 void add_timer(struct timer_list
*timer
)
1141 BUG_ON(timer_pending(timer
));
1142 __mod_timer(timer
, timer
->expires
, MOD_TIMER_NOTPENDING
);
1144 EXPORT_SYMBOL(add_timer
);
1147 * add_timer_on - start a timer on a particular CPU
1148 * @timer: the timer to be added
1149 * @cpu: the CPU to start it on
1151 * This is not very scalable on SMP. Double adds are not possible.
1153 void add_timer_on(struct timer_list
*timer
, int cpu
)
1155 struct timer_base
*new_base
, *base
;
1156 unsigned long flags
;
1158 BUG_ON(timer_pending(timer
) || !timer
->function
);
1160 new_base
= get_timer_cpu_base(timer
->flags
, cpu
);
1163 * If @timer was on a different CPU, it should be migrated with the
1164 * old base locked to prevent other operations proceeding with the
1165 * wrong base locked. See lock_timer_base().
1167 base
= lock_timer_base(timer
, &flags
);
1168 if (base
!= new_base
) {
1169 timer
->flags
|= TIMER_MIGRATING
;
1171 raw_spin_unlock(&base
->lock
);
1173 raw_spin_lock(&base
->lock
);
1174 WRITE_ONCE(timer
->flags
,
1175 (timer
->flags
& ~TIMER_BASEMASK
) | cpu
);
1177 forward_timer_base(base
);
1179 debug_timer_activate(timer
);
1180 internal_add_timer(base
, timer
);
1181 raw_spin_unlock_irqrestore(&base
->lock
, flags
);
1183 EXPORT_SYMBOL_GPL(add_timer_on
);
1186 * del_timer - deactivate a timer.
1187 * @timer: the timer to be deactivated
1189 * del_timer() deactivates a timer - this works on both active and inactive
1192 * The function returns whether it has deactivated a pending timer or not.
1193 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1194 * active timer returns 1.)
1196 int del_timer(struct timer_list
*timer
)
1198 struct timer_base
*base
;
1199 unsigned long flags
;
1202 debug_assert_init(timer
);
1204 if (timer_pending(timer
)) {
1205 base
= lock_timer_base(timer
, &flags
);
1206 ret
= detach_if_pending(timer
, base
, true);
1207 raw_spin_unlock_irqrestore(&base
->lock
, flags
);
1212 EXPORT_SYMBOL(del_timer
);
1215 * try_to_del_timer_sync - Try to deactivate a timer
1216 * @timer: timer to delete
1218 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1219 * exit the timer is not queued and the handler is not running on any CPU.
1221 int try_to_del_timer_sync(struct timer_list
*timer
)
1223 struct timer_base
*base
;
1224 unsigned long flags
;
1227 debug_assert_init(timer
);
1229 base
= lock_timer_base(timer
, &flags
);
1231 if (base
->running_timer
!= timer
)
1232 ret
= detach_if_pending(timer
, base
, true);
1234 raw_spin_unlock_irqrestore(&base
->lock
, flags
);
1238 EXPORT_SYMBOL(try_to_del_timer_sync
);
1240 #ifdef CONFIG_PREEMPT_RT
1241 static __init
void timer_base_init_expiry_lock(struct timer_base
*base
)
1243 spin_lock_init(&base
->expiry_lock
);
1246 static inline void timer_base_lock_expiry(struct timer_base
*base
)
1248 spin_lock(&base
->expiry_lock
);
1251 static inline void timer_base_unlock_expiry(struct timer_base
*base
)
1253 spin_unlock(&base
->expiry_lock
);
1257 * The counterpart to del_timer_wait_running().
1259 * If there is a waiter for base->expiry_lock, then it was waiting for the
1260 * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1261 * the waiter to acquire the lock and make progress.
