2 #define pr_fmt(fmt) "DMAR-IR: " fmt
4 #include <linux/interrupt.h>
5 #include <linux/dmar.h>
6 #include <linux/spinlock.h>
7 #include <linux/slab.h>
8 #include <linux/jiffies.h>
9 #include <linux/hpet.h>
10 #include <linux/pci.h>
11 #include <linux/irq.h>
12 #include <linux/intel-iommu.h>
13 #include <linux/acpi.h>
14 #include <linux/irqdomain.h>
15 #include <linux/crash_dump.h>
16 #include <asm/io_apic.h>
19 #include <asm/irq_remapping.h>
20 #include <asm/pci-direct.h>
21 #include <asm/msidef.h>
23 #include "irq_remapping.h"
31 struct intel_iommu
*iommu
;
33 unsigned int bus
; /* PCI bus number */
34 unsigned int devfn
; /* PCI devfn number */
38 struct intel_iommu
*iommu
;
45 struct intel_iommu
*iommu
;
52 struct intel_ir_data
{
53 struct irq_2_iommu irq_2_iommu
;
54 struct irte irte_entry
;
56 struct msi_msg msi_entry
;
60 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
61 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
63 static int __read_mostly eim_mode
;
64 static struct ioapic_scope ir_ioapic
[MAX_IO_APICS
];
65 static struct hpet_scope ir_hpet
[MAX_HPET_TBS
];
72 * ->iommu->register_lock
74 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
75 * in single-threaded environment with interrupt disabled, so no need to tabke
76 * the dmar_global_lock.
78 static DEFINE_RAW_SPINLOCK(irq_2_ir_lock
);
79 static const struct irq_domain_ops intel_ir_domain_ops
;
81 static void iommu_disable_irq_remapping(struct intel_iommu
*iommu
);
82 static int __init
parse_ioapics_under_ir(void);
84 static bool ir_pre_enabled(struct intel_iommu
*iommu
)
86 return (iommu
->flags
& VTD_FLAG_IRQ_REMAP_PRE_ENABLED
);
89 static void clear_ir_pre_enabled(struct intel_iommu
*iommu
)
91 iommu
->flags
&= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED
;
94 static void init_ir_status(struct intel_iommu
*iommu
)
98 gsts
= readl(iommu
->reg
+ DMAR_GSTS_REG
);
99 if (gsts
& DMA_GSTS_IRES
)
100 iommu
->flags
|= VTD_FLAG_IRQ_REMAP_PRE_ENABLED
;
103 static int alloc_irte(struct intel_iommu
*iommu
, int irq
,
104 struct irq_2_iommu
*irq_iommu
, u16 count
)
106 struct ir_table
*table
= iommu
->ir_table
;
107 unsigned int mask
= 0;
111 if (!count
|| !irq_iommu
)
115 count
= __roundup_pow_of_two(count
);
119 if (mask
> ecap_max_handle_mask(iommu
->ecap
)) {
120 pr_err("Requested mask %x exceeds the max invalidation handle"
121 " mask value %Lx\n", mask
,
122 ecap_max_handle_mask(iommu
->ecap
));
126 raw_spin_lock_irqsave(&irq_2_ir_lock
, flags
);
127 index
= bitmap_find_free_region(table
->bitmap
,
128 INTR_REMAP_TABLE_ENTRIES
, mask
);
130 pr_warn("IR%d: can't allocate an IRTE\n", iommu
->seq_id
);
132 irq_iommu
->iommu
= iommu
;
133 irq_iommu
->irte_index
= index
;
134 irq_iommu
->sub_handle
= 0;
135 irq_iommu
->irte_mask
= mask
;
136 irq_iommu
->mode
= IRQ_REMAPPING
;
138 raw_spin_unlock_irqrestore(&irq_2_ir_lock
, flags
);
143 static int qi_flush_iec(struct intel_iommu
*iommu
, int index
, int mask
)
147 desc
.low
= QI_IEC_IIDEX(index
) | QI_IEC_TYPE
| QI_IEC_IM(mask
)
151 return qi_submit_sync(&desc
, iommu
);
154 static int modify_irte(struct irq_2_iommu
*irq_iommu
,
155 struct irte
*irte_modified
)
157 struct intel_iommu
*iommu
;
165 raw_spin_lock_irqsave(&irq_2_ir_lock
, flags
);
167 iommu
= irq_iommu
->iommu
;
169 index
= irq_iommu
->irte_index
+ irq_iommu
->sub_handle
;
170 irte
= &iommu
->ir_table
->base
[index
];
172 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
173 if ((irte
->pst
== 1) || (irte_modified
->pst
== 1)) {
176 ret
= cmpxchg_double(&irte
->low
, &irte
->high
,
177 irte
->low
, irte
->high
,
178 irte_modified
->low
, irte_modified
->high
);
180 * We use cmpxchg16 to atomically update the 128-bit IRTE,
181 * and it cannot be updated by the hardware or other processors
182 * behind us, so the return value of cmpxchg16 should be the
183 * same as the old value.
