powerpc/mm/hash: Don't use machine_is() early during boot
[linux/fpc-iii.git] / arch / powerpc / mm / hash_utils_64.c
bloba9472ea269b84c318eaa62032707abf1899573d4
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
12 * Description:
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
21 #undef DEBUG
22 #undef DEBUG_LOW
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37 #include <linux/libfdt.h>
39 #include <asm/processor.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/mmu_context.h>
43 #include <asm/page.h>
44 #include <asm/types.h>
45 #include <asm/uaccess.h>
46 #include <asm/machdep.h>
47 #include <asm/prom.h>
48 #include <asm/tlbflush.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/copro.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
60 #include <asm/tm.h>
61 #include <asm/trace.h>
62 #include <asm/ps3.h>
64 #ifdef DEBUG
65 #define DBG(fmt...) udbg_printf(fmt)
66 #else
67 #define DBG(fmt...)
68 #endif
70 #ifdef DEBUG_LOW
71 #define DBG_LOW(fmt...) udbg_printf(fmt)
72 #else
73 #define DBG_LOW(fmt...)
74 #endif
76 #define KB (1024)
77 #define MB (1024*KB)
78 #define GB (1024L*MB)
81 * Note: pte --> Linux PTE
82 * HPTE --> PowerPC Hashed Page Table Entry
84 * Execution context:
85 * htab_initialize is called with the MMU off (of course), but
86 * the kernel has been copied down to zero so it can directly
87 * reference global data. At this point it is very difficult
88 * to print debug info.
92 static unsigned long _SDR1;
93 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
94 EXPORT_SYMBOL_GPL(mmu_psize_defs);
96 struct hash_pte *htab_address;
97 unsigned long htab_size_bytes;
98 unsigned long htab_hash_mask;
99 EXPORT_SYMBOL_GPL(htab_hash_mask);
100 int mmu_linear_psize = MMU_PAGE_4K;
101 EXPORT_SYMBOL_GPL(mmu_linear_psize);
102 int mmu_virtual_psize = MMU_PAGE_4K;
103 int mmu_vmalloc_psize = MMU_PAGE_4K;
104 #ifdef CONFIG_SPARSEMEM_VMEMMAP
105 int mmu_vmemmap_psize = MMU_PAGE_4K;
106 #endif
107 int mmu_io_psize = MMU_PAGE_4K;
108 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
109 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
110 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
111 u16 mmu_slb_size = 64;
112 EXPORT_SYMBOL_GPL(mmu_slb_size);
113 #ifdef CONFIG_PPC_64K_PAGES
114 int mmu_ci_restrictions;
115 #endif
116 #ifdef CONFIG_DEBUG_PAGEALLOC
117 static u8 *linear_map_hash_slots;
118 static unsigned long linear_map_hash_count;
119 static DEFINE_SPINLOCK(linear_map_hash_lock);
120 #endif /* CONFIG_DEBUG_PAGEALLOC */
122 /* There are definitions of page sizes arrays to be used when none
123 * is provided by the firmware.
126 /* Pre-POWER4 CPUs (4k pages only)
128 static struct mmu_psize_def mmu_psize_defaults_old[] = {
129 [MMU_PAGE_4K] = {
130 .shift = 12,
131 .sllp = 0,
132 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
133 .avpnm = 0,
134 .tlbiel = 0,
138 /* POWER4, GPUL, POWER5
140 * Support for 16Mb large pages
142 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
143 [MMU_PAGE_4K] = {
144 .shift = 12,
145 .sllp = 0,
146 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
147 .avpnm = 0,
148 .tlbiel = 1,
150 [MMU_PAGE_16M] = {
151 .shift = 24,
152 .sllp = SLB_VSID_L,
153 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
154 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
155 .avpnm = 0x1UL,
156 .tlbiel = 0,
161 * 'R' and 'C' update notes:
162 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
163 * create writeable HPTEs without C set, because the hcall H_PROTECT
164 * that we use in that case will not update C
165 * - The above is however not a problem, because we also don't do that
166 * fancy "no flush" variant of eviction and we use H_REMOVE which will
167 * do the right thing and thus we don't have the race I described earlier
169 * - Under bare metal, we do have the race, so we need R and C set
170 * - We make sure R is always set and never lost
171 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
173 unsigned long htab_convert_pte_flags(unsigned long pteflags)
175 unsigned long rflags = 0;
177 /* _PAGE_EXEC -> NOEXEC */
178 if ((pteflags & _PAGE_EXEC) == 0)
179 rflags |= HPTE_R_N;
181 * PPP bits:
182 * Linux uses slb key 0 for kernel and 1 for user.
183 * kernel RW areas are mapped with PPP=0b000
184 * User area is mapped with PPP=0b010 for read/write
185 * or PPP=0b011 for read-only (including writeable but clean pages).
187 if (pteflags & _PAGE_PRIVILEGED) {
189 * Kernel read only mapped with ppp bits 0b110
191 if (!(pteflags & _PAGE_WRITE))
192 rflags |= (HPTE_R_PP0 | 0x2);
193 } else {
194 if (pteflags & _PAGE_RWX)
195 rflags |= 0x2;
196 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
197 rflags |= 0x1;
200 * We can't allow hardware to update hpte bits. Hence always
201 * set 'R' bit and set 'C' if it is a write fault
203 rflags |= HPTE_R_R;
205 if (pteflags & _PAGE_DIRTY)
206 rflags |= HPTE_R_C;
208 * Add in WIG bits
211 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
212 rflags |= HPTE_R_I;
213 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
214 rflags |= (HPTE_R_I | HPTE_R_G);
215 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
216 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
217 else
219 * Add memory coherence if cache inhibited is not set
221 rflags |= HPTE_R_M;
223 return rflags;
226 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
227 unsigned long pstart, unsigned long prot,
228 int psize, int ssize)
230 unsigned long vaddr, paddr;
231 unsigned int step, shift;
232 int ret = 0;
234 shift = mmu_psize_defs[psize].shift;
235 step = 1 << shift;
237 prot = htab_convert_pte_flags(prot);
239 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
240 vstart, vend, pstart, prot, psize, ssize);
242 for (vaddr = vstart, paddr = pstart; vaddr < vend;
243 vaddr += step, paddr += step) {
244 unsigned long hash, hpteg;
245 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
246 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
247 unsigned long tprot = prot;
250 * If we hit a bad address return error.
