4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
62 static void exit_mm(struct task_struct
*tsk
);
64 static void __unhash_process(struct task_struct
*p
, bool group_dead
)
67 detach_pid(p
, PIDTYPE_PID
);
69 detach_pid(p
, PIDTYPE_PGID
);
70 detach_pid(p
, PIDTYPE_SID
);
72 list_del_rcu(&p
->tasks
);
73 list_del_init(&p
->sibling
);
74 __this_cpu_dec(process_counts
);
76 list_del_rcu(&p
->thread_group
);
77 list_del_rcu(&p
->thread_node
);
81 * This function expects the tasklist_lock write-locked.
83 static void __exit_signal(struct task_struct
*tsk
)
85 struct signal_struct
*sig
= tsk
->signal
;
86 bool group_dead
= thread_group_leader(tsk
);
87 struct sighand_struct
*sighand
;
88 struct tty_struct
*uninitialized_var(tty
);
89 cputime_t utime
, stime
;
91 sighand
= rcu_dereference_check(tsk
->sighand
,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand
->siglock
);
95 posix_cpu_timers_exit(tsk
);
97 posix_cpu_timers_exit_group(tsk
);
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
106 if (unlikely(has_group_leader_pid(tsk
)))
107 posix_cpu_timers_exit_group(tsk
);
110 * If there is any task waiting for the group exit
113 if (sig
->notify_count
> 0 && !--sig
->notify_count
)
114 wake_up_process(sig
->group_exit_task
);
116 if (tsk
== sig
->curr_target
)
117 sig
->curr_target
= next_thread(tsk
);
121 * Accumulate here the counters for all threads but the group leader
122 * as they die, so they can be added into the process-wide totals
123 * when those are taken. The group leader stays around as a zombie as
124 * long as there are other threads. When it gets reaped, the exit.c
125 * code will add its counts into these totals. We won't ever get here
126 * for the group leader, since it will have been the last reference on
129 task_cputime(tsk
, &utime
, &stime
);
130 write_seqlock(&sig
->stats_lock
);
133 sig
->gtime
+= task_gtime(tsk
);
134 sig
->min_flt
+= tsk
->min_flt
;
135 sig
->maj_flt
+= tsk
->maj_flt
;
136 sig
->nvcsw
+= tsk
->nvcsw
;
137 sig
->nivcsw
+= tsk
->nivcsw
;
138 sig
->inblock
+= task_io_get_inblock(tsk
);
139 sig
->oublock
+= task_io_get_oublock(tsk
);
140 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
141 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
143 __unhash_process(tsk
, group_dead
);
144 write_sequnlock(&sig
->stats_lock
);
147 * Do this under ->siglock, we can race with another thread
148 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
150 flush_sigqueue(&tsk
->pending
);
152 spin_unlock(&sighand
->siglock
);
154 __cleanup_sighand(sighand
);
155 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
157 flush_sigqueue(&sig
->shared_pending
);
162 static void delayed_put_task_struct(struct rcu_head
*rhp
)
164 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
166 perf_event_delayed_put(tsk
);
167 trace_sched_process_free(tsk
);
168 put_task_struct(tsk
);
172 void release_task(struct task_struct
*p
)
174 struct task_struct
*leader
;
177 /* don't need to get the RCU readlock here - the process is dead and
178 * can't be modifying its own credentials. But shut RCU-lockdep up */
180 atomic_dec(&__task_cred(p
)->user
->processes
);
185 write_lock_irq(&tasklist_lock
);
186 ptrace_release_task(p
);
190 * If we are the last non-leader member of the thread
191 * group, and the leader is zombie, then notify the
192 * group leader's parent process. (if it wants notification.)
195 leader
= p
->group_leader
;
196 if (leader
!= p
&& thread_group_empty(leader
)
197 && leader
->exit_state
== EXIT_ZOMBIE
) {
199 * If we were the last child thread and the leader has
200 * exited already, and the leader's parent ignores SIGCHLD,
201 * then we are the one who should release the leader.
203 zap_leader
= do_notify_parent(leader
, leader
->exit_signal
);
205 leader
->exit_state
= EXIT_DEAD
;
208 write_unlock_irq(&tasklist_lock
);
210 call_rcu(&p
->rcu
, delayed_put_task_struct
);
213 if (unlikely(zap_leader
))
218 * This checks not only the pgrp, but falls back on the pid if no
219 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222 * The caller must hold rcu lock or the tasklist lock.
224 struct pid
*session_of_pgrp(struct pid
*pgrp
)
226 struct task_struct
*p
;
227 struct pid
*sid
= NULL
;
229 p
= pid_task(pgrp
, PIDTYPE_PGID
);
231 p
= pid_task(pgrp
, PIDTYPE_PID
);
233 sid
= task_session(p
);
239 * Determine if a process group is "orphaned", according to the POSIX
240 * definition in 2.2.2.52. Orphaned process groups are not to be affected
241 * by terminal-generated stop signals. Newly orphaned process groups are
242 * to receive a SIGHUP and a SIGCONT.