1263 static void timer_sync_wait_running(struct timer_base
*base
)
1265 if (atomic_read(&base
->timer_waiters
)) {
1266 spin_unlock(&base
->expiry_lock
);
1267 spin_lock(&base
->expiry_lock
);
1272 * This function is called on PREEMPT_RT kernels when the fast path
1273 * deletion of a timer failed because the timer callback function was
1276 * This prevents priority inversion, if the softirq thread on a remote CPU
1277 * got preempted, and it prevents a life lock when the task which tries to
1278 * delete a timer preempted the softirq thread running the timer callback
1281 static void del_timer_wait_running(struct timer_list
*timer
)
1285 tf
= READ_ONCE(timer
->flags
);
1286 if (!(tf
& (TIMER_MIGRATING
| TIMER_IRQSAFE
))) {
1287 struct timer_base
*base
= get_timer_base(tf
);
1290 * Mark the base as contended and grab the expiry lock,
1291 * which is held by the softirq across the timer
1292 * callback. Drop the lock immediately so the softirq can
1293 * expire the next timer. In theory the timer could already
1294 * be running again, but that's more than unlikely and just
1295 * causes another wait loop.
1297 atomic_inc(&base
->timer_waiters
);
1298 spin_lock_bh(&base
->expiry_lock
);
1299 atomic_dec(&base
->timer_waiters
);
1300 spin_unlock_bh(&base
->expiry_lock
);
1304 static inline void timer_base_init_expiry_lock(struct timer_base
*base
) { }
1305 static inline void timer_base_lock_expiry(struct timer_base
*base
) { }
1306 static inline void timer_base_unlock_expiry(struct timer_base
*base
) { }
1307 static inline void timer_sync_wait_running(struct timer_base
*base
) { }
1308 static inline void del_timer_wait_running(struct timer_list
*timer
) { }
1311 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1313 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1314 * @timer: the timer to be deactivated
1316 * This function only differs from del_timer() on SMP: besides deactivating
1317 * the timer it also makes sure the handler has finished executing on other
1320 * Synchronization rules: Callers must prevent restarting of the timer,
1321 * otherwise this function is meaningless. It must not be called from
1322 * interrupt contexts unless the timer is an irqsafe one. The caller must
1323 * not hold locks which would prevent completion of the timer's
1324 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1325 * timer is not queued and the handler is not running on any CPU.
1327 * Note: For !irqsafe timers, you must not hold locks that are held in
1328 * interrupt context while calling this function. Even if the lock has
1329 * nothing to do with the timer in question. Here's why::
1335 * base->running_timer = mytimer;
1336 * spin_lock_irq(somelock);
1338 * spin_lock(somelock);
1339 * del_timer_sync(mytimer);
1340 * while (base->running_timer == mytimer);
1342 * Now del_timer_sync() will never return and never release somelock.
1343 * The interrupt on the other CPU is waiting to grab somelock but
1344 * it has interrupted the softirq that CPU0 is waiting to finish.
1346 * The function returns whether it has deactivated a pending timer or not.
1348 int del_timer_sync(struct timer_list
*timer
)
1352 #ifdef CONFIG_LOCKDEP
1353 unsigned long flags
;
1356 * If lockdep gives a backtrace here, please reference
1357 * the synchronization rules above.
1359 local_irq_save(flags
);
1360 lock_map_acquire(&timer
->lockdep_map
);
1361 lock_map_release(&timer
->lockdep_map
);
1362 local_irq_restore(flags
);
1365 * don't use it in hardirq context, because it
1366 * could lead to deadlock.
1368 WARN_ON(in_irq() && !(timer
->flags
& TIMER_IRQSAFE
));
1371 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1372 * del_timer_wait_running().
1374 if (IS_ENABLED(CONFIG_PREEMPT_RT
) && !(timer
->flags
& TIMER_IRQSAFE
))
1375 lockdep_assert_preemption_enabled();
1378 ret
= try_to_del_timer_sync(timer
);
1380 if (unlikely(ret
< 0)) {
1381 del_timer_wait_running(timer
);
1388 EXPORT_SYMBOL(del_timer_sync
);
1391 static void call_timer_fn(struct timer_list
*timer
,
1392 void (*fn
)(struct timer_list
*),
1393 unsigned long baseclk
)
1395 int count
= preempt_count();
1397 #ifdef CONFIG_LOCKDEP
1399 * It is permissible to free the timer from inside the
1400 * function that is called from it, this we need to take into
1401 * account for lockdep too. To avoid bogus "held lock freed"
1402 * warnings as well as problems when looking into
1403 * timer->lockdep_map, make a copy and use that here.