252 if (!vsid)
253 return -1;
254 /* Make kernel text executable */
255 if (overlaps_kernel_text(vaddr, vaddr + step))
256 tprot &= ~HPTE_R_N;
258 /* Make kvm guest trampolines executable */
259 if (overlaps_kvm_tmp(vaddr, vaddr + step))
260 tprot &= ~HPTE_R_N;
263 * If relocatable, check if it overlaps interrupt vectors that
264 * are copied down to real 0. For relocatable kernel
265 * (e.g. kdump case) we copy interrupt vectors down to real
266 * address 0. Mark that region as executable. This is
267 * because on p8 system with relocation on exception feature
268 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
269 * in order to execute the interrupt handlers in virtual
270 * mode the vector region need to be marked as executable.
272 if ((PHYSICAL_START > MEMORY_START) &&
273 overlaps_interrupt_vector_text(vaddr, vaddr + step))
274 tprot &= ~HPTE_R_N;
276 hash = hpt_hash(vpn, shift, ssize);
277 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
279 BUG_ON(!ppc_md.hpte_insert);
280 ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
281 HPTE_V_BOLTED, psize, psize, ssize);
283 if (ret < 0)
284 break;
286 #ifdef CONFIG_DEBUG_PAGEALLOC
287 if (debug_pagealloc_enabled() &&
288 (paddr >> PAGE_SHIFT) < linear_map_hash_count)
289 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
290 #endif /* CONFIG_DEBUG_PAGEALLOC */
292 return ret < 0 ? ret : 0;
295 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
296 int psize, int ssize)
298 unsigned long vaddr;
299 unsigned int step, shift;
300 int rc;
301 int ret = 0;
303 shift = mmu_psize_defs[psize].shift;
304 step = 1 << shift;
306 if (!ppc_md.hpte_removebolted)
307 return -ENODEV;
309 for (vaddr = vstart; vaddr < vend; vaddr += step) {
310 rc = ppc_md.hpte_removebolted(vaddr, psize, ssize);
311 if (rc == -ENOENT) {
312 ret = -ENOENT;
313 continue;
315 if (rc < 0)
316 return rc;
319 return ret;
322 static bool disable_1tb_segments = false;
324 static int __init parse_disable_1tb_segments(char *p)
326 disable_1tb_segments = true;
327 return 0;
329 early_param("disable_1tb_segments", parse_disable_1tb_segments);
331 static int __init htab_dt_scan_seg_sizes(unsigned long node,
332 const char *uname, int depth,
333 void *data)
335 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
336 const __be32 *prop;
337 int size = 0;
339 /* We are scanning "cpu" nodes only */
340 if (type == NULL || strcmp(type, "cpu") != 0)
341 return 0;
343 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
344 if (prop == NULL)
345 return 0;
346 for (; size >= 4; size -= 4, ++prop) {
347 if (be32_to_cpu(prop[0]) == 40) {
348 DBG("1T segment support detected\n");
350 if (disable_1tb_segments) {
351 DBG("1T segments disabled by command line\n");
352 break;
355 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
356 return 1;
359 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
360 return 0;
363 static void __init htab_init_seg_sizes(void)
365 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
368 static int __init get_idx_from_shift(unsigned int shift)
370 int idx = -1;
372 switch (shift) {
373 case 0xc:
374 idx = MMU_PAGE_4K;
375 break;
376 case 0x10:
377 idx = MMU_PAGE_64K;
378 break;
379 case 0x14:
380 idx = MMU_PAGE_1M;
381 break;
382 case 0x18:
383 idx = MMU_PAGE_16M;
384 break;
385 case 0x22:
386 idx = MMU_PAGE_16G;
387 break;
389 return idx;
392 static int __init htab_dt_scan_page_sizes(unsigned long node,
393 const char *uname, int depth,
394 void *data)
396 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
397 const __be32 *prop;
398 int size = 0;
400 /* We are scanning "cpu" nodes only */
401 if (type == NULL || strcmp(type, "cpu") != 0)
402 return 0;
404 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
405 if (!prop)
406 return 0;
408 pr_info("Page sizes from device-tree:\n");
409 size /= 4;
410 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
411 while(size > 0) {
412 unsigned int base_shift = be32_to_cpu(prop[0]);
413 unsigned int slbenc = be32_to_cpu(prop[1]);
414 unsigned int lpnum = be32_to_cpu(prop[2]);
415 struct mmu_psize_def *def;
416 int idx, base_idx;
418 size -= 3; prop += 3;
419 base_idx = get_idx_from_shift(base_shift);
420 if (base_idx < 0) {
421 /* skip the pte encoding also */
422 prop += lpnum * 2; size -= lpnum * 2;
423 continue;
425 def = &mmu_psize_defs[base_idx];
426 if (base_idx == MMU_PAGE_16M)
427 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
429 def->shift = base_shift;
430 if (base_shift <= 23)
431 def->avpnm = 0;
432 else
433 def->avpnm = (1 << (base_shift - 23)) - 1;
434 def->sllp = slbenc;
436 * We don't know for sure what's up with tlbiel, so
437 * for now we only set it for 4K and 64K pages
439 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
440 def->tlbiel = 1;
441 else
442 def->tlbiel = 0;
444 while (size > 0 && lpnum) {
445 unsigned int shift = be32_to_cpu(prop[0]);
446 int penc = be32_to_cpu(prop[1]);
448 prop += 2; size -= 2;
449 lpnum--;
451 idx = get_idx_from_shift(shift);
452 if (idx < 0)
453 continue;
455 if (penc == -1)
456 pr_err("Invalid penc for base_shift=%d "
457 "shift=%d\n", base_shift, shift);
459 def->penc[idx] = penc;
460 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
461 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
462 base_shift, shift, def->sllp,
463 def->avpnm, def->tlbiel, def->penc[idx]);
467 return 1;
470 #ifdef CONFIG_HUGETLB_PAGE
471 /* Scan for 16G memory blocks that have been set aside for huge pages
472 * and reserve those blocks for 16G huge pages.