189 set_64bit(&irte
->low
, irte_modified
->low
);
190 set_64bit(&irte
->high
, irte_modified
->high
);
192 __iommu_flush_cache(iommu
, irte
, sizeof(*irte
));
194 rc
= qi_flush_iec(iommu
, index
, 0);
196 /* Update iommu mode according to the IRTE mode */
197 irq_iommu
->mode
= irte
->pst
? IRQ_POSTING
: IRQ_REMAPPING
;
198 raw_spin_unlock_irqrestore(&irq_2_ir_lock
, flags
);
203 static struct intel_iommu
*map_hpet_to_ir(u8 hpet_id
)
207 for (i
= 0; i
< MAX_HPET_TBS
; i
++)
208 if (ir_hpet
[i
].id
== hpet_id
&& ir_hpet
[i
].iommu
)
209 return ir_hpet
[i
].iommu
;
213 static struct intel_iommu
*map_ioapic_to_ir(int apic
)
217 for (i
= 0; i
< MAX_IO_APICS
; i
++)
218 if (ir_ioapic
[i
].id
== apic
&& ir_ioapic
[i
].iommu
)
219 return ir_ioapic
[i
].iommu
;
223 static struct intel_iommu
*map_dev_to_ir(struct pci_dev
*dev
)
225 struct dmar_drhd_unit
*drhd
;
227 drhd
= dmar_find_matched_drhd_unit(dev
);
234 static int clear_entries(struct irq_2_iommu
*irq_iommu
)
236 struct irte
*start
, *entry
, *end
;
237 struct intel_iommu
*iommu
;
240 if (irq_iommu
->sub_handle
)
243 iommu
= irq_iommu
->iommu
;
244 index
= irq_iommu
->irte_index
;
246 start
= iommu
->ir_table
->base
+ index
;
247 end
= start
+ (1 << irq_iommu
->irte_mask
);
249 for (entry
= start
; entry
< end
; entry
++) {
250 set_64bit(&entry
->low
, 0);
251 set_64bit(&entry
->high
, 0);
253 bitmap_release_region(iommu
->ir_table
->bitmap
, index
,
254 irq_iommu
->irte_mask
);
256 return qi_flush_iec(iommu
, index
, irq_iommu
->irte_mask
);
260 * source validation type
262 #define SVT_NO_VERIFY 0x0 /* no verification is required */
263 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
264 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
267 * source-id qualifier
269 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
270 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
271 * the third least significant bit
273 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
274 * the second and third least significant bits
276 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
277 * the least three significant bits
281 * set SVT, SQ and SID fields of irte to verify
282 * source ids of interrupt requests
284 static void set_irte_sid(struct irte
*irte
, unsigned int svt
,
285 unsigned int sq
, unsigned int sid
)
287 if (disable_sourceid_checking
)
294 static int set_ioapic_sid(struct irte
*irte
, int apic
)
302 down_read(&dmar_global_lock
);
303 for (i
= 0; i
< MAX_IO_APICS
; i
++) {
304 if (ir_ioapic
[i
].iommu
&& ir_ioapic
[i
].id
== apic
) {
305 sid
= (ir_ioapic
[i
].bus
<< 8) | ir_ioapic
[i
].devfn
;
309 up_read(&dmar_global_lock
);
312 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic
);
316 set_irte_sid(irte
, SVT_VERIFY_SID_SQ
, SQ_ALL_16
, sid
);
321 static int set_hpet_sid(struct irte
*irte
, u8 id
)
329 down_read(&dmar_global_lock
);
330 for (i
= 0; i
< MAX_HPET_TBS
; i
++) {
331 if (ir_hpet
[i
].iommu
&& ir_hpet
[i
].id
== id
) {
332 sid
= (ir_hpet
[i
].bus
<< 8) | ir_hpet
[i
].devfn
;
336 up_read(&dmar_global_lock
);
339 pr_warn("Failed to set source-id of HPET block (%d)\n", id
);
344 * Should really use SQ_ALL_16. Some platforms are broken.
345 * While we figure out the right quirks for these broken platforms, use
346 * SQ_13_IGNORE_3 for now.
348 set_irte_sid(irte
, SVT_VERIFY_SID_SQ
, SQ_13_IGNORE_3
, sid
);
353 struct set_msi_sid_data
{
354 struct pci_dev
*pdev
;
358 static int set_msi_sid_cb(struct pci_dev
*pdev
, u16 alias
, void *opaque
)
360 struct set_msi_sid_data
*data
= opaque
;
368 static int set_msi_sid(struct irte
*irte
, struct pci_dev
*dev
)
370 struct set_msi_sid_data data
;
375 pci_for_each_dma_alias(dev
, set_msi_sid_cb
, &data
);
378 * DMA alias provides us with a PCI device and alias. The only case
379 * where the it will return an alias on a different bus than the
380 * device is the case of a PCIe-to-PCI bridge, where the alias is for
381 * the subordinate bus. In this case we can only verify the bus.
383 * If the alias device is on a different bus than our source device
384 * then we have a topology based alias, use it.