1405 struct lockdep_map lockdep_map
;
1407 lockdep_copy_map(&lockdep_map
, &timer
->lockdep_map
);
1410 * Couple the lock chain with the lock chain at
1411 * del_timer_sync() by acquiring the lock_map around the fn()
1412 * call here and in del_timer_sync().
1414 lock_map_acquire(&lockdep_map
);
1416 trace_timer_expire_entry(timer
, baseclk
);
1418 trace_timer_expire_exit(timer
);
1420 lock_map_release(&lockdep_map
);
1422 if (count
!= preempt_count()) {
1423 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1424 fn
, count
, preempt_count());
1426 * Restore the preempt count. That gives us a decent
1427 * chance to survive and extract information. If the
1428 * callback kept a lock held, bad luck, but not worse
1429 * than the BUG() we had.
1431 preempt_count_set(count
);
1435 static void expire_timers(struct timer_base
*base
, struct hlist_head
*head
)
1438 * This value is required only for tracing. base->clk was
1439 * incremented directly before expire_timers was called. But expiry
1440 * is related to the old base->clk value.
1442 unsigned long baseclk
= base
->clk
- 1;
1444 while (!hlist_empty(head
)) {
1445 struct timer_list
*timer
;
1446 void (*fn
)(struct timer_list
*);
1448 timer
= hlist_entry(head
->first
, struct timer_list
, entry
);
1450 base
->running_timer
= timer
;
1451 detach_timer(timer
, true);
1453 fn
= timer
->function
;
1455 if (timer
->flags
& TIMER_IRQSAFE
) {
1456 raw_spin_unlock(&base
->lock
);
1457 call_timer_fn(timer
, fn
, baseclk
);
1458 base
->running_timer
= NULL
;
1459 raw_spin_lock(&base
->lock
);
1461 raw_spin_unlock_irq(&base
->lock
);
1462 call_timer_fn(timer
, fn
, baseclk
);
1463 base
->running_timer
= NULL
;
1464 timer_sync_wait_running(base
);
1465 raw_spin_lock_irq(&base
->lock
);
1470 static int collect_expired_timers(struct timer_base
*base
,
1471 struct hlist_head
*heads
)
1473 unsigned long clk
= base
->clk
= base
->next_expiry
;
1474 struct hlist_head
*vec
;
1478 for (i
= 0; i
< LVL_DEPTH
; i
++) {
1479 idx
= (clk
& LVL_MASK
) + i
* LVL_SIZE
;
1481 if (__test_and_clear_bit(idx
, base
->pending_map
)) {
1482 vec
= base
->vectors
+ idx
;
1483 hlist_move_list(vec
, heads
++);
1486 /* Is it time to look at the next level? */
1487 if (clk
& LVL_CLK_MASK
)
1489 /* Shift clock for the next level granularity */
1490 clk
>>= LVL_CLK_SHIFT
;
1496 * Find the next pending bucket of a level. Search from level start (@offset)
1497 * + @clk upwards and if nothing there, search from start of the level
1498 * (@offset) up to @offset + clk.
1500 static int next_pending_bucket(struct timer_base
*base
, unsigned offset
,
1503 unsigned pos
, start
= offset
+ clk
;
1504 unsigned end
= offset
+ LVL_SIZE
;
1506 pos
= find_next_bit(base
->pending_map
, end
, start
);
1510 pos
= find_next_bit(base
->pending_map
, start
, offset
);
1511 return pos
< start
? pos
+ LVL_SIZE
- start
: -1;
1515 * Search the first expiring timer in the various clock levels. Caller must
1518 static unsigned long __next_timer_interrupt(struct timer_base
*base
)
1520 unsigned long clk
, next
, adj
;
1521 unsigned lvl
, offset
= 0;
1523 next
= base
->clk
+ NEXT_TIMER_MAX_DELTA
;
1525 for (lvl
= 0; lvl
< LVL_DEPTH
; lvl
++, offset
+= LVL_SIZE
) {
1526 int pos
= next_pending_bucket(base
, offset
, clk
& LVL_MASK
);
1527 unsigned long lvl_clk
= clk
& LVL_CLK_MASK
;
1530 unsigned long tmp
= clk
+ (unsigned long) pos
;
1532 tmp
<<= LVL_SHIFT(lvl
);
1533 if (time_before(tmp
, next
))
1537 * If the next expiration happens before we reach
1538 * the next level, no need to check further.
