1 // SPDX-License-Identifier: GPL-2.0+
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <willy@infradead.org>
9 #include <linux/bitmap.h>
10 #include <linux/export.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/xarray.h>
16 * Coding conventions in this file:
18 * @xa is used to refer to the entire xarray.
19 * @xas is the 'xarray operation state'. It may be either a pointer to
20 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
22 * @index is the index of the entry being operated on
23 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
24 * @node refers to an xa_node; usually the primary one being operated on by
26 * @offset is the index into the slots array inside an xa_node.
27 * @parent refers to the @xa_node closer to the head than @node.
28 * @entry refers to something stored in a slot in the xarray
31 static inline unsigned int xa_lock_type(const struct xarray
*xa
)
33 return (__force
unsigned int)xa
->xa_flags
& 3;
36 static inline void xas_lock_type(struct xa_state
*xas
, unsigned int lock_type
)
38 if (lock_type
== XA_LOCK_IRQ
)
40 else if (lock_type
== XA_LOCK_BH
)
46 static inline void xas_unlock_type(struct xa_state
*xas
, unsigned int lock_type
)
48 if (lock_type
== XA_LOCK_IRQ
)
50 else if (lock_type
== XA_LOCK_BH
)
56 static inline bool xa_track_free(const struct xarray
*xa
)
58 return xa
->xa_flags
& XA_FLAGS_TRACK_FREE
;
61 static inline bool xa_zero_busy(const struct xarray
*xa
)
63 return xa
->xa_flags
& XA_FLAGS_ZERO_BUSY
;
66 static inline void xa_mark_set(struct xarray
*xa
, xa_mark_t mark
)
68 if (!(xa
->xa_flags
& XA_FLAGS_MARK(mark
)))
69 xa
->xa_flags
|= XA_FLAGS_MARK(mark
);
72 static inline void xa_mark_clear(struct xarray
*xa
, xa_mark_t mark
)
74 if (xa
->xa_flags
& XA_FLAGS_MARK(mark
))
75 xa
->xa_flags
&= ~(XA_FLAGS_MARK(mark
));
78 static inline unsigned long *node_marks(struct xa_node
*node
, xa_mark_t mark
)
80 return node
->marks
[(__force
unsigned)mark
];
83 static inline bool node_get_mark(struct xa_node
*node
,
84 unsigned int offset
, xa_mark_t mark
)
86 return test_bit(offset
, node_marks(node
, mark
));
89 /* returns true if the bit was set */
90 static inline bool node_set_mark(struct xa_node
*node
, unsigned int offset
,
93 return __test_and_set_bit(offset
, node_marks(node
, mark
));
96 /* returns true if the bit was set */
97 static inline bool node_clear_mark(struct xa_node
*node
, unsigned int offset
,
100 return __test_and_clear_bit(offset
, node_marks(node
, mark
));
103 static inline bool node_any_mark(struct xa_node
*node
, xa_mark_t mark
)
105 return !bitmap_empty(node_marks(node
, mark
), XA_CHUNK_SIZE
);
108 static inline void node_mark_all(struct xa_node
*node
, xa_mark_t mark
)
110 bitmap_fill(node_marks(node
, mark
), XA_CHUNK_SIZE
);
113 #define mark_inc(mark) do { \
114 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
118 * xas_squash_marks() - Merge all marks to the first entry
119 * @xas: Array operation state.
121 * Set a mark on the first entry if any entry has it set. Clear marks on
122 * all sibling entries.
124 static void xas_squash_marks(const struct xa_state
*xas
)
126 unsigned int mark
= 0;
127 unsigned int limit
= xas
->xa_offset
+ xas
->xa_sibs
+ 1;
133 unsigned long *marks
= xas
->xa_node
->marks
[mark
];
134 if (find_next_bit(marks
, limit
, xas
->xa_offset
+ 1) == limit
)
136 __set_bit(xas
->xa_offset
, marks
);
137 bitmap_clear(marks
, xas
->xa_offset
+ 1, xas
->xa_sibs
);
138 } while (mark
++ != (__force
unsigned)XA_MARK_MAX
);
141 /* extracts the offset within this node from the index */
142 static unsigned int get_offset(unsigned long index
, struct xa_node
*node
)
144 return (index
>> node
->shift
) & XA_CHUNK_MASK
;
147 static void xas_set_offset(struct xa_state
*xas
)
149 xas
->xa_offset
= get_offset(xas
->xa_index
, xas
->xa_node
);
152 /* move the index either forwards (find) or backwards (sibling slot) */
153 static void xas_move_index(struct xa_state
*xas
, unsigned long offset
)
155 unsigned int shift
= xas
->xa_node
->shift
;
156 xas
->xa_index
&= ~XA_CHUNK_MASK
<< shift
;
157 xas
->xa_index
+= offset
<< shift
;
160 static void xas_advance(struct xa_state
*xas
)
163 xas_move_index(xas
, xas
->xa_offset
);
166 static void *set_bounds(struct xa_state
*xas
)
168 xas
->xa_node
= XAS_BOUNDS
;
173 * Starts a walk. If the @xas is already valid, we assume that it's on
174 * the right path and just return where we've got to. If we're in an
175 * error state, return NULL. If the index is outside the current scope
176 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
177 * set @xas->xa_node to NULL and return the current head of the array.
179 static void *xas_start(struct xa_state
*xas
)
184 return xas_reload(xas
);
188 entry
= xa_head(xas
->xa
);
189 if (!xa_is_node(entry
)) {
191 return set_bounds(xas
);
193 if ((xas
->xa_index
>> xa_to_node(entry
)->shift
) > XA_CHUNK_MASK
)
194 return set_bounds(xas
);
201 static void *xas_descend(struct xa_state
*xas
, struct xa_node
*node
)
203 unsigned int offset
= get_offset(xas
->xa_index
, node
);
204 void *entry
= xa_entry(xas
->xa
, node
, offset
);
207 if (xa_is_sibling(entry
)) {
208 offset
= xa_to_sibling(entry
);
209 entry
= xa_entry(xas
->xa
, node
, offset
);
212 xas
->xa_offset
= offset
;
217 * xas_load() - Load an entry from the XArray (advanced).
218 * @xas: XArray operation state.
220 * Usually walks the @xas to the appropriate state to load the entry
221 * stored at xa_index. However, it will do nothing and return %NULL if
222 * @xas is in an error state. xas_load() will never expand the tree.
224 * If the xa_state is set up to operate on a multi-index entry, xas_load()
225 * may return %NULL or an internal entry, even if there are entries
226 * present within the range specified by @xas.
228 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
229 * Return: Usually an entry in the XArray, but see description for exceptions.
231 void *xas_load(struct xa_state
*xas
)
233 void *entry
= xas_start(xas
);
235 while (xa_is_node(entry
)) {
236 struct xa_node
*node
= xa_to_node(entry
);
238 if (xas
->xa_shift
> node
->shift
)
240 entry
= xas_descend(xas
, node
);
241 if (node
->shift
== 0)
246 EXPORT_SYMBOL_GPL(xas_load
);
248 /* Move the radix tree node cache here */
249 extern struct kmem_cache
*radix_tree_node_cachep
;
250 extern void radix_tree_node_rcu_free(struct rcu_head
*head
);
252 #define XA_RCU_FREE ((struct xarray *)1)
254 static void xa_node_free(struct xa_node
*node
)
256 XA_NODE_BUG_ON(node
, !list_empty(&node
->private_list
));
257 node
->array
= XA_RCU_FREE
;
258 call_rcu(&node
->rcu_head
, radix_tree_node_rcu_free
);
262 * xas_destroy() - Free any resources allocated during the XArray operation.
263 * @xas: XArray operation state.
265 * This function is now internal-only.
267 static void xas_destroy(struct xa_state
*xas
)
269 struct xa_node
*next
, *node
= xas
->xa_alloc
;
272 XA_NODE_BUG_ON(node
, !list_empty(&node
->private_list
));
273 next
= rcu_dereference_raw(node
->parent
);
274 radix_tree_node_rcu_free(&node
->rcu_head
);
275 xas
->xa_alloc
= node
= next
;
280 * xas_nomem() - Allocate memory if needed.
281 * @xas: XArray operation state.
282 * @gfp: Memory allocation flags.
284 * If we need to add new nodes to the XArray, we try to allocate memory
285 * with GFP_NOWAIT while holding the lock, which will usually succeed.
286 * If it fails, @xas is flagged as needing memory to continue. The caller
287 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
288 * the caller should retry the operation.
