1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2001 Momchil Velikov
4 * Portions Copyright (C) 2001 Christoph Hellwig
5 * Copyright (C) 2005 SGI, Christoph Lameter
6 * Copyright (C) 2006 Nick Piggin
7 * Copyright (C) 2012 Konstantin Khlebnikov
8 * Copyright (C) 2016 Intel, Matthew Wilcox
9 * Copyright (C) 2016 Intel, Ross Zwisler
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/cpu.h>
16 #include <linux/errno.h>
17 #include <linux/export.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/percpu.h>
23 #include <linux/preempt.h> /* in_interrupt() */
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/xarray.h>
31 * Radix tree node cache.
33 struct kmem_cache
*radix_tree_node_cachep
;
36 * The radix tree is variable-height, so an insert operation not only has
37 * to build the branch to its corresponding item, it also has to build the
38 * branch to existing items if the size has to be increased (by
41 * The worst case is a zero height tree with just a single item at index 0,
42 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
43 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
46 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
49 * The IDR does not have to be as high as the radix tree since it uses
50 * signed integers, not unsigned longs.
52 #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
53 #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
54 RADIX_TREE_MAP_SHIFT))
55 #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
58 * Per-cpu pool of preloaded nodes
60 DEFINE_PER_CPU(struct radix_tree_preload
, radix_tree_preloads
) = {
61 .lock
= INIT_LOCAL_LOCK(lock
),
63 EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads
);
65 static inline struct radix_tree_node
*entry_to_node(void *ptr
)
67 return (void *)((unsigned long)ptr
& ~RADIX_TREE_INTERNAL_NODE
);
70 static inline void *node_to_entry(void *ptr
)
72 return (void *)((unsigned long)ptr
| RADIX_TREE_INTERNAL_NODE
);
75 #define RADIX_TREE_RETRY XA_RETRY_ENTRY
77 static inline unsigned long
78 get_slot_offset(const struct radix_tree_node
*parent
, void __rcu
**slot
)
80 return parent
? slot
- parent
->slots
: 0;
83 static unsigned int radix_tree_descend(const struct radix_tree_node
*parent
,
84 struct radix_tree_node
**nodep
, unsigned long index
)
86 unsigned int offset
= (index
>> parent
->shift
) & RADIX_TREE_MAP_MASK
;
87 void __rcu
**entry
= rcu_dereference_raw(parent
->slots
[offset
]);
89 *nodep
= (void *)entry
;
93 static inline gfp_t
root_gfp_mask(const struct radix_tree_root
*root
)
95 return root
->xa_flags
& (__GFP_BITS_MASK
& ~GFP_ZONEMASK
);
98 static inline void tag_set(struct radix_tree_node
*node
, unsigned int tag
,
101 __set_bit(offset
, node
->tags
[tag
]);
104 static inline void tag_clear(struct radix_tree_node
*node
, unsigned int tag
,
107 __clear_bit(offset
, node
->tags
[tag
]);
110 static inline int tag_get(const struct radix_tree_node
*node
, unsigned int tag
,
113 return test_bit(offset
, node
->tags
[tag
]);
116 static inline void root_tag_set(struct radix_tree_root
*root
, unsigned tag
)
118 root
->xa_flags
|= (__force gfp_t
)(1 << (tag
+ ROOT_TAG_SHIFT
));
121 static inline void root_tag_clear(struct radix_tree_root
*root
, unsigned tag
)
123 root
->xa_flags
&= (__force gfp_t
)~(1 << (tag
+ ROOT_TAG_SHIFT
));
126 static inline void root_tag_clear_all(struct radix_tree_root
*root
)
128 root
->xa_flags
&= (__force gfp_t
)((1 << ROOT_TAG_SHIFT
) - 1);
131 static inline int root_tag_get(const struct radix_tree_root
*root
, unsigned tag
)
133 return (__force
int)root
->xa_flags
& (1 << (tag
+ ROOT_TAG_SHIFT
));
136 static inline unsigned root_tags_get(const struct radix_tree_root
*root
)
138 return (__force
unsigned)root
->xa_flags
>> ROOT_TAG_SHIFT
;
141 static inline bool is_idr(const struct radix_tree_root
*root
)
143 return !!(root
->xa_flags
& ROOT_IS_IDR
);
147 * Returns 1 if any slot in the node has this tag set.
148 * Otherwise returns 0.
150 static inline int any_tag_set(const struct radix_tree_node
*node
,
154 for (idx
= 0; idx
< RADIX_TREE_TAG_LONGS
; idx
++) {
155 if (node
->tags
[tag
][idx
])
161 static inline void all_tag_set(struct radix_tree_node
*node
, unsigned int tag
)
163 bitmap_fill(node
->tags
[tag
], RADIX_TREE_MAP_SIZE
);
167 * radix_tree_find_next_bit - find the next set bit in a memory region
169 * @addr: The address to base the search on
170 * @size: The bitmap size in bits
171 * @offset: The bitnumber to start searching at
173 * Unrollable variant of find_next_bit() for constant size arrays.
174 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
175 * Returns next bit offset, or size if nothing found.
