1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/ima.h>
17 #include <linux/err.h>
20 struct kmem_cache
*key_jar
;
21 struct rb_root key_serial_tree
; /* tree of keys indexed by serial */
22 DEFINE_SPINLOCK(key_serial_lock
);
24 struct rb_root key_user_tree
; /* tree of quota records indexed by UID */
25 DEFINE_SPINLOCK(key_user_lock
);
27 unsigned int key_quota_root_maxkeys
= 1000000; /* root's key count quota */
28 unsigned int key_quota_root_maxbytes
= 25000000; /* root's key space quota */
29 unsigned int key_quota_maxkeys
= 200; /* general key count quota */
30 unsigned int key_quota_maxbytes
= 20000; /* general key space quota */
32 static LIST_HEAD(key_types_list
);
33 static DECLARE_RWSEM(key_types_sem
);
35 /* We serialise key instantiation and link */
36 DEFINE_MUTEX(key_construction_mutex
);
39 void __key_check(const struct key
*key
)
41 printk("__key_check: key %p {%08x} should be {%08x}\n",
42 key
, key
->magic
, KEY_DEBUG_MAGIC
);
48 * Get the key quota record for a user, allocating a new record if one doesn't
51 struct key_user
*key_user_lookup(kuid_t uid
)
53 struct key_user
*candidate
= NULL
, *user
;
54 struct rb_node
*parent
, **p
;
58 p
= &key_user_tree
.rb_node
;
59 spin_lock(&key_user_lock
);
61 /* search the tree for a user record with a matching UID */
64 user
= rb_entry(parent
, struct key_user
, node
);
66 if (uid_lt(uid
, user
->uid
))
68 else if (uid_gt(uid
, user
->uid
))
74 /* if we get here, we failed to find a match in the tree */
76 /* allocate a candidate user record if we don't already have
78 spin_unlock(&key_user_lock
);
81 candidate
= kmalloc(sizeof(struct key_user
), GFP_KERNEL
);
82 if (unlikely(!candidate
))
85 /* the allocation may have scheduled, so we need to repeat the
86 * search lest someone else added the record whilst we were
91 /* if we get here, then the user record still hadn't appeared on the
92 * second pass - so we use the candidate record */
93 refcount_set(&candidate
->usage
, 1);
94 atomic_set(&candidate
->nkeys
, 0);
95 atomic_set(&candidate
->nikeys
, 0);
97 candidate
->qnkeys
= 0;
98 candidate
->qnbytes
= 0;
99 spin_lock_init(&candidate
->lock
);
100 mutex_init(&candidate
->cons_lock
);
102 rb_link_node(&candidate
->node
, parent
, p
);
103 rb_insert_color(&candidate
->node
, &key_user_tree
);
104 spin_unlock(&key_user_lock
);
108 /* okay - we found a user record for this UID */
110 refcount_inc(&user
->usage
);
111 spin_unlock(&key_user_lock
);
118 * Dispose of a user structure
120 void key_user_put(struct key_user
*user
)
122 if (refcount_dec_and_lock(&user
->usage
, &key_user_lock
)) {
123 rb_erase(&user
->node
, &key_user_tree
);
124 spin_unlock(&key_user_lock
);
131 * Allocate a serial number for a key. These are assigned randomly to avoid
132 * security issues through covert channel problems.
134 static inline void key_alloc_serial(struct key
*key
)
136 struct rb_node
*parent
, **p
;
139 /* propose a random serial number and look for a hole for it in the
140 * serial number tree */
142 get_random_bytes(&key
->serial
, sizeof(key
->serial
));
144 key
->serial
>>= 1; /* negative numbers are not permitted */
145 } while (key
->serial
< 3);
147 spin_lock(&key_serial_lock
);
151 p
= &key_serial_tree
.rb_node
;
155 xkey
= rb_entry(parent
, struct key
, serial_node
);
157 if (key
->serial
< xkey
->serial
)
159 else if (key
->serial
> xkey
->serial
)
165 /* we've found a suitable hole - arrange for this key to occupy it */
166 rb_link_node(&key
->serial_node
, parent
, p
);
167 rb_insert_color(&key
->serial_node
, &key_serial_tree
);
169 spin_unlock(&key_serial_lock
);
172 /* we found a key with the proposed serial number - walk the tree from
173 * that point looking for the next unused serial number */
177 if (key
->serial
< 3) {
179 goto attempt_insertion
;
182 parent
= rb_next(parent
);
184 goto attempt_insertion
;
186 xkey
= rb_entry(parent
, struct key
, serial_node
);
187 if (key
->serial
< xkey
->serial
)
188 goto attempt_insertion
;
193 * key_alloc - Allocate a key of the specified type.