1540 if (pos
<= ((LVL_CLK_DIV
- lvl_clk
) & LVL_CLK_MASK
))
1544 * Clock for the next level. If the current level clock lower
1545 * bits are zero, we look at the next level as is. If not we
1546 * need to advance it by one because that's going to be the
1547 * next expiring bucket in that level. base->clk is the next
1548 * expiring jiffie. So in case of:
1550 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1553 * we have to look at all levels @index 0. With
1555 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1558 * LVL0 has the next expiring bucket @index 2. The upper
1559 * levels have the next expiring bucket @index 1.
1561 * In case that the propagation wraps the next level the same
1564 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1567 * So after looking at LVL0 we get:
1569 * LVL5 LVL4 LVL3 LVL2 LVL1
1572 * So no propagation from LVL1 to LVL2 because that happened
1573 * with the add already, but then we need to propagate further
1574 * from LVL2 to LVL3.
1576 * So the simple check whether the lower bits of the current
1577 * level are 0 or not is sufficient for all cases.
1579 adj
= lvl_clk
? 1 : 0;
1580 clk
>>= LVL_CLK_SHIFT
;
1584 base
->next_expiry_recalc
= false;
1589 #ifdef CONFIG_NO_HZ_COMMON
1591 * Check, if the next hrtimer event is before the next timer wheel
1594 static u64
cmp_next_hrtimer_event(u64 basem
, u64 expires
)
1596 u64 nextevt
= hrtimer_get_next_event();
1599 * If high resolution timers are enabled
1600 * hrtimer_get_next_event() returns KTIME_MAX.
1602 if (expires
<= nextevt
)
1606 * If the next timer is already expired, return the tick base
1607 * time so the tick is fired immediately.
1609 if (nextevt
<= basem
)
1613 * Round up to the next jiffie. High resolution timers are
1614 * off, so the hrtimers are expired in the tick and we need to
1615 * make sure that this tick really expires the timer to avoid
1616 * a ping pong of the nohz stop code.
1618 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1620 return DIV_ROUND_UP_ULL(nextevt
, TICK_NSEC
) * TICK_NSEC
;
1624 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1625 * @basej: base time jiffies
1626 * @basem: base time clock monotonic
1628 * Returns the tick aligned clock monotonic time of the next pending
1629 * timer or KTIME_MAX if no timer is pending.
1631 u64
get_next_timer_interrupt(unsigned long basej
, u64 basem
)
1633 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1634 u64 expires
= KTIME_MAX
;
1635 unsigned long nextevt
;
1639 * Pretend that there is no timer pending if the cpu is offline.
1640 * Possible pending timers will be migrated later to an active cpu.
1642 if (cpu_is_offline(smp_processor_id()))
1645 raw_spin_lock(&base
->lock
);
1646 if (base
->next_expiry_recalc
)
1647 base
->next_expiry
= __next_timer_interrupt(base
);
1648 nextevt
= base
->next_expiry
;
1649 is_max_delta
= (nextevt
== base
->clk
+ NEXT_TIMER_MAX_DELTA
);
1652 * We have a fresh next event. Check whether we can forward the
1653 * base. We can only do that when @basej is past base->clk
1654 * otherwise we might rewind base->clk.
1656 if (time_after(basej
, base
->clk
)) {
1657 if (time_after(nextevt
, basej
))
1659 else if (time_after(nextevt
, base
->clk
))
1660 base
->clk
= nextevt
;
1663 if (time_before_eq(nextevt
, basej
)) {
1665 base
->is_idle
= false;
1668 expires
= basem
+ (u64
)(nextevt
- basej
) * TICK_NSEC
;
1670 * If we expect to sleep more than a tick, mark the base idle.