177 static __always_inline
unsigned long
178 radix_tree_find_next_bit(struct radix_tree_node
*node
, unsigned int tag
,
179 unsigned long offset
)
181 const unsigned long *addr
= node
->tags
[tag
];
183 if (offset
< RADIX_TREE_MAP_SIZE
) {
186 addr
+= offset
/ BITS_PER_LONG
;
187 tmp
= *addr
>> (offset
% BITS_PER_LONG
);
189 return __ffs(tmp
) + offset
;
190 offset
= (offset
+ BITS_PER_LONG
) & ~(BITS_PER_LONG
- 1);
191 while (offset
< RADIX_TREE_MAP_SIZE
) {
194 return __ffs(tmp
) + offset
;
195 offset
+= BITS_PER_LONG
;
198 return RADIX_TREE_MAP_SIZE
;
201 static unsigned int iter_offset(const struct radix_tree_iter
*iter
)
203 return iter
->index
& RADIX_TREE_MAP_MASK
;
207 * The maximum index which can be stored in a radix tree
209 static inline unsigned long shift_maxindex(unsigned int shift
)
211 return (RADIX_TREE_MAP_SIZE
<< shift
) - 1;
214 static inline unsigned long node_maxindex(const struct radix_tree_node
*node
)
216 return shift_maxindex(node
->shift
);
219 static unsigned long next_index(unsigned long index
,
220 const struct radix_tree_node
*node
,
221 unsigned long offset
)
223 return (index
& ~node_maxindex(node
)) + (offset
<< node
->shift
);
227 * This assumes that the caller has performed appropriate preallocation, and
228 * that the caller has pinned this thread of control to the current CPU.
230 static struct radix_tree_node
*
231 radix_tree_node_alloc(gfp_t gfp_mask
, struct radix_tree_node
*parent
,
232 struct radix_tree_root
*root
,
233 unsigned int shift
, unsigned int offset
,
234 unsigned int count
, unsigned int nr_values
)
236 struct radix_tree_node
*ret
= NULL
;
239 * Preload code isn't irq safe and it doesn't make sense to use
240 * preloading during an interrupt anyway as all the allocations have
241 * to be atomic. So just do normal allocation when in interrupt.
243 if (!gfpflags_allow_blocking(gfp_mask
) && !in_interrupt()) {
244 struct radix_tree_preload
*rtp
;
247 * Even if the caller has preloaded, try to allocate from the
248 * cache first for the new node to get accounted to the memory
251 ret
= kmem_cache_alloc(radix_tree_node_cachep
,
252 gfp_mask
| __GFP_NOWARN
);
257 * Provided the caller has preloaded here, we will always
258 * succeed in getting a node here (and never reach
261 rtp
= this_cpu_ptr(&radix_tree_preloads
);
264 rtp
->nodes
= ret
->parent
;
268 * Update the allocation stack trace as this is more useful
271 kmemleak_update_trace(ret
);
274 ret
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
276 BUG_ON(radix_tree_is_internal_node(ret
));
279 ret
->offset
= offset
;
281 ret
->nr_values
= nr_values
;
282 ret
->parent
= parent
;
288 void radix_tree_node_rcu_free(struct rcu_head
*head
)
290 struct radix_tree_node
*node
=
291 container_of(head
, struct radix_tree_node
, rcu_head
);
294 * Must only free zeroed nodes into the slab. We can be left with
295 * non-NULL entries by radix_tree_free_nodes, so clear the entries
298 memset(node
->slots
, 0, sizeof(node
->slots
));
299 memset(node
->tags
, 0, sizeof(node
->tags
));
300 INIT_LIST_HEAD(&node
->private_list
);
302 kmem_cache_free(radix_tree_node_cachep
, node
);
306 radix_tree_node_free(struct radix_tree_node
*node
)
308 call_rcu(&node
->rcu_head
, radix_tree_node_rcu_free
);
312 * Load up this CPU's radix_tree_node buffer with sufficient objects to
313 * ensure that the addition of a single element in the tree cannot fail. On
314 * success, return zero, with preemption disabled. On error, return -ENOMEM
315 * with preemption not disabled.
317 * To make use of this facility, the radix tree must be initialised without
318 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
320 static __must_check
int __radix_tree_preload(gfp_t gfp_mask
, unsigned nr
)
322 struct radix_tree_preload
*rtp
;
323 struct radix_tree_node
*node
;
327 * Nodes preloaded by one cgroup can be used by another cgroup, so
328 * they should never be accounted to any particular memory cgroup.
330 gfp_mask
&= ~__GFP_ACCOUNT
;
332 local_lock(&radix_tree_preloads
.lock
);
333 rtp
= this_cpu_ptr(&radix_tree_preloads
);
334 while (rtp
->nr
< nr
) {
335 local_unlock(&radix_tree_preloads
.lock
);
336 node
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
339 local_lock(&radix_tree_preloads
.lock
);
340 rtp
= this_cpu_ptr(&radix_tree_preloads
);
342 node
->parent
= rtp
->nodes
;
346 kmem_cache_free(radix_tree_node_cachep
, node
);
355 * Load up this CPU's radix_tree_node buffer with sufficient objects to
356 * ensure that the addition of a single element in the tree cannot fail. On
357 * success, return zero, with preemption disabled. On error, return -ENOMEM
358 * with preemption not disabled.
360 * To make use of this facility, the radix tree must be initialised without
361 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
363 int radix_tree_preload(gfp_t gfp_mask
)
365 /* Warn on non-sensical use... */
366 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask
));
367 return __radix_tree_preload(gfp_mask
, RADIX_TREE_PRELOAD_SIZE
);
369 EXPORT_SYMBOL(radix_tree_preload
);
372 * The same as above function, except we don't guarantee preloading happens.
373 * We do it, if we decide it helps. On success, return zero with preemption
374 * disabled. On error, return -ENOMEM with preemption not disabled.
376 int radix_tree_maybe_preload(gfp_t gfp_mask
)
378 if (gfpflags_allow_blocking(gfp_mask
))
379 return __radix_tree_preload(gfp_mask
, RADIX_TREE_PRELOAD_SIZE
);
380 /* Preloading doesn't help anything with this gfp mask, skip it */
381 local_lock(&radix_tree_preloads
.lock
);
384 EXPORT_SYMBOL(radix_tree_maybe_preload
);
386 static unsigned radix_tree_load_root(const struct radix_tree_root
*root
,
387 struct radix_tree_node
**nodep
, unsigned long *maxindex
)
389 struct radix_tree_node
*node
= rcu_dereference_raw(root
->xa_head
);
393 if (likely(radix_tree_is_internal_node(node
))) {
394 node
= entry_to_node(node
);
395 *maxindex
= node_maxindex(node
);
396 return node
->shift
+ RADIX_TREE_MAP_SHIFT
;
404 * Extend a radix tree so it can store key @index.