244 * "I ask you, have you ever known what it is to be an orphan?"
246 static int will_become_orphaned_pgrp(struct pid
*pgrp
,
247 struct task_struct
*ignored_task
)
249 struct task_struct
*p
;
251 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
252 if ((p
== ignored_task
) ||
253 (p
->exit_state
&& thread_group_empty(p
)) ||
254 is_global_init(p
->real_parent
))
257 if (task_pgrp(p
->real_parent
) != pgrp
&&
258 task_session(p
->real_parent
) == task_session(p
))
260 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
265 int is_current_pgrp_orphaned(void)
269 read_lock(&tasklist_lock
);
270 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
271 read_unlock(&tasklist_lock
);
276 static bool has_stopped_jobs(struct pid
*pgrp
)
278 struct task_struct
*p
;
280 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
281 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
283 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
289 * Check to see if any process groups have become orphaned as
290 * a result of our exiting, and if they have any stopped jobs,
291 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
294 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
296 struct pid
*pgrp
= task_pgrp(tsk
);
297 struct task_struct
*ignored_task
= tsk
;
300 /* exit: our father is in a different pgrp than
301 * we are and we were the only connection outside.
303 parent
= tsk
->real_parent
;
305 /* reparent: our child is in a different pgrp than
306 * we are, and it was the only connection outside.
310 if (task_pgrp(parent
) != pgrp
&&
311 task_session(parent
) == task_session(tsk
) &&
312 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
313 has_stopped_jobs(pgrp
)) {
314 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
315 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
321 * A task is exiting. If it owned this mm, find a new owner for the mm.
323 void mm_update_next_owner(struct mm_struct
*mm
)
325 struct task_struct
*c
, *g
, *p
= current
;
329 * If the exiting or execing task is not the owner, it's
330 * someone else's problem.
335 * The current owner is exiting/execing and there are no other
336 * candidates. Do not leave the mm pointing to a possibly
337 * freed task structure.
339 if (atomic_read(&mm
->mm_users
) <= 1) {
344 read_lock(&tasklist_lock
);
346 * Search in the children
348 list_for_each_entry(c
, &p
->children
, sibling
) {
350 goto assign_new_owner
;
354 * Search in the siblings
356 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
358 goto assign_new_owner
;
362 * Search through everything else, we should not get here often.
364 for_each_process(g
) {
365 if (g
->flags
& PF_KTHREAD
)
367 for_each_thread(g
, c
) {
369 goto assign_new_owner
;
374 read_unlock(&tasklist_lock
);
376 * We found no owner yet mm_users > 1: this implies that we are
377 * most likely racing with swapoff (try_to_unuse()) or /proc or
378 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
387 * The task_lock protects c->mm from changing.
388 * We always want mm->owner->mm == mm
392 * Delay read_unlock() till we have the task_lock()
393 * to ensure that c does not slip away underneath us
395 read_unlock(&tasklist_lock
);
405 #endif /* CONFIG_MEMCG */
408 * Turn us into a lazy TLB process if we
411 static void exit_mm(struct task_struct
*tsk
)
413 struct mm_struct
*mm
= tsk
->mm
;
414 struct core_state
*core_state
;
421 * Serialize with any possible pending coredump.
422 * We must hold mmap_sem around checking core_state
423 * and clearing tsk->mm. The core-inducing thread
424 * will increment ->nr_threads for each thread in the
425 * group with ->mm != NULL.
427 down_read(&mm
->mmap_sem
);
428 core_state
= mm
->core_state
;
430 struct core_thread self
;
432 up_read(&mm
->mmap_sem
);
435 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
437 * Implies mb(), the result of xchg() must be visible
438 * to core_state->dumper.
440 if (atomic_dec_and_test(&core_state
->nr_threads
))
441 complete(&core_state
->startup
);
444 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
445 if (!self
.task
) /* see coredump_finish() */
447 freezable_schedule();
449 __set_task_state(tsk
, TASK_RUNNING
);
450 down_read(&mm
->mmap_sem
);
452 atomic_inc(&mm
->mm_count
);
453 BUG_ON(mm
!= tsk
->active_mm
);
454 /* more a memory barrier than a real lock */
457 up_read(&mm
->mmap_sem
);
458 enter_lazy_tlb(mm
, current
);
460 mm_update_next_owner(mm
);
462 clear_thread_flag(TIF_MEMDIE
);
466 * When we die, we re-parent all our children, and try to:
467 * 1. give them to another thread in our thread group, if such a member exists
468 * 2. give it to the first ancestor process which prctl'd itself as a
469 * child_subreaper for its children (like a service manager)
470 * 3. give it to the init process (PID 1) in our pid namespace
472 static struct task_struct
*find_new_reaper(struct task_struct
*father
)
473 __releases(&tasklist_lock
)
474 __acquires(&tasklist_lock
)
476 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
477 struct task_struct
*thread
;
480 while_each_thread(father
, thread
) {
481 if (thread
->flags
& PF_EXITING
)
483 if (unlikely(pid_ns
->child_reaper
== father
))
484 pid_ns
->child_reaper
= thread
;
488 if (unlikely(pid_ns
->child_reaper
== father
)) {
489 write_unlock_irq(&tasklist_lock
);
490 if (unlikely(pid_ns
== &init_pid_ns
)) {
491 panic("Attempted to kill init! exitcode=0x%08x\n",
492 father
->signal
->group_exit_code
?:
496 zap_pid_ns_processes(pid_ns
);
497 write_lock_irq(&tasklist_lock
);
498 } else if (father
->signal
->has_child_subreaper
) {
499 struct task_struct
*reaper
;
502 * Find the first ancestor marked as child_subreaper.
