2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
25 #define DM_MSG_PREFIX "table"
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33 struct mapped_device
*md
;
34 enum dm_queue_mode type
;
38 unsigned int counts
[MAX_DEPTH
]; /* in nodes */
39 sector_t
*index
[MAX_DEPTH
];
41 unsigned int num_targets
;
42 unsigned int num_allocated
;
44 struct dm_target
*targets
;
46 struct target_type
*immutable_target_type
;
48 bool integrity_supported
:1;
51 unsigned integrity_added
:1;
54 * Indicates the rw permissions for the new logical
55 * device. This should be a combination of FMODE_READ
60 /* a list of devices used by this table */
61 struct list_head devices
;
63 /* events get handed up using this callback */
64 void (*event_fn
)(void *);
67 struct dm_md_mempools
*mempools
;
69 struct list_head target_callbacks
;
73 * Similar to ceiling(log_size(n))
75 static unsigned int int_log(unsigned int n
, unsigned int base
)
80 n
= dm_div_up(n
, base
);
88 * Calculate the index of the child node of the n'th node k'th key.
90 static inline unsigned int get_child(unsigned int n
, unsigned int k
)
92 return (n
* CHILDREN_PER_NODE
) + k
;
96 * Return the n'th node of level l from table t.
98 static inline sector_t
*get_node(struct dm_table
*t
,
99 unsigned int l
, unsigned int n
)
101 return t
->index
[l
] + (n
* KEYS_PER_NODE
);
105 * Return the highest key that you could lookup from the n'th
106 * node on level l of the btree.
108 static sector_t
high(struct dm_table
*t
, unsigned int l
, unsigned int n
)
110 for (; l
< t
->depth
- 1; l
++)
111 n
= get_child(n
, CHILDREN_PER_NODE
- 1);
113 if (n
>= t
->counts
[l
])
114 return (sector_t
) - 1;
116 return get_node(t
, l
, n
)[KEYS_PER_NODE
- 1];
120 * Fills in a level of the btree based on the highs of the level
123 static int setup_btree_index(unsigned int l
, struct dm_table
*t
)
128 for (n
= 0U; n
< t
->counts
[l
]; n
++) {
129 node
= get_node(t
, l
, n
);
131 for (k
= 0U; k
< KEYS_PER_NODE
; k
++)
132 node
[k
] = high(t
, l
+ 1, get_child(n
, k
));
138 void *dm_vcalloc(unsigned long nmemb
, unsigned long elem_size
)
144 * Check that we're not going to overflow.
146 if (nmemb
> (ULONG_MAX
/ elem_size
))
149 size
= nmemb
* elem_size
;
150 addr
= vzalloc(size
);
154 EXPORT_SYMBOL(dm_vcalloc
);
157 * highs, and targets are managed as dynamic arrays during a
160 static int alloc_targets(struct dm_table
*t
, unsigned int num
)
163 struct dm_target
*n_targets
;
166 * Allocate both the target array and offset array at once.
167 * Append an empty entry to catch sectors beyond the end of
170 n_highs
= (sector_t
*) dm_vcalloc(num
+ 1, sizeof(struct dm_target
) +
175 n_targets
= (struct dm_target
*) (n_highs
+ num
);
177 memset(n_highs
, -1, sizeof(*n_highs
) * num
);
180 t
->num_allocated
= num
;
182 t
->targets
= n_targets
;
187 int dm_table_create(struct dm_table
**result
, fmode_t mode
,
188 unsigned num_targets
, struct mapped_device
*md
)
190 struct dm_table
*t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
195 INIT_LIST_HEAD(&t
->devices
);
196 INIT_LIST_HEAD(&t
->target_callbacks
);
199 num_targets
= KEYS_PER_NODE
;
201 num_targets
= dm_round_up(num_targets
, KEYS_PER_NODE
);
208 if (alloc_targets(t
, num_targets
)) {
213 t
->type
= DM_TYPE_NONE
;
220 static void free_devices(struct list_head
*devices
, struct mapped_device
*md
)
222 struct list_head
*tmp
, *next
;
224 list_for_each_safe(tmp
, next
, devices
) {
225 struct dm_dev_internal
*dd
=
226 list_entry(tmp
, struct dm_dev_internal
, list
);
227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 dm_device_name(md
), dd
->dm_dev
->name
);
229 dm_put_table_device(md
, dd
->dm_dev
);
234 void dm_table_destroy(struct dm_table
*t
)
241 /* free the indexes */
243 vfree(t
->index
[t
->depth
- 2]);
245 /* free the targets */
246 for (i
= 0; i
< t
->num_targets
; i
++) {
247 struct dm_target
*tgt
= t
->targets
+ i
;
252 dm_put_target_type(tgt
->type
);
257 /* free the device list */
258 free_devices(&t
->devices
, t
->md
);
260 dm_free_md_mempools(t
->mempools
);
266 * See if we've already got a device in the list.
