Merge tag 'block-5.11-2021-01-16' of git://git.kernel.dk/linux-block
[linux/fpc-iii.git] / lib / percpu-refcount.c
blobe59eda07305e61481beef67dd2122d31f3718d3c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "%s: " fmt, __func__
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/wait.h>
7 #include <linux/slab.h>
8 #include <linux/percpu-refcount.h>
11 * Initially, a percpu refcount is just a set of percpu counters. Initially, we
12 * don't try to detect the ref hitting 0 - which means that get/put can just
13 * increment or decrement the local counter. Note that the counter on a
14 * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
15 * percpu counters will all sum to the correct value
17 * (More precisely: because modular arithmetic is commutative the sum of all the
18 * percpu_count vars will be equal to what it would have been if all the gets
19 * and puts were done to a single integer, even if some of the percpu integers
20 * overflow or underflow).
22 * The real trick to implementing percpu refcounts is shutdown. We can't detect
23 * the ref hitting 0 on every put - this would require global synchronization
24 * and defeat the whole purpose of using percpu refs.
26 * What we do is require the user to keep track of the initial refcount; we know
27 * the ref can't hit 0 before the user drops the initial ref, so as long as we
28 * convert to non percpu mode before the initial ref is dropped everything
29 * works.
31 * Converting to non percpu mode is done with some RCUish stuff in
32 * percpu_ref_kill. Additionally, we need a bias value so that the
33 * atomic_long_t can't hit 0 before we've added up all the percpu refs.
36 #define PERCPU_COUNT_BIAS (1LU << (BITS_PER_LONG - 1))
38 static DEFINE_SPINLOCK(percpu_ref_switch_lock);
39 static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);
41 static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
43 return (unsigned long __percpu *)
44 (ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
47 /**
48 * percpu_ref_init - initialize a percpu refcount
49 * @ref: percpu_ref to initialize
50 * @release: function which will be called when refcount hits 0
51 * @flags: PERCPU_REF_INIT_* flags
52 * @gfp: allocation mask to use
54 * Initializes @ref. @ref starts out in percpu mode with a refcount of 1 unless
55 * @flags contains PERCPU_REF_INIT_ATOMIC or PERCPU_REF_INIT_DEAD. These flags
56 * change the start state to atomic with the latter setting the initial refcount
57 * to 0. See the definitions of PERCPU_REF_INIT_* flags for flag behaviors.
59 * Note that @release must not sleep - it may potentially be called from RCU
60 * callback context by percpu_ref_kill().
62 int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
63 unsigned int flags, gfp_t gfp)
65 size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
66 __alignof__(unsigned long));
67 unsigned long start_count = 0;
68 struct percpu_ref_data *data;
70 ref->percpu_count_ptr = (unsigned long)
71 __alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
72 if (!ref->percpu_count_ptr)
73 return -ENOMEM;
75 data = kzalloc(sizeof(*ref->data), gfp);
76 if (!data) {
77 free_percpu((void __percpu *)ref->percpu_count_ptr);
78 return -ENOMEM;
81 data->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
82 data->allow_reinit = flags & PERCPU_REF_ALLOW_REINIT;
84 if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD)) {
85 ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
86 data->allow_reinit = true;
87 } else {
88 start_count += PERCPU_COUNT_BIAS;
91 if (flags & PERCPU_REF_INIT_DEAD)
92 ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
93 else
94 start_count++;
96 atomic_long_set(&data->count, start_count);
98 data->release = release;
99 data->confirm_switch = NULL;
100 data->ref = ref;
101 ref->data = data;
102 return 0;
104 EXPORT_SYMBOL_GPL(percpu_ref_init);
106 static void __percpu_ref_exit(struct percpu_ref *ref)
108 unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
110 if (percpu_count) {
111 /* non-NULL confirm_switch indicates switching in progress */
112 WARN_ON_ONCE(ref->data && ref->data->confirm_switch);
113 free_percpu(percpu_count);
114 ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
119 * percpu_ref_exit - undo percpu_ref_init()
120 * @ref: percpu_ref to exit
122 * This function exits @ref. The caller is responsible for ensuring that
123 * @ref is no longer in active use. The usual places to invoke this
124 * function from are the @ref->release() callback or in init failure path
125 * where percpu_ref_init() succeeded but other parts of the initialization
126 * of the embedding object failed.
