efivars: Refactor sanity checking code into separate function
[linux/fpc-iii.git] / net / wireless / reg.c
blobf59aaac586f8cf10905135324c3913646910a662
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 /**
22 * DOC: Wireless regulatory infrastructure
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
95 * Central wireless core regulatory domains, we only need two,
96 * the current one and a world regulatory domain in case we have no
97 * information to give us an alpha2.
98 * (protected by RTNL, can be read under RCU)
100 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
103 * Number of devices that registered to the core
104 * that support cellular base station regulatory hints
105 * (protected by RTNL)
107 static int reg_num_devs_support_basehint;
109 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
111 return rtnl_dereference(cfg80211_regdomain);
114 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
116 return rtnl_dereference(wiphy->regd);
119 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
121 switch (dfs_region) {
122 case NL80211_DFS_UNSET:
123 return "unset";
124 case NL80211_DFS_FCC:
125 return "FCC";
126 case NL80211_DFS_ETSI:
127 return "ETSI";
128 case NL80211_DFS_JP:
129 return "JP";
131 return "Unknown";
134 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
136 const struct ieee80211_regdomain *regd = NULL;
137 const struct ieee80211_regdomain *wiphy_regd = NULL;
139 regd = get_cfg80211_regdom();
140 if (!wiphy)
141 goto out;
143 wiphy_regd = get_wiphy_regdom(wiphy);
144 if (!wiphy_regd)
145 goto out;
147 if (wiphy_regd->dfs_region == regd->dfs_region)
148 goto out;
150 REG_DBG_PRINT("%s: device specific dfs_region "
151 "(%s) disagrees with cfg80211's "
152 "central dfs_region (%s)\n",
153 dev_name(&wiphy->dev),
154 reg_dfs_region_str(wiphy_regd->dfs_region),
155 reg_dfs_region_str(regd->dfs_region));
157 out:
158 return regd->dfs_region;
161 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
163 if (!r)
164 return;
165 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
168 static struct regulatory_request *get_last_request(void)
170 return rcu_dereference_rtnl(last_request);
173 /* Used to queue up regulatory hints */
174 static LIST_HEAD(reg_requests_list);
175 static spinlock_t reg_requests_lock;
177 /* Used to queue up beacon hints for review */
178 static LIST_HEAD(reg_pending_beacons);
179 static spinlock_t reg_pending_beacons_lock;
181 /* Used to keep track of processed beacon hints */
182 static LIST_HEAD(reg_beacon_list);
184 struct reg_beacon {
185 struct list_head list;
186 struct ieee80211_channel chan;
189 static void reg_todo(struct work_struct *work);
190 static DECLARE_WORK(reg_work, reg_todo);
192 static void reg_timeout_work(struct work_struct *work);
193 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
195 /* We keep a static world regulatory domain in case of the absence of CRDA */
196 static const struct ieee80211_regdomain world_regdom = {
197 .n_reg_rules = 6,
198 .alpha2 = "00",
199 .reg_rules = {
200 /* IEEE 802.11b/g, channels 1..11 */
201 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
202 /* IEEE 802.11b/g, channels 12..13. */
203 REG_RULE(2467-10, 2472+10, 40, 6, 20,
204 NL80211_RRF_NO_IR),
205 /* IEEE 802.11 channel 14 - Only JP enables
206 * this and for 802.11b only */
207 REG_RULE(2484-10, 2484+10, 20, 6, 20,
208 NL80211_RRF_NO_IR |
209 NL80211_RRF_NO_OFDM),
210 /* IEEE 802.11a, channel 36..48 */
211 REG_RULE(5180-10, 5240+10, 160, 6, 20,
212 NL80211_RRF_NO_IR),
214 /* IEEE 802.11a, channel 52..64 - DFS required */
215 REG_RULE(5260-10, 5320+10, 160, 6, 20,
216 NL80211_RRF_NO_IR |
217 NL80211_RRF_DFS),
219 /* IEEE 802.11a, channel 100..144 - DFS required */
220 REG_RULE(5500-10, 5720+10, 160, 6, 20,
221 NL80211_RRF_NO_IR |
222 NL80211_RRF_DFS),
224 /* IEEE 802.11a, channel 149..165 */
225 REG_RULE(5745-10, 5825+10, 80, 6, 20,
226 NL80211_RRF_NO_IR),
228 /* IEEE 802.11ad (60gHz), channels 1..3 */
229 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
233 /* protected by RTNL */
234 static const struct ieee80211_regdomain *cfg80211_world_regdom =
235 &world_regdom;
237 static char *ieee80211_regdom = "00";
238 static char user_alpha2[2];
240 module_param(ieee80211_regdom, charp, 0444);
241 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
243 static void reg_free_request(struct regulatory_request *lr)
245 if (lr != &core_request_world && lr)
246 kfree_rcu(lr, rcu_head);
249 static void reg_update_last_request(struct regulatory_request *request)
251 struct regulatory_request *lr;
253 lr = get_last_request();
254 if (lr == request)
255 return;
257 reg_free_request(lr);
258 rcu_assign_pointer(last_request, request);
261 static void reset_regdomains(bool full_reset,
262 const struct ieee80211_regdomain *new_regdom)
264 const struct ieee80211_regdomain *r;
266 ASSERT_RTNL();
268 r = get_cfg80211_regdom();
270 /* avoid freeing static information or freeing something twice */
271 if (r == cfg80211_world_regdom)
272 r = NULL;
273 if (cfg80211_world_regdom == &world_regdom)
274 cfg80211_world_regdom = NULL;
275 if (r == &world_regdom)
276 r = NULL;
278 rcu_free_regdom(r);
279 rcu_free_regdom(cfg80211_world_regdom);
281 cfg80211_world_regdom = &world_regdom;
282 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
284 if (!full_reset)
285 return;
287 reg_update_last_request(&core_request_world);
291 * Dynamic world regulatory domain requested by the wireless
292 * core upon initialization
294 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
296 struct regulatory_request *lr;
298 lr = get_last_request();
300 WARN_ON(!lr);
302 reset_regdomains(false, rd);
304 cfg80211_world_regdom = rd;
307 bool is_world_regdom(const char *alpha2)
309 if (!alpha2)
310 return false;
311 return alpha2[0] == '0' && alpha2[1] == '0';
314 static bool is_alpha2_set(const char *alpha2)
316 if (!alpha2)
317 return false;
318 return alpha2[0] && alpha2[1];
321 static bool is_unknown_alpha2(const char *alpha2)
323 if (!alpha2)
324 return false;
326 * Special case where regulatory domain was built by driver
327 * but a specific alpha2 cannot be determined
329 return alpha2[0] == '9' && alpha2[1] == '9';
332 static bool is_intersected_alpha2(const char *alpha2)
334 if (!alpha2)
335 return false;
337 * Special case where regulatory domain is the
338 * result of an intersection between two regulatory domain
339 * structures
341 return alpha2[0] == '9' && alpha2[1] == '8';
344 static bool is_an_alpha2(const char *alpha2)
346 if (!alpha2)
347 return false;
348 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
351 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
353 if (!alpha2_x || !alpha2_y)
354 return false;
355 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
358 static bool regdom_changes(const char *alpha2)
360 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
362 if (!r)
363 return true;
364 return !alpha2_equal(r->alpha2, alpha2);
368 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
369 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
370 * has ever been issued.