290 * Forward progress is guaranteed as one node is allocated here and
291 * stored in the xa_state where it will be found by xas_alloc(). More
292 * nodes will likely be found in the slab allocator, but we do not tie
295 * Return: true if memory was needed, and was successfully allocated.
297 bool xas_nomem(struct xa_state
*xas
, gfp_t gfp
)
299 if (xas
->xa_node
!= XA_ERROR(-ENOMEM
)) {
303 if (xas
->xa
->xa_flags
& XA_FLAGS_ACCOUNT
)
304 gfp
|= __GFP_ACCOUNT
;
305 xas
->xa_alloc
= kmem_cache_alloc(radix_tree_node_cachep
, gfp
);
308 xas
->xa_alloc
->parent
= NULL
;
309 XA_NODE_BUG_ON(xas
->xa_alloc
, !list_empty(&xas
->xa_alloc
->private_list
));
310 xas
->xa_node
= XAS_RESTART
;
313 EXPORT_SYMBOL_GPL(xas_nomem
);
316 * __xas_nomem() - Drop locks and allocate memory if needed.
317 * @xas: XArray operation state.
318 * @gfp: Memory allocation flags.
320 * Internal variant of xas_nomem().
322 * Return: true if memory was needed, and was successfully allocated.
324 static bool __xas_nomem(struct xa_state
*xas
, gfp_t gfp
)
325 __must_hold(xas
->xa
->xa_lock
)
327 unsigned int lock_type
= xa_lock_type(xas
->xa
);
329 if (xas
->xa_node
!= XA_ERROR(-ENOMEM
)) {
333 if (xas
->xa
->xa_flags
& XA_FLAGS_ACCOUNT
)
334 gfp
|= __GFP_ACCOUNT
;
335 if (gfpflags_allow_blocking(gfp
)) {
336 xas_unlock_type(xas
, lock_type
);
337 xas
->xa_alloc
= kmem_cache_alloc(radix_tree_node_cachep
, gfp
);
338 xas_lock_type(xas
, lock_type
);
340 xas
->xa_alloc
= kmem_cache_alloc(radix_tree_node_cachep
, gfp
);
344 xas
->xa_alloc
->parent
= NULL
;
345 XA_NODE_BUG_ON(xas
->xa_alloc
, !list_empty(&xas
->xa_alloc
->private_list
));
346 xas
->xa_node
= XAS_RESTART
;
350 static void xas_update(struct xa_state
*xas
, struct xa_node
*node
)
353 xas
->xa_update(node
);
355 XA_NODE_BUG_ON(node
, !list_empty(&node
->private_list
));
358 static void *xas_alloc(struct xa_state
*xas
, unsigned int shift
)
360 struct xa_node
*parent
= xas
->xa_node
;
361 struct xa_node
*node
= xas
->xa_alloc
;
363 if (xas_invalid(xas
))
367 xas
->xa_alloc
= NULL
;
369 gfp_t gfp
= GFP_NOWAIT
| __GFP_NOWARN
;
371 if (xas
->xa
->xa_flags
& XA_FLAGS_ACCOUNT
)
372 gfp
|= __GFP_ACCOUNT
;
374 node
= kmem_cache_alloc(radix_tree_node_cachep
, gfp
);
376 xas_set_err(xas
, -ENOMEM
);
382 node
->offset
= xas
->xa_offset
;
384 XA_NODE_BUG_ON(node
, parent
->count
> XA_CHUNK_SIZE
);
385 xas_update(xas
, parent
);
387 XA_NODE_BUG_ON(node
, shift
> BITS_PER_LONG
);
388 XA_NODE_BUG_ON(node
, !list_empty(&node
->private_list
));
392 RCU_INIT_POINTER(node
->parent
, xas
->xa_node
);
393 node
->array
= xas
->xa
;
398 #ifdef CONFIG_XARRAY_MULTI
399 /* Returns the number of indices covered by a given xa_state */
400 static unsigned long xas_size(const struct xa_state
*xas
)
402 return (xas
->xa_sibs
+ 1UL) << xas
->xa_shift
;
407 * Use this to calculate the maximum index that will need to be created
408 * in order to add the entry described by @xas. Because we cannot store a
409 * multi-index entry at index 0, the calculation is a little more complex
410 * than you might expect.
412 static unsigned long xas_max(struct xa_state
*xas
)
414 unsigned long max
= xas
->xa_index
;
416 #ifdef CONFIG_XARRAY_MULTI
417 if (xas
->xa_shift
|| xas
->xa_sibs
) {
418 unsigned long mask
= xas_size(xas
) - 1;
428 /* The maximum index that can be contained in the array without expanding it */
429 static unsigned long max_index(void *entry
)
431 if (!xa_is_node(entry
))
433 return (XA_CHUNK_SIZE
<< xa_to_node(entry
)->shift
) - 1;
436 static void xas_shrink(struct xa_state
*xas
)
438 struct xarray
*xa
= xas
->xa
;
439 struct xa_node
*node
= xas
->xa_node
;
444 XA_NODE_BUG_ON(node
, node
->count
> XA_CHUNK_SIZE
);
445 if (node
->count
!= 1)
447 entry
= xa_entry_locked(xa
, node
, 0);
450 if (!xa_is_node(entry
) && node
->shift
)
452 if (xa_is_zero(entry
) && xa_zero_busy(xa
))
454 xas
->xa_node
= XAS_BOUNDS
;
456 RCU_INIT_POINTER(xa
->xa_head
, entry
);
457 if (xa_track_free(xa
) && !node_get_mark(node
, 0, XA_FREE_MARK
))
458 xa_mark_clear(xa
, XA_FREE_MARK
);
462 if (!xa_is_node(entry
))
463 RCU_INIT_POINTER(node
->slots
[0], XA_RETRY_ENTRY
);
464 xas_update(xas
, node
);
466 if (!xa_is_node(entry
))
468 node
= xa_to_node(entry
);
474 * xas_delete_node() - Attempt to delete an xa_node
475 * @xas: Array operation state.
477 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
478 * a non-zero reference count.
480 static void xas_delete_node(struct xa_state
*xas
)
482 struct xa_node
*node
= xas
->xa_node
;
485 struct xa_node
*parent
;
487 XA_NODE_BUG_ON(node
, node
->count
> XA_CHUNK_SIZE
);
491 parent
= xa_parent_locked(xas
->xa
, node
);
492 xas
->xa_node
= parent
;
493 xas
->xa_offset
= node
->offset
;
497 xas
->xa
->xa_head
= NULL
;
498 xas
->xa_node
= XAS_BOUNDS
;
502 parent
->slots
[xas
->xa_offset
] = NULL
;
504 XA_NODE_BUG_ON(parent
, parent
->count
> XA_CHUNK_SIZE
);
506 xas_update(xas
, node
);
514 * xas_free_nodes() - Free this node and all nodes that it references
515 * @xas: Array operation state.
518 * This node has been removed from the tree. We must now free it and all
519 * of its subnodes. There may be RCU walkers with references into the tree,
520 * so we must replace all entries with retry markers.
522 static void xas_free_nodes(struct xa_state
*xas
, struct xa_node
*top
)
524 unsigned int offset
= 0;
525 struct xa_node
*node
= top
;
528 void *entry
= xa_entry_locked(xas
->xa
, node
, offset
);
530 if (node
->shift
&& xa_is_node(entry
)) {
531 node
= xa_to_node(entry
);
536 RCU_INIT_POINTER(node
->slots
[offset
], XA_RETRY_ENTRY
);
538 while (offset
== XA_CHUNK_SIZE
) {
539 struct xa_node
*parent
;
541 parent
= xa_parent_locked(xas
->xa
, node
);
542 offset
= node
->offset
+ 1;
545 xas_update(xas
, node
);
555 * xas_expand adds nodes to the head of the tree until it has reached
556 * sufficient height to be able to contain @xas->xa_index
558 static int xas_expand(struct xa_state
*xas
, void *head
)
560 struct xarray
*xa
= xas
->xa
;
561 struct xa_node
*node
= NULL
;
562 unsigned int shift
= 0;
563 unsigned long max
= xas_max(xas
);
568 while ((max
>> shift
) >= XA_CHUNK_SIZE
)
569 shift
+= XA_CHUNK_SHIFT
;
570 return shift
+ XA_CHUNK_SHIFT
;
571 } else if (xa_is_node(head
)) {
572 node
= xa_to_node(head
);
573 shift
= node
->shift
+ XA_CHUNK_SHIFT
;
577 while (max
> max_index(head
)) {
580 XA_NODE_BUG_ON(node
, shift
> BITS_PER_LONG
);
581 node
= xas_alloc(xas
, shift
);
586 if (xa_is_value(head
))
588 RCU_INIT_POINTER(node
->slots
[0], head
);
590 /* Propagate the aggregated mark info to the new child */
592 if (xa_track_free(xa
) && mark
== XA_FREE_MARK
) {
593 node_mark_all(node
, XA_FREE_MARK
);
594 if (!xa_marked(xa
, XA_FREE_MARK
)) {
595 node_clear_mark(node
, 0, XA_FREE_MARK
);
596 xa_mark_set(xa
, XA_FREE_MARK
);
598 } else if (xa_marked(xa
, mark
)) {
599 node_set_mark(node
, 0, mark
);
601 if (mark
== XA_MARK_MAX
)
607 * Now that the new node is fully initialised, we can add
610 if (xa_is_node(head
)) {
611 xa_to_node(head
)->offset
= 0;
612 rcu_assign_pointer(xa_to_node(head
)->parent
, node
);
614 head
= xa_mk_node(node
);
615 rcu_assign_pointer(xa
->xa_head
, head
);
616 xas_update(xas
, node
);
618 shift
+= XA_CHUNK_SHIFT
;
626 * xas_create() - Create a slot to store an entry in.