194 * @type: The type of key to allocate.
195 * @desc: The key description to allow the key to be searched out.
196 * @uid: The owner of the new key.
197 * @gid: The group ID for the new key's group permissions.
198 * @cred: The credentials specifying UID namespace.
199 * @perm: The permissions mask of the new key.
200 * @flags: Flags specifying quota properties.
201 * @restrict_link: Optional link restriction for new keyrings.
203 * Allocate a key of the specified type with the attributes given. The key is
204 * returned in an uninstantiated state and the caller needs to instantiate the
205 * key before returning.
207 * The restrict_link structure (if not NULL) will be freed when the
208 * keyring is destroyed, so it must be dynamically allocated.
210 * The user's key count quota is updated to reflect the creation of the key and
211 * the user's key data quota has the default for the key type reserved. The
212 * instantiation function should amend this as necessary. If insufficient
213 * quota is available, -EDQUOT will be returned.
215 * The LSM security modules can prevent a key being created, in which case
216 * -EACCES will be returned.
218 * Returns a pointer to the new key if successful and an error code otherwise.
220 * Note that the caller needs to ensure the key type isn't uninstantiated.
221 * Internally this can be done by locking key_types_sem. Externally, this can
222 * be done by either never unregistering the key type, or making sure
223 * key_alloc() calls don't race with module unloading.
225 struct key
*key_alloc(struct key_type
*type
, const char *desc
,
226 kuid_t uid
, kgid_t gid
, const struct cred
*cred
,
227 key_perm_t perm
, unsigned long flags
,
228 struct key_restriction
*restrict_link
)
230 struct key_user
*user
= NULL
;
232 size_t desclen
, quotalen
;
235 key
= ERR_PTR(-EINVAL
);
239 if (type
->vet_description
) {
240 ret
= type
->vet_description(desc
);
247 desclen
= strlen(desc
);
248 quotalen
= desclen
+ 1 + type
->def_datalen
;
250 /* get hold of the key tracking for this user */
251 user
= key_user_lookup(uid
);
255 /* check that the user's quota permits allocation of another key and
257 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
)) {
258 unsigned maxkeys
= uid_eq(uid
, GLOBAL_ROOT_UID
) ?
259 key_quota_root_maxkeys
: key_quota_maxkeys
;
260 unsigned maxbytes
= uid_eq(uid
, GLOBAL_ROOT_UID
) ?
261 key_quota_root_maxbytes
: key_quota_maxbytes
;
263 spin_lock(&user
->lock
);
264 if (!(flags
& KEY_ALLOC_QUOTA_OVERRUN
)) {
265 if (user
->qnkeys
+ 1 > maxkeys
||
266 user
->qnbytes
+ quotalen
> maxbytes
||
267 user
->qnbytes
+ quotalen
< user
->qnbytes
)
272 user
->qnbytes
+= quotalen
;
273 spin_unlock(&user
->lock
);
276 /* allocate and initialise the key and its description */
277 key
= kmem_cache_zalloc(key_jar
, GFP_KERNEL
);
281 key
->index_key
.desc_len
= desclen
;
282 key
->index_key
.description
= kmemdup(desc
, desclen
+ 1, GFP_KERNEL
);
283 if (!key
->index_key
.description
)
285 key
->index_key
.type
= type
;
286 key_set_index_key(&key
->index_key
);
288 refcount_set(&key
->usage
, 1);
289 init_rwsem(&key
->sem
);
290 lockdep_set_class(&key
->sem
, &type
->lock_class
);
292 key
->quotalen
= quotalen
;
293 key
->datalen
= type
->def_datalen
;
297 key
->restrict_link
= restrict_link
;
298 key
->last_used_at
= ktime_get_real_seconds();
300 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
))
301 key
->flags
|= 1 << KEY_FLAG_IN_QUOTA
;
302 if (flags
& KEY_ALLOC_BUILT_IN
)
303 key
->flags
|= 1 << KEY_FLAG_BUILTIN
;
304 if (flags
& KEY_ALLOC_UID_KEYRING
)
305 key
->flags
|= 1 << KEY_FLAG_UID_KEYRING
;
308 key
->magic
= KEY_DEBUG_MAGIC
;
311 /* let the security module know about the key */