372 static bool is_user_regdom_saved(void)
374 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
375 return false;
377 /* This would indicate a mistake on the design */
378 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
379 "Unexpected user alpha2: %c%c\n",
380 user_alpha2[0], user_alpha2[1]))
381 return false;
383 return true;
386 static const struct ieee80211_regdomain *
387 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
389 struct ieee80211_regdomain *regd;
390 int size_of_regd;
391 unsigned int i;
393 size_of_regd =
394 sizeof(struct ieee80211_regdomain) +
395 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
397 regd = kzalloc(size_of_regd, GFP_KERNEL);
398 if (!regd)
399 return ERR_PTR(-ENOMEM);
401 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
403 for (i = 0; i < src_regd->n_reg_rules; i++)
404 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
405 sizeof(struct ieee80211_reg_rule));
407 return regd;
410 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
411 struct reg_regdb_search_request {
412 char alpha2[2];
413 struct list_head list;
416 static LIST_HEAD(reg_regdb_search_list);
417 static DEFINE_MUTEX(reg_regdb_search_mutex);
419 static void reg_regdb_search(struct work_struct *work)
421 struct reg_regdb_search_request *request;
422 const struct ieee80211_regdomain *curdom, *regdom = NULL;
423 int i;
425 rtnl_lock();
427 mutex_lock(&reg_regdb_search_mutex);
428 while (!list_empty(&reg_regdb_search_list)) {
429 request = list_first_entry(&reg_regdb_search_list,
430 struct reg_regdb_search_request,
431 list);
432 list_del(&request->list);
434 for (i = 0; i < reg_regdb_size; i++) {
435 curdom = reg_regdb[i];
437 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
438 regdom = reg_copy_regd(curdom);
439 break;
443 kfree(request);
445 mutex_unlock(&reg_regdb_search_mutex);
447 if (!IS_ERR_OR_NULL(regdom))
448 set_regdom(regdom);
450 rtnl_unlock();
453 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
455 static void reg_regdb_query(const char *alpha2)
457 struct reg_regdb_search_request *request;
459 if (!alpha2)
460 return;
462 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
463 if (!request)
464 return;
466 memcpy(request->alpha2, alpha2, 2);
468 mutex_lock(&reg_regdb_search_mutex);
469 list_add_tail(&request->list, &reg_regdb_search_list);
470 mutex_unlock(&reg_regdb_search_mutex);
472 schedule_work(&reg_regdb_work);
475 /* Feel free to add any other sanity checks here */
476 static void reg_regdb_size_check(void)
478 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
479 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
481 #else
482 static inline void reg_regdb_size_check(void) {}
483 static inline void reg_regdb_query(const char *alpha2) {}
484 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
487 * This lets us keep regulatory code which is updated on a regulatory
488 * basis in userspace.
490 static int call_crda(const char *alpha2)
492 char country[12];
493 char *env[] = { country, NULL };
495 snprintf(country, sizeof(country), "COUNTRY=%c%c",
496 alpha2[0], alpha2[1]);
498 if (!is_world_regdom((char *) alpha2))
499 pr_info("Calling CRDA for country: %c%c\n",
500 alpha2[0], alpha2[1]);
501 else
502 pr_info("Calling CRDA to update world regulatory domain\n");
504 /* query internal regulatory database (if it exists) */
505 reg_regdb_query(alpha2);
507 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
510 static enum reg_request_treatment
511 reg_call_crda(struct regulatory_request *request)
513 if (call_crda(request->alpha2))
514 return REG_REQ_IGNORE;
515 return REG_REQ_OK;
518 bool reg_is_valid_request(const char *alpha2)
520 struct regulatory_request *lr = get_last_request();
522 if (!lr || lr->processed)
523 return false;
525 return alpha2_equal(lr->alpha2, alpha2);
528 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
530 struct regulatory_request *lr = get_last_request();
533 * Follow the driver's regulatory domain, if present, unless a country
534 * IE has been processed or a user wants to help complaince further
536 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
537 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
538 wiphy->regd)
539 return get_wiphy_regdom(wiphy);
541 return get_cfg80211_regdom();
544 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
545 const struct ieee80211_reg_rule *rule)
547 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
548 const struct ieee80211_freq_range *freq_range_tmp;
549 const struct ieee80211_reg_rule *tmp;
550 u32 start_freq, end_freq, idx, no;
552 for (idx = 0; idx < rd->n_reg_rules; idx++)
553 if (rule == &rd->reg_rules[idx])
554 break;
556 if (idx == rd->n_reg_rules)
557 return 0;
559 /* get start_freq */
560 no = idx;
562 while (no) {
563 tmp = &rd->reg_rules[--no];
564 freq_range_tmp = &tmp->freq_range;
566 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
567 break;
569 freq_range = freq_range_tmp;
572 start_freq = freq_range->start_freq_khz;
574 /* get end_freq */
575 freq_range = &rule->freq_range;
576 no = idx;
578 while (no < rd->n_reg_rules - 1) {
579 tmp = &rd->reg_rules[++no];
580 freq_range_tmp = &tmp->freq_range;
582 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
583 break;
585 freq_range = freq_range_tmp;
588 end_freq = freq_range->end_freq_khz;
590 return end_freq - start_freq;
593 /* Sanity check on a regulatory rule */
594 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
596 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
597 u32 freq_diff;
599 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
600 return false;
602 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
603 return false;
605 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
607 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
608 freq_range->max_bandwidth_khz > freq_diff)
609 return false;
611 return true;
614 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
616 const struct ieee80211_reg_rule *reg_rule = NULL;
617 unsigned int i;
619 if (!rd->n_reg_rules)
620 return false;
622 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
623 return false;
625 for (i = 0; i < rd->n_reg_rules; i++) {
626 reg_rule = &rd->reg_rules[i];
627 if (!is_valid_reg_rule(reg_rule))
628 return false;
631 return true;
634 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
635 u32 center_freq_khz, u32 bw_khz)
637 u32 start_freq_khz, end_freq_khz;
639 start_freq_khz = center_freq_khz - (bw_khz/2);
640 end_freq_khz = center_freq_khz + (bw_khz/2);
642 if (start_freq_khz >= freq_range->start_freq_khz &&
643 end_freq_khz <= freq_range->end_freq_khz)
644 return true;
646 return false;
650 * freq_in_rule_band - tells us if a frequency is in a frequency band
651 * @freq_range: frequency rule we want to query
652 * @freq_khz: frequency we are inquiring about
654 * This lets us know if a specific frequency rule is or is not relevant to
655 * a specific frequency's band. Bands are device specific and artificial
656 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
657 * however it is safe for now to assume that a frequency rule should not be
658 * part of a frequency's band if the start freq or end freq are off by more
659 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
660 * 60 GHz band.
661 * This resolution can be lowered and should be considered as we add
662 * regulatory rule support for other "bands".
664 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
665 u32 freq_khz)
667 #define ONE_GHZ_IN_KHZ 1000000
669 * From 802.11ad: directional multi-gigabit (DMG):
670 * Pertaining to operation in a frequency band containing a channel
671 * with the Channel starting frequency above 45 GHz.
673 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
674 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
675 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
676 return true;
677 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
678 return true;
679 return false;
680 #undef ONE_GHZ_IN_KHZ
684 * Later on we can perhaps use the more restrictive DFS
685 * region but we don't have information for that yet so
686 * for now simply disallow conflicts.
688 static enum nl80211_dfs_regions
689 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
690 const enum nl80211_dfs_regions dfs_region2)
692 if (dfs_region1 != dfs_region2)
693 return NL80211_DFS_UNSET;
694 return dfs_region1;
698 * Helper for regdom_intersect(), this does the real
699 * mathematical intersection fun
701 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
702 const struct ieee80211_regdomain *rd2,
703 const struct ieee80211_reg_rule *rule1,
704 const struct ieee80211_reg_rule *rule2,
705 struct ieee80211_reg_rule *intersected_rule)
707 const struct ieee80211_freq_range *freq_range1, *freq_range2;
708 struct ieee80211_freq_range *freq_range;
709 const struct ieee80211_power_rule *power_rule1, *power_rule2;
710 struct ieee80211_power_rule *power_rule;
711 u32 freq_diff, max_bandwidth1, max_bandwidth2;
713 freq_range1 = &rule1->freq_range;
714 freq_range2 = &rule2->freq_range;
715 freq_range = &intersected_rule->freq_range;
717 power_rule1 = &rule1->power_rule;
718 power_rule2 = &rule2->power_rule;
719 power_rule = &intersected_rule->power_rule;
721 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
722 freq_range2->start_freq_khz);
723 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
724 freq_range2->end_freq_khz);
726 max_bandwidth1 = freq_range1->max_bandwidth_khz;
727 max_bandwidth2 = freq_range2->max_bandwidth_khz;
729 if (rule1->flags & NL80211_RRF_AUTO_BW)
730 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
731 if (rule2->flags & NL80211_RRF_AUTO_BW)
732 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
734 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
736 intersected_rule->flags = rule1->flags | rule2->flags;
739 * In case NL80211_RRF_AUTO_BW requested for both rules
740 * set AUTO_BW in intersected rule also. Next we will
741 * calculate BW correctly in handle_channel function.
742 * In other case remove AUTO_BW flag while we calculate
743 * maximum bandwidth correctly and auto calculation is
744 * not required.