627 * @xas: XArray operation state.
628 * @allow_root: %true if we can store the entry in the root directly
630 * Most users will not need to call this function directly, as it is called
631 * by xas_store(). It is useful for doing conditional store operations
632 * (see the xa_cmpxchg() implementation for an example).
634 * Return: If the slot already existed, returns the contents of this slot.
635 * If the slot was newly created, returns %NULL. If it failed to create the
636 * slot, returns %NULL and indicates the error in @xas.
638 static void *xas_create(struct xa_state
*xas
, bool allow_root
)
640 struct xarray
*xa
= xas
->xa
;
643 struct xa_node
*node
= xas
->xa_node
;
645 unsigned int order
= xas
->xa_shift
;
648 entry
= xa_head_locked(xa
);
650 if (!entry
&& xa_zero_busy(xa
))
651 entry
= XA_ZERO_ENTRY
;
652 shift
= xas_expand(xas
, entry
);
655 if (!shift
&& !allow_root
)
656 shift
= XA_CHUNK_SHIFT
;
657 entry
= xa_head_locked(xa
);
659 } else if (xas_error(xas
)) {
662 unsigned int offset
= xas
->xa_offset
;
665 entry
= xa_entry_locked(xa
, node
, offset
);
666 slot
= &node
->slots
[offset
];
669 entry
= xa_head_locked(xa
);
673 while (shift
> order
) {
674 shift
-= XA_CHUNK_SHIFT
;
676 node
= xas_alloc(xas
, shift
);
679 if (xa_track_free(xa
))
680 node_mark_all(node
, XA_FREE_MARK
);
681 rcu_assign_pointer(*slot
, xa_mk_node(node
));
682 } else if (xa_is_node(entry
)) {
683 node
= xa_to_node(entry
);
687 entry
= xas_descend(xas
, node
);
688 slot
= &node
->slots
[xas
->xa_offset
];
695 * xas_create_range() - Ensure that stores to this range will succeed
696 * @xas: XArray operation state.
698 * Creates all of the slots in the range covered by @xas. Sets @xas to
699 * create single-index entries and positions it at the beginning of the
700 * range. This is for the benefit of users which have not yet been
701 * converted to use multi-index entries.
703 void xas_create_range(struct xa_state
*xas
)
705 unsigned long index
= xas
->xa_index
;
706 unsigned char shift
= xas
->xa_shift
;
707 unsigned char sibs
= xas
->xa_sibs
;
709 xas
->xa_index
|= ((sibs
+ 1UL) << shift
) - 1;
710 if (xas_is_node(xas
) && xas
->xa_node
->shift
== xas
->xa_shift
)
711 xas
->xa_offset
|= sibs
;
716 xas_create(xas
, true);
719 if (xas
->xa_index
<= (index
| XA_CHUNK_MASK
))
721 xas
->xa_index
-= XA_CHUNK_SIZE
;
724 struct xa_node
*node
= xas
->xa_node
;
725 xas
->xa_node
= xa_parent_locked(xas
->xa
, node
);
726 xas
->xa_offset
= node
->offset
- 1;
727 if (node
->offset
!= 0)
733 xas
->xa_shift
= shift
;
735 xas
->xa_index
= index
;
738 xas
->xa_index
= index
;
742 EXPORT_SYMBOL_GPL(xas_create_range
);
744 static void update_node(struct xa_state
*xas
, struct xa_node
*node
,
745 int count
, int values
)
747 if (!node
|| (!count
&& !values
))
750 node
->count
+= count
;
751 node
->nr_values
+= values
;
752 XA_NODE_BUG_ON(node
, node
->count
> XA_CHUNK_SIZE
);
753 XA_NODE_BUG_ON(node
, node
->nr_values
> XA_CHUNK_SIZE
);
754 xas_update(xas
, node
);
756 xas_delete_node(xas
);
760 * xas_store() - Store this entry in the XArray.
761 * @xas: XArray operation state.
764 * If @xas is operating on a multi-index entry, the entry returned by this
765 * function is essentially meaningless (it may be an internal entry or it
766 * may be %NULL, even if there are non-NULL entries at some of the indices
767 * covered by the range). This is not a problem for any current users,
768 * and can be changed if needed.
770 * Return: The old entry at this index.
772 void *xas_store(struct xa_state
*xas
, void *entry
)
774 struct xa_node
*node
;
775 void __rcu
**slot
= &xas
->xa
->xa_head
;
776 unsigned int offset
, max
;
780 bool value
= xa_is_value(entry
);
783 bool allow_root
= !xa_is_node(entry
) && !xa_is_zero(entry
);
784 first
= xas_create(xas
, allow_root
);
786 first
= xas_load(xas
);
789 if (xas_invalid(xas
))
792 if (node
&& (xas
->xa_shift
< node
->shift
))
794 if ((first
== entry
) && !xas
->xa_sibs
)
798 offset
= xas
->xa_offset
;
799 max
= xas
->xa_offset
+ xas
->xa_sibs
;
801 slot
= &node
->slots
[offset
];
803 xas_squash_marks(xas
);
810 * Must clear the marks before setting the entry to NULL,
811 * otherwise xas_for_each_marked may find a NULL entry and
812 * stop early. rcu_assign_pointer contains a release barrier
813 * so the mark clearing will appear to happen before the
814 * entry is set to NULL.
816 rcu_assign_pointer(*slot
, entry
);
817 if (xa_is_node(next
) && (!node
|| node
->shift
))
818 xas_free_nodes(xas
, xa_to_node(next
));
821 count
+= !next
- !entry
;
822 values
+= !xa_is_value(first
) - !value
;
826 if (!xa_is_sibling(entry
))
827 entry
= xa_mk_sibling(xas
->xa_offset
);
829 if (offset
== XA_CHUNK_MASK
)
832 next
= xa_entry_locked(xas
->xa
, node
, ++offset
);
833 if (!xa_is_sibling(next
)) {
834 if (!entry
&& (offset
> max
))
841 update_node(xas
, node
, count
, values
);
844 EXPORT_SYMBOL_GPL(xas_store
);
847 * xas_get_mark() - Returns the state of this mark.
848 * @xas: XArray operation state.
849 * @mark: Mark number.
851 * Return: true if the mark is set, false if the mark is clear or @xas
852 * is in an error state.
854 bool xas_get_mark(const struct xa_state
*xas
, xa_mark_t mark
)
856 if (xas_invalid(xas
))
859 return xa_marked(xas
->xa
, mark
);
860 return node_get_mark(xas
->xa_node
, xas
->xa_offset
, mark
);
862 EXPORT_SYMBOL_GPL(xas_get_mark
);
865 * xas_set_mark() - Sets the mark on this entry and its parents.
866 * @xas: XArray operation state.
867 * @mark: Mark number.
869 * Sets the specified mark on this entry, and walks up the tree setting it
870 * on all the ancestor entries. Does nothing if @xas has not been walked to
871 * an entry, or is in an error state.
873 void xas_set_mark(const struct xa_state
*xas
, xa_mark_t mark
)
875 struct xa_node
*node
= xas
->xa_node
;
876 unsigned int offset
= xas
->xa_offset
;
878 if (xas_invalid(xas
))
882 if (node_set_mark(node
, offset
, mark
))
884 offset
= node
->offset
;
885 node
= xa_parent_locked(xas
->xa
, node
);
888 if (!xa_marked(xas
->xa
, mark
))
889 xa_mark_set(xas
->xa
, mark
);
891 EXPORT_SYMBOL_GPL(xas_set_mark
);
894 * xas_clear_mark() - Clears the mark on this entry and its parents.