268 static struct dm_dev_internal
*find_device(struct list_head
*l
, dev_t dev
)
270 struct dm_dev_internal
*dd
;
272 list_for_each_entry (dd
, l
, list
)
273 if (dd
->dm_dev
->bdev
->bd_dev
== dev
)
280 * If possible, this checks an area of a destination device is invalid.
282 static int device_area_is_invalid(struct dm_target
*ti
, struct dm_dev
*dev
,
283 sector_t start
, sector_t len
, void *data
)
285 struct request_queue
*q
;
286 struct queue_limits
*limits
= data
;
287 struct block_device
*bdev
= dev
->bdev
;
289 i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
290 unsigned short logical_block_size_sectors
=
291 limits
->logical_block_size
>> SECTOR_SHIFT
;
292 char b
[BDEVNAME_SIZE
];
295 * Some devices exist without request functions,
296 * such as loop devices not yet bound to backing files.
297 * Forbid the use of such devices.
299 q
= bdev_get_queue(bdev
);
300 if (!q
|| !q
->make_request_fn
) {
301 DMWARN("%s: %s is not yet initialised: "
302 "start=%llu, len=%llu, dev_size=%llu",
303 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
304 (unsigned long long)start
,
305 (unsigned long long)len
,
306 (unsigned long long)dev_size
);
313 if ((start
>= dev_size
) || (start
+ len
> dev_size
)) {
314 DMWARN("%s: %s too small for target: "
315 "start=%llu, len=%llu, dev_size=%llu",
316 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
317 (unsigned long long)start
,
318 (unsigned long long)len
,
319 (unsigned long long)dev_size
);
324 * If the target is mapped to zoned block device(s), check
325 * that the zones are not partially mapped.
327 if (bdev_zoned_model(bdev
) != BLK_ZONED_NONE
) {
328 unsigned int zone_sectors
= bdev_zone_sectors(bdev
);
330 if (start
& (zone_sectors
- 1)) {
331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 dm_device_name(ti
->table
->md
),
333 (unsigned long long)start
,
334 zone_sectors
, bdevname(bdev
, b
));
339 * Note: The last zone of a zoned block device may be smaller
340 * than other zones. So for a target mapping the end of a
341 * zoned block device with such a zone, len would not be zone
342 * aligned. We do not allow such last smaller zone to be part
343 * of the mapping here to ensure that mappings with multiple
344 * devices do not end up with a smaller zone in the middle of
347 if (len
& (zone_sectors
- 1)) {
348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 dm_device_name(ti
->table
->md
),
350 (unsigned long long)len
,
351 zone_sectors
, bdevname(bdev
, b
));
356 if (logical_block_size_sectors
<= 1)
359 if (start
& (logical_block_size_sectors
- 1)) {
360 DMWARN("%s: start=%llu not aligned to h/w "
361 "logical block size %u of %s",
362 dm_device_name(ti
->table
->md
),
363 (unsigned long long)start
,
364 limits
->logical_block_size
, bdevname(bdev
, b
));
368 if (len
& (logical_block_size_sectors
- 1)) {
369 DMWARN("%s: len=%llu not aligned to h/w "
370 "logical block size %u of %s",
371 dm_device_name(ti
->table
->md
),
372 (unsigned long long)len
,
373 limits
->logical_block_size
, bdevname(bdev
, b
));
381 * This upgrades the mode on an already open dm_dev, being
382 * careful to leave things as they were if we fail to reopen the
383 * device and not to touch the existing bdev field in case
384 * it is accessed concurrently inside dm_table_any_congested().