746 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
747 (rule2->flags & NL80211_RRF_AUTO_BW))
748 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
749 else
750 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
752 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
753 if (freq_range->max_bandwidth_khz > freq_diff)
754 freq_range->max_bandwidth_khz = freq_diff;
756 power_rule->max_eirp = min(power_rule1->max_eirp,
757 power_rule2->max_eirp);
758 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
759 power_rule2->max_antenna_gain);
761 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
762 rule2->dfs_cac_ms);
764 if (!is_valid_reg_rule(intersected_rule))
765 return -EINVAL;
767 return 0;
771 * regdom_intersect - do the intersection between two regulatory domains
772 * @rd1: first regulatory domain
773 * @rd2: second regulatory domain
775 * Use this function to get the intersection between two regulatory domains.
776 * Once completed we will mark the alpha2 for the rd as intersected, "98",
777 * as no one single alpha2 can represent this regulatory domain.
779 * Returns a pointer to the regulatory domain structure which will hold the
780 * resulting intersection of rules between rd1 and rd2. We will
781 * kzalloc() this structure for you.
783 static struct ieee80211_regdomain *
784 regdom_intersect(const struct ieee80211_regdomain *rd1,
785 const struct ieee80211_regdomain *rd2)
787 int r, size_of_regd;
788 unsigned int x, y;
789 unsigned int num_rules = 0, rule_idx = 0;
790 const struct ieee80211_reg_rule *rule1, *rule2;
791 struct ieee80211_reg_rule *intersected_rule;
792 struct ieee80211_regdomain *rd;
793 /* This is just a dummy holder to help us count */
794 struct ieee80211_reg_rule dummy_rule;
796 if (!rd1 || !rd2)
797 return NULL;
800 * First we get a count of the rules we'll need, then we actually
801 * build them. This is to so we can malloc() and free() a
802 * regdomain once. The reason we use reg_rules_intersect() here
803 * is it will return -EINVAL if the rule computed makes no sense.
804 * All rules that do check out OK are valid.
807 for (x = 0; x < rd1->n_reg_rules; x++) {
808 rule1 = &rd1->reg_rules[x];
809 for (y = 0; y < rd2->n_reg_rules; y++) {
810 rule2 = &rd2->reg_rules[y];
811 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
812 &dummy_rule))
813 num_rules++;
817 if (!num_rules)
818 return NULL;
820 size_of_regd = sizeof(struct ieee80211_regdomain) +
821 num_rules * sizeof(struct ieee80211_reg_rule);
823 rd = kzalloc(size_of_regd, GFP_KERNEL);
824 if (!rd)
825 return NULL;
827 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
828 rule1 = &rd1->reg_rules[x];
829 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
830 rule2 = &rd2->reg_rules[y];
832 * This time around instead of using the stack lets
833 * write to the target rule directly saving ourselves
834 * a memcpy()
836 intersected_rule = &rd->reg_rules[rule_idx];
837 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
838 intersected_rule);
840 * No need to memset here the intersected rule here as
841 * we're not using the stack anymore
843 if (r)
844 continue;
845 rule_idx++;
849 if (rule_idx != num_rules) {
850 kfree(rd);
851 return NULL;
854 rd->n_reg_rules = num_rules;
855 rd->alpha2[0] = '9';
856 rd->alpha2[1] = '8';
857 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
858 rd2->dfs_region);
860 return rd;
864 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
865 * want to just have the channel structure use these
867 static u32 map_regdom_flags(u32 rd_flags)
869 u32 channel_flags = 0;
870 if (rd_flags & NL80211_RRF_NO_IR_ALL)
871 channel_flags |= IEEE80211_CHAN_NO_IR;
872 if (rd_flags & NL80211_RRF_DFS)
873 channel_flags |= IEEE80211_CHAN_RADAR;
874 if (rd_flags & NL80211_RRF_NO_OFDM)
875 channel_flags |= IEEE80211_CHAN_NO_OFDM;
876 return channel_flags;
879 static const struct ieee80211_reg_rule *
880 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
881 const struct ieee80211_regdomain *regd)
883 int i;
884 bool band_rule_found = false;
885 bool bw_fits = false;
887 if (!regd)
888 return ERR_PTR(-EINVAL);
890 for (i = 0; i < regd->n_reg_rules; i++) {
891 const struct ieee80211_reg_rule *rr;
892 const struct ieee80211_freq_range *fr = NULL;
894 rr = &regd->reg_rules[i];
895 fr = &rr->freq_range;
898 * We only need to know if one frequency rule was
899 * was in center_freq's band, that's enough, so lets
900 * not overwrite it once found
902 if (!band_rule_found)
903 band_rule_found = freq_in_rule_band(fr, center_freq);
905 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
907 if (band_rule_found && bw_fits)
908 return rr;
911 if (!band_rule_found)
912 return ERR_PTR(-ERANGE);
914 return ERR_PTR(-EINVAL);
917 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
918 u32 center_freq)
920 const struct ieee80211_regdomain *regd;
922 regd = reg_get_regdomain(wiphy);
924 return freq_reg_info_regd(wiphy, center_freq, regd);
926 EXPORT_SYMBOL(freq_reg_info);
928 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
930 switch (initiator) {
931 case NL80211_REGDOM_SET_BY_CORE:
932 return "core";
933 case NL80211_REGDOM_SET_BY_USER:
934 return "user";
935 case NL80211_REGDOM_SET_BY_DRIVER:
936 return "driver";
937 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
938 return "country IE";
939 default:
940 WARN_ON(1);
941 return "bug";
944 EXPORT_SYMBOL(reg_initiator_name);
946 #ifdef CONFIG_CFG80211_REG_DEBUG
947 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
948 struct ieee80211_channel *chan,
949 const struct ieee80211_reg_rule *reg_rule)
951 const struct ieee80211_power_rule *power_rule;
952 const struct ieee80211_freq_range *freq_range;
953 char max_antenna_gain[32], bw[32];
955 power_rule = &reg_rule->power_rule;
956 freq_range = &reg_rule->freq_range;
958 if (!power_rule->max_antenna_gain)
959 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
960 else
961 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
962 power_rule->max_antenna_gain);
964 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
965 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
966 freq_range->max_bandwidth_khz,
967 reg_get_max_bandwidth(regd, reg_rule));
968 else
969 snprintf(bw, sizeof(bw), "%d KHz",
970 freq_range->max_bandwidth_khz);
972 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
973 chan->center_freq);
975 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
976 freq_range->start_freq_khz, freq_range->end_freq_khz,
977 bw, max_antenna_gain,
978 power_rule->max_eirp);
980 #else
981 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
982 struct ieee80211_channel *chan,
983 const struct ieee80211_reg_rule *reg_rule)
985 return;
987 #endif
990 * Note that right now we assume the desired channel bandwidth
991 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
992 * per channel, the primary and the extension channel).
994 static void handle_channel(struct wiphy *wiphy,
995 enum nl80211_reg_initiator initiator,
996 struct ieee80211_channel *chan)
998 u32 flags, bw_flags = 0;
999 const struct ieee80211_reg_rule *reg_rule = NULL;
1000 const struct ieee80211_power_rule *power_rule = NULL;
1001 const struct ieee80211_freq_range *freq_range = NULL;
1002 struct wiphy *request_wiphy = NULL;
1003 struct regulatory_request *lr = get_last_request();
1004 const struct ieee80211_regdomain *regd;
1005 u32 max_bandwidth_khz;
1007 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1009 flags = chan->orig_flags;
1011 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1012 if (IS_ERR(reg_rule)) {
1014 * We will disable all channels that do not match our
1015 * received regulatory rule unless the hint is coming
1016 * from a Country IE and the Country IE had no information
1017 * about a band. The IEEE 802.11 spec allows for an AP
1018 * to send only a subset of the regulatory rules allowed,
1019 * so an AP in the US that only supports 2.4 GHz may only send
1020 * a country IE with information for the 2.4 GHz band
1021 * while 5 GHz is still supported.