386 * Otherwise, the alias is for a device DMA quirk and we cannot
387 * assume that MSI uses the same requester ID. Therefore use the
390 if (PCI_BUS_NUM(data
.alias
) != data
.pdev
->bus
->number
)
391 set_irte_sid(irte
, SVT_VERIFY_BUS
, SQ_ALL_16
,
392 PCI_DEVID(PCI_BUS_NUM(data
.alias
),
394 else if (data
.pdev
->bus
->number
!= dev
->bus
->number
)
395 set_irte_sid(irte
, SVT_VERIFY_SID_SQ
, SQ_ALL_16
, data
.alias
);
397 set_irte_sid(irte
, SVT_VERIFY_SID_SQ
, SQ_ALL_16
,
398 PCI_DEVID(dev
->bus
->number
, dev
->devfn
));
403 static int iommu_load_old_irte(struct intel_iommu
*iommu
)
405 struct irte
*old_ir_table
;
406 phys_addr_t irt_phys
;
411 /* Check whether the old ir-table has the same size as ours */
412 irta
= dmar_readq(iommu
->reg
+ DMAR_IRTA_REG
);
413 if ((irta
& INTR_REMAP_TABLE_REG_SIZE_MASK
)
414 != INTR_REMAP_TABLE_REG_SIZE
)
417 irt_phys
= irta
& VTD_PAGE_MASK
;
418 size
= INTR_REMAP_TABLE_ENTRIES
*sizeof(struct irte
);
420 /* Map the old IR table */
421 old_ir_table
= memremap(irt_phys
, size
, MEMREMAP_WB
);
426 memcpy(iommu
->ir_table
->base
, old_ir_table
, size
);
428 __iommu_flush_cache(iommu
, iommu
->ir_table
->base
, size
);
431 * Now check the table for used entries and mark those as
432 * allocated in the bitmap
434 for (i
= 0; i
< INTR_REMAP_TABLE_ENTRIES
; i
++) {
435 if (iommu
->ir_table
->base
[i
].present
)
436 bitmap_set(iommu
->ir_table
->bitmap
, i
, 1);
439 memunmap(old_ir_table
);
445 static void iommu_set_irq_remapping(struct intel_iommu
*iommu
, int mode
)
451 addr
= virt_to_phys((void *)iommu
->ir_table
->base
);
453 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
455 dmar_writeq(iommu
->reg
+ DMAR_IRTA_REG
,
456 (addr
) | IR_X2APIC_MODE(mode
) | INTR_REMAP_TABLE_REG_SIZE
);
458 /* Set interrupt-remapping table pointer */
459 writel(iommu
->gcmd
| DMA_GCMD_SIRTP
, iommu
->reg
+ DMAR_GCMD_REG
);
461 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
462 readl
, (sts
& DMA_GSTS_IRTPS
), sts
);
463 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
466 * Global invalidation of interrupt entry cache to make sure the
467 * hardware uses the new irq remapping table.
469 qi_global_iec(iommu
);
472 static void iommu_enable_irq_remapping(struct intel_iommu
*iommu
)
477 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
479 /* Enable interrupt-remapping */
480 iommu
->gcmd
|= DMA_GCMD_IRE
;
481 iommu
->gcmd
&= ~DMA_GCMD_CFI
; /* Block compatibility-format MSIs */
482 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
484 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
485 readl
, (sts
& DMA_GSTS_IRES
), sts
);
488 * With CFI clear in the Global Command register, we should be
489 * protected from dangerous (i.e. compatibility) interrupts
490 * regardless of x2apic status. Check just to be sure.
492 if (sts
& DMA_GSTS_CFIS
)
494 "Compatibility-format IRQs enabled despite intr remapping;\n"
495 "you are vulnerable to IRQ injection.\n");
497 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
500 static int intel_setup_irq_remapping(struct intel_iommu
*iommu
)
502 struct ir_table
*ir_table
;
503 struct fwnode_handle
*fn
;
504 unsigned long *bitmap
;
510 ir_table
= kzalloc(sizeof(struct ir_table
), GFP_KERNEL
);
514 pages
= alloc_pages_node(iommu
->node
, GFP_KERNEL
| __GFP_ZERO
,
515 INTR_REMAP_PAGE_ORDER
);
517 pr_err("IR%d: failed to allocate pages of order %d\n",
518 iommu
->seq_id
, INTR_REMAP_PAGE_ORDER
);
522 bitmap
= kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES
),
523 sizeof(long), GFP_ATOMIC
);
524 if (bitmap
== NULL
) {
525 pr_err("IR%d: failed to allocate bitmap\n", iommu
->seq_id
);
529 fn
= irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu
->seq_id
);
531 goto out_free_bitmap
;
534 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
535 0, INTR_REMAP_TABLE_ENTRIES
,
536 fn
, &intel_ir_domain_ops
,
538 irq_domain_free_fwnode(fn
);
539 if (!iommu
->ir_domain
) {
540 pr_err("IR%d: failed to allocate irqdomain\n", iommu
->seq_id
);
541 goto out_free_bitmap
;
543 iommu
->ir_msi_domain
=
544 arch_create_remap_msi_irq_domain(iommu
->ir_domain
,
548 ir_table
->base
= page_address(pages
);
549 ir_table
->bitmap
= bitmap
;
550 iommu
->ir_table
= ir_table
;
553 * If the queued invalidation is already initialized,
554 * shouldn't disable it.
558 * Clear previous faults.