1671 * Also the tick is stopped so any added timer must forward
1672 * the base clk itself to keep granularity small. This idle
1673 * logic is only maintained for the BASE_STD base, deferrable
1674 * timers may still see large granularity skew (by design).
1676 if ((expires
- basem
) > TICK_NSEC
)
1677 base
->is_idle
= true;
1679 raw_spin_unlock(&base
->lock
);
1681 return cmp_next_hrtimer_event(basem
, expires
);
1685 * timer_clear_idle - Clear the idle state of the timer base
1687 * Called with interrupts disabled
1689 void timer_clear_idle(void)
1691 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1694 * We do this unlocked. The worst outcome is a remote enqueue sending
1695 * a pointless IPI, but taking the lock would just make the window for
1696 * sending the IPI a few instructions smaller for the cost of taking
1697 * the lock in the exit from idle path.
1699 base
->is_idle
= false;
1704 * __run_timers - run all expired timers (if any) on this CPU.
1705 * @base: the timer vector to be processed.
1707 static inline void __run_timers(struct timer_base
*base
)
1709 struct hlist_head heads
[LVL_DEPTH
];
1712 if (time_before(jiffies
, base
->next_expiry
))
1715 timer_base_lock_expiry(base
);
1716 raw_spin_lock_irq(&base
->lock
);
1718 while (time_after_eq(jiffies
, base
->clk
) &&
1719 time_after_eq(jiffies
, base
->next_expiry
)) {
1720 levels
= collect_expired_timers(base
, heads
);
1722 * The only possible reason for not finding any expired
1723 * timer at this clk is that all matching timers have been
1726 WARN_ON_ONCE(!levels
&& !base
->next_expiry_recalc
);
1728 base
->next_expiry
= __next_timer_interrupt(base
);
1731 expire_timers(base
, heads
+ levels
);
1733 raw_spin_unlock_irq(&base
->lock
);
1734 timer_base_unlock_expiry(base
);
1738 * This function runs timers and the timer-tq in bottom half context.
1740 static __latent_entropy
void run_timer_softirq(struct softirq_action
*h
)
1742 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1745 if (IS_ENABLED(CONFIG_NO_HZ_COMMON
))
1746 __run_timers(this_cpu_ptr(&timer_bases
[BASE_DEF
]));
1750 * Called by the local, per-CPU timer interrupt on SMP.
1752 static void run_local_timers(void)
1754 struct timer_base
*base
= this_cpu_ptr(&timer_bases
[BASE_STD
]);
1756 hrtimer_run_queues();
1757 /* Raise the softirq only if required. */
1758 if (time_before(jiffies
, base
->next_expiry
)) {
1759 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON
))
1761 /* CPU is awake, so check the deferrable base. */
1763 if (time_before(jiffies
, base
->next_expiry
))
1766 raise_softirq(TIMER_SOFTIRQ
);
1770 * Called from the timer interrupt handler to charge one tick to the current
1771 * process. user_tick is 1 if the tick is user time, 0 for system.
1773 void update_process_times(int user_tick
)
1775 struct task_struct
*p
= current
;
1777 PRANDOM_ADD_NOISE(jiffies
, user_tick
, p
, 0);
1779 /* Note: this timer irq context must be accounted for as well. */
1780 account_process_tick(p
, user_tick
);
1782 rcu_sched_clock_irq(user_tick
);
1783 #ifdef CONFIG_IRQ_WORK
1788 if (IS_ENABLED(CONFIG_POSIX_TIMERS
))
1789 run_posix_cpu_timers();
1793 * Since schedule_timeout()'s timer is defined on the stack, it must store
1794 * the target task on the stack as well.