386 static int upgrade_mode(struct dm_dev_internal
*dd
, fmode_t new_mode
,
387 struct mapped_device
*md
)
390 struct dm_dev
*old_dev
, *new_dev
;
392 old_dev
= dd
->dm_dev
;
394 r
= dm_get_table_device(md
, dd
->dm_dev
->bdev
->bd_dev
,
395 dd
->dm_dev
->mode
| new_mode
, &new_dev
);
399 dd
->dm_dev
= new_dev
;
400 dm_put_table_device(md
, old_dev
);
406 * Convert the path to a device
408 dev_t
dm_get_dev_t(const char *path
)
411 struct block_device
*bdev
;
413 bdev
= lookup_bdev(path
);
415 dev
= name_to_dev_t(path
);
423 EXPORT_SYMBOL_GPL(dm_get_dev_t
);
426 * Add a device to the list, or just increment the usage count if
427 * it's already present.
429 int dm_get_device(struct dm_target
*ti
, const char *path
, fmode_t mode
,
430 struct dm_dev
**result
)
434 struct dm_dev_internal
*dd
;
435 struct dm_table
*t
= ti
->table
;
439 dev
= dm_get_dev_t(path
);
443 dd
= find_device(&t
->devices
, dev
);
445 dd
= kmalloc(sizeof(*dd
), GFP_KERNEL
);
449 if ((r
= dm_get_table_device(t
->md
, dev
, mode
, &dd
->dm_dev
))) {
454 atomic_set(&dd
->count
, 0);
455 list_add(&dd
->list
, &t
->devices
);
457 } else if (dd
->dm_dev
->mode
!= (mode
| dd
->dm_dev
->mode
)) {
458 r
= upgrade_mode(dd
, mode
, t
->md
);
462 atomic_inc(&dd
->count
);
464 *result
= dd
->dm_dev
;
467 EXPORT_SYMBOL(dm_get_device
);
469 static int dm_set_device_limits(struct dm_target
*ti
, struct dm_dev
*dev
,
470 sector_t start
, sector_t len
, void *data
)
472 struct queue_limits
*limits
= data
;
473 struct block_device
*bdev
= dev
->bdev
;
474 struct request_queue
*q
= bdev_get_queue(bdev
);
475 char b
[BDEVNAME_SIZE
];
478 DMWARN("%s: Cannot set limits for nonexistent device %s",
479 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
));
483 if (bdev_stack_limits(limits
, bdev
, start
) < 0)
484 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
485 "physical_block_size=%u, logical_block_size=%u, "
486 "alignment_offset=%u, start=%llu",
487 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
488 q
->limits
.physical_block_size
,
489 q
->limits
.logical_block_size
,
490 q
->limits
.alignment_offset
,
491 (unsigned long long) start
<< SECTOR_SHIFT
);
493 limits
->zoned
= blk_queue_zoned_model(q
);
499 * Decrement a device's use count and remove it if necessary.
501 void dm_put_device(struct dm_target
*ti
, struct dm_dev
*d
)
504 struct list_head
*devices
= &ti
->table
->devices
;
505 struct dm_dev_internal
*dd
;
507 list_for_each_entry(dd
, devices
, list
) {
508 if (dd
->dm_dev
== d
) {
514 DMWARN("%s: device %s not in table devices list",
515 dm_device_name(ti
->table
->md
), d
->name
);
518 if (atomic_dec_and_test(&dd
->count
)) {
519 dm_put_table_device(ti
->table
->md
, d
);
524 EXPORT_SYMBOL(dm_put_device
);
527 * Checks to see if the target joins onto the end of the table.
529 static int adjoin(struct dm_table
*table
, struct dm_target
*ti
)
531 struct dm_target
*prev
;
533 if (!table
->num_targets
)
536 prev
= &table
->targets
[table
->num_targets
- 1];
537 return (ti
->begin
== (prev
->begin
+ prev
->len
));
541 * Used to dynamically allocate the arg array.