474 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
475 const char *uname, int depth,
476 void *data) {
477 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
478 const __be64 *addr_prop;
479 const __be32 *page_count_prop;
480 unsigned int expected_pages;
481 long unsigned int phys_addr;
482 long unsigned int block_size;
484 /* We are scanning "memory" nodes only */
485 if (type == NULL || strcmp(type, "memory") != 0)
486 return 0;
488 /* This property is the log base 2 of the number of virtual pages that
489 * will represent this memory block. */
490 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
491 if (page_count_prop == NULL)
492 return 0;
493 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
494 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
495 if (addr_prop == NULL)
496 return 0;
497 phys_addr = be64_to_cpu(addr_prop[0]);
498 block_size = be64_to_cpu(addr_prop[1]);
499 if (block_size != (16 * GB))
500 return 0;
501 printk(KERN_INFO "Huge page(16GB) memory: "
502 "addr = 0x%lX size = 0x%lX pages = %d\n",
503 phys_addr, block_size, expected_pages);
504 if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
505 memblock_reserve(phys_addr, block_size * expected_pages);
506 add_gpage(phys_addr, block_size, expected_pages);
508 return 0;
510 #endif /* CONFIG_HUGETLB_PAGE */
512 static void mmu_psize_set_default_penc(void)
514 int bpsize, apsize;
515 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
516 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
517 mmu_psize_defs[bpsize].penc[apsize] = -1;
520 #ifdef CONFIG_PPC_64K_PAGES
522 static bool might_have_hea(void)
525 * The HEA ethernet adapter requires awareness of the
526 * GX bus. Without that awareness we can easily assume
527 * we will never see an HEA ethernet device.
529 #ifdef CONFIG_IBMEBUS
530 return !cpu_has_feature(CPU_FTR_ARCH_207S);
531 #else
532 return false;
533 #endif
536 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
538 static void __init htab_init_page_sizes(void)
540 int rc;
542 /* se the invalid penc to -1 */
543 mmu_psize_set_default_penc();
545 /* Default to 4K pages only */
546 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
547 sizeof(mmu_psize_defaults_old));
550 * Try to find the available page sizes in the device-tree
552 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
553 if (rc != 0) /* Found */
554 goto found;
557 * Not in the device-tree, let's fallback on known size
558 * list for 16M capable GP & GR
560 if (mmu_has_feature(MMU_FTR_16M_PAGE))
561 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
562 sizeof(mmu_psize_defaults_gp));
563 found:
564 if (!debug_pagealloc_enabled()) {
566 * Pick a size for the linear mapping. Currently, we only
567 * support 16M, 1M and 4K which is the default
569 if (mmu_psize_defs[MMU_PAGE_16M].shift)
570 mmu_linear_psize = MMU_PAGE_16M;
571 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
572 mmu_linear_psize = MMU_PAGE_1M;
575 #ifdef CONFIG_PPC_64K_PAGES
577 * Pick a size for the ordinary pages. Default is 4K, we support
578 * 64K for user mappings and vmalloc if supported by the processor.
579 * We only use 64k for ioremap if the processor
580 * (and firmware) support cache-inhibited large pages.
581 * If not, we use 4k and set mmu_ci_restrictions so that
582 * hash_page knows to switch processes that use cache-inhibited
583 * mappings to 4k pages.
585 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
586 mmu_virtual_psize = MMU_PAGE_64K;
587 mmu_vmalloc_psize = MMU_PAGE_64K;
588 if (mmu_linear_psize == MMU_PAGE_4K)
589 mmu_linear_psize = MMU_PAGE_64K;
590 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
592 * When running on pSeries using 64k pages for ioremap
593 * would stop us accessing the HEA ethernet. So if we
594 * have the chance of ever seeing one, stay at 4k.
596 if (!might_have_hea() || !machine_is(pseries))
597 mmu_io_psize = MMU_PAGE_64K;
598 } else
599 mmu_ci_restrictions = 1;
601 #endif /* CONFIG_PPC_64K_PAGES */
603 #ifdef CONFIG_SPARSEMEM_VMEMMAP
604 /* We try to use 16M pages for vmemmap if that is supported
605 * and we have at least 1G of RAM at boot
607 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
608 memblock_phys_mem_size() >= 0x40000000)
609 mmu_vmemmap_psize = MMU_PAGE_16M;
610 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
611 mmu_vmemmap_psize = MMU_PAGE_64K;
612 else
613 mmu_vmemmap_psize = MMU_PAGE_4K;
614 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
616 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
617 "virtual = %d, io = %d"
618 #ifdef CONFIG_SPARSEMEM_VMEMMAP
619 ", vmemmap = %d"
620 #endif
621 "\n",
622 mmu_psize_defs[mmu_linear_psize].shift,
623 mmu_psize_defs[mmu_virtual_psize].shift,
624 mmu_psize_defs[mmu_io_psize].shift
625 #ifdef CONFIG_SPARSEMEM_VMEMMAP
626 ,mmu_psize_defs[mmu_vmemmap_psize].shift
627 #endif
630 #ifdef CONFIG_HUGETLB_PAGE
631 /* Reserve 16G huge page memory sections for huge pages */
632 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
633 #endif /* CONFIG_HUGETLB_PAGE */
636 static int __init htab_dt_scan_pftsize(unsigned long node,
637 const char *uname, int depth,
638 void *data)
640 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
641 const __be32 *prop;
643 /* We are scanning "cpu" nodes only */
644 if (type == NULL || strcmp(type, "cpu") != 0)
645 return 0;
647 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
648 if (prop != NULL) {
649 /* pft_size[0] is the NUMA CEC cookie */
650 ppc64_pft_size = be32_to_cpu(prop[1]);
651 return 1;
653 return 0;
656 unsigned htab_shift_for_mem_size(unsigned long mem_size)
658 unsigned memshift = __ilog2(mem_size);
659 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
660 unsigned pteg_shift;
662 /* round mem_size up to next power of 2 */
663 if ((1UL << memshift) < mem_size)
664 memshift += 1;
666 /* aim for 2 pages / pteg */
667 pteg_shift = memshift - (pshift + 1);
670 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
671 * size permitted by the architecture.
