2 * MTD map driver for BIOS Flash on Intel SCB2 boards
3 * Copyright (C) 2002 Sun Microsystems, Inc.
4 * Tim Hockin <thockin@sun.com>
6 * A few notes on this MTD map:
8 * This was developed with a small number of SCB2 boards to test on.
9 * Hopefully, Intel has not introducted too many unaccounted variables in the
10 * making of this board.
12 * The BIOS marks its own memory region as 'reserved' in the e820 map. We
13 * try to request it here, but if it fails, we carry on anyway.
15 * This is how the chip is attached, so said the schematic:
16 * * a 4 MiB (32 Mib) 16 bit chip
17 * * a 1 MiB memory region
18 * * A20 and A21 pulled up
20 * What this means is that, while we are addressing bytes linearly, we are
21 * really addressing words, and discarding the other byte. This means that
22 * the chip MUST BE at least 2 MiB. This also means that every block is
23 * actually half as big as the chip reports. It also means that accesses of
24 * logical address 0 hit higher-address sections of the chip, not physical 0.
25 * One can only hope that these 4MiB x16 chips were a lot cheaper than 1MiB x8
28 * This driver assumes the chip is not write-protected by an external signal.
29 * As of the this writing, that is true, but may change, just to spite me.
31 * The actual BIOS layout has been mostly reverse engineered. Intel BIOS
32 * updates for this board include 10 related (*.bio - &.bi9) binary files and
33 * another separate (*.bbo) binary file. The 10 files are 64k of data + a
34 * small header. If the headers are stripped off, the 10 64k files can be
35 * concatenated into a 640k image. This is your BIOS image, proper. The
36 * separate .bbo file also has a small header. It is the 'Boot Block'
37 * recovery BIOS. Once the header is stripped, no further prep is needed.
38 * As best I can tell, the BIOS is arranged as such:
39 * offset 0x00000 to 0x4ffff (320k): unknown - SCSI BIOS, etc?
40 * offset 0x50000 to 0xeffff (640k): BIOS proper
41 * offset 0xf0000 ty 0xfffff (64k): Boot Block region
43 * Intel's BIOS update program flashes the BIOS and Boot Block in separate
44 * steps. Probably a wise thing to do.
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/mtd/mtd.h>
52 #include <linux/mtd/map.h>
53 #include <linux/mtd/cfi.h>
54 #include <linux/pci.h>
55 #include <linux/pci_ids.h>
57 #define MODNAME "scb2_flash"
58 #define SCB2_ADDR 0xfff00000
59 #define SCB2_WINDOW 0x00100000
62 static void __iomem
*scb2_ioaddr
;
63 static struct mtd_info
*scb2_mtd
;
64 static struct map_info scb2_map
= {
65 .name
= "SCB2 BIOS Flash",
69 static int region_fail
;
71 static int scb2_fixup_mtd(struct mtd_info
*mtd
)
75 struct map_info
*map
= mtd
->priv
;
76 struct cfi_private
*cfi
= map
->fldrv_priv
;
78 /* barf if this doesn't look right */
79 if (cfi
->cfiq
->InterfaceDesc
!= CFI_INTERFACE_X16_ASYNC
) {
80 printk(KERN_ERR MODNAME
": unsupported InterfaceDesc: %#x\n",
81 cfi
->cfiq
->InterfaceDesc
);
85 /* I wasn't here. I didn't see. dwmw2. */
87 /* the chip is sometimes bigger than the map - what a waste */
88 mtd
->size
= map
->size
;
91 * We only REALLY get half the chip, due to the way it is
92 * wired up - D8-D15 are tossed away. We read linear bytes,
93 * but in reality we are getting 1/2 of each 16-bit read,
94 * which LOOKS linear to us. Because CFI code accounts for
95 * things like lock/unlock/erase by eraseregions, we need to
96 * fudge them to reflect this. Erases go like this:
97 * * send an erase to an address
98 * * the chip samples the address and erases the block
99 * * add the block erasesize to the address and repeat
100 * -- the problem is that addresses are 16-bit addressable
101 * -- we end up erasing every-other block
104 for (i
= 0; i
< mtd
->numeraseregions
; i
++) {
105 struct mtd_erase_region_info
*region
= &mtd
->eraseregions
[i
];
106 region
->erasesize
/= 2;
110 * If the chip is bigger than the map, it is wired with the high
111 * address lines pulled up. This makes us access the top portion of
112 * the chip, so all our erase-region info is wrong. Start cutting from
115 for (i
= 0; !done
&& i
< mtd
->numeraseregions
; i
++) {
116 struct mtd_erase_region_info
*region
= &mtd
->eraseregions
[i
];
118 if (region
->numblocks
* region
->erasesize
> mtd
->size
) {
119 region
->numblocks
= ((unsigned long)mtd
->size
/
123 region
->numblocks
= 0;
131 /* CSB5's 'Function Control Register' has bits for decoding @ >= 0xffc00000 */
132 #define CSB5_FCR 0x41
133 #define CSB5_FCR_DECODE_ALL 0x0e
134 static int scb2_flash_probe(struct pci_dev
*dev
,
135 const struct pci_device_id
*ent
)
139 /* enable decoding of the flash region in the south bridge */
140 pci_read_config_byte(dev
, CSB5_FCR
, ®
);
141 pci_write_config_byte(dev
, CSB5_FCR
, reg
| CSB5_FCR_DECODE_ALL
);
143 if (!request_mem_region(SCB2_ADDR
, SCB2_WINDOW
, scb2_map
.name
)) {
145 * The BIOS seems to mark the flash region as 'reserved'
146 * in the e820 map. Warn and go about our business.