543 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
544 * process messages even if some device is suspended. These messages have a
545 * small fixed number of arguments.
547 * On the other hand, dm-switch needs to process bulk data using messages and
548 * excessive use of GFP_NOIO could cause trouble.
550 static char **realloc_argv(unsigned *array_size
, char **old_argv
)
557 new_size
= *array_size
* 2;
563 argv
= kmalloc(new_size
* sizeof(*argv
), gfp
);
565 memcpy(argv
, old_argv
, *array_size
* sizeof(*argv
));
566 *array_size
= new_size
;
574 * Destructively splits up the argument list to pass to ctr.
576 int dm_split_args(int *argc
, char ***argvp
, char *input
)
578 char *start
, *end
= input
, *out
, **argv
= NULL
;
579 unsigned array_size
= 0;
588 argv
= realloc_argv(&array_size
, argv
);
593 /* Skip whitespace */
594 start
= skip_spaces(end
);
597 break; /* success, we hit the end */
599 /* 'out' is used to remove any back-quotes */
602 /* Everything apart from '\0' can be quoted */
603 if (*end
== '\\' && *(end
+ 1)) {
610 break; /* end of token */
615 /* have we already filled the array ? */
616 if ((*argc
+ 1) > array_size
) {
617 argv
= realloc_argv(&array_size
, argv
);
622 /* we know this is whitespace */
626 /* terminate the string and put it in the array */
637 * Impose necessary and sufficient conditions on a devices's table such
638 * that any incoming bio which respects its logical_block_size can be
639 * processed successfully. If it falls across the boundary between
640 * two or more targets, the size of each piece it gets split into must
641 * be compatible with the logical_block_size of the target processing it.
643 static int validate_hardware_logical_block_alignment(struct dm_table
*table
,
644 struct queue_limits
*limits
)
647 * This function uses arithmetic modulo the logical_block_size
648 * (in units of 512-byte sectors).
650 unsigned short device_logical_block_size_sects
=
651 limits
->logical_block_size
>> SECTOR_SHIFT
;
654 * Offset of the start of the next table entry, mod logical_block_size.
656 unsigned short next_target_start
= 0;
659 * Given an aligned bio that extends beyond the end of a
660 * target, how many sectors must the next target handle?
662 unsigned short remaining
= 0;
664 struct dm_target
*uninitialized_var(ti
);
665 struct queue_limits ti_limits
;
669 * Check each entry in the table in turn.
671 for (i
= 0; i
< dm_table_get_num_targets(table
); i
++) {
672 ti
= dm_table_get_target(table
, i
);
674 blk_set_stacking_limits(&ti_limits
);
676 /* combine all target devices' limits */
677 if (ti
->type
->iterate_devices
)
678 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
682 * If the remaining sectors fall entirely within this
683 * table entry are they compatible with its logical_block_size?
685 if (remaining
< ti
->len
&&
686 remaining
& ((ti_limits
.logical_block_size
>>
691 (unsigned short) ((next_target_start
+ ti
->len
) &
692 (device_logical_block_size_sects
- 1));
693 remaining
= next_target_start
?