1796 struct process_timer
{
1797 struct timer_list timer
;
1798 struct task_struct
*task
;
1801 static void process_timeout(struct timer_list
*t
)
1803 struct process_timer
*timeout
= from_timer(timeout
, t
, timer
);
1805 wake_up_process(timeout
->task
);
1809 * schedule_timeout - sleep until timeout
1810 * @timeout: timeout value in jiffies
1812 * Make the current task sleep until @timeout jiffies have elapsed.
1813 * The function behavior depends on the current task state
1814 * (see also set_current_state() description):
1816 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1817 * at all. That happens because sched_submit_work() does nothing for
1818 * tasks in %TASK_RUNNING state.
1820 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1821 * pass before the routine returns unless the current task is explicitly
1822 * woken up, (e.g. by wake_up_process()).
1824 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1825 * delivered to the current task or the current task is explicitly woken
1828 * The current task state is guaranteed to be %TASK_RUNNING when this
1831 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1832 * the CPU away without a bound on the timeout. In this case the return
1833 * value will be %MAX_SCHEDULE_TIMEOUT.
1835 * Returns 0 when the timer has expired otherwise the remaining time in
1836 * jiffies will be returned. In all cases the return value is guaranteed
1837 * to be non-negative.
1839 signed long __sched
schedule_timeout(signed long timeout
)
1841 struct process_timer timer
;
1842 unsigned long expire
;
1846 case MAX_SCHEDULE_TIMEOUT
:
1848 * These two special cases are useful to be comfortable
1849 * in the caller. Nothing more. We could take
1850 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1851 * but I' d like to return a valid offset (>=0) to allow
1852 * the caller to do everything it want with the retval.
1858 * Another bit of PARANOID. Note that the retval will be
1859 * 0 since no piece of kernel is supposed to do a check
1860 * for a negative retval of schedule_timeout() (since it
1861 * should never happens anyway). You just have the printk()
1862 * that will tell you if something is gone wrong and where.
1865 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1866 "value %lx\n", timeout
);
1868 current
->state
= TASK_RUNNING
;
1873 expire
= timeout
+ jiffies
;
1875 timer
.task
= current
;
1876 timer_setup_on_stack(&timer
.timer
, process_timeout
, 0);
1877 __mod_timer(&timer
.timer
, expire
, MOD_TIMER_NOTPENDING
);
1879 del_singleshot_timer_sync(&timer
.timer
);
1881 /* Remove the timer from the object tracker */
1882 destroy_timer_on_stack(&timer
.timer
);
1884 timeout
= expire
- jiffies
;
1887 return timeout
< 0 ? 0 : timeout
;
1889 EXPORT_SYMBOL(schedule_timeout
);
1892 * We can use __set_current_state() here because schedule_timeout() calls
1893 * schedule() unconditionally.
1895 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1897 __set_current_state(TASK_INTERRUPTIBLE
);
1898 return schedule_timeout(timeout
);
1900 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1902 signed long __sched
schedule_timeout_killable(signed long timeout
)
1904 __set_current_state(TASK_KILLABLE
);
1905 return schedule_timeout(timeout
);
1907 EXPORT_SYMBOL(schedule_timeout_killable
);
1909 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1911 __set_current_state(TASK_UNINTERRUPTIBLE
);
1912 return schedule_timeout(timeout
);
1914 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1917 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1920 signed long __sched
schedule_timeout_idle(signed long timeout
)
1922 __set_current_state(TASK_IDLE
);
1923 return schedule_timeout(timeout
);
1925 EXPORT_SYMBOL(schedule_timeout_idle
);
1927 #ifdef CONFIG_HOTPLUG_CPU
1928 static void migrate_timer_list(struct timer_base
*new_base
, struct hlist_head
*head
)
1930 struct timer_list
*timer
;
1931 int cpu
= new_base
->cpu
;
1933 while (!hlist_empty(head
)) {
1934 timer
= hlist_entry(head
->first
, struct timer_list
, entry
);
1935 detach_timer(timer
, false);
1936 timer
->flags
= (timer
->flags
& ~TIMER_BASEMASK
) | cpu
;
1937 internal_add_timer(new_base
, timer
);
1941 int timers_prepare_cpu(unsigned int cpu
)
1943 struct timer_base
*base
;
1946 for (b
= 0; b
< NR_BASES
; b
++) {
1947 base
= per_cpu_ptr(&timer_bases
[b
], cpu
);
1948 base
->clk
= jiffies
;
1949 base
->next_expiry
= base
->clk
+ NEXT_TIMER_MAX_DELTA
;
1950 base
->is_idle
= false;
1955 int timers_dead_cpu(unsigned int cpu
)
1957 struct timer_base
*old_base
;
1958 struct timer_base
*new_base
;
1961 BUG_ON(cpu_online(cpu
));
1963 for (b
= 0; b
< NR_BASES
; b
++) {
1964 old_base
= per_cpu_ptr(&timer_bases
[b
], cpu
);
1965 new_base
= get_cpu_ptr(&timer_bases
[b
]);
1967 * The caller is globally serialized and nobody else
1968 * takes two locks at once, deadlock is not possible.