312 ret
= security_key_alloc(key
, cred
, flags
);
316 /* publish the key by giving it a serial number */
317 refcount_inc(&key
->domain_tag
->usage
);
318 atomic_inc(&user
->nkeys
);
319 key_alloc_serial(key
);
325 kfree(key
->description
);
326 kmem_cache_free(key_jar
, key
);
327 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
)) {
328 spin_lock(&user
->lock
);
330 user
->qnbytes
-= quotalen
;
331 spin_unlock(&user
->lock
);
338 kmem_cache_free(key_jar
, key
);
340 if (!(flags
& KEY_ALLOC_NOT_IN_QUOTA
)) {
341 spin_lock(&user
->lock
);
343 user
->qnbytes
-= quotalen
;
344 spin_unlock(&user
->lock
);
348 key
= ERR_PTR(-ENOMEM
);
352 spin_unlock(&user
->lock
);
354 key
= ERR_PTR(-EDQUOT
);
357 EXPORT_SYMBOL(key_alloc
);
360 * key_payload_reserve - Adjust data quota reservation for the key's payload
361 * @key: The key to make the reservation for.
362 * @datalen: The amount of data payload the caller now wants.
364 * Adjust the amount of the owning user's key data quota that a key reserves.
365 * If the amount is increased, then -EDQUOT may be returned if there isn't
366 * enough free quota available.
368 * If successful, 0 is returned.
370 int key_payload_reserve(struct key
*key
, size_t datalen
)
372 int delta
= (int)datalen
- key
->datalen
;
377 /* contemplate the quota adjustment */
378 if (delta
!= 0 && test_bit(KEY_FLAG_IN_QUOTA
, &key
->flags
)) {
379 unsigned maxbytes
= uid_eq(key
->user
->uid
, GLOBAL_ROOT_UID
) ?
380 key_quota_root_maxbytes
: key_quota_maxbytes
;
382 spin_lock(&key
->user
->lock
);
385 (key
->user
->qnbytes
+ delta
> maxbytes
||
386 key
->user
->qnbytes
+ delta
< key
->user
->qnbytes
)) {
390 key
->user
->qnbytes
+= delta
;
391 key
->quotalen
+= delta
;
393 spin_unlock(&key
->user
->lock
);
396 /* change the recorded data length if that didn't generate an error */
398 key
->datalen
= datalen
;
402 EXPORT_SYMBOL(key_payload_reserve
);
405 * Change the key state to being instantiated.
407 static void mark_key_instantiated(struct key
*key
, int reject_error
)
409 /* Commit the payload before setting the state; barrier versus
412 smp_store_release(&key
->state
,
413 (reject_error
< 0) ? reject_error
: KEY_IS_POSITIVE
);
417 * Instantiate a key and link it into the target keyring atomically. Must be
418 * called with the target keyring's semaphore writelocked. The target key's
419 * semaphore need not be locked as instantiation is serialised by
420 * key_construction_mutex.
422 static int __key_instantiate_and_link(struct key
*key
,
423 struct key_preparsed_payload
*prep
,
426 struct assoc_array_edit
**_edit
)
436 mutex_lock(&key_construction_mutex
);
438 /* can't instantiate twice */
439 if (key
->state
== KEY_IS_UNINSTANTIATED
) {
440 /* instantiate the key */
441 ret
= key
->type
->instantiate(key
, prep
);
444 /* mark the key as being instantiated */
445 atomic_inc(&key
->user
->nikeys
);
446 mark_key_instantiated(key
, 0);
447 notify_key(key
, NOTIFY_KEY_INSTANTIATED
, 0);
449 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT
, &key
->flags
))
452 /* and link it into the destination keyring */
454 if (test_bit(KEY_FLAG_KEEP
, &keyring
->flags
))
455 set_bit(KEY_FLAG_KEEP
, &key
->flags
);
457 __key_link(keyring
, key
, _edit
);
460 /* disable the authorisation key */
462 key_invalidate(authkey
);
464 if (prep
->expiry
!= TIME64_MAX
) {
465 key
->expiry
= prep
->expiry
;
466 key_schedule_gc(prep
->expiry
+ key_gc_delay
);
471 mutex_unlock(&key_construction_mutex
);
473 /* wake up anyone waiting for a key to be constructed */
475 wake_up_bit(&key
->flags
, KEY_FLAG_USER_CONSTRUCT
);
481 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
482 * @key: The key to instantiate.