895 * @xas: XArray operation state.
896 * @mark: Mark number.
898 * Clears the specified mark on this entry, and walks back to the head
899 * attempting to clear it on all the ancestor entries. Does nothing if
900 * @xas has not been walked to an entry, or is in an error state.
902 void xas_clear_mark(const struct xa_state
*xas
, xa_mark_t mark
)
904 struct xa_node
*node
= xas
->xa_node
;
905 unsigned int offset
= xas
->xa_offset
;
907 if (xas_invalid(xas
))
911 if (!node_clear_mark(node
, offset
, mark
))
913 if (node_any_mark(node
, mark
))
916 offset
= node
->offset
;
917 node
= xa_parent_locked(xas
->xa
, node
);
920 if (xa_marked(xas
->xa
, mark
))
921 xa_mark_clear(xas
->xa
, mark
);
923 EXPORT_SYMBOL_GPL(xas_clear_mark
);
926 * xas_init_marks() - Initialise all marks for the entry
927 * @xas: Array operations state.
929 * Initialise all marks for the entry specified by @xas. If we're tracking
930 * free entries with a mark, we need to set it on all entries. All other
933 * This implementation is not as efficient as it could be; we may walk
934 * up the tree multiple times.
936 void xas_init_marks(const struct xa_state
*xas
)
941 if (xa_track_free(xas
->xa
) && mark
== XA_FREE_MARK
)
942 xas_set_mark(xas
, mark
);
944 xas_clear_mark(xas
, mark
);
945 if (mark
== XA_MARK_MAX
)
950 EXPORT_SYMBOL_GPL(xas_init_marks
);
952 #ifdef CONFIG_XARRAY_MULTI
953 static unsigned int node_get_marks(struct xa_node
*node
, unsigned int offset
)
955 unsigned int marks
= 0;
956 xa_mark_t mark
= XA_MARK_0
;
959 if (node_get_mark(node
, offset
, mark
))
960 marks
|= 1 << (__force
unsigned int)mark
;
961 if (mark
== XA_MARK_MAX
)
969 static void node_set_marks(struct xa_node
*node
, unsigned int offset
,
970 struct xa_node
*child
, unsigned int marks
)
972 xa_mark_t mark
= XA_MARK_0
;
975 if (marks
& (1 << (__force
unsigned int)mark
)) {
976 node_set_mark(node
, offset
, mark
);
978 node_mark_all(child
, mark
);
980 if (mark
== XA_MARK_MAX
)
987 * xas_split_alloc() - Allocate memory for splitting an entry.
988 * @xas: XArray operation state.
989 * @entry: New entry which will be stored in the array.
990 * @order: New entry order.
991 * @gfp: Memory allocation flags.
993 * This function should be called before calling xas_split().
994 * If necessary, it will allocate new nodes (and fill them with @entry)
995 * to prepare for the upcoming split of an entry of @order size into
996 * entries of the order stored in the @xas.
998 * Context: May sleep if @gfp flags permit.
1000 void xas_split_alloc(struct xa_state
*xas
, void *entry
, unsigned int order
,
1003 unsigned int sibs
= (1 << (order
% XA_CHUNK_SHIFT
)) - 1;
1004 unsigned int mask
= xas
->xa_sibs
;
1006 /* XXX: no support for splitting really large entries yet */
1007 if (WARN_ON(xas
->xa_shift
+ 2 * XA_CHUNK_SHIFT
< order
))
1009 if (xas
->xa_shift
+ XA_CHUNK_SHIFT
> order
)
1015 struct xa_node
*node
;
1017 node
= kmem_cache_alloc(radix_tree_node_cachep
, gfp
);
1020 node
->array
= xas
->xa
;
1021 for (i
= 0; i
< XA_CHUNK_SIZE
; i
++) {
1022 if ((i
& mask
) == 0) {
1023 RCU_INIT_POINTER(node
->slots
[i
], entry
);
1024 sibling
= xa_mk_sibling(0);
1026 RCU_INIT_POINTER(node
->slots
[i
], sibling
);
1029 RCU_INIT_POINTER(node
->parent
, xas
->xa_alloc
);
1030 xas
->xa_alloc
= node
;
1031 } while (sibs
-- > 0);
1036 xas_set_err(xas
, -ENOMEM
);
1038 EXPORT_SYMBOL_GPL(xas_split_alloc
);
1041 * xas_split() - Split a multi-index entry into smaller entries.
1042 * @xas: XArray operation state.
1043 * @entry: New entry to store in the array.
1044 * @order: New entry order.
1046 * The value in the entry is copied to all the replacement entries.
1048 * Context: Any context. The caller should hold the xa_lock.
1050 void xas_split(struct xa_state
*xas
, void *entry
, unsigned int order
)
1052 unsigned int sibs
= (1 << (order
% XA_CHUNK_SHIFT
)) - 1;
1053 unsigned int offset
, marks
;
1054 struct xa_node
*node
;
1055 void *curr
= xas_load(xas
);
1058 node
= xas
->xa_node
;
1062 marks
= node_get_marks(node
, xas
->xa_offset
);
1064 offset
= xas
->xa_offset
+ sibs
;
1066 if (xas
->xa_shift
< node
->shift
) {
1067 struct xa_node
*child
= xas
->xa_alloc
;
1069 xas
->xa_alloc
= rcu_dereference_raw(child
->parent
);
1070 child
->shift
= node
->shift
- XA_CHUNK_SHIFT
;
1071 child
->offset
= offset
;
1072 child
->count
= XA_CHUNK_SIZE
;
1073 child
->nr_values
= xa_is_value(entry
) ?
1075 RCU_INIT_POINTER(child
->parent
, node
);
1076 node_set_marks(node
, offset
, child
, marks
);
1077 rcu_assign_pointer(node
->slots
[offset
],
1079 if (xa_is_value(curr
))
1082 unsigned int canon
= offset
- xas
->xa_sibs
;
1084 node_set_marks(node
, canon
, NULL
, marks
);
1085 rcu_assign_pointer(node
->slots
[canon
], entry
);
1086 while (offset
> canon
)
1087 rcu_assign_pointer(node
->slots
[offset
--],
1088 xa_mk_sibling(canon
));
1089 values
+= (xa_is_value(entry
) - xa_is_value(curr
)) *
1092 } while (offset
-- > xas
->xa_offset
);
1094 node
->nr_values
+= values
;
1096 EXPORT_SYMBOL_GPL(xas_split
);
1100 * xas_pause() - Pause a walk to drop a lock.
1101 * @xas: XArray operation state.
1103 * Some users need to pause a walk and drop the lock they're holding in
1104 * order to yield to a higher priority thread or carry out an operation
1105 * on an entry. Those users should call this function before they drop
1106 * the lock. It resets the @xas to be suitable for the next iteration
1107 * of the loop after the user has reacquired the lock. If most entries
1108 * found during a walk require you to call xas_pause(), the xa_for_each()
1109 * iterator may be more appropriate.
1111 * Note that xas_pause() only works for forward iteration. If a user needs
1112 * to pause a reverse iteration, we will need a xas_pause_rev().
1114 void xas_pause(struct xa_state
*xas
)
1116 struct xa_node
*node
= xas
->xa_node
;
1118 if (xas_invalid(xas
))
1121 xas
->xa_node
= XAS_RESTART
;
1123 unsigned long offset
= xas
->xa_offset
;
1124 while (++offset
< XA_CHUNK_SIZE
) {
1125 if (!xa_is_sibling(xa_entry(xas
->xa
, node
, offset
)))
1128 xas
->xa_index
+= (offset
- xas
->xa_offset
) << node
->shift
;
1129 if (xas
->xa_index
== 0)
1130 xas
->xa_node
= XAS_BOUNDS
;
1135 EXPORT_SYMBOL_GPL(xas_pause
);
1138 * __xas_prev() - Find the previous entry in the XArray.
1139 * @xas: XArray operation state.
1141 * Helper function for xas_prev() which handles all the complex cases
1144 void *__xas_prev(struct xa_state
*xas
)
1148 if (!xas_frozen(xas
->xa_node
))
1151 return set_bounds(xas
);
1152 if (xas_not_node(xas
->xa_node
))
1153 return xas_load(xas
);
1155 if (xas
->xa_offset
!= get_offset(xas
->xa_index
, xas
->xa_node
))
1158 while (xas
->xa_offset
== 255) {
1159 xas
->xa_offset
= xas
->xa_node
->offset
- 1;
1160 xas
->xa_node
= xa_parent(xas
->xa
, xas
->xa_node
);
1162 return set_bounds(xas
);
1166 entry
= xa_entry(xas
->xa
, xas
->xa_node
, xas
->xa_offset
);
1167 if (!xa_is_node(entry
))
1170 xas
->xa_node
= xa_to_node(entry
);
1171 xas_set_offset(xas
);
1174 EXPORT_SYMBOL_GPL(__xas_prev
);
1177 * __xas_next() - Find the next entry in the XArray.