406 static int radix_tree_extend(struct radix_tree_root
*root
, gfp_t gfp
,
407 unsigned long index
, unsigned int shift
)
410 unsigned int maxshift
;
413 /* Figure out what the shift should be. */
415 while (index
> shift_maxindex(maxshift
))
416 maxshift
+= RADIX_TREE_MAP_SHIFT
;
418 entry
= rcu_dereference_raw(root
->xa_head
);
419 if (!entry
&& (!is_idr(root
) || root_tag_get(root
, IDR_FREE
)))
423 struct radix_tree_node
*node
= radix_tree_node_alloc(gfp
, NULL
,
424 root
, shift
, 0, 1, 0);
429 all_tag_set(node
, IDR_FREE
);
430 if (!root_tag_get(root
, IDR_FREE
)) {
431 tag_clear(node
, IDR_FREE
, 0);
432 root_tag_set(root
, IDR_FREE
);
435 /* Propagate the aggregated tag info to the new child */
436 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
437 if (root_tag_get(root
, tag
))
438 tag_set(node
, tag
, 0);
442 BUG_ON(shift
> BITS_PER_LONG
);
443 if (radix_tree_is_internal_node(entry
)) {
444 entry_to_node(entry
)->parent
= node
;
445 } else if (xa_is_value(entry
)) {
446 /* Moving a value entry root->xa_head to a node */
450 * entry was already in the radix tree, so we do not need
451 * rcu_assign_pointer here
453 node
->slots
[0] = (void __rcu
*)entry
;
454 entry
= node_to_entry(node
);
455 rcu_assign_pointer(root
->xa_head
, entry
);
456 shift
+= RADIX_TREE_MAP_SHIFT
;
457 } while (shift
<= maxshift
);
459 return maxshift
+ RADIX_TREE_MAP_SHIFT
;
463 * radix_tree_shrink - shrink radix tree to minimum height
464 * @root radix tree root
466 static inline bool radix_tree_shrink(struct radix_tree_root
*root
)
471 struct radix_tree_node
*node
= rcu_dereference_raw(root
->xa_head
);
472 struct radix_tree_node
*child
;
474 if (!radix_tree_is_internal_node(node
))
476 node
= entry_to_node(node
);
479 * The candidate node has more than one child, or its child
480 * is not at the leftmost slot, we cannot shrink.
482 if (node
->count
!= 1)
484 child
= rcu_dereference_raw(node
->slots
[0]);
489 * For an IDR, we must not shrink entry 0 into the root in
490 * case somebody calls idr_replace() with a pointer that
491 * appears to be an internal entry
493 if (!node
->shift
&& is_idr(root
))
496 if (radix_tree_is_internal_node(child
))
497 entry_to_node(child
)->parent
= NULL
;
500 * We don't need rcu_assign_pointer(), since we are simply
501 * moving the node from one part of the tree to another: if it
502 * was safe to dereference the old pointer to it
503 * (node->slots[0]), it will be safe to dereference the new
504 * one (root->xa_head) as far as dependent read barriers go.
506 root
->xa_head
= (void __rcu
*)child
;
507 if (is_idr(root
) && !tag_get(node
, IDR_FREE
, 0))
508 root_tag_clear(root
, IDR_FREE
);
511 * We have a dilemma here. The node's slot[0] must not be
512 * NULLed in case there are concurrent lookups expecting to
513 * find the item. However if this was a bottom-level node,
514 * then it may be subject to the slot pointer being visible
515 * to callers dereferencing it. If item corresponding to
516 * slot[0] is subsequently deleted, these callers would expect
517 * their slot to become empty sooner or later.
519 * For example, lockless pagecache will look up a slot, deref
520 * the page pointer, and if the page has 0 refcount it means it
521 * was concurrently deleted from pagecache so try the deref
522 * again. Fortunately there is already a requirement for logic
523 * to retry the entire slot lookup -- the indirect pointer
524 * problem (replacing direct root node with an indirect pointer
525 * also results in a stale slot). So tag the slot as indirect
526 * to force callers to retry.
529 if (!radix_tree_is_internal_node(child
)) {
530 node
->slots
[0] = (void __rcu
*)RADIX_TREE_RETRY
;
533 WARN_ON_ONCE(!list_empty(&node
->private_list
));
534 radix_tree_node_free(node
);
541 static bool delete_node(struct radix_tree_root
*root
,
542 struct radix_tree_node
*node
)
544 bool deleted
= false;
547 struct radix_tree_node
*parent
;
550 if (node_to_entry(node
) ==
551 rcu_dereference_raw(root
->xa_head
))
552 deleted
|= radix_tree_shrink(root
);
556 parent
= node
->parent
;
558 parent
->slots
[node
->offset
] = NULL
;
562 * Shouldn't the tags already have all been cleared
566 root_tag_clear_all(root
);
567 root
->xa_head
= NULL
;
570 WARN_ON_ONCE(!list_empty(&node
->private_list
));
571 radix_tree_node_free(node
);
581 * __radix_tree_create - create a slot in a radix tree
582 * @root: radix tree root
584 * @nodep: returns node
585 * @slotp: returns slot
587 * Create, if necessary, and return the node and slot for an item
588 * at position @index in the radix tree @root.
590 * Until there is more than one item in the tree, no nodes are
591 * allocated and @root->xa_head is used as a direct slot instead of
592 * pointing to a node, in which case *@nodep will be NULL.
594 * Returns -ENOMEM, or 0 for success.