503 * Note that the code below checks same_thread_group(reaper,
504 * pid_ns->child_reaper). This is what we need to DTRT in a
505 * PID namespace. However we still need the check above, see
506 * http://marc.info/?l=linux-kernel&m=131385460420380
508 for (reaper
= father
->real_parent
;
509 reaper
!= &init_task
;
510 reaper
= reaper
->real_parent
) {
511 if (same_thread_group(reaper
, pid_ns
->child_reaper
))
513 if (!reaper
->signal
->is_child_subreaper
)
517 if (!(thread
->flags
& PF_EXITING
))
519 } while_each_thread(reaper
, thread
);
523 return pid_ns
->child_reaper
;
527 * Any that need to be release_task'd are put on the @dead list.
529 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
530 struct list_head
*dead
)
532 list_move_tail(&p
->sibling
, &p
->real_parent
->children
);
534 if (p
->exit_state
== EXIT_DEAD
)
537 * If this is a threaded reparent there is no need to
538 * notify anyone anything has happened.
540 if (same_thread_group(p
->real_parent
, father
))
543 /* We don't want people slaying init. */
544 p
->exit_signal
= SIGCHLD
;
546 /* If it has exited notify the new parent about this child's death. */
548 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
549 if (do_notify_parent(p
, p
->exit_signal
)) {
550 p
->exit_state
= EXIT_DEAD
;
551 list_move_tail(&p
->sibling
, dead
);
555 kill_orphaned_pgrp(p
, father
);
558 static void forget_original_parent(struct task_struct
*father
)
560 struct task_struct
*p
, *n
, *reaper
;
561 LIST_HEAD(dead_children
);
563 write_lock_irq(&tasklist_lock
);
565 * Note that exit_ptrace() and find_new_reaper() might
566 * drop tasklist_lock and reacquire it.
569 reaper
= find_new_reaper(father
);
571 list_for_each_entry_safe(p
, n
, &father
->children
, sibling
) {
572 struct task_struct
*t
= p
;
575 t
->real_parent
= reaper
;
576 if (t
->parent
== father
) {
578 t
->parent
= t
->real_parent
;
580 if (t
->pdeath_signal
)
581 group_send_sig_info(t
->pdeath_signal
,
583 } while_each_thread(p
, t
);
584 reparent_leader(father
, p
, &dead_children
);
586 write_unlock_irq(&tasklist_lock
);
588 BUG_ON(!list_empty(&father
->children
));
590 list_for_each_entry_safe(p
, n
, &dead_children
, sibling
) {
591 list_del_init(&p
->sibling
);
597 * Send signals to all our closest relatives so that they know
598 * to properly mourn us..
600 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
605 * This does two things:
607 * A. Make init inherit all the child processes
608 * B. Check to see if any process groups have become orphaned
609 * as a result of our exiting, and if they have any stopped
610 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
612 forget_original_parent(tsk
);
614 write_lock_irq(&tasklist_lock
);
616 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
618 if (unlikely(tsk
->ptrace
)) {
619 int sig
= thread_group_leader(tsk
) &&
620 thread_group_empty(tsk
) &&
621 !ptrace_reparented(tsk
) ?