1970 raw_spin_lock_irq(&new_base
->lock
);
1971 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1974 * The current CPUs base clock might be stale. Update it
1975 * before moving the timers over.
1977 forward_timer_base(new_base
);
1979 BUG_ON(old_base
->running_timer
);
1981 for (i
= 0; i
< WHEEL_SIZE
; i
++)
1982 migrate_timer_list(new_base
, old_base
->vectors
+ i
);
1984 raw_spin_unlock(&old_base
->lock
);
1985 raw_spin_unlock_irq(&new_base
->lock
);
1986 put_cpu_ptr(&timer_bases
);
1991 #endif /* CONFIG_HOTPLUG_CPU */
1993 static void __init
init_timer_cpu(int cpu
)
1995 struct timer_base
*base
;
1998 for (i
= 0; i
< NR_BASES
; i
++) {
1999 base
= per_cpu_ptr(&timer_bases
[i
], cpu
);
2001 raw_spin_lock_init(&base
->lock
);
2002 base
->clk
= jiffies
;
2003 base
->next_expiry
= base
->clk
+ NEXT_TIMER_MAX_DELTA
;
2004 timer_base_init_expiry_lock(base
);
2008 static void __init
init_timer_cpus(void)
2012 for_each_possible_cpu(cpu
)
2013 init_timer_cpu(cpu
);
2016 void __init
init_timers(void)
2019 posix_cputimers_init_work();
2020 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
2024 * msleep - sleep safely even with waitqueue interruptions
2025 * @msecs: Time in milliseconds to sleep for
2027 void msleep(unsigned int msecs
)
2029 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
2032 timeout
= schedule_timeout_uninterruptible(timeout
);
2035 EXPORT_SYMBOL(msleep
);
2038 * msleep_interruptible - sleep waiting for signals
2039 * @msecs: Time in milliseconds to sleep for
2041 unsigned long msleep_interruptible(unsigned int msecs
)
2043 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
2045 while (timeout
&& !signal_pending(current
))
2046 timeout
= schedule_timeout_interruptible(timeout
);
2047 return jiffies_to_msecs(timeout
);
2050 EXPORT_SYMBOL(msleep_interruptible
);
2053 * usleep_range - Sleep for an approximate time
2054 * @min: Minimum time in usecs to sleep
2055 * @max: Maximum time in usecs to sleep
2057 * In non-atomic context where the exact wakeup time is flexible, use
2058 * usleep_range() instead of udelay(). The sleep improves responsiveness
2059 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2060 * power usage by allowing hrtimers to take advantage of an already-
2061 * scheduled interrupt instead of scheduling a new one just for this sleep.
2063 void __sched
usleep_range(unsigned long min
, unsigned long max
)
2065 ktime_t exp
= ktime_add_us(ktime_get(), min
);
2066 u64 delta
= (u64
)(max
- min
) * NSEC_PER_USEC
;
2069 __set_current_state(TASK_UNINTERRUPTIBLE
);
2070 /* Do not return before the requested sleep time has elapsed */
2071 if (!schedule_hrtimeout_range(&exp
, delta
, HRTIMER_MODE_ABS
))
2075 EXPORT_SYMBOL(usleep_range
);