596 static int __radix_tree_create(struct radix_tree_root
*root
,
597 unsigned long index
, struct radix_tree_node
**nodep
,
600 struct radix_tree_node
*node
= NULL
, *child
;
601 void __rcu
**slot
= (void __rcu
**)&root
->xa_head
;
602 unsigned long maxindex
;
603 unsigned int shift
, offset
= 0;
604 unsigned long max
= index
;
605 gfp_t gfp
= root_gfp_mask(root
);
607 shift
= radix_tree_load_root(root
, &child
, &maxindex
);
609 /* Make sure the tree is high enough. */
610 if (max
> maxindex
) {
611 int error
= radix_tree_extend(root
, gfp
, max
, shift
);
615 child
= rcu_dereference_raw(root
->xa_head
);
619 shift
-= RADIX_TREE_MAP_SHIFT
;
621 /* Have to add a child node. */
622 child
= radix_tree_node_alloc(gfp
, node
, root
, shift
,
626 rcu_assign_pointer(*slot
, node_to_entry(child
));
629 } else if (!radix_tree_is_internal_node(child
))
632 /* Go a level down */
633 node
= entry_to_node(child
);
634 offset
= radix_tree_descend(node
, &child
, index
);
635 slot
= &node
->slots
[offset
];
646 * Free any nodes below this node. The tree is presumed to not need
647 * shrinking, and any user data in the tree is presumed to not need a
648 * destructor called on it. If we need to add a destructor, we can
649 * add that functionality later. Note that we may not clear tags or
650 * slots from the tree as an RCU walker may still have a pointer into
651 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
652 * but we'll still have to clear those in rcu_free.
654 static void radix_tree_free_nodes(struct radix_tree_node
*node
)
657 struct radix_tree_node
*child
= entry_to_node(node
);
660 void *entry
= rcu_dereference_raw(child
->slots
[offset
]);
661 if (xa_is_node(entry
) && child
->shift
) {
662 child
= entry_to_node(entry
);
667 while (offset
== RADIX_TREE_MAP_SIZE
) {
668 struct radix_tree_node
*old
= child
;
669 offset
= child
->offset
+ 1;
670 child
= child
->parent
;
671 WARN_ON_ONCE(!list_empty(&old
->private_list
));
672 radix_tree_node_free(old
);
673 if (old
== entry_to_node(node
))
679 static inline int insert_entries(struct radix_tree_node
*node
,
680 void __rcu
**slot
, void *item
, bool replace
)
684 rcu_assign_pointer(*slot
, item
);
687 if (xa_is_value(item
))
694 * __radix_tree_insert - insert into a radix tree
695 * @root: radix tree root
697 * @item: item to insert
699 * Insert an item into the radix tree at position @index.
701 int radix_tree_insert(struct radix_tree_root
*root
, unsigned long index
,
704 struct radix_tree_node
*node
;
708 BUG_ON(radix_tree_is_internal_node(item
));
710 error
= __radix_tree_create(root
, index
, &node
, &slot
);
714 error
= insert_entries(node
, slot
, item
, false);
719 unsigned offset
= get_slot_offset(node
, slot
);
720 BUG_ON(tag_get(node
, 0, offset
));
721 BUG_ON(tag_get(node
, 1, offset
));
722 BUG_ON(tag_get(node
, 2, offset
));
724 BUG_ON(root_tags_get(root
));
729 EXPORT_SYMBOL(radix_tree_insert
);
732 * __radix_tree_lookup - lookup an item in a radix tree
733 * @root: radix tree root
735 * @nodep: returns node
736 * @slotp: returns slot
738 * Lookup and return the item at position @index in the radix
741 * Until there is more than one item in the tree, no nodes are
742 * allocated and @root->xa_head is used as a direct slot instead of
743 * pointing to a node, in which case *@nodep will be NULL.
745 void *__radix_tree_lookup(const struct radix_tree_root
*root
,
746 unsigned long index
, struct radix_tree_node
**nodep
,
749 struct radix_tree_node
*node
, *parent
;
750 unsigned long maxindex
;
755 slot
= (void __rcu
**)&root
->xa_head
;
756 radix_tree_load_root(root
, &node
, &maxindex
);
757 if (index
> maxindex
)
760 while (radix_tree_is_internal_node(node
)) {
763 parent
= entry_to_node(node
);
764 offset
= radix_tree_descend(parent
, &node
, index
);
765 slot
= parent
->slots
+ offset
;
766 if (node
== RADIX_TREE_RETRY
)
768 if (parent
->shift
== 0)
780 * radix_tree_lookup_slot - lookup a slot in a radix tree
781 * @root: radix tree root
784 * Returns: the slot corresponding to the position @index in the
785 * radix tree @root. This is useful for update-if-exists operations.
787 * This function can be called under rcu_read_lock iff the slot is not
788 * modified by radix_tree_replace_slot, otherwise it must be called
789 * exclusive from other writers. Any dereference of the slot must be done
790 * using radix_tree_deref_slot.
792 void __rcu
**radix_tree_lookup_slot(const struct radix_tree_root
*root
,
797 if (!__radix_tree_lookup(root
, index
, NULL
, &slot
))
801 EXPORT_SYMBOL(radix_tree_lookup_slot
);
804 * radix_tree_lookup - perform lookup operation on a radix tree
805 * @root: radix tree root
808 * Lookup the item at the position @index in the radix tree @root.
810 * This function can be called under rcu_read_lock, however the caller
811 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
812 * them safely). No RCU barriers are required to access or modify the
813 * returned item, however.