483 * @data: The data to use to instantiate the keyring.
484 * @datalen: The length of @data.
485 * @keyring: Keyring to create a link in on success (or NULL).
486 * @authkey: The authorisation token permitting instantiation.
488 * Instantiate a key that's in the uninstantiated state using the provided data
489 * and, if successful, link it in to the destination keyring if one is
492 * If successful, 0 is returned, the authorisation token is revoked and anyone
493 * waiting for the key is woken up. If the key was already instantiated,
494 * -EBUSY will be returned.
496 int key_instantiate_and_link(struct key
*key
,
502 struct key_preparsed_payload prep
;
503 struct assoc_array_edit
*edit
= NULL
;
506 memset(&prep
, 0, sizeof(prep
));
507 prep
.orig_description
= key
->description
;
509 prep
.datalen
= datalen
;
510 prep
.quotalen
= key
->type
->def_datalen
;
511 prep
.expiry
= TIME64_MAX
;
512 if (key
->type
->preparse
) {
513 ret
= key
->type
->preparse(&prep
);
519 ret
= __key_link_lock(keyring
, &key
->index_key
);
523 ret
= __key_link_begin(keyring
, &key
->index_key
, &edit
);
527 if (keyring
->restrict_link
&& keyring
->restrict_link
->check
) {
528 struct key_restriction
*keyres
= keyring
->restrict_link
;
530 ret
= keyres
->check(keyring
, key
->type
, &prep
.payload
,
537 ret
= __key_instantiate_and_link(key
, &prep
, keyring
, authkey
, &edit
);
541 __key_link_end(keyring
, &key
->index_key
, edit
);
544 if (key
->type
->preparse
)
545 key
->type
->free_preparse(&prep
);
549 EXPORT_SYMBOL(key_instantiate_and_link
);
552 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
553 * @key: The key to instantiate.
554 * @timeout: The timeout on the negative key.
555 * @error: The error to return when the key is hit.
556 * @keyring: Keyring to create a link in on success (or NULL).
557 * @authkey: The authorisation token permitting instantiation.
559 * Negatively instantiate a key that's in the uninstantiated state and, if
560 * successful, set its timeout and stored error and link it in to the
561 * destination keyring if one is supplied. The key and any links to the key
562 * will be automatically garbage collected after the timeout expires.
564 * Negative keys are used to rate limit repeated request_key() calls by causing
565 * them to return the stored error code (typically ENOKEY) until the negative
568 * If successful, 0 is returned, the authorisation token is revoked and anyone
569 * waiting for the key is woken up. If the key was already instantiated,
570 * -EBUSY will be returned.
572 int key_reject_and_link(struct key
*key
,
578 struct assoc_array_edit
*edit
= NULL
;
579 int ret
, awaken
, link_ret
= 0;
588 if (keyring
->restrict_link
)
591 link_ret
= __key_link_lock(keyring
, &key
->index_key
);
593 link_ret
= __key_link_begin(keyring
, &key
->index_key
, &edit
);
595 __key_link_end(keyring
, &key
->index_key
, edit
);
599 mutex_lock(&key_construction_mutex
);
601 /* can't instantiate twice */
602 if (key
->state
== KEY_IS_UNINSTANTIATED
) {
603 /* mark the key as being negatively instantiated */
604 atomic_inc(&key
->user
->nikeys
);
605 mark_key_instantiated(key
, -error
);
606 notify_key(key
, NOTIFY_KEY_INSTANTIATED
, -error
);
607 key
->expiry
= ktime_get_real_seconds() + timeout
;
608 key_schedule_gc(key
->expiry
+ key_gc_delay
);
610 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT
, &key
->flags
))
615 /* and link it into the destination keyring */
616 if (keyring
&& link_ret
== 0)
617 __key_link(keyring
, key
, &edit
);
619 /* disable the authorisation key */
621 key_invalidate(authkey
);
624 mutex_unlock(&key_construction_mutex
);
626 if (keyring
&& link_ret
== 0)
627 __key_link_end(keyring
, &key
->index_key
, edit
);
629 /* wake up anyone waiting for a key to be constructed */
631 wake_up_bit(&key
->flags
, KEY_FLAG_USER_CONSTRUCT
);
633 return ret
== 0 ? link_ret
: ret
;
635 EXPORT_SYMBOL(key_reject_and_link
);
638 * key_put - Discard a reference to a key.