673 return max(pteg_shift + 7, 18U);
676 static unsigned long __init htab_get_table_size(void)
678 /* If hash size isn't already provided by the platform, we try to
679 * retrieve it from the device-tree. If it's not there neither, we
680 * calculate it now based on the total RAM size
682 if (ppc64_pft_size == 0)
683 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
684 if (ppc64_pft_size)
685 return 1UL << ppc64_pft_size;
687 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
690 #ifdef CONFIG_MEMORY_HOTPLUG
691 int create_section_mapping(unsigned long start, unsigned long end)
693 int rc = htab_bolt_mapping(start, end, __pa(start),
694 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
695 mmu_kernel_ssize);
697 if (rc < 0) {
698 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
699 mmu_kernel_ssize);
700 BUG_ON(rc2 && (rc2 != -ENOENT));
702 return rc;
705 int remove_section_mapping(unsigned long start, unsigned long end)
707 int rc = htab_remove_mapping(start, end, mmu_linear_psize,
708 mmu_kernel_ssize);
709 WARN_ON(rc < 0);
710 return rc;
712 #endif /* CONFIG_MEMORY_HOTPLUG */
714 static void __init hash_init_partition_table(phys_addr_t hash_table,
715 unsigned long htab_size)
717 unsigned long ps_field;
718 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
721 * slb llp encoding for the page size used in VPM real mode.
722 * We can ignore that for lpid 0
724 ps_field = 0;
725 htab_size = __ilog2(htab_size) - 18;
727 BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 24), "Partition table size too large.");
728 partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
729 MEMBLOCK_ALLOC_ANYWHERE));
731 /* Initialize the Partition Table with no entries */
732 memset((void *)partition_tb, 0, patb_size);
733 partition_tb->patb0 = cpu_to_be64(ps_field | hash_table | htab_size);
735 * FIXME!! This should be done via update_partition table
736 * For now UPRT is 0 for us.
738 partition_tb->patb1 = 0;
739 pr_info("Partition table %p\n", partition_tb);
741 * update partition table control register,
742 * 64 K size.
744 mtspr(SPRN_PTCR, __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
748 static void __init htab_initialize(void)
750 unsigned long table;
751 unsigned long pteg_count;
752 unsigned long prot;
753 unsigned long base = 0, size = 0;
754 struct memblock_region *reg;
756 DBG(" -> htab_initialize()\n");
758 /* Initialize segment sizes */
759 htab_init_seg_sizes();
761 /* Initialize page sizes */
762 htab_init_page_sizes();
764 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
765 mmu_kernel_ssize = MMU_SEGSIZE_1T;
766 mmu_highuser_ssize = MMU_SEGSIZE_1T;
767 printk(KERN_INFO "Using 1TB segments\n");
771 * Calculate the required size of the htab. We want the number of
772 * PTEGs to equal one half the number of real pages.
774 htab_size_bytes = htab_get_table_size();
775 pteg_count = htab_size_bytes >> 7;
777 htab_hash_mask = pteg_count - 1;
779 if (firmware_has_feature(FW_FEATURE_LPAR) ||
780 firmware_has_feature(FW_FEATURE_PS3_LV1)) {
781 /* Using a hypervisor which owns the htab */
782 htab_address = NULL;
783 _SDR1 = 0;
784 #ifdef CONFIG_FA_DUMP
786 * If firmware assisted dump is active firmware preserves
787 * the contents of htab along with entire partition memory.
788 * Clear the htab if firmware assisted dump is active so
789 * that we dont end up using old mappings.
791 if (is_fadump_active() && ppc_md.hpte_clear_all)
792 ppc_md.hpte_clear_all();
793 #endif
794 } else {
795 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
797 #ifdef CONFIG_PPC_CELL
799 * Cell may require the hash table down low when using the
800 * Axon IOMMU in order to fit the dynamic region over it, see
801 * comments in cell/iommu.c
803 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
804 limit = 0x80000000;
805 pr_info("Hash table forced below 2G for Axon IOMMU\n");
807 #endif /* CONFIG_PPC_CELL */
809 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
810 limit);
812 DBG("Hash table allocated at %lx, size: %lx\n", table,
813 htab_size_bytes);
815 htab_address = __va(table);
817 /* htab absolute addr + encoded htabsize */
818 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
820 /* Initialize the HPT with no entries */
821 memset((void *)table, 0, htab_size_bytes);
823 if (!cpu_has_feature(CPU_FTR_ARCH_300))
824 /* Set SDR1 */
825 mtspr(SPRN_SDR1, _SDR1);
826 else
827 hash_init_partition_table(table, htab_size_bytes);
830 prot = pgprot_val(PAGE_KERNEL);
832 #ifdef CONFIG_DEBUG_PAGEALLOC
833 if (debug_pagealloc_enabled()) {
834 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
835 linear_map_hash_slots = __va(memblock_alloc_base(
836 linear_map_hash_count, 1, ppc64_rma_size));
837 memset(linear_map_hash_slots, 0, linear_map_hash_count);
839 #endif /* CONFIG_DEBUG_PAGEALLOC */
841 /* On U3 based machines, we need to reserve the DART area and
842 * _NOT_ map it to avoid cache paradoxes as it's remapped non
843 * cacheable later on
846 /* create bolted the linear mapping in the hash table */
847 for_each_memblock(memory, reg) {
848 base = (unsigned long)__va(reg->base);
849 size = reg->size;
851 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
852 base, size, prot);
854 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
855 prot, mmu_linear_psize, mmu_kernel_ssize));
857 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
860 * If we have a memory_limit and we've allocated TCEs then we need to
861 * explicitly map the TCE area at the top of RAM. We also cope with the
862 * case that the TCEs start below memory_limit.
863 * tce_alloc_start/end are 16MB aligned so the mapping should work
864 * for either 4K or 16MB pages.