1023 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1024 PTR_ERR(reg_rule) == -ERANGE)
1025 return;
1027 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1028 request_wiphy && request_wiphy == wiphy &&
1029 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1030 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1031 chan->center_freq);
1032 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1033 chan->flags = chan->orig_flags;
1034 } else {
1035 REG_DBG_PRINT("Disabling freq %d MHz\n",
1036 chan->center_freq);
1037 chan->flags |= IEEE80211_CHAN_DISABLED;
1039 return;
1042 regd = reg_get_regdomain(wiphy);
1043 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1045 power_rule = &reg_rule->power_rule;
1046 freq_range = &reg_rule->freq_range;
1048 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1049 /* Check if auto calculation requested */
1050 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1051 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1053 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1054 bw_flags = IEEE80211_CHAN_NO_HT40;
1055 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1056 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1057 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1058 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1060 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1061 request_wiphy && request_wiphy == wiphy &&
1062 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1064 * This guarantees the driver's requested regulatory domain
1065 * will always be used as a base for further regulatory
1066 * settings
1068 chan->flags = chan->orig_flags =
1069 map_regdom_flags(reg_rule->flags) | bw_flags;
1070 chan->max_antenna_gain = chan->orig_mag =
1071 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1072 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1073 (int) MBM_TO_DBM(power_rule->max_eirp);
1074 return;
1077 chan->dfs_state = NL80211_DFS_USABLE;
1078 chan->dfs_state_entered = jiffies;
1080 chan->beacon_found = false;
1081 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1082 chan->max_antenna_gain =
1083 min_t(int, chan->orig_mag,
1084 MBI_TO_DBI(power_rule->max_antenna_gain));
1085 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1087 if (chan->flags & IEEE80211_CHAN_RADAR) {
1088 if (reg_rule->dfs_cac_ms)
1089 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1090 else
1091 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1094 if (chan->orig_mpwr) {
1096 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1097 * will always follow the passed country IE power settings.
1099 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1100 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1101 chan->max_power = chan->max_reg_power;
1102 else
1103 chan->max_power = min(chan->orig_mpwr,
1104 chan->max_reg_power);
1105 } else
1106 chan->max_power = chan->max_reg_power;
1109 static void handle_band(struct wiphy *wiphy,
1110 enum nl80211_reg_initiator initiator,
1111 struct ieee80211_supported_band *sband)
1113 unsigned int i;
1115 if (!sband)
1116 return;
1118 for (i = 0; i < sband->n_channels; i++)
1119 handle_channel(wiphy, initiator, &sband->channels[i]);
1122 static bool reg_request_cell_base(struct regulatory_request *request)
1124 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1125 return false;
1126 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1129 bool reg_last_request_cell_base(void)
1131 return reg_request_cell_base(get_last_request());
1134 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
1135 /* Core specific check */
1136 static enum reg_request_treatment
1137 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1139 struct regulatory_request *lr = get_last_request();
1141 if (!reg_num_devs_support_basehint)
1142 return REG_REQ_IGNORE;
1144 if (reg_request_cell_base(lr) &&
1145 !regdom_changes(pending_request->alpha2))
1146 return REG_REQ_ALREADY_SET;
1148 return REG_REQ_OK;
1151 /* Device specific check */
1152 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1154 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1156 #else
1157 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1159 return REG_REQ_IGNORE;
1162 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1164 return true;
1166 #endif
1168 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1170 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1171 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1172 return true;
1173 return false;
1176 static bool ignore_reg_update(struct wiphy *wiphy,
1177 enum nl80211_reg_initiator initiator)
1179 struct regulatory_request *lr = get_last_request();
1181 if (!lr) {
1182 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1183 "since last_request is not set\n",
1184 reg_initiator_name(initiator));
1185 return true;
1188 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1189 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1190 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1191 "since the driver uses its own custom "
1192 "regulatory domain\n",
1193 reg_initiator_name(initiator));
1194 return true;
1198 * wiphy->regd will be set once the device has its own
1199 * desired regulatory domain set
1201 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1202 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1203 !is_world_regdom(lr->alpha2)) {
1204 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1205 "since the driver requires its own regulatory "
1206 "domain to be set first\n",
1207 reg_initiator_name(initiator));
1208 return true;
1211 if (reg_request_cell_base(lr))
1212 return reg_dev_ignore_cell_hint(wiphy);
1214 return false;
1217 static bool reg_is_world_roaming(struct wiphy *wiphy)
1219 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1220 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1221 struct regulatory_request *lr = get_last_request();
1223 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1224 return true;
1226 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1227 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1228 return true;
1230 return false;
1233 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1234 struct reg_beacon *reg_beacon)
1236 struct ieee80211_supported_band *sband;
1237 struct ieee80211_channel *chan;
1238 bool channel_changed = false;
1239 struct ieee80211_channel chan_before;
1241 sband = wiphy->bands[reg_beacon->chan.band];
1242 chan = &sband->channels[chan_idx];
1244 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1245 return;
1247 if (chan->beacon_found)
1248 return;
1250 chan->beacon_found = true;
1252 if (!reg_is_world_roaming(wiphy))
1253 return;
1255 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1256 return;
1258 chan_before.center_freq = chan->center_freq;
1259 chan_before.flags = chan->flags;
1261 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1262 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1263 channel_changed = true;
1266 if (channel_changed)
1267 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1271 * Called when a scan on a wiphy finds a beacon on
1272 * new channel
1274 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1275 struct reg_beacon *reg_beacon)
1277 unsigned int i;
1278 struct ieee80211_supported_band *sband;
1280 if (!wiphy->bands[reg_beacon->chan.band])
1281 return;
1283 sband = wiphy->bands[reg_beacon->chan.band];
1285 for (i = 0; i < sband->n_channels; i++)
1286 handle_reg_beacon(wiphy, i, reg_beacon);
1290 * Called upon reg changes or a new wiphy is added
1292 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1294 unsigned int i;
1295 struct ieee80211_supported_band *sband;
1296 struct reg_beacon *reg_beacon;
1298 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1299 if (!wiphy->bands[reg_beacon->chan.band])
1300 continue;
1301 sband = wiphy->bands[reg_beacon->chan.band];
1302 for (i = 0; i < sband->n_channels; i++)
1303 handle_reg_beacon(wiphy, i, reg_beacon);
1307 /* Reap the advantages of previously found beacons */
1308 static void reg_process_beacons(struct wiphy *wiphy)
1311 * Means we are just firing up cfg80211, so no beacons would
1312 * have been processed yet.
1314 if (!last_request)
1315 return;
1316 wiphy_update_beacon_reg(wiphy);
1319 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1321 if (!chan)
1322 return false;
1323 if (chan->flags & IEEE80211_CHAN_DISABLED)
1324 return false;
1325 /* This would happen when regulatory rules disallow HT40 completely */
1326 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1327 return false;
1328 return true;
1331 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1332 struct ieee80211_channel *channel)
1334 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1335 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1336 unsigned int i;
1338 if (!is_ht40_allowed(channel)) {
1339 channel->flags |= IEEE80211_CHAN_NO_HT40;
1340 return;
1344 * We need to ensure the extension channels exist to
1345 * be able to use HT40- or HT40+, this finds them (or not)
1347 for (i = 0; i < sband->n_channels; i++) {
1348 struct ieee80211_channel *c = &sband->channels[i];
1350 if (c->center_freq == (channel->center_freq - 20))
1351 channel_before = c;
1352 if (c->center_freq == (channel->center_freq + 20))
1353 channel_after = c;
1357 * Please note that this assumes target bandwidth is 20 MHz,
1358 * if that ever changes we also need to change the below logic
1359 * to include that as well.
1361 if (!is_ht40_allowed(channel_before))
1362 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1363 else
1364 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1366 if (!is_ht40_allowed(channel_after))
1367 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1368 else
1369 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1372 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1373 struct ieee80211_supported_band *sband)
1375 unsigned int i;
1377 if (!sband)
1378 return;
1380 for (i = 0; i < sband->n_channels; i++)
1381 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1384 static void reg_process_ht_flags(struct wiphy *wiphy)
1386 enum ieee80211_band band;
1388 if (!wiphy)
1389 return;
1391 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1392 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1395 static void reg_call_notifier(struct wiphy *wiphy,
1396 struct regulatory_request *request)
1398 if (wiphy->reg_notifier)
1399 wiphy->reg_notifier(wiphy, request);
1402 static void wiphy_update_regulatory(struct wiphy *wiphy,
1403 enum nl80211_reg_initiator initiator)
1405 enum ieee80211_band band;
1406 struct regulatory_request *lr = get_last_request();
1408 if (ignore_reg_update(wiphy, initiator)) {
1410 * Regulatory updates set by CORE are ignored for custom
1411 * regulatory cards. Let us notify the changes to the driver,
1412 * as some drivers used this to restore its orig_* reg domain.