622 tsk
->exit_signal
: SIGCHLD
;
623 autoreap
= do_notify_parent(tsk
, sig
);
624 } else if (thread_group_leader(tsk
)) {
625 autoreap
= thread_group_empty(tsk
) &&
626 do_notify_parent(tsk
, tsk
->exit_signal
);
631 tsk
->exit_state
= autoreap
? EXIT_DEAD
: EXIT_ZOMBIE
;
633 /* mt-exec, de_thread() is waiting for group leader */
634 if (unlikely(tsk
->signal
->notify_count
< 0))
635 wake_up_process(tsk
->signal
->group_exit_task
);
636 write_unlock_irq(&tasklist_lock
);
638 /* If the process is dead, release it - nobody will wait for it */
643 #ifdef CONFIG_DEBUG_STACK_USAGE
644 static void check_stack_usage(void)
646 static DEFINE_SPINLOCK(low_water_lock
);
647 static int lowest_to_date
= THREAD_SIZE
;
650 free
= stack_not_used(current
);
652 if (free
>= lowest_to_date
)
655 spin_lock(&low_water_lock
);
656 if (free
< lowest_to_date
) {
657 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
658 current
->comm
, task_pid_nr(current
), free
);
659 lowest_to_date
= free
;
661 spin_unlock(&low_water_lock
);
664 static inline void check_stack_usage(void) {}
667 void do_exit(long code
)
669 struct task_struct
*tsk
= current
;
671 TASKS_RCU(int tasks_rcu_i
);
673 profile_task_exit(tsk
);
675 WARN_ON(blk_needs_flush_plug(tsk
));
677 if (unlikely(in_interrupt()))
678 panic("Aiee, killing interrupt handler!");
679 if (unlikely(!tsk
->pid
))
680 panic("Attempted to kill the idle task!");
683 * If do_exit is called because this processes oopsed, it's possible
684 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
685 * continuing. Amongst other possible reasons, this is to prevent
686 * mm_release()->clear_child_tid() from writing to a user-controlled
691 ptrace_event(PTRACE_EVENT_EXIT
, code
);
693 validate_creds_for_do_exit(tsk
);
696 * We're taking recursive faults here in do_exit. Safest is to just
697 * leave this task alone and wait for reboot.
699 if (unlikely(tsk
->flags
& PF_EXITING
)) {
700 pr_alert("Fixing recursive fault but reboot is needed!\n");
702 * We can do this unlocked here. The futex code uses
703 * this flag just to verify whether the pi state
704 * cleanup has been done or not. In the worst case it
705 * loops once more. We pretend that the cleanup was
706 * done as there is no way to return. Either the
707 * OWNER_DIED bit is set by now or we push the blocked
708 * task into the wait for ever nirwana as well.
710 tsk
->flags
|= PF_EXITPIDONE
;
711 set_current_state(TASK_UNINTERRUPTIBLE
);
715 exit_signals(tsk
); /* sets PF_EXITING */
717 * tsk->flags are checked in the futex code to protect against
718 * an exiting task cleaning up the robust pi futexes.
721 raw_spin_unlock_wait(&tsk
->pi_lock
);
723 if (unlikely(in_atomic()))
724 pr_info("note: %s[%d] exited with preempt_count %d\n",
725 current
->comm
, task_pid_nr(current
),
728 acct_update_integrals(tsk
);
729 /* sync mm's RSS info before statistics gathering */
731 sync_mm_rss(tsk
->mm
);
732 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
734 hrtimer_cancel(&tsk
->signal
->real_timer
);
735 exit_itimers(tsk
->signal
);
737 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
739 acct_collect(code
, group_dead
);
744 tsk
->exit_code
= code
;
745 taskstats_exit(tsk
, group_dead
);
751 trace_sched_process_exit(tsk
);
758 disassociate_ctty(1);
759 exit_task_namespaces(tsk
);
764 * Flush inherited counters to the parent - before the parent
765 * gets woken up by child-exit notifications.
767 * because of cgroup mode, must be called before cgroup_exit()
769 perf_event_exit_task(tsk
);
773 module_put(task_thread_info(tsk
)->exec_domain
->module
);
776 * FIXME: do that only when needed, using sched_exit tracepoint
778 flush_ptrace_hw_breakpoint(tsk
);
780 TASKS_RCU(tasks_rcu_i
= __srcu_read_lock(&tasks_rcu_exit_srcu
));
781 exit_notify(tsk
, group_dead
);
782 proc_exit_connector(tsk
);
785 mpol_put(tsk
->mempolicy
);
786 tsk
->mempolicy
= NULL
;
790 if (unlikely(current
->pi_state_cache
))
791 kfree(current
->pi_state_cache
);
794 * Make sure we are holding no locks:
796 debug_check_no_locks_held();
798 * We can do this unlocked here. The futex code uses this flag
799 * just to verify whether the pi state cleanup has been done
800 * or not. In the worst case it loops once more.
802 tsk
->flags
|= PF_EXITPIDONE
;
805 exit_io_context(tsk
);
807 if (tsk
->splice_pipe
)
808 free_pipe_info(tsk
->splice_pipe
);
810 if (tsk
->task_frag
.page
)
811 put_page(tsk
->task_frag
.page
);
813 validate_creds_for_do_exit(tsk
);
818 __this_cpu_add(dirty_throttle_leaks
, tsk
->nr_dirtied
);
820 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu
, tasks_rcu_i
));
823 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
824 * when the following two conditions become true.
825 * - There is race condition of mmap_sem (It is acquired by
827 * - SMI occurs before setting TASK_RUNINNG.