815 void *radix_tree_lookup(const struct radix_tree_root
*root
, unsigned long index
)
817 return __radix_tree_lookup(root
, index
, NULL
, NULL
);
819 EXPORT_SYMBOL(radix_tree_lookup
);
821 static void replace_slot(void __rcu
**slot
, void *item
,
822 struct radix_tree_node
*node
, int count
, int values
)
824 if (node
&& (count
|| values
)) {
825 node
->count
+= count
;
826 node
->nr_values
+= values
;
829 rcu_assign_pointer(*slot
, item
);
832 static bool node_tag_get(const struct radix_tree_root
*root
,
833 const struct radix_tree_node
*node
,
834 unsigned int tag
, unsigned int offset
)
837 return tag_get(node
, tag
, offset
);
838 return root_tag_get(root
, tag
);
842 * IDR users want to be able to store NULL in the tree, so if the slot isn't
843 * free, don't adjust the count, even if it's transitioning between NULL and
844 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
845 * have empty bits, but it only stores NULL in slots when they're being
848 static int calculate_count(struct radix_tree_root
*root
,
849 struct radix_tree_node
*node
, void __rcu
**slot
,
850 void *item
, void *old
)
853 unsigned offset
= get_slot_offset(node
, slot
);
854 bool free
= node_tag_get(root
, node
, IDR_FREE
, offset
);
860 return !!item
- !!old
;
864 * __radix_tree_replace - replace item in a slot
865 * @root: radix tree root
866 * @node: pointer to tree node
867 * @slot: pointer to slot in @node
868 * @item: new item to store in the slot.
870 * For use with __radix_tree_lookup(). Caller must hold tree write locked
871 * across slot lookup and replacement.
873 void __radix_tree_replace(struct radix_tree_root
*root
,
874 struct radix_tree_node
*node
,
875 void __rcu
**slot
, void *item
)
877 void *old
= rcu_dereference_raw(*slot
);
878 int values
= !!xa_is_value(item
) - !!xa_is_value(old
);
879 int count
= calculate_count(root
, node
, slot
, item
, old
);
882 * This function supports replacing value entries and
883 * deleting entries, but that needs accounting against the
884 * node unless the slot is root->xa_head.
886 WARN_ON_ONCE(!node
&& (slot
!= (void __rcu
**)&root
->xa_head
) &&
888 replace_slot(slot
, item
, node
, count
, values
);
893 delete_node(root
, node
);
897 * radix_tree_replace_slot - replace item in a slot
898 * @root: radix tree root
899 * @slot: pointer to slot
900 * @item: new item to store in the slot.
902 * For use with radix_tree_lookup_slot() and
903 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
904 * across slot lookup and replacement.
906 * NOTE: This cannot be used to switch between non-entries (empty slots),
907 * regular entries, and value entries, as that requires accounting
908 * inside the radix tree node. When switching from one type of entry or
909 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
910 * radix_tree_iter_replace().
912 void radix_tree_replace_slot(struct radix_tree_root
*root
,
913 void __rcu
**slot
, void *item
)
915 __radix_tree_replace(root
, NULL
, slot
, item
);
917 EXPORT_SYMBOL(radix_tree_replace_slot
);
920 * radix_tree_iter_replace - replace item in a slot
921 * @root: radix tree root
922 * @slot: pointer to slot
923 * @item: new item to store in the slot.
925 * For use with radix_tree_for_each_slot().
926 * Caller must hold tree write locked.
928 void radix_tree_iter_replace(struct radix_tree_root
*root
,
929 const struct radix_tree_iter
*iter
,
930 void __rcu
**slot
, void *item
)
932 __radix_tree_replace(root
, iter
->node
, slot
, item
);
935 static void node_tag_set(struct radix_tree_root
*root
,
936 struct radix_tree_node
*node
,
937 unsigned int tag
, unsigned int offset
)
940 if (tag_get(node
, tag
, offset
))
942 tag_set(node
, tag
, offset
);
943 offset
= node
->offset
;
947 if (!root_tag_get(root
, tag
))
948 root_tag_set(root
, tag
);
952 * radix_tree_tag_set - set a tag on a radix tree node
953 * @root: radix tree root
957 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
958 * corresponding to @index in the radix tree. From
959 * the root all the way down to the leaf node.
961 * Returns the address of the tagged item. Setting a tag on a not-present
964 void *radix_tree_tag_set(struct radix_tree_root
*root
,
965 unsigned long index
, unsigned int tag
)
967 struct radix_tree_node
*node
, *parent
;
968 unsigned long maxindex
;
970 radix_tree_load_root(root
, &node
, &maxindex
);
971 BUG_ON(index
> maxindex
);
973 while (radix_tree_is_internal_node(node
)) {
976 parent
= entry_to_node(node
);
977 offset
= radix_tree_descend(parent
, &node
, index
);
980 if (!tag_get(parent
, tag
, offset
))
981 tag_set(parent
, tag
, offset
);
984 /* set the root's tag bit */
985 if (!root_tag_get(root
, tag
))
986 root_tag_set(root
, tag
);
990 EXPORT_SYMBOL(radix_tree_tag_set
);
992 static void node_tag_clear(struct radix_tree_root
*root
,
993 struct radix_tree_node
*node
,
994 unsigned int tag
, unsigned int offset
)
997 if (!tag_get(node
, tag
, offset
))
999 tag_clear(node
, tag
, offset
);
1000 if (any_tag_set(node
, tag
))
1003 offset
= node
->offset
;
1004 node
= node
->parent
;
1007 /* clear the root's tag bit */
1008 if (root_tag_get(root
, tag
))
1009 root_tag_clear(root
, tag
);
1013 * radix_tree_tag_clear - clear a tag on a radix tree node
1014 * @root: radix tree root
1018 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1019 * corresponding to @index in the radix tree. If this causes
1020 * the leaf node to have no tags set then clear the tag in the
1021 * next-to-leaf node, etc.
1023 * Returns the address of the tagged item on success, else NULL. ie:
1024 * has the same return value and semantics as radix_tree_lookup().