560 dmar_fault(-1, iommu
);
561 dmar_disable_qi(iommu
);
563 if (dmar_enable_qi(iommu
)) {
564 pr_err("Failed to enable queued invalidation\n");
565 goto out_free_bitmap
;
569 init_ir_status(iommu
);
571 if (ir_pre_enabled(iommu
)) {
572 if (!is_kdump_kernel()) {
573 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
575 clear_ir_pre_enabled(iommu
);
576 iommu_disable_irq_remapping(iommu
);
577 } else if (iommu_load_old_irte(iommu
))
578 pr_err("Failed to copy IR table for %s from previous kernel\n",
581 pr_info("Copied IR table for %s from previous kernel\n",
585 iommu_set_irq_remapping(iommu
, eim_mode
);
592 __free_pages(pages
, INTR_REMAP_PAGE_ORDER
);
596 iommu
->ir_table
= NULL
;
601 static void intel_teardown_irq_remapping(struct intel_iommu
*iommu
)
603 if (iommu
&& iommu
->ir_table
) {
604 if (iommu
->ir_msi_domain
) {
605 irq_domain_remove(iommu
->ir_msi_domain
);
606 iommu
->ir_msi_domain
= NULL
;
608 if (iommu
->ir_domain
) {
609 irq_domain_remove(iommu
->ir_domain
);
610 iommu
->ir_domain
= NULL
;
612 free_pages((unsigned long)iommu
->ir_table
->base
,
613 INTR_REMAP_PAGE_ORDER
);
614 kfree(iommu
->ir_table
->bitmap
);
615 kfree(iommu
->ir_table
);
616 iommu
->ir_table
= NULL
;
621 * Disable Interrupt Remapping.
623 static void iommu_disable_irq_remapping(struct intel_iommu
*iommu
)
628 if (!ecap_ir_support(iommu
->ecap
))
632 * global invalidation of interrupt entry cache before disabling
633 * interrupt-remapping.
635 qi_global_iec(iommu
);
637 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
639 sts
= readl(iommu
->reg
+ DMAR_GSTS_REG
);
640 if (!(sts
& DMA_GSTS_IRES
))
643 iommu
->gcmd
&= ~DMA_GCMD_IRE
;
644 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
646 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
647 readl
, !(sts
& DMA_GSTS_IRES
), sts
);
650 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
653 static int __init
dmar_x2apic_optout(void)
655 struct acpi_table_dmar
*dmar
;
656 dmar
= (struct acpi_table_dmar
*)dmar_tbl
;
657 if (!dmar
|| no_x2apic_optout
)
659 return dmar
->flags
& DMAR_X2APIC_OPT_OUT
;
662 static void __init
intel_cleanup_irq_remapping(void)
664 struct dmar_drhd_unit
*drhd
;
665 struct intel_iommu
*iommu
;
667 for_each_iommu(iommu
, drhd
) {
668 if (ecap_ir_support(iommu
->ecap
)) {
669 iommu_disable_irq_remapping(iommu
);
670 intel_teardown_irq_remapping(iommu
);
674 if (x2apic_supported())
675 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
678 static int __init
intel_prepare_irq_remapping(void)
680 struct dmar_drhd_unit
*drhd
;
681 struct intel_iommu
*iommu
;
684 if (irq_remap_broken
) {
685 pr_warn("This system BIOS has enabled interrupt remapping\n"
686 "on a chipset that contains an erratum making that\n"
687 "feature unstable. To maintain system stability\n"
688 "interrupt remapping is being disabled. Please\n"
689 "contact your BIOS vendor for an update\n");
690 add_taint(TAINT_FIRMWARE_WORKAROUND
, LOCKDEP_STILL_OK
);
694 if (dmar_table_init() < 0)
697 if (!dmar_ir_support())
700 if (parse_ioapics_under_ir()) {
701 pr_info("Not enabling interrupt remapping\n");
705 /* First make sure all IOMMUs support IRQ remapping */
706 for_each_iommu(iommu
, drhd
)
707 if (!ecap_ir_support(iommu
->ecap
))
710 /* Detect remapping mode: lapic or x2apic */
711 if (x2apic_supported()) {
712 eim
= !dmar_x2apic_optout();
714 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
715 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
719 for_each_iommu(iommu
, drhd
) {
720 if (eim
&& !ecap_eim_support(iommu
->ecap
)) {
721 pr_info("%s does not support EIM\n", iommu
->name
);
728 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
730 /* Do the initializations early */
731 for_each_iommu(iommu
, drhd
) {
732 if (intel_setup_irq_remapping(iommu
)) {
733 pr_err("Failed to setup irq remapping for %s\n",
742 intel_cleanup_irq_remapping();
747 * Set Posted-Interrupts capability.
749 static inline void set_irq_posting_cap(void)
751 struct dmar_drhd_unit
*drhd
;
752 struct intel_iommu
*iommu
;
754 if (!disable_irq_post
) {
756 * If IRTE is in posted format, the 'pda' field goes across the
757 * 64-bit boundary, we need use cmpxchg16b to atomically update
758 * it. We only expose posted-interrupt when X86_FEATURE_CX16
759 * is supported. Actually, hardware platforms supporting PI
760 * should have X86_FEATURE_CX16 support, this has been confirmed
761 * with Intel hardware guys.
763 if (boot_cpu_has(X86_FEATURE_CX16
))
764 intel_irq_remap_ops
.capability
|= 1 << IRQ_POSTING_CAP
;
766 for_each_iommu(iommu
, drhd
)
767 if (!cap_pi_support(iommu
->cap
)) {
768 intel_irq_remap_ops
.capability
&=
769 ~(1 << IRQ_POSTING_CAP
);
775 static int __init
intel_enable_irq_remapping(void)
777 struct dmar_drhd_unit
*drhd
;
778 struct intel_iommu
*iommu
;
782 * Setup Interrupt-remapping for all the DRHD's now.