828 * (or hypervisor of virtual machine switches to other guest)
829 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
831 * To avoid it, we have to wait for releasing tsk->pi_lock which
832 * is held by try_to_wake_up()
835 raw_spin_unlock_wait(&tsk
->pi_lock
);
837 /* causes final put_task_struct in finish_task_switch(). */
838 tsk
->state
= TASK_DEAD
;
839 tsk
->flags
|= PF_NOFREEZE
; /* tell freezer to ignore us */
842 /* Avoid "noreturn function does return". */
844 cpu_relax(); /* For when BUG is null */
846 EXPORT_SYMBOL_GPL(do_exit
);
848 void complete_and_exit(struct completion
*comp
, long code
)
855 EXPORT_SYMBOL(complete_and_exit
);
857 SYSCALL_DEFINE1(exit
, int, error_code
)
859 do_exit((error_code
&0xff)<<8);
863 * Take down every thread in the group. This is called by fatal signals
864 * as well as by sys_exit_group (below).
867 do_group_exit(int exit_code
)
869 struct signal_struct
*sig
= current
->signal
;
871 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
873 if (signal_group_exit(sig
))
874 exit_code
= sig
->group_exit_code
;
875 else if (!thread_group_empty(current
)) {
876 struct sighand_struct
*const sighand
= current
->sighand
;
878 spin_lock_irq(&sighand
->siglock
);
879 if (signal_group_exit(sig
))
880 /* Another thread got here before we took the lock. */
881 exit_code
= sig
->group_exit_code
;
883 sig
->group_exit_code
= exit_code
;
884 sig
->flags
= SIGNAL_GROUP_EXIT
;
885 zap_other_threads(current
);
887 spin_unlock_irq(&sighand
->siglock
);
895 * this kills every thread in the thread group. Note that any externally
896 * wait4()-ing process will get the correct exit code - even if this
897 * thread is not the thread group leader.
899 SYSCALL_DEFINE1(exit_group
, int, error_code
)
901 do_group_exit((error_code
& 0xff) << 8);
907 enum pid_type wo_type
;
911 struct siginfo __user
*wo_info
;
913 struct rusage __user
*wo_rusage
;
915 wait_queue_t child_wait
;
920 struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
922 if (type
!= PIDTYPE_PID
)
923 task
= task
->group_leader
;
924 return task
->pids
[type
].pid
;
927 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
929 return wo
->wo_type
== PIDTYPE_MAX
||
930 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
933 static int eligible_child(struct wait_opts
*wo
, struct task_struct
*p
)
935 if (!eligible_pid(wo
, p
))
937 /* Wait for all children (clone and not) if __WALL is set;
938 * otherwise, wait for clone children *only* if __WCLONE is
939 * set; otherwise, wait for non-clone children *only*. (Note:
940 * A "clone" child here is one that reports to its parent
941 * using a signal other than SIGCHLD.) */
942 if (((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
943 && !(wo
->wo_flags
& __WALL
))
949 static int wait_noreap_copyout(struct wait_opts
*wo
, struct task_struct
*p
,
950 pid_t pid
, uid_t uid
, int why
, int status
)
952 struct siginfo __user
*infop
;
953 int retval
= wo
->wo_rusage
954 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
960 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
962 retval
= put_user(0, &infop
->si_errno
);
964 retval
= put_user((short)why
, &infop
->si_code
);
966 retval
= put_user(pid
, &infop
->si_pid
);
968 retval
= put_user(uid
, &infop
->si_uid
);
970 retval
= put_user(status
, &infop
->si_status
);
978 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
979 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
980 * the lock and this task is uninteresting. If we return nonzero, we have
981 * released the lock and the system call should return.
983 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
986 int retval
, status
, traced
;
987 pid_t pid
= task_pid_vnr(p
);
988 uid_t uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
989 struct siginfo __user
*infop
;
991 if (!likely(wo
->wo_flags
& WEXITED
))
994 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
995 int exit_code
= p
->exit_code
;
999 read_unlock(&tasklist_lock
);
1000 if ((exit_code
& 0x7f) == 0) {
1002 status
= exit_code
>> 8;
1004 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1005 status
= exit_code
& 0x7f;
1007 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, status
);
1010 traced
= ptrace_reparented(p
);
1012 * Move the task's state to DEAD/TRACE, only one thread can do this.
1014 state
= traced
&& thread_group_leader(p
) ? EXIT_TRACE
: EXIT_DEAD
;
1015 if (cmpxchg(&p
->exit_state
, EXIT_ZOMBIE
, state
) != EXIT_ZOMBIE
)
1018 * It can be ptraced but not reparented, check
1019 * thread_group_leader() to filter out sub-threads.
1021 if (likely(!traced
) && thread_group_leader(p
)) {
1022 struct signal_struct
*psig
;
1023 struct signal_struct
*sig
;
1024 unsigned long maxrss
;
1025 cputime_t tgutime
, tgstime
;
1028 * The resource counters for the group leader are in its
1029 * own task_struct. Those for dead threads in the group
1030 * are in its signal_struct, as are those for the child
1031 * processes it has previously reaped. All these
1032 * accumulate in the parent's signal_struct c* fields.