1026 void *radix_tree_tag_clear(struct radix_tree_root
*root
,
1027 unsigned long index
, unsigned int tag
)
1029 struct radix_tree_node
*node
, *parent
;
1030 unsigned long maxindex
;
1033 radix_tree_load_root(root
, &node
, &maxindex
);
1034 if (index
> maxindex
)
1039 while (radix_tree_is_internal_node(node
)) {
1040 parent
= entry_to_node(node
);
1041 offset
= radix_tree_descend(parent
, &node
, index
);
1045 node_tag_clear(root
, parent
, tag
, offset
);
1049 EXPORT_SYMBOL(radix_tree_tag_clear
);
1052 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1053 * @root: radix tree root
1054 * @iter: iterator state
1055 * @tag: tag to clear
1057 void radix_tree_iter_tag_clear(struct radix_tree_root
*root
,
1058 const struct radix_tree_iter
*iter
, unsigned int tag
)
1060 node_tag_clear(root
, iter
->node
, tag
, iter_offset(iter
));
1064 * radix_tree_tag_get - get a tag on a radix tree node
1065 * @root: radix tree root
1067 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1071 * 0: tag not present or not set
1074 * Note that the return value of this function may not be relied on, even if
1075 * the RCU lock is held, unless tag modification and node deletion are excluded
1078 int radix_tree_tag_get(const struct radix_tree_root
*root
,
1079 unsigned long index
, unsigned int tag
)
1081 struct radix_tree_node
*node
, *parent
;
1082 unsigned long maxindex
;
1084 if (!root_tag_get(root
, tag
))
1087 radix_tree_load_root(root
, &node
, &maxindex
);
1088 if (index
> maxindex
)
1091 while (radix_tree_is_internal_node(node
)) {
1094 parent
= entry_to_node(node
);
1095 offset
= radix_tree_descend(parent
, &node
, index
);
1097 if (!tag_get(parent
, tag
, offset
))
1099 if (node
== RADIX_TREE_RETRY
)
1105 EXPORT_SYMBOL(radix_tree_tag_get
);
1107 /* Construct iter->tags bit-mask from node->tags[tag] array */
1108 static void set_iter_tags(struct radix_tree_iter
*iter
,
1109 struct radix_tree_node
*node
, unsigned offset
,
1112 unsigned tag_long
= offset
/ BITS_PER_LONG
;
1113 unsigned tag_bit
= offset
% BITS_PER_LONG
;
1120 iter
->tags
= node
->tags
[tag
][tag_long
] >> tag_bit
;
1122 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1123 if (tag_long
< RADIX_TREE_TAG_LONGS
- 1) {
1124 /* Pick tags from next element */
1126 iter
->tags
|= node
->tags
[tag
][tag_long
+ 1] <<
1127 (BITS_PER_LONG
- tag_bit
);
1128 /* Clip chunk size, here only BITS_PER_LONG tags */
1129 iter
->next_index
= __radix_tree_iter_add(iter
, BITS_PER_LONG
);
1133 void __rcu
**radix_tree_iter_resume(void __rcu
**slot
,
1134 struct radix_tree_iter
*iter
)
1137 iter
->index
= __radix_tree_iter_add(iter
, 1);
1138 iter
->next_index
= iter
->index
;
1142 EXPORT_SYMBOL(radix_tree_iter_resume
);
1145 * radix_tree_next_chunk - find next chunk of slots for iteration
1147 * @root: radix tree root
1148 * @iter: iterator state
1149 * @flags: RADIX_TREE_ITER_* flags and tag index
1150 * Returns: pointer to chunk first slot, or NULL if iteration is over
1152 void __rcu
**radix_tree_next_chunk(const struct radix_tree_root
*root
,
1153 struct radix_tree_iter
*iter
, unsigned flags
)
1155 unsigned tag
= flags
& RADIX_TREE_ITER_TAG_MASK
;
1156 struct radix_tree_node
*node
, *child
;
1157 unsigned long index
, offset
, maxindex
;
1159 if ((flags
& RADIX_TREE_ITER_TAGGED
) && !root_tag_get(root
, tag
))
1163 * Catch next_index overflow after ~0UL. iter->index never overflows
1164 * during iterating; it can be zero only at the beginning.
1165 * And we cannot overflow iter->next_index in a single step,
1166 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1168 * This condition also used by radix_tree_next_slot() to stop
1169 * contiguous iterating, and forbid switching to the next chunk.
1171 index
= iter
->next_index
;
1172 if (!index
&& iter
->index
)
1176 radix_tree_load_root(root
, &child
, &maxindex
);
1177 if (index
> maxindex
)
1182 if (!radix_tree_is_internal_node(child
)) {
1183 /* Single-slot tree */
1184 iter
->index
= index
;
1185 iter
->next_index
= maxindex
+ 1;
1188 return (void __rcu
**)&root
->xa_head
;
1192 node
= entry_to_node(child
);
1193 offset
= radix_tree_descend(node
, &child
, index
);
1195 if ((flags
& RADIX_TREE_ITER_TAGGED
) ?
1196 !tag_get(node
, tag
, offset
) : !child
) {
1198 if (flags
& RADIX_TREE_ITER_CONTIG
)
1201 if (flags
& RADIX_TREE_ITER_TAGGED
)
1202 offset
= radix_tree_find_next_bit(node
, tag
,
1205 while (++offset
< RADIX_TREE_MAP_SIZE
) {
1206 void *slot
= rcu_dereference_raw(
1207 node
->slots
[offset
]);
1211 index
&= ~node_maxindex(node
);
1212 index
+= offset
<< node
->shift
;
1213 /* Overflow after ~0UL */
1216 if (offset
== RADIX_TREE_MAP_SIZE
)
1218 child
= rcu_dereference_raw(node
->slots
[offset
]);
1223 if (child
== RADIX_TREE_RETRY
)
1225 } while (node
->shift
&& radix_tree_is_internal_node(child
));
1227 /* Update the iterator state */
1228 iter
->index
= (index
&~ node_maxindex(node
)) | offset
;
1229 iter
->next_index
= (index
| node_maxindex(node
)) + 1;
1232 if (flags
& RADIX_TREE_ITER_TAGGED
)
1233 set_iter_tags(iter
, node
, offset
, tag
);
1235 return node
->slots
+ offset
;
1237 EXPORT_SYMBOL(radix_tree_next_chunk
);
1240 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1241 * @root: radix tree root
1242 * @results: where the results of the lookup are placed
1243 * @first_index: start the lookup from this key
1244 * @max_items: place up to this many items at *results
1246 * Performs an index-ascending scan of the tree for present items. Places
1247 * them at *@results and returns the number of items which were placed at
1250 * The implementation is naive.