1414 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1415 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1416 reg_call_notifier(wiphy, lr);
1417 return;
1420 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1422 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1423 handle_band(wiphy, initiator, wiphy->bands[band]);
1425 reg_process_beacons(wiphy);
1426 reg_process_ht_flags(wiphy);
1427 reg_call_notifier(wiphy, lr);
1430 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1432 struct cfg80211_registered_device *rdev;
1433 struct wiphy *wiphy;
1435 ASSERT_RTNL();
1437 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1438 wiphy = &rdev->wiphy;
1439 wiphy_update_regulatory(wiphy, initiator);
1443 static void handle_channel_custom(struct wiphy *wiphy,
1444 struct ieee80211_channel *chan,
1445 const struct ieee80211_regdomain *regd)
1447 u32 bw_flags = 0;
1448 const struct ieee80211_reg_rule *reg_rule = NULL;
1449 const struct ieee80211_power_rule *power_rule = NULL;
1450 const struct ieee80211_freq_range *freq_range = NULL;
1451 u32 max_bandwidth_khz;
1453 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1454 regd);
1456 if (IS_ERR(reg_rule)) {
1457 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1458 chan->center_freq);
1459 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1460 chan->flags = chan->orig_flags;
1461 return;
1464 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1466 power_rule = &reg_rule->power_rule;
1467 freq_range = &reg_rule->freq_range;
1469 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1470 /* Check if auto calculation requested */
1471 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1472 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1474 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1475 bw_flags = IEEE80211_CHAN_NO_HT40;
1476 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1477 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1478 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1479 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1481 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1482 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1483 chan->max_reg_power = chan->max_power =
1484 (int) MBM_TO_DBM(power_rule->max_eirp);
1487 static void handle_band_custom(struct wiphy *wiphy,
1488 struct ieee80211_supported_band *sband,
1489 const struct ieee80211_regdomain *regd)
1491 unsigned int i;
1493 if (!sband)
1494 return;
1496 for (i = 0; i < sband->n_channels; i++)
1497 handle_channel_custom(wiphy, &sband->channels[i], regd);
1500 /* Used by drivers prior to wiphy registration */
1501 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1502 const struct ieee80211_regdomain *regd)
1504 enum ieee80211_band band;
1505 unsigned int bands_set = 0;
1507 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1508 "wiphy should have REGULATORY_CUSTOM_REG\n");
1509 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1511 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1512 if (!wiphy->bands[band])
1513 continue;
1514 handle_band_custom(wiphy, wiphy->bands[band], regd);
1515 bands_set++;
1519 * no point in calling this if it won't have any effect
1520 * on your device's supported bands.
1522 WARN_ON(!bands_set);
1524 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1526 static void reg_set_request_processed(void)
1528 bool need_more_processing = false;
1529 struct regulatory_request *lr = get_last_request();
1531 lr->processed = true;
1533 spin_lock(&reg_requests_lock);
1534 if (!list_empty(&reg_requests_list))
1535 need_more_processing = true;
1536 spin_unlock(&reg_requests_lock);
1538 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1539 cancel_delayed_work(&reg_timeout);
1541 if (need_more_processing)
1542 schedule_work(&reg_work);
1546 * reg_process_hint_core - process core regulatory requests
1547 * @pending_request: a pending core regulatory request
1549 * The wireless subsystem can use this function to process
1550 * a regulatory request issued by the regulatory core.
1552 * Returns one of the different reg request treatment values.
1554 static enum reg_request_treatment
1555 reg_process_hint_core(struct regulatory_request *core_request)
1558 core_request->intersect = false;
1559 core_request->processed = false;
1561 reg_update_last_request(core_request);
1563 return reg_call_crda(core_request);
1566 static enum reg_request_treatment
1567 __reg_process_hint_user(struct regulatory_request *user_request)
1569 struct regulatory_request *lr = get_last_request();
1571 if (reg_request_cell_base(user_request))
1572 return reg_ignore_cell_hint(user_request);
1574 if (reg_request_cell_base(lr))
1575 return REG_REQ_IGNORE;
1577 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1578 return REG_REQ_INTERSECT;
1580 * If the user knows better the user should set the regdom
1581 * to their country before the IE is picked up
1583 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1584 lr->intersect)
1585 return REG_REQ_IGNORE;
1587 * Process user requests only after previous user/driver/core
1588 * requests have been processed
1590 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1591 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1592 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1593 regdom_changes(lr->alpha2))
1594 return REG_REQ_IGNORE;
1596 if (!regdom_changes(user_request->alpha2))
1597 return REG_REQ_ALREADY_SET;
1599 return REG_REQ_OK;
1603 * reg_process_hint_user - process user regulatory requests
1604 * @user_request: a pending user regulatory request
1606 * The wireless subsystem can use this function to process
1607 * a regulatory request initiated by userspace.
1609 * Returns one of the different reg request treatment values.
1611 static enum reg_request_treatment
1612 reg_process_hint_user(struct regulatory_request *user_request)
1614 enum reg_request_treatment treatment;
1616 treatment = __reg_process_hint_user(user_request);
1617 if (treatment == REG_REQ_IGNORE ||
1618 treatment == REG_REQ_ALREADY_SET) {
1619 kfree(user_request);
1620 return treatment;
1623 user_request->intersect = treatment == REG_REQ_INTERSECT;
1624 user_request->processed = false;
1626 reg_update_last_request(user_request);
1628 user_alpha2[0] = user_request->alpha2[0];
1629 user_alpha2[1] = user_request->alpha2[1];
1631 return reg_call_crda(user_request);
1634 static enum reg_request_treatment
1635 __reg_process_hint_driver(struct regulatory_request *driver_request)
1637 struct regulatory_request *lr = get_last_request();
1639 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1640 if (regdom_changes(driver_request->alpha2))
1641 return REG_REQ_OK;
1642 return REG_REQ_ALREADY_SET;
1646 * This would happen if you unplug and plug your card
1647 * back in or if you add a new device for which the previously
1648 * loaded card also agrees on the regulatory domain.
1650 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1651 !regdom_changes(driver_request->alpha2))
1652 return REG_REQ_ALREADY_SET;
1654 return REG_REQ_INTERSECT;
1658 * reg_process_hint_driver - process driver regulatory requests
1659 * @driver_request: a pending driver regulatory request
1661 * The wireless subsystem can use this function to process
1662 * a regulatory request issued by an 802.11 driver.
1664 * Returns one of the different reg request treatment values.
1666 static enum reg_request_treatment
1667 reg_process_hint_driver(struct wiphy *wiphy,
1668 struct regulatory_request *driver_request)
1670 const struct ieee80211_regdomain *regd;
1671 enum reg_request_treatment treatment;
1673 treatment = __reg_process_hint_driver(driver_request);
1675 switch (treatment) {
1676 case REG_REQ_OK:
1677 break;
1678 case REG_REQ_IGNORE:
1679 kfree(driver_request);
1680 return treatment;
1681 case REG_REQ_INTERSECT:
1682 /* fall through */
1683 case REG_REQ_ALREADY_SET:
1684 regd = reg_copy_regd(get_cfg80211_regdom());
1685 if (IS_ERR(regd)) {
1686 kfree(driver_request);
1687 return REG_REQ_IGNORE;
1689 rcu_assign_pointer(wiphy->regd, regd);
1693 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1694 driver_request->processed = false;
1696 reg_update_last_request(driver_request);
1699 * Since CRDA will not be called in this case as we already
1700 * have applied the requested regulatory domain before we just
1701 * inform userspace we have processed the request
1703 if (treatment == REG_REQ_ALREADY_SET) {
1704 nl80211_send_reg_change_event(driver_request);
1705 reg_set_request_processed();
1706 return treatment;
1709 return reg_call_crda(driver_request);
1712 static enum reg_request_treatment
1713 __reg_process_hint_country_ie(struct wiphy *wiphy,
1714 struct regulatory_request *country_ie_request)
1716 struct wiphy *last_wiphy = NULL;
1717 struct regulatory_request *lr = get_last_request();
1719 if (reg_request_cell_base(lr)) {
1720 /* Trust a Cell base station over the AP's country IE */
1721 if (regdom_changes(country_ie_request->alpha2))
1722 return REG_REQ_IGNORE;
1723 return REG_REQ_ALREADY_SET;
1724 } else {
1725 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1726 return REG_REQ_IGNORE;
1729 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1730 return -EINVAL;
1732 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1733 return REG_REQ_OK;
1735 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1737 if (last_wiphy != wiphy) {
1739 * Two cards with two APs claiming different
1740 * Country IE alpha2s. We could
1741 * intersect them, but that seems unlikely
1742 * to be correct. Reject second one for now.
1744 if (regdom_changes(country_ie_request->alpha2))
1745 return REG_REQ_IGNORE;
1746 return REG_REQ_ALREADY_SET;
1749 * Two consecutive Country IE hints on the same wiphy.