1034 * We don't bother to take a lock here to protect these
1035 * p->signal fields, because they are only touched by
1036 * __exit_signal, which runs with tasklist_lock
1037 * write-locked anyway, and so is excluded here. We do
1038 * need to protect the access to parent->signal fields,
1039 * as other threads in the parent group can be right
1040 * here reaping other children at the same time.
1042 * We use thread_group_cputime_adjusted() to get times for
1043 * the thread group, which consolidates times for all threads
1044 * in the group including the group leader.
1046 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1047 spin_lock_irq(&p
->real_parent
->sighand
->siglock
);
1048 psig
= p
->real_parent
->signal
;
1050 write_seqlock(&psig
->stats_lock
);
1051 psig
->cutime
+= tgutime
+ sig
->cutime
;
1052 psig
->cstime
+= tgstime
+ sig
->cstime
;
1053 psig
->cgtime
+= task_gtime(p
) + sig
->gtime
+ sig
->cgtime
;
1055 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1057 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1059 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1061 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1063 task_io_get_inblock(p
) +
1064 sig
->inblock
+ sig
->cinblock
;
1066 task_io_get_oublock(p
) +
1067 sig
->oublock
+ sig
->coublock
;
1068 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1069 if (psig
->cmaxrss
< maxrss
)
1070 psig
->cmaxrss
= maxrss
;
1071 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1072 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1073 write_sequnlock(&psig
->stats_lock
);
1074 spin_unlock_irq(&p
->real_parent
->sighand
->siglock
);
1078 * Now we are sure this task is interesting, and no other
1079 * thread can reap it because we its state == DEAD/TRACE.
1081 read_unlock(&tasklist_lock
);
1083 retval
= wo
->wo_rusage
1084 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1085 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1086 ? p
->signal
->group_exit_code
: p
->exit_code
;
1087 if (!retval
&& wo
->wo_stat
)
1088 retval
= put_user(status
, wo
->wo_stat
);
1090 infop
= wo
->wo_info
;
1091 if (!retval
&& infop
)
1092 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1093 if (!retval
&& infop
)
1094 retval
= put_user(0, &infop
->si_errno
);
1095 if (!retval
&& infop
) {
1098 if ((status
& 0x7f) == 0) {
1102 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1105 retval
= put_user((short)why
, &infop
->si_code
);
1107 retval
= put_user(status
, &infop
->si_status
);
1109 if (!retval
&& infop
)
1110 retval
= put_user(pid
, &infop
->si_pid
);
1111 if (!retval
&& infop
)
1112 retval
= put_user(uid
, &infop
->si_uid
);
1116 if (state
== EXIT_TRACE
) {
1117 write_lock_irq(&tasklist_lock
);
1118 /* We dropped tasklist, ptracer could die and untrace */
1121 /* If parent wants a zombie, don't release it now */
1122 state
= EXIT_ZOMBIE
;
1123 if (do_notify_parent(p
, p
->exit_signal
))
1125 p
->exit_state
= state
;
1126 write_unlock_irq(&tasklist_lock
);
1128 if (state
== EXIT_DEAD
)
1134 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1137 if (task_is_stopped_or_traced(p
) &&
1138 !(p
->jobctl
& JOBCTL_LISTENING
))
1139 return &p
->exit_code
;
1141 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1142 return &p
->signal
->group_exit_code
;
1148 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1150 * @ptrace: is the wait for ptrace
1151 * @p: task to wait for
1153 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1156 * read_lock(&tasklist_lock), which is released if return value is
1157 * non-zero. Also, grabs and releases @p->sighand->siglock.
1160 * 0 if wait condition didn't exist and search for other wait conditions
1161 * should continue. Non-zero return, -errno on failure and @p's pid on
1162 * success, implies that tasklist_lock is released and wait condition
1163 * search should terminate.
1165 static int wait_task_stopped(struct wait_opts
*wo
,
1166 int ptrace
, struct task_struct
*p
)
1168 struct siginfo __user
*infop
;
1169 int retval
, exit_code
, *p_code
, why
;
1170 uid_t uid
= 0; /* unneeded, required by compiler */
1174 * Traditionally we see ptrace'd stopped tasks regardless of options.
1176 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1179 if (!task_stopped_code(p
, ptrace
))
1183 spin_lock_irq(&p
->sighand
->siglock
);
1185 p_code
= task_stopped_code(p
, ptrace
);
1186 if (unlikely(!p_code
))
1189 exit_code
= *p_code
;
1193 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1196 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1198 spin_unlock_irq(&p
->sighand
->siglock
);
1203 * Now we are pretty sure this task is interesting.
1204 * Make sure it doesn't get reaped out from under us while we
1205 * give up the lock and then examine it below. We don't want to
1206 * keep holding onto the tasklist_lock while we call getrusage and
1207 * possibly take page faults for user memory.