866 if (tce_alloc_start) {
867 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
868 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
870 if (base + size >= tce_alloc_start)
871 tce_alloc_start = base + size + 1;
873 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
874 __pa(tce_alloc_start), prot,
875 mmu_linear_psize, mmu_kernel_ssize));
879 DBG(" <- htab_initialize()\n");
881 #undef KB
882 #undef MB
884 void __init __weak hpte_init_lpar(void)
886 panic("FW_FEATURE_LPAR set but no LPAR support compiled\n");
889 void __init hash__early_init_mmu(void)
892 * initialize page table size
894 __pte_frag_nr = H_PTE_FRAG_NR;
895 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
897 __pte_index_size = H_PTE_INDEX_SIZE;
898 __pmd_index_size = H_PMD_INDEX_SIZE;
899 __pud_index_size = H_PUD_INDEX_SIZE;
900 __pgd_index_size = H_PGD_INDEX_SIZE;
901 __pmd_cache_index = H_PMD_CACHE_INDEX;
902 __pte_table_size = H_PTE_TABLE_SIZE;
903 __pmd_table_size = H_PMD_TABLE_SIZE;
904 __pud_table_size = H_PUD_TABLE_SIZE;
905 __pgd_table_size = H_PGD_TABLE_SIZE;
907 * 4k use hugepd format, so for hash set then to
908 * zero
910 __pmd_val_bits = 0;
911 __pud_val_bits = 0;
912 __pgd_val_bits = 0;
914 __kernel_virt_start = H_KERN_VIRT_START;
915 __kernel_virt_size = H_KERN_VIRT_SIZE;
916 __vmalloc_start = H_VMALLOC_START;
917 __vmalloc_end = H_VMALLOC_END;
918 vmemmap = (struct page *)H_VMEMMAP_BASE;
919 ioremap_bot = IOREMAP_BASE;
921 #ifdef CONFIG_PCI
922 pci_io_base = ISA_IO_BASE;
923 #endif
925 /* Select appropriate backend */
926 if (firmware_has_feature(FW_FEATURE_PS3_LV1))
927 ps3_early_mm_init();
928 else if (firmware_has_feature(FW_FEATURE_LPAR))
929 hpte_init_lpar();
930 else
931 hpte_init_native();
933 /* Initialize the MMU Hash table and create the linear mapping
934 * of memory. Has to be done before SLB initialization as this is
935 * currently where the page size encoding is obtained.
937 htab_initialize();
939 pr_info("Initializing hash mmu with SLB\n");
940 /* Initialize SLB management */
941 slb_initialize();
944 #ifdef CONFIG_SMP
945 void hash__early_init_mmu_secondary(void)
947 /* Initialize hash table for that CPU */
948 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
949 if (!cpu_has_feature(CPU_FTR_ARCH_300))
950 mtspr(SPRN_SDR1, _SDR1);
951 else
952 mtspr(SPRN_PTCR,
953 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
955 /* Initialize SLB */
956 slb_initialize();
958 #endif /* CONFIG_SMP */
961 * Called by asm hashtable.S for doing lazy icache flush
963 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
965 struct page *page;
967 if (!pfn_valid(pte_pfn(pte)))
968 return pp;
970 page = pte_page(pte);
972 /* page is dirty */
973 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
974 if (trap == 0x400) {
975 flush_dcache_icache_page(page);
976 set_bit(PG_arch_1, &page->flags);
977 } else
978 pp |= HPTE_R_N;
980 return pp;
983 #ifdef CONFIG_PPC_MM_SLICES
984 static unsigned int get_paca_psize(unsigned long addr)
986 u64 lpsizes;
987 unsigned char *hpsizes;
988 unsigned long index, mask_index;
990 if (addr < SLICE_LOW_TOP) {
991 lpsizes = get_paca()->mm_ctx_low_slices_psize;
992 index = GET_LOW_SLICE_INDEX(addr);
993 return (lpsizes >> (index * 4)) & 0xF;
995 hpsizes = get_paca()->mm_ctx_high_slices_psize;
996 index = GET_HIGH_SLICE_INDEX(addr);
997 mask_index = index & 0x1;
998 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
1001 #else
1002 unsigned int get_paca_psize(unsigned long addr)
1004 return get_paca()->mm_ctx_user_psize;
1006 #endif
1009 * Demote a segment to using 4k pages.
1010 * For now this makes the whole process use 4k pages.
1012 #ifdef CONFIG_PPC_64K_PAGES
1013 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1015 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1016 return;
1017 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1018 copro_flush_all_slbs(mm);
1019 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1021 copy_mm_to_paca(&mm->context);
1022 slb_flush_and_rebolt();
1025 #endif /* CONFIG_PPC_64K_PAGES */
1027 #ifdef CONFIG_PPC_SUBPAGE_PROT
1029 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1030 * Userspace sets the subpage permissions using the subpage_prot system call.
1032 * Result is 0: full permissions, _PAGE_RW: read-only,
1033 * _PAGE_RWX: no access.
1035 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1037 struct subpage_prot_table *spt = &mm->context.spt;
1038 u32 spp = 0;
1039 u32 **sbpm, *sbpp;
1041 if (ea >= spt->maxaddr)
1042 return 0;
1043 if (ea < 0x100000000UL) {
1044 /* addresses below 4GB use spt->low_prot */
1045 sbpm = spt->low_prot;
1046 } else {
1047 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1048 if (!sbpm)
1049 return 0;
1051 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1052 if (!sbpp)
1053 return 0;
1054 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1056 /* extract 2-bit bitfield for this 4k subpage */
1057 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1060 * 0 -> full premission
1061 * 1 -> Read only
1062 * 2 -> no access.
1063 * We return the flag that need to be cleared.