1750 * This should be picked up early by the driver/stack
1752 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1753 return REG_REQ_OK;
1754 return REG_REQ_ALREADY_SET;
1758 * reg_process_hint_country_ie - process regulatory requests from country IEs
1759 * @country_ie_request: a regulatory request from a country IE
1761 * The wireless subsystem can use this function to process
1762 * a regulatory request issued by a country Information Element.
1764 * Returns one of the different reg request treatment values.
1766 static enum reg_request_treatment
1767 reg_process_hint_country_ie(struct wiphy *wiphy,
1768 struct regulatory_request *country_ie_request)
1770 enum reg_request_treatment treatment;
1772 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1774 switch (treatment) {
1775 case REG_REQ_OK:
1776 break;
1777 case REG_REQ_IGNORE:
1778 /* fall through */
1779 case REG_REQ_ALREADY_SET:
1780 kfree(country_ie_request);
1781 return treatment;
1782 case REG_REQ_INTERSECT:
1783 kfree(country_ie_request);
1785 * This doesn't happen yet, not sure we
1786 * ever want to support it for this case.
1788 WARN_ONCE(1, "Unexpected intersection for country IEs");
1789 return REG_REQ_IGNORE;
1792 country_ie_request->intersect = false;
1793 country_ie_request->processed = false;
1795 reg_update_last_request(country_ie_request);
1797 return reg_call_crda(country_ie_request);
1800 /* This processes *all* regulatory hints */
1801 static void reg_process_hint(struct regulatory_request *reg_request)
1803 struct wiphy *wiphy = NULL;
1804 enum reg_request_treatment treatment;
1806 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1807 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1809 switch (reg_request->initiator) {
1810 case NL80211_REGDOM_SET_BY_CORE:
1811 reg_process_hint_core(reg_request);
1812 return;
1813 case NL80211_REGDOM_SET_BY_USER:
1814 treatment = reg_process_hint_user(reg_request);
1815 if (treatment == REG_REQ_IGNORE ||
1816 treatment == REG_REQ_ALREADY_SET)
1817 return;
1818 queue_delayed_work(system_power_efficient_wq,
1819 &reg_timeout, msecs_to_jiffies(3142));
1820 return;
1821 case NL80211_REGDOM_SET_BY_DRIVER:
1822 if (!wiphy)
1823 goto out_free;
1824 treatment = reg_process_hint_driver(wiphy, reg_request);
1825 break;
1826 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1827 if (!wiphy)
1828 goto out_free;
1829 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1830 break;
1831 default:
1832 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1833 goto out_free;
1836 /* This is required so that the orig_* parameters are saved */
1837 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1838 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1839 wiphy_update_regulatory(wiphy, reg_request->initiator);
1841 return;
1843 out_free:
1844 kfree(reg_request);
1848 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1849 * Regulatory hints come on a first come first serve basis and we
1850 * must process each one atomically.
1852 static void reg_process_pending_hints(void)
1854 struct regulatory_request *reg_request, *lr;
1856 lr = get_last_request();
1858 /* When last_request->processed becomes true this will be rescheduled */
1859 if (lr && !lr->processed) {
1860 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1861 return;
1864 spin_lock(&reg_requests_lock);
1866 if (list_empty(&reg_requests_list)) {
1867 spin_unlock(&reg_requests_lock);
1868 return;
1871 reg_request = list_first_entry(&reg_requests_list,
1872 struct regulatory_request,
1873 list);
1874 list_del_init(&reg_request->list);
1876 spin_unlock(&reg_requests_lock);
1878 reg_process_hint(reg_request);
1881 /* Processes beacon hints -- this has nothing to do with country IEs */
1882 static void reg_process_pending_beacon_hints(void)
1884 struct cfg80211_registered_device *rdev;
1885 struct reg_beacon *pending_beacon, *tmp;
1887 /* This goes through the _pending_ beacon list */
1888 spin_lock_bh(&reg_pending_beacons_lock);
1890 list_for_each_entry_safe(pending_beacon, tmp,
1891 &reg_pending_beacons, list) {
1892 list_del_init(&pending_beacon->list);
1894 /* Applies the beacon hint to current wiphys */
1895 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1896 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1898 /* Remembers the beacon hint for new wiphys or reg changes */
1899 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1902 spin_unlock_bh(&reg_pending_beacons_lock);
1905 static void reg_todo(struct work_struct *work)
1907 rtnl_lock();
1908 reg_process_pending_hints();
1909 reg_process_pending_beacon_hints();
1910 rtnl_unlock();
1913 static void queue_regulatory_request(struct regulatory_request *request)
1915 request->alpha2[0] = toupper(request->alpha2[0]);
1916 request->alpha2[1] = toupper(request->alpha2[1]);
1918 spin_lock(&reg_requests_lock);
1919 list_add_tail(&request->list, &reg_requests_list);
1920 spin_unlock(&reg_requests_lock);
1922 schedule_work(&reg_work);
1926 * Core regulatory hint -- happens during cfg80211_init()
1927 * and when we restore regulatory settings.
1929 static int regulatory_hint_core(const char *alpha2)
1931 struct regulatory_request *request;
1933 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1934 if (!request)
1935 return -ENOMEM;
1937 request->alpha2[0] = alpha2[0];
1938 request->alpha2[1] = alpha2[1];
1939 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1941 queue_regulatory_request(request);
1943 return 0;
1946 /* User hints */
1947 int regulatory_hint_user(const char *alpha2,
1948 enum nl80211_user_reg_hint_type user_reg_hint_type)
1950 struct regulatory_request *request;
1952 if (WARN_ON(!alpha2))
1953 return -EINVAL;
1955 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1956 if (!request)
1957 return -ENOMEM;
1959 request->wiphy_idx = WIPHY_IDX_INVALID;
1960 request->alpha2[0] = alpha2[0];
1961 request->alpha2[1] = alpha2[1];
1962 request->initiator = NL80211_REGDOM_SET_BY_USER;
1963 request->user_reg_hint_type = user_reg_hint_type;
1965 queue_regulatory_request(request);
1967 return 0;
1970 /* Driver hints */
1971 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1973 struct regulatory_request *request;
1975 if (WARN_ON(!alpha2 || !wiphy))
1976 return -EINVAL;
1978 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
1980 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1981 if (!request)
1982 return -ENOMEM;
1984 request->wiphy_idx = get_wiphy_idx(wiphy);
1986 request->alpha2[0] = alpha2[0];
1987 request->alpha2[1] = alpha2[1];
1988 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1990 queue_regulatory_request(request);
1992 return 0;
1994 EXPORT_SYMBOL(regulatory_hint);
1996 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1997 const u8 *country_ie, u8 country_ie_len)
1999 char alpha2[2];
2000 enum environment_cap env = ENVIRON_ANY;
2001 struct regulatory_request *request = NULL, *lr;
2003 /* IE len must be evenly divisible by 2 */
2004 if (country_ie_len & 0x01)
2005 return;
2007 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2008 return;
2010 request = kzalloc(sizeof(*request), GFP_KERNEL);
2011 if (!request)
2012 return;
2014 alpha2[0] = country_ie[0];
2015 alpha2[1] = country_ie[1];
2017 if (country_ie[2] == 'I')
2018 env = ENVIRON_INDOOR;
2019 else if (country_ie[2] == 'O')
2020 env = ENVIRON_OUTDOOR;
2022 rcu_read_lock();
2023 lr = get_last_request();
2025 if (unlikely(!lr))
2026 goto out;
2029 * We will run this only upon a successful connection on cfg80211.
2030 * We leave conflict resolution to the workqueue, where can hold
2031 * the RTNL.
2033 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2034 lr->wiphy_idx != WIPHY_IDX_INVALID)
2035 goto out;
2037 request->wiphy_idx = get_wiphy_idx(wiphy);
2038 request->alpha2[0] = alpha2[0];
2039 request->alpha2[1] = alpha2[1];
2040 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2041 request->country_ie_env = env;
2043 queue_regulatory_request(request);
2044 request = NULL;
2045 out:
2046 kfree(request);
2047 rcu_read_unlock();
2050 static void restore_alpha2(char *alpha2, bool reset_user)
2052 /* indicates there is no alpha2 to consider for restoration */
2053 alpha2[0] = '9';
2054 alpha2[1] = '7';
2056 /* The user setting has precedence over the module parameter */
2057 if (is_user_regdom_saved()) {
2058 /* Unless we're asked to ignore it and reset it */
2059 if (reset_user) {
2060 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2061 user_alpha2[0] = '9';
2062 user_alpha2[1] = '7';
2065 * If we're ignoring user settings, we still need to
2066 * check the module parameter to ensure we put things
2067 * back as they were for a full restore.