784 for_each_iommu(iommu
, drhd
) {
785 if (!ir_pre_enabled(iommu
))
786 iommu_enable_irq_remapping(iommu
);
793 irq_remapping_enabled
= 1;
795 set_irq_posting_cap();
797 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode
? "x2apic" : "xapic");
799 return eim_mode
? IRQ_REMAP_X2APIC_MODE
: IRQ_REMAP_XAPIC_MODE
;
802 intel_cleanup_irq_remapping();
806 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope
*scope
,
807 struct intel_iommu
*iommu
,
808 struct acpi_dmar_hardware_unit
*drhd
)
810 struct acpi_dmar_pci_path
*path
;
812 int count
, free
= -1;
815 path
= (struct acpi_dmar_pci_path
*)(scope
+ 1);
816 count
= (scope
->length
- sizeof(struct acpi_dmar_device_scope
))
817 / sizeof(struct acpi_dmar_pci_path
);
819 while (--count
> 0) {
821 * Access PCI directly due to the PCI
822 * subsystem isn't initialized yet.
824 bus
= read_pci_config_byte(bus
, path
->device
, path
->function
,
829 for (count
= 0; count
< MAX_HPET_TBS
; count
++) {
830 if (ir_hpet
[count
].iommu
== iommu
&&
831 ir_hpet
[count
].id
== scope
->enumeration_id
)
833 else if (ir_hpet
[count
].iommu
== NULL
&& free
== -1)
837 pr_warn("Exceeded Max HPET blocks\n");
841 ir_hpet
[free
].iommu
= iommu
;
842 ir_hpet
[free
].id
= scope
->enumeration_id
;
843 ir_hpet
[free
].bus
= bus
;
844 ir_hpet
[free
].devfn
= PCI_DEVFN(path
->device
, path
->function
);
845 pr_info("HPET id %d under DRHD base 0x%Lx\n",
846 scope
->enumeration_id
, drhd
->address
);
851 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope
*scope
,
852 struct intel_iommu
*iommu
,
853 struct acpi_dmar_hardware_unit
*drhd
)
855 struct acpi_dmar_pci_path
*path
;
857 int count
, free
= -1;
860 path
= (struct acpi_dmar_pci_path
*)(scope
+ 1);
861 count
= (scope
->length
- sizeof(struct acpi_dmar_device_scope
))
862 / sizeof(struct acpi_dmar_pci_path
);
864 while (--count
> 0) {
866 * Access PCI directly due to the PCI
867 * subsystem isn't initialized yet.
869 bus
= read_pci_config_byte(bus
, path
->device
, path
->function
,
874 for (count
= 0; count
< MAX_IO_APICS
; count
++) {
875 if (ir_ioapic
[count
].iommu
== iommu
&&
876 ir_ioapic
[count
].id
== scope
->enumeration_id
)
878 else if (ir_ioapic
[count
].iommu
== NULL
&& free
== -1)
882 pr_warn("Exceeded Max IO APICS\n");
886 ir_ioapic
[free
].bus
= bus
;
887 ir_ioapic
[free
].devfn
= PCI_DEVFN(path
->device
, path
->function
);
888 ir_ioapic
[free
].iommu
= iommu
;
889 ir_ioapic
[free
].id
= scope
->enumeration_id
;
890 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
891 scope
->enumeration_id
, drhd
->address
, iommu
->seq_id
);
896 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header
*header
,
897 struct intel_iommu
*iommu
)
900 struct acpi_dmar_hardware_unit
*drhd
;
901 struct acpi_dmar_device_scope
*scope
;
904 drhd
= (struct acpi_dmar_hardware_unit
*)header
;
905 start
= (void *)(drhd
+ 1);
906 end
= ((void *)drhd
) + header
->length
;
908 while (start
< end
&& ret
== 0) {
910 if (scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_IOAPIC
)
911 ret
= ir_parse_one_ioapic_scope(scope
, iommu
, drhd
);
912 else if (scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_HPET
)
913 ret
= ir_parse_one_hpet_scope(scope
, iommu
, drhd
);
914 start
+= scope
->length
;
920 static void ir_remove_ioapic_hpet_scope(struct intel_iommu
*iommu
)
924 for (i
= 0; i
< MAX_HPET_TBS
; i
++)
925 if (ir_hpet
[i
].iommu
== iommu
)
926 ir_hpet
[i
].iommu
= NULL
;
928 for (i
= 0; i
< MAX_IO_APICS
; i
++)
929 if (ir_ioapic
[i
].iommu
== iommu
)
930 ir_ioapic
[i
].iommu
= NULL
;
934 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
937 static int __init
parse_ioapics_under_ir(void)
939 struct dmar_drhd_unit
*drhd
;
940 struct intel_iommu
*iommu
;
941 bool ir_supported
= false;
944 for_each_iommu(iommu
, drhd
) {
947 if (!ecap_ir_support(iommu
->ecap
))
950 ret
= ir_parse_ioapic_hpet_scope(drhd
->hdr
, iommu
);
960 for (ioapic_idx
= 0; ioapic_idx
< nr_ioapics
; ioapic_idx
++) {
961 int ioapic_id
= mpc_ioapic_id(ioapic_idx
);
962 if (!map_ioapic_to_ir(ioapic_id
)) {
963 pr_err(FW_BUG
"ioapic %d has no mapping iommu, "
964 "interrupt remapping will be disabled\n",
973 static int __init
ir_dev_scope_init(void)
977 if (!irq_remapping_enabled
)
980 down_write(&dmar_global_lock
);
981 ret
= dmar_dev_scope_init();
982 up_write(&dmar_global_lock
);
986 rootfs_initcall(ir_dev_scope_init
);
988 static void disable_irq_remapping(void)
990 struct dmar_drhd_unit
*drhd
;
991 struct intel_iommu
*iommu
= NULL
;
994 * Disable Interrupt-remapping for all the DRHD's now.