1065 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1066 return spp;
1069 #else /* CONFIG_PPC_SUBPAGE_PROT */
1070 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1072 return 0;
1074 #endif
1076 void hash_failure_debug(unsigned long ea, unsigned long access,
1077 unsigned long vsid, unsigned long trap,
1078 int ssize, int psize, int lpsize, unsigned long pte)
1080 if (!printk_ratelimit())
1081 return;
1082 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1083 ea, access, current->comm);
1084 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1085 trap, vsid, ssize, psize, lpsize, pte);
1088 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1089 int psize, bool user_region)
1091 if (user_region) {
1092 if (psize != get_paca_psize(ea)) {
1093 copy_mm_to_paca(&mm->context);
1094 slb_flush_and_rebolt();
1096 } else if (get_paca()->vmalloc_sllp !=
1097 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1098 get_paca()->vmalloc_sllp =
1099 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1100 slb_vmalloc_update();
1104 /* Result code is:
1105 * 0 - handled
1106 * 1 - normal page fault
1107 * -1 - critical hash insertion error
1108 * -2 - access not permitted by subpage protection mechanism
1110 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1111 unsigned long access, unsigned long trap,
1112 unsigned long flags)
1114 bool is_thp;
1115 enum ctx_state prev_state = exception_enter();
1116 pgd_t *pgdir;
1117 unsigned long vsid;
1118 pte_t *ptep;
1119 unsigned hugeshift;
1120 const struct cpumask *tmp;
1121 int rc, user_region = 0;
1122 int psize, ssize;
1124 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1125 ea, access, trap);
1126 trace_hash_fault(ea, access, trap);
1128 /* Get region & vsid */
1129 switch (REGION_ID(ea)) {
1130 case USER_REGION_ID:
1131 user_region = 1;
1132 if (! mm) {
1133 DBG_LOW(" user region with no mm !\n");
1134 rc = 1;
1135 goto bail;
1137 psize = get_slice_psize(mm, ea);
1138 ssize = user_segment_size(ea);
1139 vsid = get_vsid(mm->context.id, ea, ssize);
1140 break;
1141 case VMALLOC_REGION_ID:
1142 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1143 if (ea < VMALLOC_END)
1144 psize = mmu_vmalloc_psize;
1145 else
1146 psize = mmu_io_psize;
1147 ssize = mmu_kernel_ssize;
1148 break;
1149 default:
1150 /* Not a valid range
1151 * Send the problem up to do_page_fault
1153 rc = 1;
1154 goto bail;
1156 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1158 /* Bad address. */
1159 if (!vsid) {
1160 DBG_LOW("Bad address!\n");
1161 rc = 1;
1162 goto bail;
1164 /* Get pgdir */
1165 pgdir = mm->pgd;
1166 if (pgdir == NULL) {
1167 rc = 1;
1168 goto bail;
1171 /* Check CPU locality */
1172 tmp = cpumask_of(smp_processor_id());
1173 if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1174 flags |= HPTE_LOCAL_UPDATE;
1176 #ifndef CONFIG_PPC_64K_PAGES
1177 /* If we use 4K pages and our psize is not 4K, then we might
1178 * be hitting a special driver mapping, and need to align the
1179 * address before we fetch the PTE.
1181 * It could also be a hugepage mapping, in which case this is
1182 * not necessary, but it's not harmful, either.
1184 if (psize != MMU_PAGE_4K)
1185 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1186 #endif /* CONFIG_PPC_64K_PAGES */
1188 /* Get PTE and page size from page tables */
1189 ptep = __find_linux_pte_or_hugepte(pgdir, ea, &is_thp, &hugeshift);
1190 if (ptep == NULL || !pte_present(*ptep)) {
1191 DBG_LOW(" no PTE !\n");
1192 rc = 1;
1193 goto bail;
1196 /* Add _PAGE_PRESENT to the required access perm */
1197 access |= _PAGE_PRESENT;
1199 /* Pre-check access permissions (will be re-checked atomically
1200 * in __hash_page_XX but this pre-check is a fast path
1202 if (!check_pte_access(access, pte_val(*ptep))) {
1203 DBG_LOW(" no access !\n");
1204 rc = 1;
1205 goto bail;
1208 if (hugeshift) {
1209 if (is_thp)
1210 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1211 trap, flags, ssize, psize);
1212 #ifdef CONFIG_HUGETLB_PAGE
1213 else
1214 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1215 flags, ssize, hugeshift, psize);
1216 #else
1217 else {
1219 * if we have hugeshift, and is not transhuge with
1220 * hugetlb disabled, something is really wrong.
1222 rc = 1;
1223 WARN_ON(1);
1225 #endif
1226 if (current->mm == mm)
1227 check_paca_psize(ea, mm, psize, user_region);
1229 goto bail;
1232 #ifndef CONFIG_PPC_64K_PAGES
1233 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1234 #else
1235 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1236 pte_val(*(ptep + PTRS_PER_PTE)));
1237 #endif
1238 /* Do actual hashing */
1239 #ifdef CONFIG_PPC_64K_PAGES
1240 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1241 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1242 demote_segment_4k(mm, ea);
1243 psize = MMU_PAGE_4K;
1246 /* If this PTE is non-cacheable and we have restrictions on
1247 * using non cacheable large pages, then we switch to 4k
1249 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1250 if (user_region) {
1251 demote_segment_4k(mm, ea);
1252 psize = MMU_PAGE_4K;
1253 } else if (ea < VMALLOC_END) {
1255 * some driver did a non-cacheable mapping
1256 * in vmalloc space, so switch vmalloc
1257 * to 4k pages
1259 printk(KERN_ALERT "Reducing vmalloc segment "
1260 "to 4kB pages because of "
1261 "non-cacheable mapping\n");
1262 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1263 copro_flush_all_slbs(mm);
1267 #endif /* CONFIG_PPC_64K_PAGES */
1269 if (current->mm == mm)
1270 check_paca_psize(ea, mm, psize, user_region);
1272 #ifdef CONFIG_PPC_64K_PAGES
1273 if (psize == MMU_PAGE_64K)
1274 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1275 flags, ssize);
1276 else
1277 #endif /* CONFIG_PPC_64K_PAGES */
1279 int spp = subpage_protection(mm, ea);
1280 if (access & spp)
1281 rc = -2;
1282 else
1283 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1284 flags, ssize, spp);
1287 /* Dump some info in case of hash insertion failure, they should
1288 * never happen so it is really useful to know if/when they do
1290 if (rc == -1)
1291 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1292 psize, pte_val(*ptep));
1293 #ifndef CONFIG_PPC_64K_PAGES
1294 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1295 #else
1296 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1297 pte_val(*(ptep + PTRS_PER_PTE)));
1298 #endif
1299 DBG_LOW(" -> rc=%d\n", rc);
1301 bail:
1302 exception_exit(prev_state);
1303 return rc;
1305 EXPORT_SYMBOL_GPL(hash_page_mm);
1307 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1308 unsigned long dsisr)
1310 unsigned long flags = 0;
1311 struct mm_struct *mm = current->mm;
1313 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1314 mm = &init_mm;
1316 if (dsisr & DSISR_NOHPTE)
1317 flags |= HPTE_NOHPTE_UPDATE;
1319 return hash_page_mm(mm, ea, access, trap, flags);
1321 EXPORT_SYMBOL_GPL(hash_page);
1323 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1324 unsigned long dsisr)
1326 unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1327 unsigned long flags = 0;
1328 struct mm_struct *mm = current->mm;
1330 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1331 mm = &init_mm;
1333 if (dsisr & DSISR_NOHPTE)
1334 flags |= HPTE_NOHPTE_UPDATE;
1336 if (dsisr & DSISR_ISSTORE)
1337 access |= _PAGE_WRITE;
1339 * We set _PAGE_PRIVILEGED only when
1340 * kernel mode access kernel space.