1252 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1253 * rcu_read_lock. In this case, rather than the returned results being
1254 * an atomic snapshot of the tree at a single point in time, the
1255 * semantics of an RCU protected gang lookup are as though multiple
1256 * radix_tree_lookups have been issued in individual locks, and results
1257 * stored in 'results'.
1260 radix_tree_gang_lookup(const struct radix_tree_root
*root
, void **results
,
1261 unsigned long first_index
, unsigned int max_items
)
1263 struct radix_tree_iter iter
;
1265 unsigned int ret
= 0;
1267 if (unlikely(!max_items
))
1270 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1271 results
[ret
] = rcu_dereference_raw(*slot
);
1274 if (radix_tree_is_internal_node(results
[ret
])) {
1275 slot
= radix_tree_iter_retry(&iter
);
1278 if (++ret
== max_items
)
1284 EXPORT_SYMBOL(radix_tree_gang_lookup
);
1287 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1289 * @root: radix tree root
1290 * @results: where the results of the lookup are placed
1291 * @first_index: start the lookup from this key
1292 * @max_items: place up to this many items at *results
1293 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1295 * Performs an index-ascending scan of the tree for present items which
1296 * have the tag indexed by @tag set. Places the items at *@results and
1297 * returns the number of items which were placed at *@results.
1300 radix_tree_gang_lookup_tag(const struct radix_tree_root
*root
, void **results
,
1301 unsigned long first_index
, unsigned int max_items
,
1304 struct radix_tree_iter iter
;
1306 unsigned int ret
= 0;
1308 if (unlikely(!max_items
))
1311 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1312 results
[ret
] = rcu_dereference_raw(*slot
);
1315 if (radix_tree_is_internal_node(results
[ret
])) {
1316 slot
= radix_tree_iter_retry(&iter
);
1319 if (++ret
== max_items
)
1325 EXPORT_SYMBOL(radix_tree_gang_lookup_tag
);
1328 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1329 * radix tree based on a tag
1330 * @root: radix tree root
1331 * @results: where the results of the lookup are placed
1332 * @first_index: start the lookup from this key
1333 * @max_items: place up to this many items at *results
1334 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1336 * Performs an index-ascending scan of the tree for present items which
1337 * have the tag indexed by @tag set. Places the slots at *@results and
1338 * returns the number of slots which were placed at *@results.
1341 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root
*root
,
1342 void __rcu
***results
, unsigned long first_index
,
1343 unsigned int max_items
, unsigned int tag
)
1345 struct radix_tree_iter iter
;
1347 unsigned int ret
= 0;
1349 if (unlikely(!max_items
))
1352 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1353 results
[ret
] = slot
;
1354 if (++ret
== max_items
)
1360 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot
);
1362 static bool __radix_tree_delete(struct radix_tree_root
*root
,
1363 struct radix_tree_node
*node
, void __rcu
**slot
)
1365 void *old
= rcu_dereference_raw(*slot
);
1366 int values
= xa_is_value(old
) ? -1 : 0;
1367 unsigned offset
= get_slot_offset(node
, slot
);
1371 node_tag_set(root
, node
, IDR_FREE
, offset
);
1373 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1374 node_tag_clear(root
, node
, tag
, offset
);
1376 replace_slot(slot
, NULL
, node
, -1, values
);
1377 return node
&& delete_node(root
, node
);
1381 * radix_tree_iter_delete - delete the entry at this iterator position
1382 * @root: radix tree root
1383 * @iter: iterator state
1384 * @slot: pointer to slot
1386 * Delete the entry at the position currently pointed to by the iterator.
1387 * This may result in the current node being freed; if it is, the iterator
1388 * is advanced so that it will not reference the freed memory. This
1389 * function may be called without any locking if there are no other threads
1390 * which can access this tree.
1392 void radix_tree_iter_delete(struct radix_tree_root
*root
,
1393 struct radix_tree_iter
*iter
, void __rcu
**slot
)
1395 if (__radix_tree_delete(root
, iter
->node
, slot
))
1396 iter
->index
= iter
->next_index
;
1398 EXPORT_SYMBOL(radix_tree_iter_delete
);
1401 * radix_tree_delete_item - delete an item from a radix tree
1402 * @root: radix tree root
1404 * @item: expected item
1406 * Remove @item at @index from the radix tree rooted at @root.
1408 * Return: the deleted entry, or %NULL if it was not present
1409 * or the entry at the given @index was not @item.
1411 void *radix_tree_delete_item(struct radix_tree_root
*root
,
1412 unsigned long index
, void *item
)
1414 struct radix_tree_node
*node
= NULL
;
1415 void __rcu
**slot
= NULL
;
1418 entry
= __radix_tree_lookup(root
, index
, &node
, &slot
);
1421 if (!entry
&& (!is_idr(root
) || node_tag_get(root
, node
, IDR_FREE
,
1422 get_slot_offset(node
, slot
))))
1425 if (item
&& entry
!= item
)
1428 __radix_tree_delete(root
, node
, slot
);
1432 EXPORT_SYMBOL(radix_tree_delete_item
);
1435 * radix_tree_delete - delete an entry from a radix tree
1436 * @root: radix tree root
1439 * Remove the entry at @index from the radix tree rooted at @root.