639 * @key: The key to discard a reference from.
641 * Discard a reference to a key, and when all the references are gone, we
642 * schedule the cleanup task to come and pull it out of the tree in process
643 * context at some later time.
645 void key_put(struct key
*key
)
650 if (refcount_dec_and_test(&key
->usage
))
651 schedule_work(&key_gc_work
);
654 EXPORT_SYMBOL(key_put
);
657 * Find a key by its serial number.
659 struct key
*key_lookup(key_serial_t id
)
664 spin_lock(&key_serial_lock
);
666 /* search the tree for the specified key */
667 n
= key_serial_tree
.rb_node
;
669 key
= rb_entry(n
, struct key
, serial_node
);
671 if (id
< key
->serial
)
673 else if (id
> key
->serial
)
680 key
= ERR_PTR(-ENOKEY
);
684 /* A key is allowed to be looked up only if someone still owns a
685 * reference to it - otherwise it's awaiting the gc.
687 if (!refcount_inc_not_zero(&key
->usage
))
691 spin_unlock(&key_serial_lock
);
696 * Find and lock the specified key type against removal.
698 * We return with the sem read-locked if successful. If the type wasn't
699 * available -ENOKEY is returned instead.
701 struct key_type
*key_type_lookup(const char *type
)
703 struct key_type
*ktype
;
705 down_read(&key_types_sem
);
707 /* look up the key type to see if it's one of the registered kernel
709 list_for_each_entry(ktype
, &key_types_list
, link
) {
710 if (strcmp(ktype
->name
, type
) == 0)
711 goto found_kernel_type
;
714 up_read(&key_types_sem
);
715 ktype
= ERR_PTR(-ENOKEY
);
721 void key_set_timeout(struct key
*key
, unsigned timeout
)
725 /* make the changes with the locks held to prevent races */
726 down_write(&key
->sem
);
729 expiry
= ktime_get_real_seconds() + timeout
;
731 key
->expiry
= expiry
;
732 key_schedule_gc(key
->expiry
+ key_gc_delay
);
736 EXPORT_SYMBOL_GPL(key_set_timeout
);
739 * Unlock a key type locked by key_type_lookup().
741 void key_type_put(struct key_type
*ktype
)
743 up_read(&key_types_sem
);
747 * Attempt to update an existing key.
749 * The key is given to us with an incremented refcount that we need to discard
750 * if we get an error.
752 static inline key_ref_t
__key_update(key_ref_t key_ref
,
753 struct key_preparsed_payload
*prep
)
755 struct key
*key
= key_ref_to_ptr(key_ref
);
758 /* need write permission on the key to update it */
759 ret
= key_permission(key_ref
, KEY_NEED_WRITE
);
764 if (!key
->type
->update
)
767 down_write(&key
->sem
);
769 ret
= key
->type
->update(key
, prep
);
771 /* Updating a negative key positively instantiates it */
772 mark_key_instantiated(key
, 0);
773 notify_key(key
, NOTIFY_KEY_UPDATED
, 0);
785 key_ref
= ERR_PTR(ret
);
790 * key_create_or_update - Update or create and instantiate a key.
791 * @keyring_ref: A pointer to the destination keyring with possession flag.
792 * @type: The type of key.
793 * @description: The searchable description for the key.
794 * @payload: The data to use to instantiate or update the key.
795 * @plen: The length of @payload.
796 * @perm: The permissions mask for a new key.
797 * @flags: The quota flags for a new key.
799 * Search the destination keyring for a key of the same description and if one
800 * is found, update it, otherwise create and instantiate a new one and create a
801 * link to it from that keyring.