2069 if (!is_world_regdom(ieee80211_regdom)) {
2070 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2071 ieee80211_regdom[0], ieee80211_regdom[1]);
2072 alpha2[0] = ieee80211_regdom[0];
2073 alpha2[1] = ieee80211_regdom[1];
2075 } else {
2076 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2077 user_alpha2[0], user_alpha2[1]);
2078 alpha2[0] = user_alpha2[0];
2079 alpha2[1] = user_alpha2[1];
2081 } else if (!is_world_regdom(ieee80211_regdom)) {
2082 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2083 ieee80211_regdom[0], ieee80211_regdom[1]);
2084 alpha2[0] = ieee80211_regdom[0];
2085 alpha2[1] = ieee80211_regdom[1];
2086 } else
2087 REG_DBG_PRINT("Restoring regulatory settings\n");
2090 static void restore_custom_reg_settings(struct wiphy *wiphy)
2092 struct ieee80211_supported_band *sband;
2093 enum ieee80211_band band;
2094 struct ieee80211_channel *chan;
2095 int i;
2097 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2098 sband = wiphy->bands[band];
2099 if (!sband)
2100 continue;
2101 for (i = 0; i < sband->n_channels; i++) {
2102 chan = &sband->channels[i];
2103 chan->flags = chan->orig_flags;
2104 chan->max_antenna_gain = chan->orig_mag;
2105 chan->max_power = chan->orig_mpwr;
2106 chan->beacon_found = false;
2112 * Restoring regulatory settings involves ingoring any
2113 * possibly stale country IE information and user regulatory
2114 * settings if so desired, this includes any beacon hints
2115 * learned as we could have traveled outside to another country
2116 * after disconnection. To restore regulatory settings we do
2117 * exactly what we did at bootup:
2119 * - send a core regulatory hint
2120 * - send a user regulatory hint if applicable
2122 * Device drivers that send a regulatory hint for a specific country
2123 * keep their own regulatory domain on wiphy->regd so that does does
2124 * not need to be remembered.
2126 static void restore_regulatory_settings(bool reset_user)
2128 char alpha2[2];
2129 char world_alpha2[2];
2130 struct reg_beacon *reg_beacon, *btmp;
2131 struct regulatory_request *reg_request, *tmp;
2132 LIST_HEAD(tmp_reg_req_list);
2133 struct cfg80211_registered_device *rdev;
2135 ASSERT_RTNL();
2137 reset_regdomains(true, &world_regdom);
2138 restore_alpha2(alpha2, reset_user);
2141 * If there's any pending requests we simply
2142 * stash them to a temporary pending queue and
2143 * add then after we've restored regulatory
2144 * settings.
2146 spin_lock(&reg_requests_lock);
2147 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2148 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2149 continue;
2150 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2152 spin_unlock(&reg_requests_lock);
2154 /* Clear beacon hints */
2155 spin_lock_bh(&reg_pending_beacons_lock);
2156 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2157 list_del(&reg_beacon->list);
2158 kfree(reg_beacon);
2160 spin_unlock_bh(&reg_pending_beacons_lock);
2162 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2163 list_del(&reg_beacon->list);
2164 kfree(reg_beacon);
2167 /* First restore to the basic regulatory settings */
2168 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2169 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2171 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2172 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2173 restore_custom_reg_settings(&rdev->wiphy);
2176 regulatory_hint_core(world_alpha2);
2179 * This restores the ieee80211_regdom module parameter
2180 * preference or the last user requested regulatory
2181 * settings, user regulatory settings takes precedence.
2183 if (is_an_alpha2(alpha2))
2184 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2186 spin_lock(&reg_requests_lock);
2187 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2188 spin_unlock(&reg_requests_lock);
2190 REG_DBG_PRINT("Kicking the queue\n");
2192 schedule_work(&reg_work);
2195 void regulatory_hint_disconnect(void)
2197 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2198 restore_regulatory_settings(false);
2201 static bool freq_is_chan_12_13_14(u16 freq)
2203 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2204 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2205 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2206 return true;
2207 return false;
2210 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2212 struct reg_beacon *pending_beacon;
2214 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2215 if (beacon_chan->center_freq ==
2216 pending_beacon->chan.center_freq)
2217 return true;
2218 return false;
2221 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2222 struct ieee80211_channel *beacon_chan,
2223 gfp_t gfp)
2225 struct reg_beacon *reg_beacon;
2226 bool processing;
2228 if (beacon_chan->beacon_found ||
2229 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2230 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2231 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2232 return 0;
2234 spin_lock_bh(&reg_pending_beacons_lock);
2235 processing = pending_reg_beacon(beacon_chan);
2236 spin_unlock_bh(&reg_pending_beacons_lock);
2238 if (processing)
2239 return 0;
2241 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2242 if (!reg_beacon)
2243 return -ENOMEM;
2245 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2246 beacon_chan->center_freq,
2247 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2248 wiphy_name(wiphy));
2250 memcpy(&reg_beacon->chan, beacon_chan,
2251 sizeof(struct ieee80211_channel));
2254 * Since we can be called from BH or and non-BH context
2255 * we must use spin_lock_bh()
2257 spin_lock_bh(&reg_pending_beacons_lock);
2258 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2259 spin_unlock_bh(&reg_pending_beacons_lock);
2261 schedule_work(&reg_work);
2263 return 0;
2266 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2268 unsigned int i;
2269 const struct ieee80211_reg_rule *reg_rule = NULL;
2270 const struct ieee80211_freq_range *freq_range = NULL;
2271 const struct ieee80211_power_rule *power_rule = NULL;
2272 char bw[32], cac_time[32];
2274 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2276 for (i = 0; i < rd->n_reg_rules; i++) {
2277 reg_rule = &rd->reg_rules[i];
2278 freq_range = &reg_rule->freq_range;
2279 power_rule = &reg_rule->power_rule;
2281 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2282 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2283 freq_range->max_bandwidth_khz,
2284 reg_get_max_bandwidth(rd, reg_rule));
2285 else
2286 snprintf(bw, sizeof(bw), "%d KHz",
2287 freq_range->max_bandwidth_khz);
2289 if (reg_rule->flags & NL80211_RRF_DFS)
2290 scnprintf(cac_time, sizeof(cac_time), "%u s",
2291 reg_rule->dfs_cac_ms/1000);
2292 else
2293 scnprintf(cac_time, sizeof(cac_time), "N/A");
2297 * There may not be documentation for max antenna gain
2298 * in certain regions
2300 if (power_rule->max_antenna_gain)
2301 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2302 freq_range->start_freq_khz,
2303 freq_range->end_freq_khz,
2305 power_rule->max_antenna_gain,
2306 power_rule->max_eirp,
2307 cac_time);
2308 else
2309 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2310 freq_range->start_freq_khz,
2311 freq_range->end_freq_khz,
2313 power_rule->max_eirp,
2314 cac_time);
2318 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2320 switch (dfs_region) {
2321 case NL80211_DFS_UNSET:
2322 case NL80211_DFS_FCC:
2323 case NL80211_DFS_ETSI:
2324 case NL80211_DFS_JP:
2325 return true;
2326 default:
2327 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2328 dfs_region);
2329 return false;
2333 static void print_regdomain(const struct ieee80211_regdomain *rd)
2335 struct regulatory_request *lr = get_last_request();
2337 if (is_intersected_alpha2(rd->alpha2)) {
2338 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2339 struct cfg80211_registered_device *rdev;
2340 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2341 if (rdev) {
2342 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2343 rdev->country_ie_alpha2[0],
2344 rdev->country_ie_alpha2[1]);
2345 } else
2346 pr_info("Current regulatory domain intersected:\n");
2347 } else
2348 pr_info("Current regulatory domain intersected:\n");
2349 } else if (is_world_regdom(rd->alpha2)) {
2350 pr_info("World regulatory domain updated:\n");
2351 } else {
2352 if (is_unknown_alpha2(rd->alpha2))
2353 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2354 else {
2355 if (reg_request_cell_base(lr))
2356 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2357 rd->alpha2[0], rd->alpha2[1]);
2358 else
2359 pr_info("Regulatory domain changed to country: %c%c\n",
2360 rd->alpha2[0], rd->alpha2[1]);
2364 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2365 print_rd_rules(rd);
2368 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2370 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2371 print_rd_rules(rd);
2374 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2376 if (!is_world_regdom(rd->alpha2))
2377 return -EINVAL;
2378 update_world_regdomain(rd);
2379 return 0;
2382 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2383 struct regulatory_request *user_request)
2385 const struct ieee80211_regdomain *intersected_rd = NULL;
2387 if (!regdom_changes(rd->alpha2))
2388 return -EALREADY;
2390 if (!is_valid_rd(rd)) {
2391 pr_err("Invalid regulatory domain detected:\n");
2392 print_regdomain_info(rd);
2393 return -EINVAL;
2396 if (!user_request->intersect) {
2397 reset_regdomains(false, rd);
2398 return 0;
2401 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2402 if (!intersected_rd)
2403 return -EINVAL;
2405 kfree(rd);
2406 rd = NULL;
2407 reset_regdomains(false, intersected_rd);
2409 return 0;
2412 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2413 struct regulatory_request *driver_request)
2415 const struct ieee80211_regdomain *regd;
2416 const struct ieee80211_regdomain *intersected_rd = NULL;
2417 const struct ieee80211_regdomain *tmp;
2418 struct wiphy *request_wiphy;
2420 if (is_world_regdom(rd->alpha2))
2421 return -EINVAL;
2423 if (!regdom_changes(rd->alpha2))
2424 return -EALREADY;
2426 if (!is_valid_rd(rd)) {
2427 pr_err("Invalid regulatory domain detected:\n");
2428 print_regdomain_info(rd);
2429 return -EINVAL;
2432 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2433 if (!request_wiphy) {
2434 queue_delayed_work(system_power_efficient_wq,
2435 &reg_timeout, 0);
2436 return -ENODEV;
2439 if (!driver_request->intersect) {
2440 if (request_wiphy->regd)
2441 return -EALREADY;
2443 regd = reg_copy_regd(rd);
2444 if (IS_ERR(regd))
2445 return PTR_ERR(regd);
2447 rcu_assign_pointer(request_wiphy->regd, regd);
2448 reset_regdomains(false, rd);
2449 return 0;
2452 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2453 if (!intersected_rd)
2454 return -EINVAL;
2457 * We can trash what CRDA provided now.