694 device_logical_block_size_sects
- next_target_start
: 0;
698 DMWARN("%s: table line %u (start sect %llu len %llu) "
699 "not aligned to h/w logical block size %u",
700 dm_device_name(table
->md
), i
,
701 (unsigned long long) ti
->begin
,
702 (unsigned long long) ti
->len
,
703 limits
->logical_block_size
);
710 int dm_table_add_target(struct dm_table
*t
, const char *type
,
711 sector_t start
, sector_t len
, char *params
)
713 int r
= -EINVAL
, argc
;
715 struct dm_target
*tgt
;
718 DMERR("%s: target type %s must appear alone in table",
719 dm_device_name(t
->md
), t
->targets
->type
->name
);
723 BUG_ON(t
->num_targets
>= t
->num_allocated
);
725 tgt
= t
->targets
+ t
->num_targets
;
726 memset(tgt
, 0, sizeof(*tgt
));
729 DMERR("%s: zero-length target", dm_device_name(t
->md
));
733 tgt
->type
= dm_get_target_type(type
);
735 DMERR("%s: %s: unknown target type", dm_device_name(t
->md
), type
);
739 if (dm_target_needs_singleton(tgt
->type
)) {
740 if (t
->num_targets
) {
741 tgt
->error
= "singleton target type must appear alone in table";
747 if (dm_target_always_writeable(tgt
->type
) && !(t
->mode
& FMODE_WRITE
)) {
748 tgt
->error
= "target type may not be included in a read-only table";
752 if (t
->immutable_target_type
) {
753 if (t
->immutable_target_type
!= tgt
->type
) {
754 tgt
->error
= "immutable target type cannot be mixed with other target types";
757 } else if (dm_target_is_immutable(tgt
->type
)) {
758 if (t
->num_targets
) {
759 tgt
->error
= "immutable target type cannot be mixed with other target types";
762 t
->immutable_target_type
= tgt
->type
;
765 if (dm_target_has_integrity(tgt
->type
))
766 t
->integrity_added
= 1;
771 tgt
->error
= "Unknown error";
774 * Does this target adjoin the previous one ?
776 if (!adjoin(t
, tgt
)) {
777 tgt
->error
= "Gap in table";
781 r
= dm_split_args(&argc
, &argv
, params
);
783 tgt
->error
= "couldn't split parameters (insufficient memory)";
787 r
= tgt
->type
->ctr(tgt
, argc
, argv
);
792 t
->highs
[t
->num_targets
++] = tgt
->begin
+ tgt
->len
- 1;
794 if (!tgt
->num_discard_bios
&& tgt
->discards_supported
)
795 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
796 dm_device_name(t
->md
), type
);
801 DMERR("%s: %s: %s", dm_device_name(t
->md
), type
, tgt
->error
);
802 dm_put_target_type(tgt
->type
);
807 * Target argument parsing helpers.
809 static int validate_next_arg(struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
810 unsigned *value
, char **error
, unsigned grouped
)
812 const char *arg_str
= dm_shift_arg(arg_set
);
816 (sscanf(arg_str
, "%u%c", value
, &dummy
) != 1) ||
817 (*value
< arg
->min
) ||
818 (*value
> arg
->max
) ||
819 (grouped
&& arg_set
->argc
< *value
)) {
827 int dm_read_arg(struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
828 unsigned *value
, char **error
)
830 return validate_next_arg(arg
, arg_set
, value
, error
, 0);
832 EXPORT_SYMBOL(dm_read_arg
);
834 int dm_read_arg_group(struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
835 unsigned *value
, char **error
)
837 return validate_next_arg(arg
, arg_set
, value
, error
, 1);
839 EXPORT_SYMBOL(dm_read_arg_group
);
841 const char *dm_shift_arg(struct dm_arg_set
*as
)
854 EXPORT_SYMBOL(dm_shift_arg
);
856 void dm_consume_args(struct dm_arg_set
*as
, unsigned num_args
)
858 BUG_ON(as
->argc
< num_args
);
859 as
->argc
-= num_args
;
860 as
->argv
+= num_args
;
