4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95,
7 * Asynchronous swapping added 30.12.95. Stephen Tweedie
8 * Removed race in async swapping. 14.4.1996. Bruno Haible
9 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <linux/sched/task.h>
26 #include <asm/pgtable.h>
28 static struct bio
*get_swap_bio(gfp_t gfp_flags
,
29 struct page
*page
, bio_end_io_t end_io
)
31 int i
, nr
= hpage_nr_pages(page
);
34 bio
= bio_alloc(gfp_flags
, nr
);
36 struct block_device
*bdev
;
38 bio
->bi_iter
.bi_sector
= map_swap_page(page
, &bdev
);
39 bio_set_dev(bio
, bdev
);
40 bio
->bi_iter
.bi_sector
<<= PAGE_SHIFT
- 9;
41 bio
->bi_end_io
= end_io
;
43 for (i
= 0; i
< nr
; i
++)
44 bio_add_page(bio
, page
+ i
, PAGE_SIZE
, 0);
45 VM_BUG_ON(bio
->bi_iter
.bi_size
!= PAGE_SIZE
* nr
);
50 void end_swap_bio_write(struct bio
*bio
)
52 struct page
*page
= bio
->bi_io_vec
[0].bv_page
;
57 * We failed to write the page out to swap-space.
58 * Re-dirty the page in order to avoid it being reclaimed.
59 * Also print a dire warning that things will go BAD (tm)
62 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
65 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
66 MAJOR(bio_dev(bio
)), MINOR(bio_dev(bio
)),
67 (unsigned long long)bio
->bi_iter
.bi_sector
);
68 ClearPageReclaim(page
);
70 end_page_writeback(page
);
74 static void swap_slot_free_notify(struct page
*page
)
76 struct swap_info_struct
*sis
;
80 * There is no guarantee that the page is in swap cache - the software
81 * suspend code (at least) uses end_swap_bio_read() against a non-
82 * swapcache page. So we must check PG_swapcache before proceeding with
85 if (unlikely(!PageSwapCache(page
)))
88 sis
= page_swap_info(page
);
89 if (!(sis
->flags
& SWP_BLKDEV
))
93 * The swap subsystem performs lazy swap slot freeing,
94 * expecting that the page will be swapped out again.
95 * So we can avoid an unnecessary write if the page
97 * This is good for real swap storage because we can
98 * reduce unnecessary I/O and enhance wear-leveling
99 * if an SSD is used as the as swap device.
100 * But if in-memory swap device (eg zram) is used,
101 * this causes a duplicated copy between uncompressed
102 * data in VM-owned memory and compressed data in
103 * zram-owned memory. So let's free zram-owned memory
104 * and make the VM-owned decompressed page *dirty*,
105 * so the page should be swapped out somewhere again if
106 * we again wish to reclaim it.
108 disk
= sis
->bdev
->bd_disk
;
109 if (disk
->fops
->swap_slot_free_notify
) {
111 unsigned long offset
;
113 entry
.val
= page_private(page
);
114 offset
= swp_offset(entry
);
117 disk
->fops
->swap_slot_free_notify(sis
->bdev
,
122 static void end_swap_bio_read(struct bio
*bio
)
124 struct page
*page
= bio
->bi_io_vec
[0].bv_page
;
125 struct task_struct
*waiter
= bio
->bi_private
;
127 if (bio
->bi_status
) {
129 ClearPageUptodate(page
);
130 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
131 MAJOR(bio_dev(bio
)), MINOR(bio_dev(bio
)),
132 (unsigned long long)bio
->bi_iter
.bi_sector
);
136 SetPageUptodate(page
);
137 swap_slot_free_notify(page
);
140 WRITE_ONCE(bio
->bi_private
, NULL
);
142 wake_up_process(waiter
);
143 put_task_struct(waiter
);
146 int generic_swapfile_activate(struct swap_info_struct
*sis
,
147 struct file
*swap_file
,
150 struct address_space
*mapping
= swap_file
->f_mapping
;
151 struct inode
*inode
= mapping
->host
;
152 unsigned blocks_per_page
;
153 unsigned long page_no
;
155 sector_t probe_block
;
157 sector_t lowest_block
= -1;
158 sector_t highest_block
= 0;
162 blkbits
= inode
->i_blkbits
;
163 blocks_per_page
= PAGE_SIZE
>> blkbits
;
166 * Map all the blocks into the extent list. This code doesn't try
171 last_block
= i_size_read(inode
) >> blkbits
;
172 while ((probe_block
+ blocks_per_page
) <= last_block
&&
173 page_no
< sis
->max
) {
174 unsigned block_in_page
;
175 sector_t first_block
;
179 first_block
= bmap(inode
, probe_block
);
180 if (first_block
== 0)
184 * It must be PAGE_SIZE aligned on-disk
186 if (first_block
& (blocks_per_page
- 1)) {
191 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
195 block
= bmap(inode
, probe_block
+ block_in_page
);
198 if (block
!= first_block
+ block_in_page
) {
205 first_block
>>= (PAGE_SHIFT
- blkbits
);
206 if (page_no
) { /* exclude the header page */
207 if (first_block
< lowest_block
)
208 lowest_block
= first_block
;
209 if (first_block
> highest_block
)
210 highest_block
= first_block
;
214 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
216 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
221 probe_block
+= blocks_per_page
;
226 *span
= 1 + highest_block
- lowest_block
;
228 page_no
= 1; /* force Empty message */
230 sis
->pages
= page_no
- 1;
231 sis
->highest_bit
= page_no
- 1;
235 pr_err("swapon: swapfile has holes\n");
241 * We may have stale swap cache pages in memory: notice
242 * them here and get rid of the unnecessary final write.