1342 * _PAGE_PRIVILEGED is NOT set
1343 * 1) when kernel mode access user space
1344 * 2) user space access kernel space.
1346 access |= _PAGE_PRIVILEGED;
1347 if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1348 access &= ~_PAGE_PRIVILEGED;
1350 if (trap == 0x400)
1351 access |= _PAGE_EXEC;
1353 return hash_page_mm(mm, ea, access, trap, flags);
1356 #ifdef CONFIG_PPC_MM_SLICES
1357 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1359 int psize = get_slice_psize(mm, ea);
1361 /* We only prefault standard pages for now */
1362 if (unlikely(psize != mm->context.user_psize))
1363 return false;
1366 * Don't prefault if subpage protection is enabled for the EA.
1368 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1369 return false;
1371 return true;
1373 #else
1374 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1376 return true;
1378 #endif
1380 void hash_preload(struct mm_struct *mm, unsigned long ea,
1381 unsigned long access, unsigned long trap)
1383 int hugepage_shift;
1384 unsigned long vsid;
1385 pgd_t *pgdir;
1386 pte_t *ptep;
1387 unsigned long flags;
1388 int rc, ssize, update_flags = 0;
1390 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1392 if (!should_hash_preload(mm, ea))
1393 return;
1395 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1396 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1398 /* Get Linux PTE if available */
1399 pgdir = mm->pgd;
1400 if (pgdir == NULL)
1401 return;
1403 /* Get VSID */
1404 ssize = user_segment_size(ea);
1405 vsid = get_vsid(mm->context.id, ea, ssize);
1406 if (!vsid)
1407 return;
1409 * Hash doesn't like irqs. Walking linux page table with irq disabled
1410 * saves us from holding multiple locks.
1412 local_irq_save(flags);
1415 * THP pages use update_mmu_cache_pmd. We don't do
1416 * hash preload there. Hence can ignore THP here
1418 ptep = find_linux_pte_or_hugepte(pgdir, ea, NULL, &hugepage_shift);
1419 if (!ptep)
1420 goto out_exit;
1422 WARN_ON(hugepage_shift);
1423 #ifdef CONFIG_PPC_64K_PAGES
1424 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1425 * a 64K kernel), then we don't preload, hash_page() will take
1426 * care of it once we actually try to access the page.
1427 * That way we don't have to duplicate all of the logic for segment
1428 * page size demotion here
1430 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1431 goto out_exit;
1432 #endif /* CONFIG_PPC_64K_PAGES */
1434 /* Is that local to this CPU ? */
1435 if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1436 update_flags |= HPTE_LOCAL_UPDATE;
1438 /* Hash it in */
1439 #ifdef CONFIG_PPC_64K_PAGES
1440 if (mm->context.user_psize == MMU_PAGE_64K)
1441 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1442 update_flags, ssize);
1443 else
1444 #endif /* CONFIG_PPC_64K_PAGES */
1445 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1446 ssize, subpage_protection(mm, ea));
1448 /* Dump some info in case of hash insertion failure, they should
1449 * never happen so it is really useful to know if/when they do
1451 if (rc == -1)
1452 hash_failure_debug(ea, access, vsid, trap, ssize,
1453 mm->context.user_psize,
1454 mm->context.user_psize,
1455 pte_val(*ptep));
1456 out_exit:
1457 local_irq_restore(flags);
1460 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1461 * do not forget to update the assembly call site !
1463 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1464 unsigned long flags)
1466 unsigned long hash, index, shift, hidx, slot;
1467 int local = flags & HPTE_LOCAL_UPDATE;
1469 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1470 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1471 hash = hpt_hash(vpn, shift, ssize);
1472 hidx = __rpte_to_hidx(pte, index);
1473 if (hidx & _PTEIDX_SECONDARY)
1474 hash = ~hash;
1475 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1476 slot += hidx & _PTEIDX_GROUP_IX;
1477 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1479 * We use same base page size and actual psize, because we don't
1480 * use these functions for hugepage
1482 ppc_md.hpte_invalidate(slot, vpn, psize, psize, ssize, local);
1483 } pte_iterate_hashed_end();
1485 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1486 /* Transactions are not aborted by tlbiel, only tlbie.
1487 * Without, syncing a page back to a block device w/ PIO could pick up
1488 * transactional data (bad!) so we force an abort here. Before the
1489 * sync the page will be made read-only, which will flush_hash_page.
1490 * BIG ISSUE here: if the kernel uses a page from userspace without
1491 * unmapping it first, it may see the speculated version.
1493 if (local && cpu_has_feature(CPU_FTR_TM) &&
1494 current->thread.regs &&
1495 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1496 tm_enable();
1497 tm_abort(TM_CAUSE_TLBI);
1499 #endif
1502 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1503 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1504 pmd_t *pmdp, unsigned int psize, int ssize,
1505 unsigned long flags)
1507 int i, max_hpte_count, valid;
1508 unsigned long s_addr;
1509 unsigned char *hpte_slot_array;
1510 unsigned long hidx, shift, vpn, hash, slot;
1511 int local = flags & HPTE_LOCAL_UPDATE;
1513 s_addr = addr & HPAGE_PMD_MASK;
1514 hpte_slot_array = get_hpte_slot_array(pmdp);
1516 * IF we try to do a HUGE PTE update after a withdraw is done.