862 EXPORT_SYMBOL(dm_consume_args
);
864 static bool __table_type_bio_based(enum dm_queue_mode table_type
)
866 return (table_type
== DM_TYPE_BIO_BASED
||
867 table_type
== DM_TYPE_DAX_BIO_BASED
);
870 static bool __table_type_request_based(enum dm_queue_mode table_type
)
872 return (table_type
== DM_TYPE_REQUEST_BASED
||
873 table_type
== DM_TYPE_MQ_REQUEST_BASED
);
876 void dm_table_set_type(struct dm_table
*t
, enum dm_queue_mode type
)
880 EXPORT_SYMBOL_GPL(dm_table_set_type
);
882 static int device_supports_dax(struct dm_target
*ti
, struct dm_dev
*dev
,
883 sector_t start
, sector_t len
, void *data
)
885 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
887 return q
&& blk_queue_dax(q
);
890 static bool dm_table_supports_dax(struct dm_table
*t
)
892 struct dm_target
*ti
;
895 /* Ensure that all targets support DAX. */
896 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
897 ti
= dm_table_get_target(t
, i
);
899 if (!ti
->type
->direct_access
)
902 if (!ti
->type
->iterate_devices
||
903 !ti
->type
->iterate_devices(ti
, device_supports_dax
, NULL
))
910 static int dm_table_determine_type(struct dm_table
*t
)
913 unsigned bio_based
= 0, request_based
= 0, hybrid
= 0;
914 unsigned sq_count
= 0, mq_count
= 0;
915 struct dm_target
*tgt
;
916 struct dm_dev_internal
*dd
;
917 struct list_head
*devices
= dm_table_get_devices(t
);
918 enum dm_queue_mode live_md_type
= dm_get_md_type(t
->md
);
920 if (t
->type
!= DM_TYPE_NONE
) {
921 /* target already set the table's type */
922 if (t
->type
== DM_TYPE_BIO_BASED
)
924 BUG_ON(t
->type
== DM_TYPE_DAX_BIO_BASED
);
925 goto verify_rq_based
;
928 for (i
= 0; i
< t
->num_targets
; i
++) {
929 tgt
= t
->targets
+ i
;
930 if (dm_target_hybrid(tgt
))
932 else if (dm_target_request_based(tgt
))
937 if (bio_based
&& request_based
) {
938 DMWARN("Inconsistent table: different target types"
939 " can't be mixed up");
944 if (hybrid
&& !bio_based
&& !request_based
) {
946 * The targets can work either way.
947 * Determine the type from the live device.
948 * Default to bio-based if device is new.
950 if (__table_type_request_based(live_md_type
))
957 /* We must use this table as bio-based */
958 t
->type
= DM_TYPE_BIO_BASED
;
959 if (dm_table_supports_dax(t
) ||
960 (list_empty(devices
) && live_md_type
== DM_TYPE_DAX_BIO_BASED
))
961 t
->type
= DM_TYPE_DAX_BIO_BASED
;
965 BUG_ON(!request_based
); /* No targets in this table */
968 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
969 * having a compatible target use dm_table_set_type.
971 t
->type
= DM_TYPE_REQUEST_BASED
;
975 * Request-based dm supports only tables that have a single target now.
976 * To support multiple targets, request splitting support is needed,
977 * and that needs lots of changes in the block-layer.
978 * (e.g. request completion process for partial completion.)
980 if (t
->num_targets
> 1) {
981 DMWARN("Request-based dm doesn't support multiple targets yet");
985 if (list_empty(devices
)) {
987 struct dm_table
*live_table
= dm_get_live_table(t
->md
, &srcu_idx
);
989 /* inherit live table's type and all_blk_mq */
991 t
->type
= live_table
->type
;
992 t
->all_blk_mq
= live_table
->all_blk_mq
;
994 dm_put_live_table(t
->md
, srcu_idx
);
998 /* Non-request-stackable devices can't be used for request-based dm */
999 list_for_each_entry(dd
, devices
, list
) {
1000 struct request_queue
*q
= bdev_get_queue(dd
->dm_dev