1178 * @xas: XArray operation state.
1180 * Helper function for xas_next() which handles all the complex cases
1183 void *__xas_next(struct xa_state
*xas
)
1187 if (!xas_frozen(xas
->xa_node
))
1190 return set_bounds(xas
);
1191 if (xas_not_node(xas
->xa_node
))
1192 return xas_load(xas
);
1194 if (xas
->xa_offset
!= get_offset(xas
->xa_index
, xas
->xa_node
))
1197 while (xas
->xa_offset
== XA_CHUNK_SIZE
) {
1198 xas
->xa_offset
= xas
->xa_node
->offset
+ 1;
1199 xas
->xa_node
= xa_parent(xas
->xa
, xas
->xa_node
);
1201 return set_bounds(xas
);
1205 entry
= xa_entry(xas
->xa
, xas
->xa_node
, xas
->xa_offset
);
1206 if (!xa_is_node(entry
))
1209 xas
->xa_node
= xa_to_node(entry
);
1210 xas_set_offset(xas
);
1213 EXPORT_SYMBOL_GPL(__xas_next
);
1216 * xas_find() - Find the next present entry in the XArray.
1217 * @xas: XArray operation state.
1218 * @max: Highest index to return.
1220 * If the @xas has not yet been walked to an entry, return the entry
1221 * which has an index >= xas.xa_index. If it has been walked, the entry
1222 * currently being pointed at has been processed, and so we move to the
1225 * If no entry is found and the array is smaller than @max, the iterator
1226 * is set to the smallest index not yet in the array. This allows @xas
1227 * to be immediately passed to xas_store().
1229 * Return: The entry, if found, otherwise %NULL.
1231 void *xas_find(struct xa_state
*xas
, unsigned long max
)
1235 if (xas_error(xas
) || xas
->xa_node
== XAS_BOUNDS
)
1237 if (xas
->xa_index
> max
)
1238 return set_bounds(xas
);
1240 if (!xas
->xa_node
) {
1242 return set_bounds(xas
);
1243 } else if (xas
->xa_node
== XAS_RESTART
) {
1244 entry
= xas_load(xas
);
1245 if (entry
|| xas_not_node(xas
->xa_node
))
1247 } else if (!xas
->xa_node
->shift
&&
1248 xas
->xa_offset
!= (xas
->xa_index
& XA_CHUNK_MASK
)) {
1249 xas
->xa_offset
= ((xas
->xa_index
- 1) & XA_CHUNK_MASK
) + 1;
1254 while (xas
->xa_node
&& (xas
->xa_index
<= max
)) {
1255 if (unlikely(xas
->xa_offset
== XA_CHUNK_SIZE
)) {
1256 xas
->xa_offset
= xas
->xa_node
->offset
+ 1;
1257 xas
->xa_node
= xa_parent(xas
->xa
, xas
->xa_node
);
1261 entry
= xa_entry(xas
->xa
, xas
->xa_node
, xas
->xa_offset
);
1262 if (xa_is_node(entry
)) {
1263 xas
->xa_node
= xa_to_node(entry
);
1267 if (entry
&& !xa_is_sibling(entry
))
1274 xas
->xa_node
= XAS_BOUNDS
;
1277 EXPORT_SYMBOL_GPL(xas_find
);
1280 * xas_find_marked() - Find the next marked entry in the XArray.
1281 * @xas: XArray operation state.
1282 * @max: Highest index to return.
1283 * @mark: Mark number to search for.
1285 * If the @xas has not yet been walked to an entry, return the marked entry
1286 * which has an index >= xas.xa_index. If it has been walked, the entry
1287 * currently being pointed at has been processed, and so we return the
1288 * first marked entry with an index > xas.xa_index.
1290 * If no marked entry is found and the array is smaller than @max, @xas is
1291 * set to the bounds state and xas->xa_index is set to the smallest index
1292 * not yet in the array. This allows @xas to be immediately passed to
1295 * If no entry is found before @max is reached, @xas is set to the restart
1298 * Return: The entry, if found, otherwise %NULL.
1300 void *xas_find_marked(struct xa_state
*xas
, unsigned long max
, xa_mark_t mark
)
1302 bool advance
= true;
1303 unsigned int offset
;
1308 if (xas
->xa_index
> max
)
1311 if (!xas
->xa_node
) {
1314 } else if (xas_top(xas
->xa_node
)) {
1316 entry
= xa_head(xas
->xa
);
1317 xas
->xa_node
= NULL
;
1318 if (xas
->xa_index
> max_index(entry
))
1320 if (!xa_is_node(entry
)) {
1321 if (xa_marked(xas
->xa
, mark
))
1326 xas
->xa_node
= xa_to_node(entry
);
1327 xas
->xa_offset
= xas
->xa_index
>> xas
->xa_node
->shift
;
1330 while (xas
->xa_index
<= max
) {
1331 if (unlikely(xas
->xa_offset
== XA_CHUNK_SIZE
)) {
1332 xas
->xa_offset
= xas
->xa_node
->offset
+ 1;
1333 xas
->xa_node
= xa_parent(xas
->xa
, xas
->xa_node
);
1341 entry
= xa_entry(xas
->xa
, xas
->xa_node
, xas
->xa_offset
);
1342 if (xa_is_sibling(entry
)) {
1343 xas
->xa_offset
= xa_to_sibling(entry
);
1344 xas_move_index(xas
, xas
->xa_offset
);
1348 offset
= xas_find_chunk(xas
, advance
, mark
);
1349 if (offset
> xas
->xa_offset
) {
1351 xas_move_index(xas
, offset
);
1353 if ((xas
->xa_index
- 1) >= max
)
1355 xas
->xa_offset
= offset
;
1356 if (offset
== XA_CHUNK_SIZE
)
1360 entry
= xa_entry(xas
->xa
, xas
->xa_node
, xas
->xa_offset
);
1361 if (!entry
&& !(xa_track_free(xas
->xa
) && mark
== XA_FREE_MARK
))
1363 if (!xa_is_node(entry
))
1365 xas
->xa_node
= xa_to_node(entry
);
1366 xas_set_offset(xas
);
1370 if (xas
->xa_index
> max
)
1372 return set_bounds(xas
);
1374 xas
->xa_node
= XAS_RESTART
;
1377 EXPORT_SYMBOL_GPL(xas_find_marked
);
1380 * xas_find_conflict() - Find the next present entry in a range.
1381 * @xas: XArray operation state.
1383 * The @xas describes both a range and a position within that range.
1385 * Context: Any context. Expects xa_lock to be held.
1386 * Return: The next entry in the range covered by @xas or %NULL.
1388 void *xas_find_conflict(struct xa_state
*xas
)
1398 if (xas_top(xas
->xa_node
)) {
1399 curr
= xas_start(xas
);
1402 while (xa_is_node(curr
)) {
1403 struct xa_node
*node
= xa_to_node(curr
);
1404 curr
= xas_descend(xas
, node
);
1410 if (xas
->xa_node
->shift
> xas
->xa_shift
)
1414 if (xas
->xa_node
->shift
== xas
->xa_shift
) {
1415 if ((xas
->xa_offset
& xas
->xa_sibs
) == xas
->xa_sibs
)
1417 } else if (xas
->xa_offset
== XA_CHUNK_MASK
) {
1418 xas
->xa_offset
= xas
->xa_node
->offset
;
1419 xas
->xa_node
= xa_parent_locked(xas
->xa
, xas
->xa_node
);
1424 curr
= xa_entry_locked(xas
->xa
, xas
->xa_node
, ++xas
->xa_offset
);
1425 if (xa_is_sibling(curr
))
1427 while (xa_is_node(curr
)) {
1428 xas
->xa_node
= xa_to_node(curr
);
1430 curr
= xa_entry_locked(xas
->xa
, xas
->xa_node
, 0);
1435 xas
->xa_offset
-= xas
->xa_sibs
;
1438 EXPORT_SYMBOL_GPL(xas_find_conflict
);
1441 * xa_load() - Load an entry from an XArray.
1443 * @index: index into array.
1445 * Context: Any context. Takes and releases the RCU lock.
1446 * Return: The entry at @index in @xa.