1517 * we will find the below NULL. This happens when we do
1518 * split_huge_page_pmd
1520 if (!hpte_slot_array)
1521 return;
1523 if (ppc_md.hugepage_invalidate) {
1524 ppc_md.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1525 psize, ssize, local);
1526 goto tm_abort;
1529 * No bluk hpte removal support, invalidate each entry
1531 shift = mmu_psize_defs[psize].shift;
1532 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1533 for (i = 0; i < max_hpte_count; i++) {
1535 * 8 bits per each hpte entries
1536 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1538 valid = hpte_valid(hpte_slot_array, i);
1539 if (!valid)
1540 continue;
1541 hidx = hpte_hash_index(hpte_slot_array, i);
1543 /* get the vpn */
1544 addr = s_addr + (i * (1ul << shift));
1545 vpn = hpt_vpn(addr, vsid, ssize);
1546 hash = hpt_hash(vpn, shift, ssize);
1547 if (hidx & _PTEIDX_SECONDARY)
1548 hash = ~hash;
1550 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1551 slot += hidx & _PTEIDX_GROUP_IX;
1552 ppc_md.hpte_invalidate(slot, vpn, psize,
1553 MMU_PAGE_16M, ssize, local);
1555 tm_abort:
1556 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1557 /* Transactions are not aborted by tlbiel, only tlbie.
1558 * Without, syncing a page back to a block device w/ PIO could pick up
1559 * transactional data (bad!) so we force an abort here. Before the
1560 * sync the page will be made read-only, which will flush_hash_page.
1561 * BIG ISSUE here: if the kernel uses a page from userspace without
1562 * unmapping it first, it may see the speculated version.
1564 if (local && cpu_has_feature(CPU_FTR_TM) &&
1565 current->thread.regs &&
1566 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1567 tm_enable();
1568 tm_abort(TM_CAUSE_TLBI);
1570 #endif
1571 return;
1573 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1575 void flush_hash_range(unsigned long number, int local)
1577 if (ppc_md.flush_hash_range)
1578 ppc_md.flush_hash_range(number, local);
1579 else {
1580 int i;
1581 struct ppc64_tlb_batch *batch =
1582 this_cpu_ptr(&ppc64_tlb_batch);
1584 for (i = 0; i < number; i++)
1585 flush_hash_page(batch->vpn[i], batch->pte[i],
1586 batch->psize, batch->ssize, local);
1591 * low_hash_fault is called when we the low level hash code failed
1592 * to instert a PTE due to an hypervisor error
1594 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1596 enum ctx_state prev_state = exception_enter();
1598 if (user_mode(regs)) {
1599 #ifdef CONFIG_PPC_SUBPAGE_PROT
1600 if (rc == -2)
1601 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1602 else
1603 #endif
1604 _exception(SIGBUS, regs, BUS_ADRERR, address);
1605 } else
1606 bad_page_fault(regs, address, SIGBUS);
1608 exception_exit(prev_state);
1611 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1612 unsigned long pa, unsigned long rflags,
1613 unsigned long vflags, int psize, int ssize)
1615 unsigned long hpte_group;
1616 long slot;
1618 repeat:
1619 hpte_group = ((hash & htab_hash_mask) *
1620 HPTES_PER_GROUP) & ~0x7UL;
1622 /* Insert into the hash table, primary slot */
1623 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1624 psize, psize, ssize);
1626 /* Primary is full, try the secondary */
1627 if (unlikely(slot == -1)) {
1628 hpte_group = ((~hash & htab_hash_mask) *
1629 HPTES_PER_GROUP) & ~0x7UL;
1630 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags,
1631 vflags | HPTE_V_SECONDARY,
1632 psize, psize, ssize);
1633 if (slot == -1) {
1634 if (mftb() & 0x1)
1635 hpte_group = ((hash & htab_hash_mask) *
1636 HPTES_PER_GROUP)&~0x7UL;
1638 ppc_md.hpte_remove(hpte_group);
1639 goto repeat;
1643 return slot;
1646 #ifdef CONFIG_DEBUG_PAGEALLOC
1647 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1649 unsigned long hash;
1650 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1651 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1652 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1653 long ret;
1655 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1657 /* Don't create HPTE entries for bad address */
1658 if (!vsid)
1659 return;
1661 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1662 HPTE_V_BOLTED,
1663 mmu_linear_psize, mmu_kernel_ssize);
1665 BUG_ON (ret < 0);
1666 spin_lock(&linear_map_hash_lock);
1667 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1668 linear_map_hash_slots[lmi] = ret | 0x80;
1669 spin_unlock(&linear_map_hash_lock);
1672 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1674 unsigned long hash, hidx, slot;
1675 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1676 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1678 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1679 spin_lock(&linear_map_hash_lock);
1680 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1681 hidx = linear_map_hash_slots[lmi] & 0x7f;
1682 linear_map_hash_slots[lmi] = 0;
1683 spin_unlock(&linear_map_hash_lock);
1684 if (hidx & _PTEIDX_SECONDARY)
1685 hash = ~hash;
1686 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1687 slot += hidx & _PTEIDX_GROUP_IX;
1688 ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_linear_psize,
1689 mmu_kernel_ssize, 0);
1692 void __kernel_map_pages(struct page *page, int numpages, int enable)
1694 unsigned long flags, vaddr, lmi;
1695 int i;
1697 local_irq_save(flags);
1698 for (i = 0; i < numpages; i++, page++) {
1699 vaddr = (unsigned long)page_address(page);
1700 lmi = __pa(vaddr) >> PAGE_SHIFT;
1701 if (lmi >= linear_map_hash_count)
1702 continue;
1703 if (enable)
1704 kernel_map_linear_page(vaddr, lmi);
1705 else
1706 kernel_unmap_linear_page(vaddr, lmi);
1708 local_irq_restore(flags);
1710 #endif /* CONFIG_DEBUG_PAGEALLOC */
1712 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1713 phys_addr_t first_memblock_size)
1715 /* We don't currently support the first MEMBLOCK not mapping 0
1716 * physical on those processors
1718 BUG_ON(first_memblock_base != 0);
1720 /* On LPAR systems, the first entry is our RMA region,
1721 * non-LPAR 64-bit hash MMU systems don't have a limitation
1722 * on real mode access, but using the first entry works well
1723 * enough. We also clamp it to 1G to avoid some funky things
1724 * such as RTAS bugs etc...
1726 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1728 /* Finally limit subsequent allocations */
1729 memblock_set_current_limit(ppc64_rma_size);