->bdev
);
1002 if (!blk_queue_stackable(q
)) {
1003 DMERR("table load rejected: including"
1004 " non-request-stackable devices");
1013 if (sq_count
&& mq_count
) {
1014 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1017 t
->all_blk_mq
= mq_count
> 0;
1019 if (t
->type
== DM_TYPE_MQ_REQUEST_BASED
&& !t
->all_blk_mq
) {
1020 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1027 enum dm_queue_mode
dm_table_get_type(struct dm_table
*t
)
1032 struct target_type
*dm_table_get_immutable_target_type(struct dm_table
*t
)
1034 return t
->immutable_target_type
;
1037 struct dm_target
*dm_table_get_immutable_target(struct dm_table
*t
)
1039 /* Immutable target is implicitly a singleton */
1040 if (t
->num_targets
> 1 ||
1041 !dm_target_is_immutable(t
->targets
[0].type
))
1047 struct dm_target
*dm_table_get_wildcard_target(struct dm_table
*t
)
1049 struct dm_target
*ti
;
1052 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1053 ti
= dm_table_get_target(t
, i
);
1054 if (dm_target_is_wildcard(ti
->type
))
1061 bool dm_table_bio_based(struct dm_table
*t
)
1063 return __table_type_bio_based(dm_table_get_type(t
));
1066 bool dm_table_request_based(struct dm_table
*t
)
1068 return __table_type_request_based(dm_table_get_type(t
));
1071 bool dm_table_all_blk_mq_devices(struct dm_table
*t
)
1073 return t
->all_blk_mq
;
1076 static int dm_table_alloc_md_mempools(struct dm_table
*t
, struct mapped_device
*md
)
1078 enum dm_queue_mode type
= dm_table_get_type(t
);
1079 unsigned per_io_data_size
= 0;
1080 struct dm_target
*tgt
;
1083 if (unlikely(type
== DM_TYPE_NONE
)) {
1084 DMWARN("no table type is set, can't allocate mempools");
1088 if (__table_type_bio_based(type
))
1089 for (i
= 0; i
< t
->num_targets
; i
++) {
1090 tgt
= t
->targets
+ i
;
1091 per_io_data_size
= max(per_io_data_size
, tgt
->per_io_data_size
);
1094 t
->mempools
= dm_alloc_md_mempools(md
, type
, t
->integrity_supported
, per_io_data_size
);
1101 void dm_table_free_md_mempools(struct dm_table
*t
)
1103 dm_free_md_mempools(t
->mempools
);
1107 struct dm_md_mempools
*dm_table_get_md_mempools(struct dm_table
*t
)
1112 static int setup_indexes(struct dm_table
*t
)
1115 unsigned int total
= 0;
1118 /* allocate the space for *all* the indexes */
1119 for (i
= t
->depth
- 2; i
>= 0; i
--) {
1120 t
->counts
[i
] = dm_div_up(t
->counts
[i
+ 1], CHILDREN_PER_NODE
);
1121 total
+= t
->counts
[i
];
1124 indexes
= (sector_t
*) dm_vcalloc(total
, (unsigned long) NODE_SIZE
);
1128 /* set up internal nodes, bottom-up */
1129 for (i
= t
->depth
- 2; i
>= 0; i
--) {
1130 t
->index
[i
] = indexes
;
1131 indexes
+= (KEYS_PER_NODE
* t
->counts
[i
]);
1132 setup_btree_index(i
, t
);
1139 * Builds the btree to index the map.
1141 static int dm_table_build_index(struct dm_table
*t
)
1144 unsigned int leaf_nodes
;
1146 /* how many indexes will the btree have ? */
1147 leaf_nodes
= dm_div_up(t
->num_targets
, KEYS_PER_NODE
);
1148 t
->depth
= 1 + int_log(leaf_nodes
, CHILDREN_PER_NODE
);
1150 /* leaf layer has already been set up */
1151 t
->counts
[t
->depth
- 1] = leaf_nodes
;
1152 t
->index
[t
->depth
- 1] = t
->highs
;
1155 r
= setup_indexes(t
);
1160 static bool integrity_profile_exists(struct gendisk
*disk
)
1162 return !!blk_get_integrity(disk
);
1166 * Get a disk whose integrity profile reflects the table's profile.
1167 * Returns NULL if integrity support was inconsistent or unavailable.