1448 void *xa_load(struct xarray
*xa
, unsigned long index
)
1450 XA_STATE(xas
, xa
, index
);
1455 entry
= xas_load(&xas
);
1456 if (xa_is_zero(entry
))
1458 } while (xas_retry(&xas
, entry
));
1463 EXPORT_SYMBOL(xa_load
);
1465 static void *xas_result(struct xa_state
*xas
, void *curr
)
1467 if (xa_is_zero(curr
))
1470 curr
= xas
->xa_node
;
1475 * __xa_erase() - Erase this entry from the XArray while locked.
1477 * @index: Index into array.
1479 * After this function returns, loading from @index will return %NULL.
1480 * If the index is part of a multi-index entry, all indices will be erased
1481 * and none of the entries will be part of a multi-index entry.
1483 * Context: Any context. Expects xa_lock to be held on entry.
1484 * Return: The entry which used to be at this index.
1486 void *__xa_erase(struct xarray
*xa
, unsigned long index
)
1488 XA_STATE(xas
, xa
, index
);
1489 return xas_result(&xas
, xas_store(&xas
, NULL
));
1491 EXPORT_SYMBOL(__xa_erase
);
1494 * xa_erase() - Erase this entry from the XArray.
1496 * @index: Index of entry.
1498 * After this function returns, loading from @index will return %NULL.
1499 * If the index is part of a multi-index entry, all indices will be erased
1500 * and none of the entries will be part of a multi-index entry.
1502 * Context: Any context. Takes and releases the xa_lock.
1503 * Return: The entry which used to be at this index.
1505 void *xa_erase(struct xarray
*xa
, unsigned long index
)
1510 entry
= __xa_erase(xa
, index
);
1515 EXPORT_SYMBOL(xa_erase
);
1518 * __xa_store() - Store this entry in the XArray.
1520 * @index: Index into array.
1521 * @entry: New entry.
1522 * @gfp: Memory allocation flags.
1524 * You must already be holding the xa_lock when calling this function.
1525 * It will drop the lock if needed to allocate memory, and then reacquire
1528 * Context: Any context. Expects xa_lock to be held on entry. May
1529 * release and reacquire xa_lock if @gfp flags permit.
1530 * Return: The old entry at this index or xa_err() if an error happened.
1532 void *__xa_store(struct xarray
*xa
, unsigned long index
, void *entry
, gfp_t gfp
)
1534 XA_STATE(xas
, xa
, index
);
1537 if (WARN_ON_ONCE(xa_is_advanced(entry
)))
1538 return XA_ERROR(-EINVAL
);
1539 if (xa_track_free(xa
) && !entry
)
1540 entry
= XA_ZERO_ENTRY
;
1543 curr
= xas_store(&xas
, entry
);
1544 if (xa_track_free(xa
))
1545 xas_clear_mark(&xas
, XA_FREE_MARK
);
1546 } while (__xas_nomem(&xas
, gfp
));
1548 return xas_result(&xas
, curr
);
1550 EXPORT_SYMBOL(__xa_store
);
1553 * xa_store() - Store this entry in the XArray.
1555 * @index: Index into array.
1556 * @entry: New entry.
1557 * @gfp: Memory allocation flags.
1559 * After this function returns, loads from this index will return @entry.
1560 * Storing into an existing multi-index entry updates the entry of every index.
1561 * The marks associated with @index are unaffected unless @entry is %NULL.
1563 * Context: Any context. Takes and releases the xa_lock.
1564 * May sleep if the @gfp flags permit.
1565 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1566 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1569 void *xa_store(struct xarray
*xa
, unsigned long index
, void *entry
, gfp_t gfp
)
1574 curr
= __xa_store(xa
, index
, entry
, gfp
);
1579 EXPORT_SYMBOL(xa_store
);
1582 * __xa_cmpxchg() - Store this entry in the XArray.
1584 * @index: Index into array.
1585 * @old: Old value to test against.
1586 * @entry: New entry.
1587 * @gfp: Memory allocation flags.
1589 * You must already be holding the xa_lock when calling this function.
1590 * It will drop the lock if needed to allocate memory, and then reacquire
1593 * Context: Any context. Expects xa_lock to be held on entry. May
1594 * release and reacquire xa_lock if @gfp flags permit.
1595 * Return: The old entry at this index or xa_err() if an error happened.
1597 void *__xa_cmpxchg(struct xarray
*xa
, unsigned long index
,
1598 void *old
, void *entry
, gfp_t gfp
)
1600 XA_STATE(xas
, xa
, index
);
1603 if (WARN_ON_ONCE(xa_is_advanced(entry
)))
1604 return XA_ERROR(-EINVAL
);
1607 curr
= xas_load(&xas
);
1609 xas_store(&xas
, entry
);
1610 if (xa_track_free(xa
) && entry
&& !curr
)
1611 xas_clear_mark(&xas
, XA_FREE_MARK
);
1613 } while (__xas_nomem(&xas
, gfp
));
1615 return xas_result(&xas
, curr
);
1617 EXPORT_SYMBOL(__xa_cmpxchg
);
1620 * __xa_insert() - Store this entry in the XArray if no entry is present.
1622 * @index: Index into array.
1623 * @entry: New entry.
1624 * @gfp: Memory allocation flags.
1626 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1627 * if no entry is present. Inserting will fail if a reserved entry is
1628 * present, even though loading from this index will return NULL.
1630 * Context: Any context. Expects xa_lock to be held on entry. May
1631 * release and reacquire xa_lock if @gfp flags permit.
1632 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1633 * -ENOMEM if memory could not be allocated.
1635 int __xa_insert(struct xarray
*xa
, unsigned long index
, void *entry
, gfp_t gfp
)
1637 XA_STATE(xas
, xa
, index
);
1640 if (WARN_ON_ONCE(xa_is_advanced(entry
)))
1643 entry
= XA_ZERO_ENTRY
;
1646 curr
= xas_load(&xas
);
1648 xas_store(&xas
, entry
);
1649 if (xa_track_free(xa
))
1650 xas_clear_mark(&xas
, XA_FREE_MARK
);
1652 xas_set_err(&xas
, -EBUSY
);
1654 } while (__xas_nomem(&xas
, gfp
));
1656 return xas_error(&xas
);
1658 EXPORT_SYMBOL(__xa_insert
);
1660 #ifdef CONFIG_XARRAY_MULTI
1661 static void xas_set_range(struct xa_state
*xas
, unsigned long first
,
1664 unsigned int shift
= 0;
1665 unsigned long sibs
= last
- first
;
1666 unsigned int offset
= XA_CHUNK_MASK
;
1668 xas_set(xas
, first
);
1670 while ((first
& XA_CHUNK_MASK
) == 0) {
1671 if (sibs
< XA_CHUNK_MASK
)
1673 if ((sibs
== XA_CHUNK_MASK
) && (offset
< XA_CHUNK_MASK
))
1675 shift
+= XA_CHUNK_SHIFT
;
1676 if (offset
== XA_CHUNK_MASK
)
1677 offset
= sibs
& XA_CHUNK_MASK
;
1678 sibs
>>= XA_CHUNK_SHIFT
;
1679 first
>>= XA_CHUNK_SHIFT
;
1682 offset
= first
& XA_CHUNK_MASK
;
1683 if (offset
+ sibs
> XA_CHUNK_MASK
)
1684 sibs
= XA_CHUNK_MASK
- offset
;
1685 if ((((first
+ sibs
+ 1) << shift
) - 1) > last
)
1688 xas
->xa_shift
= shift
;
1689 xas
->xa_sibs
= sibs
;
1693 * xa_store_range() - Store this entry at a range of indices in the XArray.
1695 * @first: First index to affect.
1696 * @last: Last index to affect.
1697 * @entry: New entry.
1698 * @gfp: Memory allocation flags.
1700 * After this function returns, loads from any index between @first and @last,
1701 * inclusive will return @entry.
1702 * Storing into an existing multi-index entry updates the entry of every index.
1703 * The marks associated with @index are unaffected unless @entry is %NULL.
1705 * Context: Process context. Takes and releases the xa_lock. May sleep
1706 * if the @gfp flags permit.
1707 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1708 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1710 void *xa_store_range(struct xarray
*xa
, unsigned long first
,
1711 unsigned long last
, void *entry
, gfp_t gfp
)
1713 XA_STATE(xas
, xa
, 0);
1715 if (WARN_ON_ONCE(xa_is_internal(entry
)))
1716 return XA_ERROR(-EINVAL
);
1718 return XA_ERROR(-EINVAL
);
1723 unsigned int order
= BITS_PER_LONG
;
1725 order
= __ffs(last
+ 1);
1726 xas_set_order(&xas
, last
, order
);
1727 xas_create(&xas
, true);
1728 if (xas_error(&xas
))
1732 xas_set_range(&xas
, first
, last
);
1733 xas_store(&xas
, entry
);
1734 if (xas_error(&xas
))
1736 first
+= xas_size(&xas
);
1737 } while (first
<= last
);
1740 } while (xas_nomem(&xas
, gfp
));
1742 return xas_result(&xas
, NULL
);
1744 EXPORT_SYMBOL(xa_store_range
);
1747 * xa_get_order() - Get the order of an entry.