128 void percpu_ref_exit(struct percpu_ref *ref)
130 struct percpu_ref_data *data = ref->data;
131 unsigned long flags;
133 __percpu_ref_exit(ref);
135 if (!data)
136 return;
138 spin_lock_irqsave(&percpu_ref_switch_lock, flags);
139 ref->percpu_count_ptr |= atomic_long_read(&ref->data->count) <<
140 __PERCPU_REF_FLAG_BITS;
141 ref->data = NULL;
142 spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
144 kfree(data);
146 EXPORT_SYMBOL_GPL(percpu_ref_exit);
148 static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
150 struct percpu_ref_data *data = container_of(rcu,
151 struct percpu_ref_data, rcu);
152 struct percpu_ref *ref = data->ref;
154 data->confirm_switch(ref);
155 data->confirm_switch = NULL;
156 wake_up_all(&percpu_ref_switch_waitq);
158 if (!data->allow_reinit)
159 __percpu_ref_exit(ref);
161 /* drop ref from percpu_ref_switch_to_atomic() */
162 percpu_ref_put(ref);
165 static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
167 struct percpu_ref_data *data = container_of(rcu,
168 struct percpu_ref_data, rcu);
169 struct percpu_ref *ref = data->ref;
170 unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
171 unsigned long count = 0;
172 int cpu;
174 for_each_possible_cpu(cpu)
175 count += *per_cpu_ptr(percpu_count, cpu);
177 pr_debug("global %lu percpu %lu\n",
178 atomic_long_read(&data->count), count);
181 * It's crucial that we sum the percpu counters _before_ adding the sum
182 * to &ref->count; since gets could be happening on one cpu while puts
183 * happen on another, adding a single cpu's count could cause
184 * @ref->count to hit 0 before we've got a consistent value - but the
185 * sum of all the counts will be consistent and correct.
187 * Subtracting the bias value then has to happen _after_ adding count to
188 * &ref->count; we need the bias value to prevent &ref->count from
189 * reaching 0 before we add the percpu counts. But doing it at the same
190 * time is equivalent and saves us atomic operations:
192 atomic_long_add((long)count - PERCPU_COUNT_BIAS, &data->count);
194 WARN_ONCE(atomic_long_read(&data->count) <= 0,
195 "percpu ref (%ps) <= 0 (%ld) after switching to atomic",
196 data->release, atomic_long_read(&data->count));
198 /* @ref is viewed as dead on all CPUs, send out switch confirmation */
199 percpu_ref_call_confirm_rcu(rcu);
202 static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
206 static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
207 percpu_ref_func_t *confirm_switch)
209 if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) {
210 if (confirm_switch)
211 confirm_switch(ref);
212 return;
215 /* switching from percpu to atomic */
216 ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
219 * Non-NULL ->confirm_switch is used to indicate that switching is
220 * in progress. Use noop one if unspecified.
222 ref->data->confirm_switch = confirm_switch ?:
223 percpu_ref_noop_confirm_switch;
225 percpu_ref_get(ref); /* put after confirmation */
226 call_rcu(&ref->data->rcu, percpu_ref_switch_to_atomic_rcu);
229 static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
231 unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
232 int cpu;
234 BUG_ON(!percpu_count);
236 if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
237 return;
239 if (WARN_ON_ONCE(!ref->data->allow_reinit))
240 return;
242 atomic_long_add(PERCPU_COUNT_BIAS, &ref->data->count);
245 * Restore per-cpu operation. smp_store_release() is paired
246 * with READ_ONCE() in __ref_is_percpu() and guarantees that the
247 * zeroing is visible to all percpu accesses which can see the
248 * following __PERCPU_REF_ATOMIC clearing.
250 for_each_possible_cpu(cpu)
251 *per_cpu_ptr(percpu_count, cpu) = 0;
253 smp_store_release(&ref->percpu_count_ptr,
254 ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
257 static void __percpu_ref_switch_mode(struct percpu_ref *ref,
258 percpu_ref_func_t *confirm_switch)
260 struct percpu_ref_data *data = ref->data;
262 lockdep_assert_held(&percpu_ref_switch_lock);
265 * If the previous ATOMIC switching hasn't finished yet, wait for
266 * its completion. If the caller ensures that ATOMIC switching
267 * isn't in progress, this function can be called from any context.
269 wait_event_lock_irq(percpu_ref_switch_waitq, !data->confirm_switch,
270 percpu_ref_switch_lock);
272 if (data->force_atomic || (ref->percpu_count_ptr & __PERCPU_REF_DEAD))
273 __percpu_ref_switch_to_atomic(ref, confirm_switch);
274 else
275 __percpu_ref_switch_to_percpu(ref);
279 * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
280 * @ref: percpu_ref to switch to atomic mode
281 * @confirm_switch: optional confirmation callback
283 * There's no reason to use this function for the usual reference counting.
284 * Use percpu_ref_kill[_and_confirm]().
286 * Schedule switching of @ref to atomic mode. All its percpu counts will
287 * be collected to the main atomic counter. On completion, when all CPUs
288 * are guaraneed to be in atomic mode, @confirm_switch, which may not
289 * block, is invoked. This function may be invoked concurrently with all
290 * the get/put operations and can safely be mixed with kill and reinit
291 * operations. Note that @ref will stay in atomic mode across kill/reinit
292 * cycles until percpu_ref_switch_to_percpu() is called.
294 * This function may block if @ref is in the process of switching to atomic
295 * mode. If the caller ensures that @ref is not in the process of
296 * switching to atomic mode, this function can be called from any context.
298 void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
299 percpu_ref_func_t *confirm_switch)
301 unsigned long flags;
303 spin_lock_irqsave(&percpu_ref_switch_lock, flags);
305 ref->data->force_atomic = true;
306 __percpu_ref_switch_mode(ref, confirm_switch);
308 spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
310 EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic);
313 * percpu_ref_switch_to_atomic_sync - switch a percpu_ref to atomic mode
314 * @ref: percpu_ref to switch to atomic mode
316 * Schedule switching the ref to atomic mode, and wait for the
317 * switch to complete. Caller must ensure that no other thread
318 * will switch back to percpu mode.