996 for_each_iommu(iommu
, drhd
) {
997 if (!ecap_ir_support(iommu
->ecap
))
1000 iommu_disable_irq_remapping(iommu
);
1004 * Clear Posted-Interrupts capability.
1006 if (!disable_irq_post
)
1007 intel_irq_remap_ops
.capability
&= ~(1 << IRQ_POSTING_CAP
);
1010 static int reenable_irq_remapping(int eim
)
1012 struct dmar_drhd_unit
*drhd
;
1014 struct intel_iommu
*iommu
= NULL
;
1016 for_each_iommu(iommu
, drhd
)
1018 dmar_reenable_qi(iommu
);
1021 * Setup Interrupt-remapping for all the DRHD's now.
1023 for_each_iommu(iommu
, drhd
) {
1024 if (!ecap_ir_support(iommu
->ecap
))
1027 /* Set up interrupt remapping for iommu.*/
1028 iommu_set_irq_remapping(iommu
, eim
);
1029 iommu_enable_irq_remapping(iommu
);
1036 set_irq_posting_cap();
1042 * handle error condition gracefully here!
1047 static void prepare_irte(struct irte
*irte
, int vector
, unsigned int dest
)
1049 memset(irte
, 0, sizeof(*irte
));
1052 irte
->dst_mode
= apic
->irq_dest_mode
;
1054 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1055 * actual level or edge trigger will be setup in the IO-APIC
1056 * RTE. This will help simplify level triggered irq migration.
1057 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1058 * irq migration in the presence of interrupt-remapping.
1060 irte
->trigger_mode
= 0;
1061 irte
->dlvry_mode
= apic
->irq_delivery_mode
;
1062 irte
->vector
= vector
;
1063 irte
->dest_id
= IRTE_DEST(dest
);
1064 irte
->redir_hint
= 1;
1067 static struct irq_domain
*intel_get_ir_irq_domain(struct irq_alloc_info
*info
)
1069 struct intel_iommu
*iommu
= NULL
;
1074 switch (info
->type
) {
1075 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
1076 iommu
= map_ioapic_to_ir(info
->ioapic_id
);
1078 case X86_IRQ_ALLOC_TYPE_HPET
:
1079 iommu
= map_hpet_to_ir(info
->hpet_id
);
1081 case X86_IRQ_ALLOC_TYPE_MSI
:
1082 case X86_IRQ_ALLOC_TYPE_MSIX
:
1083 iommu
= map_dev_to_ir(info
->msi_dev
);
1090 return iommu
? iommu
->ir_domain
: NULL
;
1093 static struct irq_domain
*intel_get_irq_domain(struct irq_alloc_info
*info
)
1095 struct intel_iommu
*iommu
;
1100 switch (info
->type
) {
1101 case X86_IRQ_ALLOC_TYPE_MSI
:
1102 case X86_IRQ_ALLOC_TYPE_MSIX
:
1103 iommu
= map_dev_to_ir(info
->msi_dev
);
1105 return iommu
->ir_msi_domain
;
1114 struct irq_remap_ops intel_irq_remap_ops
= {
1115 .prepare
= intel_prepare_irq_remapping
,
1116 .enable
= intel_enable_irq_remapping
,
1117 .disable
= disable_irq_remapping
,
1118 .reenable
= reenable_irq_remapping
,
1119 .enable_faulting
= enable_drhd_fault_handling
,
1120 .get_ir_irq_domain
= intel_get_ir_irq_domain
,
1121 .get_irq_domain
= intel_get_irq_domain
,
1125 * Migrate the IO-APIC irq in the presence of intr-remapping.
1127 * For both level and edge triggered, irq migration is a simple atomic
1128 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1130 * For level triggered, we eliminate the io-apic RTE modification (with the
1131 * updated vector information), by using a virtual vector (io-apic pin number).
1132 * Real vector that is used for interrupting cpu will be coming from
1133 * the interrupt-remapping table entry.
1135 * As the migration is a simple atomic update of IRTE, the same mechanism
1136 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1139 intel_ir_set_affinity(struct irq_data
*data
, const struct cpumask
*mask
,
1142 struct intel_ir_data
*ir_data
= data
->chip_data
;
1143 struct irte
*irte
= &ir_data
->irte_entry
;
1144 struct irq_cfg
*cfg
= irqd_cfg(data
);
1145 struct irq_data
*parent
= data
->parent_data
;
1148 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
1149 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
1153 * Atomically updates the IRTE with the new destination, vector
1154 * and flushes the interrupt entry cache.
1156 irte
->vector
= cfg
->vector
;
1157 irte
->dest_id
= IRTE_DEST(cfg
->dest_apicid
);
1159 /* Update the hardware only if the interrupt is in remapped mode. */
1160 if (ir_data
->irq_2_iommu
.mode
== IRQ_REMAPPING
)
1161 modify_irte(&ir_data
->irq_2_iommu
, irte
);
1164 * After this point, all the interrupts will start arriving
1165 * at the new destination. So, time to cleanup the previous
1166 * vector allocation.