1749 * @index: Index of the entry.
1751 * Return: A number between 0 and 63 indicating the order of the entry.
1753 int xa_get_order(struct xarray
*xa
, unsigned long index
)
1755 XA_STATE(xas
, xa
, index
);
1760 entry
= xas_load(&xas
);
1769 unsigned int slot
= xas
.xa_offset
+ (1 << order
);
1771 if (slot
>= XA_CHUNK_SIZE
)
1773 if (!xa_is_sibling(xas
.xa_node
->slots
[slot
]))
1778 order
+= xas
.xa_node
->shift
;
1784 EXPORT_SYMBOL(xa_get_order
);
1785 #endif /* CONFIG_XARRAY_MULTI */
1788 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1790 * @id: Pointer to ID.
1791 * @limit: Range for allocated ID.
1792 * @entry: New entry.
1793 * @gfp: Memory allocation flags.
1795 * Finds an empty entry in @xa between @limit.min and @limit.max,
1796 * stores the index into the @id pointer, then stores the entry at
1797 * that index. A concurrent lookup will not see an uninitialised @id.
1799 * Context: Any context. Expects xa_lock to be held on entry. May
1800 * release and reacquire xa_lock if @gfp flags permit.
1801 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1802 * -EBUSY if there are no free entries in @limit.
1804 int __xa_alloc(struct xarray
*xa
, u32
*id
, void *entry
,
1805 struct xa_limit limit
, gfp_t gfp
)
1807 XA_STATE(xas
, xa
, 0);
1809 if (WARN_ON_ONCE(xa_is_advanced(entry
)))
1811 if (WARN_ON_ONCE(!xa_track_free(xa
)))
1815 entry
= XA_ZERO_ENTRY
;
1818 xas
.xa_index
= limit
.min
;
1819 xas_find_marked(&xas
, limit
.max
, XA_FREE_MARK
);
1820 if (xas
.xa_node
== XAS_RESTART
)
1821 xas_set_err(&xas
, -EBUSY
);
1824 xas_store(&xas
, entry
);
1825 xas_clear_mark(&xas
, XA_FREE_MARK
);
1826 } while (__xas_nomem(&xas
, gfp
));
1828 return xas_error(&xas
);
1830 EXPORT_SYMBOL(__xa_alloc
);
1833 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1835 * @id: Pointer to ID.
1836 * @entry: New entry.
1837 * @limit: Range of allocated ID.
1838 * @next: Pointer to next ID to allocate.
1839 * @gfp: Memory allocation flags.
1841 * Finds an empty entry in @xa between @limit.min and @limit.max,
1842 * stores the index into the @id pointer, then stores the entry at
1843 * that index. A concurrent lookup will not see an uninitialised @id.
1844 * The search for an empty entry will start at @next and will wrap
1845 * around if necessary.
1847 * Context: Any context. Expects xa_lock to be held on entry. May
1848 * release and reacquire xa_lock if @gfp flags permit.
1849 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1850 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1851 * allocated or -EBUSY if there are no free entries in @limit.
1853 int __xa_alloc_cyclic(struct xarray
*xa
, u32
*id
, void *entry
,
1854 struct xa_limit limit
, u32
*next
, gfp_t gfp
)
1856 u32 min
= limit
.min
;
1859 limit
.min
= max(min
, *next
);
1860 ret
= __xa_alloc(xa
, id
, entry
, limit
, gfp
);
1861 if ((xa
->xa_flags
& XA_FLAGS_ALLOC_WRAPPED
) && ret
== 0) {
1862 xa
->xa_flags
&= ~XA_FLAGS_ALLOC_WRAPPED
;
1866 if (ret
< 0 && limit
.min
> min
) {
1868 ret
= __xa_alloc(xa
, id
, entry
, limit
, gfp
);
1876 xa
->xa_flags
|= XA_FLAGS_ALLOC_WRAPPED
;
1880 EXPORT_SYMBOL(__xa_alloc_cyclic
);
1883 * __xa_set_mark() - Set this mark on this entry while locked.
1885 * @index: Index of entry.
1886 * @mark: Mark number.
1888 * Attempting to set a mark on a %NULL entry does not succeed.
1890 * Context: Any context. Expects xa_lock to be held on entry.
1892 void __xa_set_mark(struct xarray
*xa
, unsigned long index
, xa_mark_t mark
)
1894 XA_STATE(xas
, xa
, index
);
1895 void *entry
= xas_load(&xas
);
1898 xas_set_mark(&xas
, mark
);
1900 EXPORT_SYMBOL(__xa_set_mark
);
1903 * __xa_clear_mark() - Clear this mark on this entry while locked.
1905 * @index: Index of entry.
1906 * @mark: Mark number.
1908 * Context: Any context. Expects xa_lock to be held on entry.
1910 void __xa_clear_mark(struct xarray
*xa
, unsigned long index
, xa_mark_t mark
)
1912 XA_STATE(xas
, xa
, index
);
1913 void *entry
= xas_load(&xas
);
1916 xas_clear_mark(&xas
, mark
);
1918 EXPORT_SYMBOL(__xa_clear_mark
);
1921 * xa_get_mark() - Inquire whether this mark is set on this entry.
1923 * @index: Index of entry.
1924 * @mark: Mark number.
1926 * This function uses the RCU read lock, so the result may be out of date
1927 * by the time it returns. If you need the result to be stable, use a lock.
1929 * Context: Any context. Takes and releases the RCU lock.
1930 * Return: True if the entry at @index has this mark set, false if it doesn't.
1932 bool xa_get_mark(struct xarray
*xa
, unsigned long index
, xa_mark_t mark
)
1934 XA_STATE(xas
, xa
, index
);
1938 entry
= xas_start(&xas
);
1939 while (xas_get_mark(&xas
, mark
)) {
1940 if (!xa_is_node(entry
))
1942 entry
= xas_descend(&xas
, xa_to_node(entry
));
1950 EXPORT_SYMBOL(xa_get_mark
);
1953 * xa_set_mark() - Set this mark on this entry.
1955 * @index: Index of entry.
1956 * @mark: Mark number.
1958 * Attempting to set a mark on a %NULL entry does not succeed.
1960 * Context: Process context. Takes and releases the xa_lock.
1962 void xa_set_mark(struct xarray
*xa
, unsigned long index
, xa_mark_t mark
)
1965 __xa_set_mark(xa
, index
, mark
);
1968 EXPORT_SYMBOL(xa_set_mark
);
1971 * xa_clear_mark() - Clear this mark on this entry.
1973 * @index: Index of entry.
1974 * @mark: Mark number.
1976 * Clearing a mark always succeeds.
1978 * Context: Process context. Takes and releases the xa_lock.
1980 void xa_clear_mark(struct xarray
*xa
, unsigned long index
, xa_mark_t mark
)
1983 __xa_clear_mark(xa
, index
, mark
);
1986 EXPORT_SYMBOL(xa_clear_mark
);
1989 * xa_find() - Search the XArray for an entry.
1991 * @indexp: Pointer to an index.
1992 * @max: Maximum index to search to.
1993 * @filter: Selection criterion.
1995 * Finds the entry in @xa which matches the @filter, and has the lowest
1996 * index that is at least @indexp and no more than @max.
1997 * If an entry is found, @indexp is updated to be the index of the entry.
1998 * This function is protected by the RCU read lock, so it may not find
1999 * entries which are being simultaneously added. It will not return an
2000 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2002 * Context: Any context. Takes and releases the RCU lock.
2003 * Return: The entry, if found, otherwise %NULL.
2005 void *xa_find(struct xarray
*xa
, unsigned long *indexp
,
2006 unsigned long max
, xa_mark_t filter
)
2008 XA_STATE(xas
, xa
, *indexp
);
2013 if ((__force
unsigned int)filter
< XA_MAX_MARKS
)
2014 entry
= xas_find_marked(&xas
, max
, filter
);
2016 entry
= xas_find(&xas
, max
);
2017 } while (xas_retry(&xas
, entry
));
2021 *indexp
= xas
.xa_index
;
2024 EXPORT_SYMBOL(xa_find
);
2026 static bool xas_sibling(struct xa_state
*xas
)
2028 struct xa_node
*node
= xas
->xa_node
;
2031 if (!IS_ENABLED(CONFIG_XARRAY_MULTI
) || !node
)
2033 mask
= (XA_CHUNK_SIZE
<< node
->shift
) - 1;
2034 return (xas
->xa_index
& mask
) >
2035 ((unsigned long)xas
->xa_offset
<< node
->shift
);
2039 * xa_find_after() - Search the XArray for a present entry.