244 int swap_writepage(struct page
*page
, struct writeback_control
*wbc
)
248 if (try_to_free_swap(page
)) {
252 if (frontswap_store(page
) == 0) {
253 set_page_writeback(page
);
255 end_page_writeback(page
);
258 ret
= __swap_writepage(page
, wbc
, end_swap_bio_write
);
263 static sector_t
swap_page_sector(struct page
*page
)
265 return (sector_t
)__page_file_index(page
) << (PAGE_SHIFT
- 9);
268 static inline void count_swpout_vm_event(struct page
*page
)
270 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
271 if (unlikely(PageTransHuge(page
)))
272 count_vm_event(THP_SWPOUT
);
274 count_vm_events(PSWPOUT
, hpage_nr_pages(page
));
277 int __swap_writepage(struct page
*page
, struct writeback_control
*wbc
,
278 bio_end_io_t end_write_func
)
282 struct swap_info_struct
*sis
= page_swap_info(page
);
284 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
285 if (sis
->flags
& SWP_FILE
) {
287 struct file
*swap_file
= sis
->swap_file
;
288 struct address_space
*mapping
= swap_file
->f_mapping
;
289 struct bio_vec bv
= {
294 struct iov_iter from
;
296 iov_iter_bvec(&from
, ITER_BVEC
| WRITE
, &bv
, 1, PAGE_SIZE
);
297 init_sync_kiocb(&kiocb
, swap_file
);
298 kiocb
.ki_pos
= page_file_offset(page
);
300 set_page_writeback(page
);
302 ret
= mapping
->a_ops
->direct_IO(&kiocb
, &from
);
303 if (ret
== PAGE_SIZE
) {
304 count_vm_event(PSWPOUT
);
308 * In the case of swap-over-nfs, this can be a
309 * temporary failure if the system has limited
310 * memory for allocating transmit buffers.
311 * Mark the page dirty and avoid
312 * rotate_reclaimable_page but rate-limit the
313 * messages but do not flag PageError like
314 * the normal direct-to-bio case as it could
317 set_page_dirty(page
);
318 ClearPageReclaim(page
);
319 pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
320 page_file_offset(page
));
322 end_page_writeback(page
);
326 ret
= bdev_write_page(sis
->bdev
, swap_page_sector(page
), page
, wbc
);
328 count_swpout_vm_event(page
);
333 bio
= get_swap_bio(GFP_NOIO
, page
, end_write_func
);
335 set_page_dirty(page
);
340 bio
->bi_opf
= REQ_OP_WRITE
| wbc_to_write_flags(wbc
);
341 count_swpout_vm_event(page
);
342 set_page_writeback(page
);
349 int swap_readpage(struct page
*page
, bool do_poll
)
353 struct swap_info_struct
*sis
= page_swap_info(page
);
355 struct gendisk
*disk
;
357 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
358 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
359 VM_BUG_ON_PAGE(PageUptodate(page
), page
);
360 if (frontswap_load(page
) == 0) {
361 SetPageUptodate(page
);
366 if (sis
->flags
& SWP_FILE
) {
367 struct file
*swap_file
= sis
->swap_file
;
368 struct address_space
*mapping
= swap_file
->f_mapping
;
370 ret
= mapping
->a_ops
->readpage(swap_file
, page
);
372 count_vm_event(PSWPIN
);
376 ret
= bdev_read_page(sis
->bdev
, swap_page_sector(page
), page
);
378 if (trylock_page(page
)) {
379 swap_slot_free_notify(page
);
383 count_vm_event(PSWPIN
);
388 bio
= get_swap_bio(GFP_KERNEL
, page
, end_swap_bio_read
);
396 * Keep this task valid during swap readpage because the oom killer may
397 * attempt to access it in the page fault retry time check.
399 get_task_struct(current
);
400 bio
->bi_private
= current
;
401 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
402 count_vm_event(PSWPIN
);
404 qc
= submit_bio(bio
);
406 set_current_state(TASK_UNINTERRUPTIBLE
);
407 if (!READ_ONCE(bio
->bi_private
))
410 if (!blk_mq_poll(disk
->queue
, qc
))
413 __set_current_state(TASK_RUNNING
);
420 int swap_set_page_dirty(struct page
*page
)
422 struct swap_info_struct
*sis
= page_swap_info(page
);
424 if (sis
->flags
& SWP_FILE
) {
425 struct address_space
*mapping
= sis
->swap_file
->f_mapping
;
427 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
428 return mapping
->a_ops
->set_page_dirty(page
);
430 return __set_page_dirty_no_writeback(page
);