1168 send_cleanup_vector(cfg
);
1170 return IRQ_SET_MASK_OK_DONE
;
1173 static void intel_ir_compose_msi_msg(struct irq_data
*irq_data
,
1174 struct msi_msg
*msg
)
1176 struct intel_ir_data
*ir_data
= irq_data
->chip_data
;
1178 *msg
= ir_data
->msi_entry
;
1181 static int intel_ir_set_vcpu_affinity(struct irq_data
*data
, void *info
)
1183 struct intel_ir_data
*ir_data
= data
->chip_data
;
1184 struct vcpu_data
*vcpu_pi_info
= info
;
1186 /* stop posting interrupts, back to remapping mode */
1187 if (!vcpu_pi_info
) {
1188 modify_irte(&ir_data
->irq_2_iommu
, &ir_data
->irte_entry
);
1190 struct irte irte_pi
;
1193 * We are not caching the posted interrupt entry. We
1194 * copy the data from the remapped entry and modify
1195 * the fields which are relevant for posted mode. The
1196 * cached remapped entry is used for switching back to
1199 memset(&irte_pi
, 0, sizeof(irte_pi
));
1200 dmar_copy_shared_irte(&irte_pi
, &ir_data
->irte_entry
);
1202 /* Update the posted mode fields */
1204 irte_pi
.p_urgent
= 0;
1205 irte_pi
.p_vector
= vcpu_pi_info
->vector
;
1206 irte_pi
.pda_l
= (vcpu_pi_info
->pi_desc_addr
>>
1207 (32 - PDA_LOW_BIT
)) & ~(-1UL << PDA_LOW_BIT
);
1208 irte_pi
.pda_h
= (vcpu_pi_info
->pi_desc_addr
>> 32) &
1209 ~(-1UL << PDA_HIGH_BIT
);
1211 modify_irte(&ir_data
->irq_2_iommu
, &irte_pi
);
1217 static struct irq_chip intel_ir_chip
= {
1219 .irq_ack
= ir_ack_apic_edge
,
1220 .irq_set_affinity
= intel_ir_set_affinity
,
1221 .irq_compose_msi_msg
= intel_ir_compose_msi_msg
,
1222 .irq_set_vcpu_affinity
= intel_ir_set_vcpu_affinity
,
1225 static void intel_irq_remapping_prepare_irte(struct intel_ir_data
*data
,
1226 struct irq_cfg
*irq_cfg
,
1227 struct irq_alloc_info
*info
,
1228 int index
, int sub_handle
)
1230 struct IR_IO_APIC_route_entry
*entry
;
1231 struct irte
*irte
= &data
->irte_entry
;
1232 struct msi_msg
*msg
= &data
->msi_entry
;
1234 prepare_irte(irte
, irq_cfg
->vector
, irq_cfg
->dest_apicid
);
1235 switch (info
->type
) {
1236 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
1237 /* Set source-id of interrupt request */
1238 set_ioapic_sid(irte
, info
->ioapic_id
);
1239 apic_printk(APIC_VERBOSE
, KERN_DEBUG
"IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1240 info
->ioapic_id
, irte
->present
, irte
->fpd
,
1241 irte
->dst_mode
, irte
->redir_hint
,
1242 irte
->trigger_mode
, irte
->dlvry_mode
,
1243 irte
->avail
, irte
->vector
, irte
->dest_id
,
1244 irte
->sid
, irte
->sq
, irte
->svt
);
1246 entry
= (struct IR_IO_APIC_route_entry
*)info
->ioapic_entry
;
1247 info
->ioapic_entry
= NULL
;
1248 memset(entry
, 0, sizeof(*entry
));
1249 entry
->index2
= (index
>> 15) & 0x1;
1252 entry
->index
= (index
& 0x7fff);
1254 * IO-APIC RTE will be configured with virtual vector.
1255 * irq handler will do the explicit EOI to the io-apic.
1257 entry
->vector
= info
->ioapic_pin
;
1258 entry
->mask
= 0; /* enable IRQ */
1259 entry
->trigger
= info
->ioapic_trigger
;
1260 entry
->polarity
= info
->ioapic_polarity
;
1261 if (info
->ioapic_trigger
)
1262 entry
->mask
= 1; /* Mask level triggered irqs. */
1265 case X86_IRQ_ALLOC_TYPE_HPET
:
1266 case X86_IRQ_ALLOC_TYPE_MSI
:
1267 case X86_IRQ_ALLOC_TYPE_MSIX
:
1268 if (info
->type
== X86_IRQ_ALLOC_TYPE_HPET
)
1269 set_hpet_sid(irte
, info
->hpet_id
);
1271 set_msi_sid(irte
, info
->msi_dev
);
1273 msg
->address_hi
= MSI_ADDR_BASE_HI
;
1274 msg
->data
= sub_handle
;
1275 msg
->address_lo
= MSI_ADDR_BASE_LO
| MSI_ADDR_IR_EXT_INT
|
1277 MSI_ADDR_IR_INDEX1(index
) |
1278 MSI_ADDR_IR_INDEX2(index
);
1287 static void intel_free_irq_resources(struct irq_domain
*domain
,
1288 unsigned int virq
, unsigned int nr_irqs
)
1290 struct irq_data
*irq_data
;
1291 struct intel_ir_data
*data
;
1292 struct irq_2_iommu
*irq_iommu
;
1293 unsigned long flags
;
1295 for (i
= 0; i
< nr_irqs
; i
++) {
1296 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
1297 if (irq_data
&& irq_data
->chip_data
) {
1298 data
= irq_data
->chip_data
;
1299 irq_iommu
= &data
->irq_2_iommu
;
1300 raw_spin_lock_irqsave(&irq_2_ir_lock
, flags
);
1301 clear_entries(irq_iommu
);
1302 raw_spin_unlock_irqrestore(&irq_2_ir_lock
, flags
);
1303 irq_domain_reset_irq_data(irq_data
);
1309 static int intel_irq_remapping_alloc(struct irq_domain
*domain
,
1310 unsigned int virq
, unsigned int nr_irqs
,
1313 struct intel_iommu
*iommu
= domain
->host_data
;
1314 struct irq_alloc_info
*info
= arg
;
1315 struct intel_ir_data
*data
, *ird
;
1316 struct irq_data
*irq_data
;
1317 struct irq_cfg
*irq_cfg
;
1320 if (!info
|| !iommu
)
1322 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
1323 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
1327 * With IRQ remapping enabled, don't need contiguous CPU vectors
1328 * to support multiple MSI interrupts.