2041 * @indexp: Pointer to an index.
2042 * @max: Maximum index to search to.
2043 * @filter: Selection criterion.
2045 * Finds the entry in @xa which matches the @filter and has the lowest
2046 * index that is above @indexp and no more than @max.
2047 * If an entry is found, @indexp is updated to be the index of the entry.
2048 * This function is protected by the RCU read lock, so it may miss entries
2049 * which are being simultaneously added. It will not return an
2050 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2052 * Context: Any context. Takes and releases the RCU lock.
2053 * Return: The pointer, if found, otherwise %NULL.
2055 void *xa_find_after(struct xarray
*xa
, unsigned long *indexp
,
2056 unsigned long max
, xa_mark_t filter
)
2058 XA_STATE(xas
, xa
, *indexp
+ 1);
2061 if (xas
.xa_index
== 0)
2066 if ((__force
unsigned int)filter
< XA_MAX_MARKS
)
2067 entry
= xas_find_marked(&xas
, max
, filter
);
2069 entry
= xas_find(&xas
, max
);
2071 if (xas_invalid(&xas
))
2073 if (xas_sibling(&xas
))
2075 if (!xas_retry(&xas
, entry
))
2081 *indexp
= xas
.xa_index
;
2084 EXPORT_SYMBOL(xa_find_after
);
2086 static unsigned int xas_extract_present(struct xa_state
*xas
, void **dst
,
2087 unsigned long max
, unsigned int n
)
2093 xas_for_each(xas
, entry
, max
) {
2094 if (xas_retry(xas
, entry
))
2105 static unsigned int xas_extract_marked(struct xa_state
*xas
, void **dst
,
2106 unsigned long max
, unsigned int n
, xa_mark_t mark
)
2112 xas_for_each_marked(xas
, entry
, max
, mark
) {
2113 if (xas_retry(xas
, entry
))
2125 * xa_extract() - Copy selected entries from the XArray into a normal array.
2126 * @xa: The source XArray to copy from.
2127 * @dst: The buffer to copy entries into.
2128 * @start: The first index in the XArray eligible to be selected.
2129 * @max: The last index in the XArray eligible to be selected.
2130 * @n: The maximum number of entries to copy.
2131 * @filter: Selection criterion.
2133 * Copies up to @n entries that match @filter from the XArray. The
2134 * copied entries will have indices between @start and @max, inclusive.
2136 * The @filter may be an XArray mark value, in which case entries which are
2137 * marked with that mark will be copied. It may also be %XA_PRESENT, in
2138 * which case all entries which are not %NULL will be copied.
2140 * The entries returned may not represent a snapshot of the XArray at a
2141 * moment in time. For example, if another thread stores to index 5, then
2142 * index 10, calling xa_extract() may return the old contents of index 5
2143 * and the new contents of index 10. Indices not modified while this
2144 * function is running will not be skipped.
2146 * If you need stronger guarantees, holding the xa_lock across calls to this
2147 * function will prevent concurrent modification.
2149 * Context: Any context. Takes and releases the RCU lock.
2150 * Return: The number of entries copied.
2152 unsigned int xa_extract(struct xarray
*xa
, void **dst
, unsigned long start
,
2153 unsigned long max
, unsigned int n
, xa_mark_t filter
)
2155 XA_STATE(xas
, xa
, start
);
2160 if ((__force
unsigned int)filter
< XA_MAX_MARKS
)
2161 return xas_extract_marked(&xas
, dst
, max
, n
, filter
);
2162 return xas_extract_present(&xas
, dst
, max
, n
);
2164 EXPORT_SYMBOL(xa_extract
);
2167 * xa_delete_node() - Private interface for workingset code.
2168 * @node: Node to be removed from the tree.
2169 * @update: Function to call to update ancestor nodes.
2171 * Context: xa_lock must be held on entry and will not be released.
2173 void xa_delete_node(struct xa_node
*node
, xa_update_node_t update
)
2175 struct xa_state xas
= {
2177 .xa_index
= (unsigned long)node
->offset
<<
2178 (node
->shift
+ XA_CHUNK_SHIFT
),
2179 .xa_shift
= node
->shift
+ XA_CHUNK_SHIFT
,
2180 .xa_offset
= node
->offset
,
2181 .xa_node
= xa_parent_locked(node
->array
, node
),
2182 .xa_update
= update
,
2185 xas_store(&xas
, NULL
);
2187 EXPORT_SYMBOL_GPL(xa_delete_node
); /* For the benefit of the test suite */
2190 * xa_destroy() - Free all internal data structures.
2193 * After calling this function, the XArray is empty and has freed all memory
2194 * allocated for its internal data structures. You are responsible for
2195 * freeing the objects referenced by the XArray.
2197 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
2199 void xa_destroy(struct xarray
*xa
)
2201 XA_STATE(xas
, xa
, 0);
2202 unsigned long flags
;
2206 xas_lock_irqsave(&xas
, flags
);
2207 entry
= xa_head_locked(xa
);
2208 RCU_INIT_POINTER(xa
->xa_head
, NULL
);
2209 xas_init_marks(&xas
);
2210 if (xa_zero_busy(xa
))
2211 xa_mark_clear(xa
, XA_FREE_MARK
);
2212 /* lockdep checks we're still holding the lock in xas_free_nodes() */
2213 if (xa_is_node(entry
))
2214 xas_free_nodes(&xas
, xa_to_node(entry
));
2215 xas_unlock_irqrestore(&xas
, flags
);
2217 EXPORT_SYMBOL(xa_destroy
);
2220 void xa_dump_node(const struct xa_node
*node
)
2226 if ((unsigned long)node
& 3) {
2227 pr_cont("node %px\n", node
);
2231 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2232 "array %px list %px %px marks",
2233 node
, node
->parent
? "offset" : "max", node
->offset
,
2234 node
->parent
, node
->shift
, node
->count
, node
->nr_values
,
2235 node
->array
, node
->private_list
.prev
, node
->private_list
.next
);
2236 for (i
= 0; i
< XA_MAX_MARKS
; i
++)
2237 for (j
= 0; j
< XA_MARK_LONGS
; j
++)
2238 pr_cont(" %lx", node
->marks
[i
][j
]);
2242 void xa_dump_index(unsigned long index
, unsigned int shift
)
2245 pr_info("%lu: ", index
);
2246 else if (shift
>= BITS_PER_LONG
)
2247 pr_info("0-%lu: ", ~0UL);
2249 pr_info("%lu-%lu: ", index
, index
| ((1UL << shift
) - 1));
2252 void xa_dump_entry(const void *entry
, unsigned long index
, unsigned long shift
)
2257 xa_dump_index(index
, shift
);
2259 if (xa_is_node(entry
)) {
2261 pr_cont("%px\n", entry
);
2264 struct xa_node
*node
= xa_to_node(entry
);
2266 for (i
= 0; i
< XA_CHUNK_SIZE
; i
++)
2267 xa_dump_entry(node
->slots
[i
],
2268 index
+ (i
<< node
->shift
), node
->shift
);
2270 } else if (xa_is_value(entry
))
2271 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry
),
2272 xa_to_value(entry
), entry
);
2273 else if (!xa_is_internal(entry
))
2274 pr_cont("%px\n", entry
);
2275 else if (xa_is_retry(entry
))
2276 pr_cont("retry (%ld)\n", xa_to_internal(entry
));
2277 else if (xa_is_sibling(entry
))
2278 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry
));
2279 else if (xa_is_zero(entry
))
2280 pr_cont("zero (%ld)\n", xa_to_internal(entry
));
2282 pr_cont("UNKNOWN ENTRY (%px)\n", entry
);
2285 void xa_dump(const struct xarray
*xa
)
2287 void *entry
= xa
->xa_head
;
2288 unsigned int shift
= 0;
2290 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa
, entry
,
2291 xa
->xa_flags
, xa_marked(xa
, XA_MARK_0
),
2292 xa_marked(xa
, XA_MARK_1
), xa_marked(xa
, XA_MARK_2
));
2293 if (xa_is_node(entry
))
2294 shift
= xa_to_node(entry
)->shift
+ XA_CHUNK_SHIFT
;
2295 xa_dump_entry(entry
, 0, shift
);