2458 * However if a driver requested this specific regulatory
2459 * domain we keep it for its private use
2461 tmp = get_wiphy_regdom(request_wiphy);
2462 rcu_assign_pointer(request_wiphy->regd, rd);
2463 rcu_free_regdom(tmp);
2465 rd = NULL;
2467 reset_regdomains(false, intersected_rd);
2469 return 0;
2472 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2473 struct regulatory_request *country_ie_request)
2475 struct wiphy *request_wiphy;
2477 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2478 !is_unknown_alpha2(rd->alpha2))
2479 return -EINVAL;
2482 * Lets only bother proceeding on the same alpha2 if the current
2483 * rd is non static (it means CRDA was present and was used last)
2484 * and the pending request came in from a country IE
2487 if (!is_valid_rd(rd)) {
2488 pr_err("Invalid regulatory domain detected:\n");
2489 print_regdomain_info(rd);
2490 return -EINVAL;
2493 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2494 if (!request_wiphy) {
2495 queue_delayed_work(system_power_efficient_wq,
2496 &reg_timeout, 0);
2497 return -ENODEV;
2500 if (country_ie_request->intersect)
2501 return -EINVAL;
2503 reset_regdomains(false, rd);
2504 return 0;
2508 * Use this call to set the current regulatory domain. Conflicts with
2509 * multiple drivers can be ironed out later. Caller must've already
2510 * kmalloc'd the rd structure.
2512 int set_regdom(const struct ieee80211_regdomain *rd)
2514 struct regulatory_request *lr;
2515 bool user_reset = false;
2516 int r;
2518 if (!reg_is_valid_request(rd->alpha2)) {
2519 kfree(rd);
2520 return -EINVAL;
2523 lr = get_last_request();
2525 /* Note that this doesn't update the wiphys, this is done below */
2526 switch (lr->initiator) {
2527 case NL80211_REGDOM_SET_BY_CORE:
2528 r = reg_set_rd_core(rd);
2529 break;
2530 case NL80211_REGDOM_SET_BY_USER:
2531 r = reg_set_rd_user(rd, lr);
2532 user_reset = true;
2533 break;
2534 case NL80211_REGDOM_SET_BY_DRIVER:
2535 r = reg_set_rd_driver(rd, lr);
2536 break;
2537 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2538 r = reg_set_rd_country_ie(rd, lr);
2539 break;
2540 default:
2541 WARN(1, "invalid initiator %d\n", lr->initiator);
2542 return -EINVAL;
2545 if (r) {
2546 switch (r) {
2547 case -EALREADY:
2548 reg_set_request_processed();
2549 break;
2550 default:
2551 /* Back to world regulatory in case of errors */
2552 restore_regulatory_settings(user_reset);
2555 kfree(rd);
2556 return r;
2559 /* This would make this whole thing pointless */
2560 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2561 return -EINVAL;
2563 /* update all wiphys now with the new established regulatory domain */
2564 update_all_wiphy_regulatory(lr->initiator);
2566 print_regdomain(get_cfg80211_regdom());
2568 nl80211_send_reg_change_event(lr);
2570 reg_set_request_processed();
2572 return 0;
2575 void wiphy_regulatory_register(struct wiphy *wiphy)
2577 struct regulatory_request *lr;
2579 if (!reg_dev_ignore_cell_hint(wiphy))
2580 reg_num_devs_support_basehint++;
2582 lr = get_last_request();
2583 wiphy_update_regulatory(wiphy, lr->initiator);
2586 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2588 struct wiphy *request_wiphy = NULL;
2589 struct regulatory_request *lr;
2591 lr = get_last_request();
2593 if (!reg_dev_ignore_cell_hint(wiphy))
2594 reg_num_devs_support_basehint--;
2596 rcu_free_regdom(get_wiphy_regdom(wiphy));
2597 rcu_assign_pointer(wiphy->regd, NULL);
2599 if (lr)
2600 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2602 if (!request_wiphy || request_wiphy != wiphy)
2603 return;
2605 lr->wiphy_idx = WIPHY_IDX_INVALID;
2606 lr->country_ie_env = ENVIRON_ANY;
2609 static void reg_timeout_work(struct work_struct *work)
2611 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2612 rtnl_lock();
2613 restore_regulatory_settings(true);
2614 rtnl_unlock();
2617 int __init regulatory_init(void)
2619 int err = 0;
2621 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2622 if (IS_ERR(reg_pdev))
2623 return PTR_ERR(reg_pdev);
2625 spin_lock_init(&reg_requests_lock);
2626 spin_lock_init(&reg_pending_beacons_lock);
2628 reg_regdb_size_check();
2630 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2632 user_alpha2[0] = '9';
2633 user_alpha2[1] = '7';
2635 /* We always try to get an update for the static regdomain */
2636 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2637 if (err) {
2638 if (err == -ENOMEM)
2639 return err;
2641 * N.B. kobject_uevent_env() can fail mainly for when we're out
2642 * memory which is handled and propagated appropriately above
2643 * but it can also fail during a netlink_broadcast() or during
2644 * early boot for call_usermodehelper(). For now treat these
2645 * errors as non-fatal.
2647 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2651 * Finally, if the user set the module parameter treat it
2652 * as a user hint.
2654 if (!is_world_regdom(ieee80211_regdom))
2655 regulatory_hint_user(ieee80211_regdom,
2656 NL80211_USER_REG_HINT_USER);
2658 return 0;
2661 void regulatory_exit(void)
2663 struct regulatory_request *reg_request, *tmp;
2664 struct reg_beacon *reg_beacon, *btmp;
2666 cancel_work_sync(&reg_work);
2667 cancel_delayed_work_sync(&reg_timeout);
2669 /* Lock to suppress warnings */
2670 rtnl_lock();
2671 reset_regdomains(true, NULL);
2672 rtnl_unlock();
2674 dev_set_uevent_suppress(&reg_pdev->dev, true);
2676 platform_device_unregister(reg_pdev);
2678 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2679 list_del(&reg_beacon->list);
2680 kfree(reg_beacon);
2683 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2684 list_del(&reg_beacon->list);
2685 kfree(reg_beacon);
2688 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2689 list_del(&reg_request->list);
2690 kfree(reg_request);