1330 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
1331 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
1333 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
1338 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
1340 goto out_free_parent
;
1342 down_read(&dmar_global_lock
);
1343 index
= alloc_irte(iommu
, virq
, &data
->irq_2_iommu
, nr_irqs
);
1344 up_read(&dmar_global_lock
);
1346 pr_warn("Failed to allocate IRTE\n");
1348 goto out_free_parent
;
1351 for (i
= 0; i
< nr_irqs
; i
++) {
1352 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
1353 irq_cfg
= irqd_cfg(irq_data
);
1354 if (!irq_data
|| !irq_cfg
) {
1360 ird
= kzalloc(sizeof(*ird
), GFP_KERNEL
);
1363 /* Initialize the common data */
1364 ird
->irq_2_iommu
= data
->irq_2_iommu
;
1365 ird
->irq_2_iommu
.sub_handle
= i
;
1370 irq_data
->hwirq
= (index
<< 16) + i
;
1371 irq_data
->chip_data
= ird
;
1372 irq_data
->chip
= &intel_ir_chip
;
1373 intel_irq_remapping_prepare_irte(ird
, irq_cfg
, info
, index
, i
);
1374 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
1379 intel_free_irq_resources(domain
, virq
, i
);
1381 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
1385 static void intel_irq_remapping_free(struct irq_domain
*domain
,
1386 unsigned int virq
, unsigned int nr_irqs
)
1388 intel_free_irq_resources(domain
, virq
, nr_irqs
);
1389 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
1392 static void intel_irq_remapping_activate(struct irq_domain
*domain
,
1393 struct irq_data
*irq_data
)
1395 struct intel_ir_data
*data
= irq_data
->chip_data
;
1397 modify_irte(&data
->irq_2_iommu
, &data
->irte_entry
);
1400 static void intel_irq_remapping_deactivate(struct irq_domain
*domain
,
1401 struct irq_data
*irq_data
)
1403 struct intel_ir_data
*data
= irq_data
->chip_data
;
1406 memset(&entry
, 0, sizeof(entry
));
1407 modify_irte(&data
->irq_2_iommu
, &entry
);
1410 static const struct irq_domain_ops intel_ir_domain_ops
= {
1411 .alloc
= intel_irq_remapping_alloc
,
1412 .free
= intel_irq_remapping_free
,
1413 .activate
= intel_irq_remapping_activate
,
1414 .deactivate
= intel_irq_remapping_deactivate
,
1418 * Support of Interrupt Remapping Unit Hotplug
1420 static int dmar_ir_add(struct dmar_drhd_unit
*dmaru
, struct intel_iommu
*iommu
)
1423 int eim
= x2apic_enabled();
1425 if (eim
&& !ecap_eim_support(iommu
->ecap
)) {
1426 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1427 iommu
->reg_phys
, iommu
->ecap
);
1431 if (ir_parse_ioapic_hpet_scope(dmaru
->hdr
, iommu
)) {
1432 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1437 /* TODO: check all IOAPICs are covered by IOMMU */
1439 /* Setup Interrupt-remapping now. */
1440 ret
= intel_setup_irq_remapping(iommu
);
1442 pr_err("Failed to setup irq remapping for %s\n",
1444 intel_teardown_irq_remapping(iommu
);
1445 ir_remove_ioapic_hpet_scope(iommu
);
1447 iommu_enable_irq_remapping(iommu
);
1453 int dmar_ir_hotplug(struct dmar_drhd_unit
*dmaru
, bool insert
)
1456 struct intel_iommu
*iommu
= dmaru
->iommu
;
1458 if (!irq_remapping_enabled
)
1462 if (!ecap_ir_support(iommu
->ecap
))
1464 if (irq_remapping_cap(IRQ_POSTING_CAP
) &&
1465 !cap_pi_support(iommu
->cap
))
1469 if (!iommu
->ir_table
)
1470 ret
= dmar_ir_add(dmaru
, iommu
);
1472 if (iommu
->ir_table
) {
1473 if (!bitmap_empty(iommu
->ir_table
->bitmap
,
1474 INTR_REMAP_TABLE_ENTRIES
)) {
1477 iommu_disable_irq_remapping(iommu
);
1478 intel_teardown_irq_remapping(iommu
);
1479 ir_remove_ioapic_hpet_scope(iommu
);