148 printk(KERN_WARNING MODNAME
149 ": warning - can't reserve rom window, continuing\n");
153 /* remap the IO window (w/o caching) */
154 scb2_ioaddr
= ioremap_nocache(SCB2_ADDR
, SCB2_WINDOW
);
156 printk(KERN_ERR MODNAME
": Failed to ioremap window!\n");
158 release_mem_region(SCB2_ADDR
, SCB2_WINDOW
);
162 scb2_map
.phys
= SCB2_ADDR
;
163 scb2_map
.virt
= scb2_ioaddr
;
164 scb2_map
.size
= SCB2_WINDOW
;
166 simple_map_init(&scb2_map
);
168 /* try to find a chip */
169 scb2_mtd
= do_map_probe("cfi_probe", &scb2_map
);
172 printk(KERN_ERR MODNAME
": flash probe failed!\n");
173 iounmap(scb2_ioaddr
);
175 release_mem_region(SCB2_ADDR
, SCB2_WINDOW
);
179 scb2_mtd
->owner
= THIS_MODULE
;
180 if (scb2_fixup_mtd(scb2_mtd
) < 0) {
181 mtd_device_unregister(scb2_mtd
);
182 map_destroy(scb2_mtd
);
183 iounmap(scb2_ioaddr
);
185 release_mem_region(SCB2_ADDR
, SCB2_WINDOW
);
189 printk(KERN_NOTICE MODNAME
": chip size 0x%llx at offset 0x%llx\n",
190 (unsigned long long)scb2_mtd
->size
,
191 (unsigned long long)(SCB2_WINDOW
- scb2_mtd
->size
));
193 mtd_device_register(scb2_mtd
, NULL
, 0);
198 static void scb2_flash_remove(struct pci_dev
*dev
)
203 /* disable flash writes */
204 mtd_lock(scb2_mtd
, 0, scb2_mtd
->size
);
206 mtd_device_unregister(scb2_mtd
);
207 map_destroy(scb2_mtd
);
209 iounmap(scb2_ioaddr
);
213 release_mem_region(SCB2_ADDR
, SCB2_WINDOW
);
216 static struct pci_device_id scb2_flash_pci_ids
[] = {
218 .vendor
= PCI_VENDOR_ID_SERVERWORKS
,
219 .device
= PCI_DEVICE_ID_SERVERWORKS_CSB5
,
220 .subvendor
= PCI_ANY_ID
,
221 .subdevice
= PCI_ANY_ID
226 static struct pci_driver scb2_flash_driver
= {
227 .name
= "Intel SCB2 BIOS Flash",
228 .id_table
= scb2_flash_pci_ids
,
229 .probe
= scb2_flash_probe
,
230 .remove
= scb2_flash_remove
,
233 module_pci_driver(scb2_flash_driver
);
235 MODULE_LICENSE("GPL");
236 MODULE_AUTHOR("Tim Hockin <thockin@sun.com>");
237 MODULE_DESCRIPTION("MTD map driver for Intel SCB2 BIOS Flash");
238 MODULE_DEVICE_TABLE(pci
, scb2_flash_pci_ids
);