803 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
806 * Returns a pointer to the new key if successful, -ENODEV if the key type
807 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
808 * caller isn't permitted to modify the keyring or the LSM did not permit
809 * creation of the key.
811 * On success, the possession flag from the keyring ref will be tacked on to
812 * the key ref before it is returned.
814 key_ref_t
key_create_or_update(key_ref_t keyring_ref
,
816 const char *description
,
822 struct keyring_index_key index_key
= {
823 .description
= description
,
825 struct key_preparsed_payload prep
;
826 struct assoc_array_edit
*edit
= NULL
;
827 const struct cred
*cred
= current_cred();
828 struct key
*keyring
, *key
= NULL
;
831 struct key_restriction
*restrict_link
= NULL
;
833 /* look up the key type to see if it's one of the registered kernel
835 index_key
.type
= key_type_lookup(type
);
836 if (IS_ERR(index_key
.type
)) {
837 key_ref
= ERR_PTR(-ENODEV
);
841 key_ref
= ERR_PTR(-EINVAL
);
842 if (!index_key
.type
->instantiate
||
843 (!index_key
.description
&& !index_key
.type
->preparse
))
846 keyring
= key_ref_to_ptr(keyring_ref
);
850 if (!(flags
& KEY_ALLOC_BYPASS_RESTRICTION
))
851 restrict_link
= keyring
->restrict_link
;
853 key_ref
= ERR_PTR(-ENOTDIR
);
854 if (keyring
->type
!= &key_type_keyring
)
857 memset(&prep
, 0, sizeof(prep
));
858 prep
.orig_description
= description
;
861 prep
.quotalen
= index_key
.type
->def_datalen
;
862 prep
.expiry
= TIME64_MAX
;
863 if (index_key
.type
->preparse
) {
864 ret
= index_key
.type
->preparse(&prep
);
866 key_ref
= ERR_PTR(ret
);
867 goto error_free_prep
;
869 if (!index_key
.description
)
870 index_key
.description
= prep
.description
;
871 key_ref
= ERR_PTR(-EINVAL
);
872 if (!index_key
.description
)
873 goto error_free_prep
;
875 index_key
.desc_len
= strlen(index_key
.description
);
876 key_set_index_key(&index_key
);
878 ret
= __key_link_lock(keyring
, &index_key
);
880 key_ref
= ERR_PTR(ret
);
881 goto error_free_prep
;
884 ret
= __key_link_begin(keyring
, &index_key
, &edit
);
886 key_ref
= ERR_PTR(ret
);
890 if (restrict_link
&& restrict_link
->check
) {
891 ret
= restrict_link
->check(keyring
, index_key
.type
,
892 &prep
.payload
, restrict_link
->key
);
894 key_ref
= ERR_PTR(ret
);
899 /* if we're going to allocate a new key, we're going to have
900 * to modify the keyring */
901 ret
= key_permission(keyring_ref
, KEY_NEED_WRITE
);
903 key_ref
= ERR_PTR(ret
);
907 /* if it's possible to update this type of key, search for an existing
908 * key of the same type and description in the destination keyring and
909 * update that instead if possible
911 if (index_key
.type
->update
) {
912 key_ref
= find_key_to_update(keyring_ref
, &index_key
);
914 goto found_matching_key
;
917 /* if the client doesn't provide, decide on the permissions we want */
918 if (perm
== KEY_PERM_UNDEF
) {
919 perm
= KEY_POS_VIEW
| KEY_POS_SEARCH
| KEY_POS_LINK
| KEY_POS_SETATTR
;
920 perm
|= KEY_USR_VIEW
;
922 if (index_key
.type
->read
)
923 perm
|= KEY_POS_READ
;
925 if (index_key
.type
== &key_type_keyring
||
926 index_key
.type
->update
)
927 perm
|= KEY_POS_WRITE
;
930 /* allocate a new key */
931 key
= key_alloc(index_key
.type
, index_key
.description
,
932 cred
->fsuid
, cred
->fsgid
, cred
, perm
, flags
, NULL
);
934 key_ref
= ERR_CAST(key
);
938 /* instantiate it and link it into the target keyring */
939 ret
= __key_instantiate_and_link(key
, &prep
, keyring
, NULL
, &edit
);
942 key_ref
= ERR_PTR(ret
);
946 ima_post_key_create_or_update(keyring
, key
, payload
, plen
,
949 key_ref
= make_key_ref(key
, is_key_possessed(keyring_ref
));
952 __key_link_end(keyring
, &index_key
, edit
);
954 if (index_key
.type
->preparse
)
955 index_key
.type
->free_preparse(&prep
);
957 key_type_put(index_key
.type
);
962 /* we found a matching key, so we're going to try to update it
963 * - we can drop the locks first as we have the key pinned
965 __key_link_end(keyring
, &index_key
, edit
);
967 key
= key_ref_to_ptr(key_ref
);
968 if (test_bit(KEY_FLAG_USER_CONSTRUCT
, &key
->flags
)) {
969 ret
= wait_for_key_construction(key
, true);
971 key_ref_put(key_ref
);
972 key_ref
= ERR_PTR(ret
);
973 goto error_free_prep
;
977 key_ref
= __key_update(key_ref
, &prep
);
979 if (!IS_ERR(key_ref
))
980 ima_post_key_create_or_update(keyring
, key
,
984 goto error_free_prep
;
986 EXPORT_SYMBOL(key_create_or_update
);
989 * key_update - Update a key's contents.