1210 pid
= task_pid_vnr(p
);
1211 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1212 read_unlock(&tasklist_lock
);
1214 if (unlikely(wo
->wo_flags
& WNOWAIT
))
1215 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, exit_code
);
1217 retval
= wo
->wo_rusage
1218 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1219 if (!retval
&& wo
->wo_stat
)
1220 retval
= put_user((exit_code
<< 8) | 0x7f, wo
->wo_stat
);
1222 infop
= wo
->wo_info
;
1223 if (!retval
&& infop
)
1224 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1225 if (!retval
&& infop
)
1226 retval
= put_user(0, &infop
->si_errno
);
1227 if (!retval
&& infop
)
1228 retval
= put_user((short)why
, &infop
->si_code
);
1229 if (!retval
&& infop
)
1230 retval
= put_user(exit_code
, &infop
->si_status
);
1231 if (!retval
&& infop
)
1232 retval
= put_user(pid
, &infop
->si_pid
);
1233 if (!retval
&& infop
)
1234 retval
= put_user(uid
, &infop
->si_uid
);
1244 * Handle do_wait work for one task in a live, non-stopped state.
1245 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1246 * the lock and this task is uninteresting. If we return nonzero, we have
1247 * released the lock and the system call should return.
1249 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1255 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1258 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1261 spin_lock_irq(&p
->sighand
->siglock
);
1262 /* Re-check with the lock held. */
1263 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1264 spin_unlock_irq(&p
->sighand
->siglock
);
1267 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1268 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1269 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1270 spin_unlock_irq(&p
->sighand
->siglock
);
1272 pid
= task_pid_vnr(p
);
1274 read_unlock(&tasklist_lock
);
1277 retval
= wo
->wo_rusage
1278 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1280 if (!retval
&& wo
->wo_stat
)
1281 retval
= put_user(0xffff, wo
->wo_stat
);
1285 retval
= wait_noreap_copyout(wo
, p
, pid
, uid
,
1286 CLD_CONTINUED
, SIGCONT
);
1287 BUG_ON(retval
== 0);
1294 * Consider @p for a wait by @parent.
1296 * -ECHILD should be in ->notask_error before the first call.
1297 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1298 * Returns zero if the search for a child should continue;
1299 * then ->notask_error is 0 if @p is an eligible child,
1300 * or another error from security_task_wait(), or still -ECHILD.
1302 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1303 struct task_struct
*p
)
1306 * We can race with wait_task_zombie() from another thread.
1307 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1308 * can't confuse the checks below.
1310 int exit_state
= ACCESS_ONCE(p
->exit_state
);
1313 if (unlikely(exit_state
== EXIT_DEAD
))
1316 ret
= eligible_child(wo
, p
);
1320 ret
= security_task_wait(p
);
1321 if (unlikely(ret
< 0)) {
1323 * If we have not yet seen any eligible child,
1324 * then let this error code replace -ECHILD.
1325 * A permission error will give the user a clue
1326 * to look for security policy problems, rather
1327 * than for mysterious wait bugs.
1329 if (wo
->notask_error
)
1330 wo
->notask_error
= ret
;
1334 if (unlikely(exit_state
== EXIT_TRACE
)) {
1336 * ptrace == 0 means we are the natural parent. In this case
1337 * we should clear notask_error, debugger will notify us.
1339 if (likely(!ptrace
))
1340 wo
->notask_error
= 0;
1344 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1346 * If it is traced by its real parent's group, just pretend
1347 * the caller is ptrace_do_wait() and reap this child if it
1350 * This also hides group stop state from real parent; otherwise
1351 * a single stop can be reported twice as group and ptrace stop.
1352 * If a ptracer wants to distinguish these two events for its
1353 * own children it should create a separate process which takes
1354 * the role of real parent.
1356 if (!ptrace_reparented(p
))
1361 if (exit_state
== EXIT_ZOMBIE
) {
1362 /* we don't reap group leaders with subthreads */
1363 if (!delay_group_leader(p
)) {
1365 * A zombie ptracee is only visible to its ptracer.
1366 * Notification and reaping will be cascaded to the
1367 * real parent when the ptracer detaches.
1369 if (unlikely(ptrace
) || likely(!p
->ptrace
))
1370 return wait_task_zombie(wo
, p
);
1374 * Allow access to stopped/continued state via zombie by
1375 * falling through. Clearing of notask_error is complex.
1379 * If WEXITED is set, notask_error should naturally be
1380 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1381 * so, if there are live subthreads, there are events to
1382 * wait for. If all subthreads are dead, it's still safe
1383 * to clear - this function will be called again in finite
1384 * amount time once all the subthreads are released and
1385 * will then return without clearing.
1389 * Stopped state is per-task and thus can't change once the
1390 * target task dies. Only continued and exited can happen.