1441 * Return: The deleted entry, or %NULL if it was not present.
1443 void *radix_tree_delete(struct radix_tree_root
*root
, unsigned long index
)
1445 return radix_tree_delete_item(root
, index
, NULL
);
1447 EXPORT_SYMBOL(radix_tree_delete
);
1450 * radix_tree_tagged - test whether any items in the tree are tagged
1451 * @root: radix tree root
1454 int radix_tree_tagged(const struct radix_tree_root
*root
, unsigned int tag
)
1456 return root_tag_get(root
, tag
);
1458 EXPORT_SYMBOL(radix_tree_tagged
);
1461 * idr_preload - preload for idr_alloc()
1462 * @gfp_mask: allocation mask to use for preloading
1464 * Preallocate memory to use for the next call to idr_alloc(). This function
1465 * returns with preemption disabled. It will be enabled by idr_preload_end().
1467 void idr_preload(gfp_t gfp_mask
)
1469 if (__radix_tree_preload(gfp_mask
, IDR_PRELOAD_SIZE
))
1470 local_lock(&radix_tree_preloads
.lock
);
1472 EXPORT_SYMBOL(idr_preload
);
1474 void __rcu
**idr_get_free(struct radix_tree_root
*root
,
1475 struct radix_tree_iter
*iter
, gfp_t gfp
,
1478 struct radix_tree_node
*node
= NULL
, *child
;
1479 void __rcu
**slot
= (void __rcu
**)&root
->xa_head
;
1480 unsigned long maxindex
, start
= iter
->next_index
;
1481 unsigned int shift
, offset
= 0;
1484 shift
= radix_tree_load_root(root
, &child
, &maxindex
);
1485 if (!radix_tree_tagged(root
, IDR_FREE
))
1486 start
= max(start
, maxindex
+ 1);
1488 return ERR_PTR(-ENOSPC
);
1490 if (start
> maxindex
) {
1491 int error
= radix_tree_extend(root
, gfp
, start
, shift
);
1493 return ERR_PTR(error
);
1495 child
= rcu_dereference_raw(root
->xa_head
);
1497 if (start
== 0 && shift
== 0)
1498 shift
= RADIX_TREE_MAP_SHIFT
;
1501 shift
-= RADIX_TREE_MAP_SHIFT
;
1502 if (child
== NULL
) {
1503 /* Have to add a child node. */
1504 child
= radix_tree_node_alloc(gfp
, node
, root
, shift
,
1507 return ERR_PTR(-ENOMEM
);
1508 all_tag_set(child
, IDR_FREE
);
1509 rcu_assign_pointer(*slot
, node_to_entry(child
));
1512 } else if (!radix_tree_is_internal_node(child
))
1515 node
= entry_to_node(child
);
1516 offset
= radix_tree_descend(node
, &child
, start
);
1517 if (!tag_get(node
, IDR_FREE
, offset
)) {
1518 offset
= radix_tree_find_next_bit(node
, IDR_FREE
,
1520 start
= next_index(start
, node
, offset
);
1521 if (start
> max
|| start
== 0)
1522 return ERR_PTR(-ENOSPC
);
1523 while (offset
== RADIX_TREE_MAP_SIZE
) {
1524 offset
= node
->offset
+ 1;
1525 node
= node
->parent
;
1528 shift
= node
->shift
;
1530 child
= rcu_dereference_raw(node
->slots
[offset
]);
1532 slot
= &node
->slots
[offset
];
1535 iter
->index
= start
;
1537 iter
->next_index
= 1 + min(max
, (start
| node_maxindex(node
)));
1539 iter
->next_index
= 1;
1541 set_iter_tags(iter
, node
, offset
, IDR_FREE
);
1547 * idr_destroy - release all internal memory from an IDR
1550 * After this function is called, the IDR is empty, and may be reused or
1551 * the data structure containing it may be freed.
1553 * A typical clean-up sequence for objects stored in an idr tree will use
1554 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1555 * free the memory used to keep track of those objects.
1557 void idr_destroy(struct idr
*idr
)
1559 struct radix_tree_node
*node
= rcu_dereference_raw(idr
->idr_rt
.xa_head
);
1560 if (radix_tree_is_internal_node(node
))
1561 radix_tree_free_nodes(node
);
1562 idr
->idr_rt
.xa_head
= NULL
;
1563 root_tag_set(&idr
->idr_rt
, IDR_FREE
);
1565 EXPORT_SYMBOL(idr_destroy
);
1568 radix_tree_node_ctor(void *arg
)
1570 struct radix_tree_node
*node
= arg
;
1572 memset(node
, 0, sizeof(*node
));
1573 INIT_LIST_HEAD(&node
->private_list
);
1576 static int radix_tree_cpu_dead(unsigned int cpu
)
1578 struct radix_tree_preload
*rtp
;
1579 struct radix_tree_node
*node
;
1581 /* Free per-cpu pool of preloaded nodes */
1582 rtp
= &per_cpu(radix_tree_preloads
, cpu
);
1585 rtp
->nodes
= node
->parent
;
1586 kmem_cache_free(radix_tree_node_cachep
, node
);
1592 void __init
radix_tree_init(void)
1596 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS
+ __GFP_BITS_SHIFT
> 32);
1597 BUILD_BUG_ON(ROOT_IS_IDR
& ~GFP_ZONEMASK
);
1598 BUILD_BUG_ON(XA_CHUNK_SIZE
> 255);
1599 radix_tree_node_cachep
= kmem_cache_create("radix_tree_node",
1600 sizeof(struct radix_tree_node
), 0,
1601 SLAB_PANIC
| SLAB_RECLAIM_ACCOUNT
,
1602 radix_tree_node_ctor
);
1603 ret
= cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD
, "lib/radix:dead",
1604 NULL
, radix_tree_cpu_dead
);