990 * @key_ref: The pointer (plus possession flag) to the key.
991 * @payload: The data to be used to update the key.
992 * @plen: The length of @payload.
994 * Attempt to update the contents of a key with the given payload data. The
995 * caller must be granted Write permission on the key. Negative keys can be
996 * instantiated by this method.
998 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
999 * type does not support updating. The key type may return other errors.
1001 int key_update(key_ref_t key_ref
, const void *payload
, size_t plen
)
1003 struct key_preparsed_payload prep
;
1004 struct key
*key
= key_ref_to_ptr(key_ref
);
1009 /* the key must be writable */
1010 ret
= key_permission(key_ref
, KEY_NEED_WRITE
);
1014 /* attempt to update it if supported */
1015 if (!key
->type
->update
)
1018 memset(&prep
, 0, sizeof(prep
));
1019 prep
.data
= payload
;
1020 prep
.datalen
= plen
;
1021 prep
.quotalen
= key
->type
->def_datalen
;
1022 prep
.expiry
= TIME64_MAX
;
1023 if (key
->type
->preparse
) {
1024 ret
= key
->type
->preparse(&prep
);
1029 down_write(&key
->sem
);
1031 ret
= key
->type
->update(key
, &prep
);
1033 /* Updating a negative key positively instantiates it */
1034 mark_key_instantiated(key
, 0);
1035 notify_key(key
, NOTIFY_KEY_UPDATED
, 0);
1038 up_write(&key
->sem
);
1041 if (key
->type
->preparse
)
1042 key
->type
->free_preparse(&prep
);
1045 EXPORT_SYMBOL(key_update
);
1048 * key_revoke - Revoke a key.
1049 * @key: The key to be revoked.
1051 * Mark a key as being revoked and ask the type to free up its resources. The
1052 * revocation timeout is set and the key and all its links will be
1053 * automatically garbage collected after key_gc_delay amount of time if they
1054 * are not manually dealt with first.
1056 void key_revoke(struct key
*key
)
1062 /* make sure no one's trying to change or use the key when we mark it
1063 * - we tell lockdep that we might nest because we might be revoking an
1064 * authorisation key whilst holding the sem on a key we've just
1067 down_write_nested(&key
->sem
, 1);
1068 if (!test_and_set_bit(KEY_FLAG_REVOKED
, &key
->flags
)) {
1069 notify_key(key
, NOTIFY_KEY_REVOKED
, 0);
1070 if (key
->type
->revoke
)
1071 key
->type
->revoke(key
);
1073 /* set the death time to no more than the expiry time */
1074 time
= ktime_get_real_seconds();
1075 if (key
->revoked_at
== 0 || key
->revoked_at
> time
) {
1076 key
->revoked_at
= time
;
1077 key_schedule_gc(key
->revoked_at
+ key_gc_delay
);
1081 up_write(&key
->sem
);
1083 EXPORT_SYMBOL(key_revoke
);
1086 * key_invalidate - Invalidate a key.