1391 * Clear notask_error if WCONTINUED | WEXITED.
1393 if (likely(!ptrace
) || (wo
->wo_flags
& (WCONTINUED
| WEXITED
)))
1394 wo
->notask_error
= 0;
1397 * @p is alive and it's gonna stop, continue or exit, so
1398 * there always is something to wait for.
1400 wo
->notask_error
= 0;
1404 * Wait for stopped. Depending on @ptrace, different stopped state
1405 * is used and the two don't interact with each other.
1407 ret
= wait_task_stopped(wo
, ptrace
, p
);
1412 * Wait for continued. There's only one continued state and the
1413 * ptracer can consume it which can confuse the real parent. Don't
1414 * use WCONTINUED from ptracer. You don't need or want it.
1416 return wait_task_continued(wo
, p
);
1420 * Do the work of do_wait() for one thread in the group, @tsk.
1422 * -ECHILD should be in ->notask_error before the first call.
1423 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1424 * Returns zero if the search for a child should continue; then
1425 * ->notask_error is 0 if there were any eligible children,
1426 * or another error from security_task_wait(), or still -ECHILD.
1428 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1430 struct task_struct
*p
;
1432 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1433 int ret
= wait_consider_task(wo
, 0, p
);
1442 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1444 struct task_struct
*p
;
1446 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1447 int ret
= wait_consider_task(wo
, 1, p
);
1456 static int child_wait_callback(wait_queue_t
*wait
, unsigned mode
,
1457 int sync
, void *key
)
1459 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1461 struct task_struct
*p
= key
;
1463 if (!eligible_pid(wo
, p
))
1466 if ((wo
->wo_flags
& __WNOTHREAD
) && wait
->private != p
->parent
)
1469 return default_wake_function(wait
, mode
, sync
, key
);
1472 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1474 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1475 TASK_INTERRUPTIBLE
, 1, p
);
1478 static long do_wait(struct wait_opts
*wo
)
1480 struct task_struct
*tsk
;
1483 trace_sched_process_wait(wo
->wo_pid
);
1485 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1486 wo
->child_wait
.private = current
;
1487 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1490 * If there is nothing that can match our critiera just get out.
1491 * We will clear ->notask_error to zero if we see any child that
1492 * might later match our criteria, even if we are not able to reap
1495 wo
->notask_error
= -ECHILD
;
1496 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1497 (!wo
->wo_pid
|| hlist_empty(&wo
->wo_pid
->tasks
[wo
->wo_type
])))
1500 set_current_state(TASK_INTERRUPTIBLE
);
1501 read_lock(&tasklist_lock
);
1504 retval
= do_wait_thread(wo
, tsk
);
1508 retval
= ptrace_do_wait(wo
, tsk
);
1512 if (wo
->wo_flags
& __WNOTHREAD
)
1514 } while_each_thread(current
, tsk
);
1515 read_unlock(&tasklist_lock
);
1518 retval
= wo
->notask_error
;
1519 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1520 retval
= -ERESTARTSYS
;
1521 if (!signal_pending(current
)) {
1527 __set_current_state(TASK_RUNNING
);
1528 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1532 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1533 infop
, int, options
, struct rusage __user
*, ru
)
1535 struct wait_opts wo
;
1536 struct pid
*pid
= NULL
;
1540 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1542 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1555 type
= PIDTYPE_PGID
;
1563 if (type
< PIDTYPE_MAX
)
1564 pid
= find_get_pid(upid
);
1568 wo
.wo_flags
= options
;
1578 * For a WNOHANG return, clear out all the fields
1579 * we would set so the user can easily tell the
1583 ret
= put_user(0, &infop
->si_signo
);
1585 ret
= put_user(0, &infop
->si_errno
);
1587 ret
= put_user(0, &infop
->si_code
);
1589 ret
= put_user(0, &infop
->si_pid
);
1591 ret
= put_user(0, &infop
->si_uid
);
1593 ret
= put_user(0, &infop
->si_status
);
1600 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1601 int, options
, struct rusage __user
*, ru
)
1603 struct wait_opts wo
;
1604 struct pid
*pid
= NULL
;
1608 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1609 __WNOTHREAD
|__WCLONE
|__WALL
))
1614 else if (upid
< 0) {
1615 type
= PIDTYPE_PGID
;
1616 pid
= find_get_pid(-upid
);
1617 } else if (upid
== 0) {
1618 type
= PIDTYPE_PGID
;
1619 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1620 } else /* upid > 0 */ {
1622 pid
= find_get_pid(upid
);
1627 wo
.wo_flags
= options
| WEXITED
;
1629 wo
.wo_stat
= stat_addr
;
1637 #ifdef __ARCH_WANT_SYS_WAITPID
1640 * sys_waitpid() remains for compatibility. waitpid() should be
1641 * implemented by calling sys_wait4() from libc.a.
1643 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1645 return sys_wait4(pid
, stat_addr
, options
, NULL
);