320 void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref)
322 percpu_ref_switch_to_atomic(ref, NULL);
323 wait_event(percpu_ref_switch_waitq, !ref->data->confirm_switch);
325 EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic_sync);
328 * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
329 * @ref: percpu_ref to switch to percpu mode
331 * There's no reason to use this function for the usual reference counting.
332 * To re-use an expired ref, use percpu_ref_reinit().
334 * Switch @ref to percpu mode. This function may be invoked concurrently
335 * with all the get/put operations and can safely be mixed with kill and
336 * reinit operations. This function reverses the sticky atomic state set
337 * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic(). If @ref is
338 * dying or dead, the actual switching takes place on the following
339 * percpu_ref_reinit().
341 * This function may block if @ref is in the process of switching to atomic
342 * mode. If the caller ensures that @ref is not in the process of
343 * switching to atomic mode, this function can be called from any context.
345 void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
347 unsigned long flags;
349 spin_lock_irqsave(&percpu_ref_switch_lock, flags);
351 ref->data->force_atomic = false;
352 __percpu_ref_switch_mode(ref, NULL);
354 spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
356 EXPORT_SYMBOL_GPL(percpu_ref_switch_to_percpu);
359 * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
360 * @ref: percpu_ref to kill
361 * @confirm_kill: optional confirmation callback
363 * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
364 * @confirm_kill is not NULL. @confirm_kill, which may not block, will be
365 * called after @ref is seen as dead from all CPUs at which point all
366 * further invocations of percpu_ref_tryget_live() will fail. See
367 * percpu_ref_tryget_live() for details.
369 * This function normally doesn't block and can be called from any context
370 * but it may block if @confirm_kill is specified and @ref is in the
371 * process of switching to atomic mode by percpu_ref_switch_to_atomic().
373 * There are no implied RCU grace periods between kill and release.
375 void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
376 percpu_ref_func_t *confirm_kill)
378 unsigned long flags;
380 spin_lock_irqsave(&percpu_ref_switch_lock, flags);
382 WARN_ONCE(ref->percpu_count_ptr & __PERCPU_REF_DEAD,
383 "%s called more than once on %ps!", __func__,
384 ref->data->release);
386 ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
387 __percpu_ref_switch_mode(ref, confirm_kill);
388 percpu_ref_put(ref);
390 spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
392 EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
395 * percpu_ref_is_zero - test whether a percpu refcount reached zero
396 * @ref: percpu_ref to test
398 * Returns %true if @ref reached zero.
400 * This function is safe to call as long as @ref is between init and exit.
402 bool percpu_ref_is_zero(struct percpu_ref *ref)
404 unsigned long __percpu *percpu_count;
405 unsigned long count, flags;
407 if (__ref_is_percpu(ref, &percpu_count))
408 return false;
410 /* protect us from being destroyed */
411 spin_lock_irqsave(&percpu_ref_switch_lock, flags);
412 if (ref->data)
413 count = atomic_long_read(&ref->data->count);
414 else
415 count = ref->percpu_count_ptr >> __PERCPU_REF_FLAG_BITS;
416 spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
418 return count == 0;
420 EXPORT_SYMBOL_GPL(percpu_ref_is_zero);
423 * percpu_ref_reinit - re-initialize a percpu refcount
424 * @ref: perpcu_ref to re-initialize
426 * Re-initialize @ref so that it's in the same state as when it finished
427 * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD. @ref must have been
428 * initialized successfully and reached 0 but not exited.
430 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
431 * this function is in progress.
433 void percpu_ref_reinit(struct percpu_ref *ref)
435 WARN_ON_ONCE(!percpu_ref_is_zero(ref));
437 percpu_ref_resurrect(ref);
439 EXPORT_SYMBOL_GPL(percpu_ref_reinit);
442 * percpu_ref_resurrect - modify a percpu refcount from dead to live
443 * @ref: perpcu_ref to resurrect
445 * Modify @ref so that it's in the same state as before percpu_ref_kill() was
446 * called. @ref must be dead but must not yet have exited.
448 * If @ref->release() frees @ref then the caller is responsible for
449 * guaranteeing that @ref->release() does not get called while this
450 * function is in progress.
452 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
453 * this function is in progress.
455 void percpu_ref_resurrect(struct percpu_ref *ref)
457 unsigned long __percpu *percpu_count;
458 unsigned long flags;
460 spin_lock_irqsave(&percpu_ref_switch_lock, flags);
462 WARN_ON_ONCE(!(ref->percpu_count_ptr & __PERCPU_REF_DEAD));
463 WARN_ON_ONCE(__ref_is_percpu(ref, &percpu_count));
465 ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
466 percpu_ref_get(ref);
467 __percpu_ref_switch_mode(ref, NULL);
469 spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
471 EXPORT_SYMBOL_GPL(percpu_ref_resurrect);