1087 * @key: The key to be invalidated.
1089 * Mark a key as being invalidated and have it cleaned up immediately. The key
1090 * is ignored by all searches and other operations from this point.
1092 void key_invalidate(struct key
*key
)
1094 kenter("%d", key_serial(key
));
1098 if (!test_bit(KEY_FLAG_INVALIDATED
, &key
->flags
)) {
1099 down_write_nested(&key
->sem
, 1);
1100 if (!test_and_set_bit(KEY_FLAG_INVALIDATED
, &key
->flags
)) {
1101 notify_key(key
, NOTIFY_KEY_INVALIDATED
, 0);
1102 key_schedule_gc_links();
1104 up_write(&key
->sem
);
1107 EXPORT_SYMBOL(key_invalidate
);
1110 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1111 * @key: The key to be instantiated
1112 * @prep: The preparsed data to load.
1114 * Instantiate a key from preparsed data. We assume we can just copy the data
1115 * in directly and clear the old pointers.
1117 * This can be pointed to directly by the key type instantiate op pointer.
1119 int generic_key_instantiate(struct key
*key
, struct key_preparsed_payload
*prep
)
1123 pr_devel("==>%s()\n", __func__
);
1125 ret
= key_payload_reserve(key
, prep
->quotalen
);
1127 rcu_assign_keypointer(key
, prep
->payload
.data
[0]);
1128 key
->payload
.data
[1] = prep
->payload
.data
[1];
1129 key
->payload
.data
[2] = prep
->payload
.data
[2];
1130 key
->payload
.data
[3] = prep
->payload
.data
[3];
1131 prep
->payload
.data
[0] = NULL
;
1132 prep
->payload
.data
[1] = NULL
;
1133 prep
->payload
.data
[2] = NULL
;
1134 prep
->payload
.data
[3] = NULL
;
1136 pr_devel("<==%s() = %d\n", __func__
, ret
);
1139 EXPORT_SYMBOL(generic_key_instantiate
);
1142 * register_key_type - Register a type of key.
1143 * @ktype: The new key type.
1145 * Register a new key type.
1147 * Returns 0 on success or -EEXIST if a type of this name already exists.
1149 int register_key_type(struct key_type
*ktype
)
1154 memset(&ktype
->lock_class
, 0, sizeof(ktype
->lock_class
));
1157 down_write(&key_types_sem
);
1159 /* disallow key types with the same name */
1160 list_for_each_entry(p
, &key_types_list
, link
) {
1161 if (strcmp(p
->name
, ktype
->name
) == 0)
1165 /* store the type */
1166 list_add(&ktype
->link
, &key_types_list
);
1168 pr_notice("Key type %s registered\n", ktype
->name
);
1172 up_write(&key_types_sem
);
1175 EXPORT_SYMBOL(register_key_type
);
1178 * unregister_key_type - Unregister a type of key.
1179 * @ktype: The key type.
1181 * Unregister a key type and mark all the extant keys of this type as dead.
1182 * Those keys of this type are then destroyed to get rid of their payloads and
1183 * they and their links will be garbage collected as soon as possible.
1185 void unregister_key_type(struct key_type
*ktype
)
1187 down_write(&key_types_sem
);
1188 list_del_init(&ktype
->link
);
1189 downgrade_write(&key_types_sem
);
1190 key_gc_keytype(ktype
);
1191 pr_notice("Key type %s unregistered\n", ktype
->name
);
1192 up_read(&key_types_sem
);
1194 EXPORT_SYMBOL(unregister_key_type
);
1197 * Initialise the key management state.
1199 void __init
key_init(void)
1201 /* allocate a slab in which we can store keys */
1202 key_jar
= kmem_cache_create("key_jar", sizeof(struct key
),
1203 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1205 /* add the special key types */
1206 list_add_tail(&key_type_keyring
.link
, &key_types_list
);
1207 list_add_tail(&key_type_dead
.link
, &key_types_list
);
1208 list_add_tail(&key_type_user
.link
, &key_types_list
);
1209 list_add_tail(&key_type_logon
.link
, &key_types_list
);
1211 /* record the root user tracking */
1212 rb_link_node(&root_key_user
.node
,
1214 &key_user_tree
.rb_node
);
1216 rb_insert_color(&root_key_user
.node
,