1169 static struct gendisk
* dm_table_get_integrity_disk(struct dm_table
*t
)
1171 struct list_head
*devices
= dm_table_get_devices(t
);
1172 struct dm_dev_internal
*dd
= NULL
;
1173 struct gendisk
*prev_disk
= NULL
, *template_disk
= NULL
;
1176 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1177 struct dm_target
*ti
= dm_table_get_target(t
, i
);
1178 if (!dm_target_passes_integrity(ti
->type
))
1182 list_for_each_entry(dd
, devices
, list
) {
1183 template_disk
= dd
->dm_dev
->bdev
->bd_disk
;
1184 if (!integrity_profile_exists(template_disk
))
1186 else if (prev_disk
&&
1187 blk_integrity_compare(prev_disk
, template_disk
) < 0)
1189 prev_disk
= template_disk
;
1192 return template_disk
;
1196 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1197 dm_device_name(t
->md
),
1198 prev_disk
->disk_name
,
1199 template_disk
->disk_name
);
1204 * Register the mapped device for blk_integrity support if the
1205 * underlying devices have an integrity profile. But all devices may
1206 * not have matching profiles (checking all devices isn't reliable
1207 * during table load because this table may use other DM device(s) which
1208 * must be resumed before they will have an initialized integity
1209 * profile). Consequently, stacked DM devices force a 2 stage integrity
1210 * profile validation: First pass during table load, final pass during
1213 static int dm_table_register_integrity(struct dm_table
*t
)
1215 struct mapped_device
*md
= t
->md
;
1216 struct gendisk
*template_disk
= NULL
;
1218 /* If target handles integrity itself do not register it here. */
1219 if (t
->integrity_added
)
1222 template_disk
= dm_table_get_integrity_disk(t
);
1226 if (!integrity_profile_exists(dm_disk(md
))) {
1227 t
->integrity_supported
= true;
1229 * Register integrity profile during table load; we can do
1230 * this because the final profile must match during resume.
1232 blk_integrity_register(dm_disk(md
),
1233 blk_get_integrity(template_disk
));
1238 * If DM device already has an initialized integrity
1239 * profile the new profile should not conflict.
1241 if (blk_integrity_compare(dm_disk(md
), template_disk
) < 0) {
1242 DMWARN("%s: conflict with existing integrity profile: "
1243 "%s profile mismatch",
1244 dm_device_name(t
->md
),
1245 template_disk
->disk_name
);
1249 /* Preserve existing integrity profile */
1250 t
->integrity_supported
= true;
1255 * Prepares the table for use by building the indices,
1256 * setting the type, and allocating mempools.
1258 int dm_table_complete(struct dm_table
*t
)
1262 r
= dm_table_determine_type(t
);
1264 DMERR("unable to determine table type");
1268 r
= dm_table_build_index(t
);
1270 DMERR("unable to build btrees");
1274 r
= dm_table_register_integrity(t
);
1276 DMERR("could not register integrity profile.");
1280 r
= dm_table_alloc_md_mempools(t
, t
->md
);
1282 DMERR("unable to allocate mempools");
1287 static DEFINE_MUTEX(_event_lock
);
1288 void dm_table_event_callback(struct dm_table
*t
,
1289 void (*fn
)(void *), void *context
)
1291 mutex_lock(&_event_lock
);
1293 t
->event_context
= context
;
1294 mutex_unlock(&_event_lock
);
1297 void dm_table_event(struct dm_table
*t
)
1300 * You can no longer call dm_table_event() from interrupt
1301 * context, use a bottom half instead.
1303 BUG_ON(in_interrupt());
1305 mutex_lock(&_event_lock
);
1307 t
->event_fn(t
->event_context
);
1308 mutex_unlock(&_event_lock
);
1310 EXPORT_SYMBOL(dm_table_event
);
1312 sector_t
dm_table_get_size(struct dm_table
*t
)
1314 return t
->num_targets
? (t
->highs
[t
->num_targets
- 1] + 1) : 0;
1316 EXPORT_SYMBOL(dm_table_get_size
);
1318 struct dm_target
*dm_table_get_target(struct dm_table
*t
, unsigned int index
)
1320 if (index
>= t
->num_targets
)
1323 return t
->targets
+ index
;
1327 * Search the btree for the correct target.
1329 * Caller should check returned pointer with dm_target_is_valid()
1330 * to trap I/O beyond end of device.
1332 struct dm_target
*dm_table_find_target(struct dm_table
*t
, sector_t sector
)
1334 unsigned int l
, n
= 0, k
= 0;
1337 for (l
= 0; l
< t
->depth
; l
++) {
1338 n
= get_child(n
, k
);
1339 node
= get_node(t
, l
, n
);
1341 for (k
= 0; k
< KEYS_PER_NODE
; k
++)
1342 if (node
[k
] >= sector
)
1346 return &t
->targets
[(KEYS_PER_NODE
* n
) + k
];
1349 static int count_device(struct dm_target
*ti
, struct dm_dev
*dev
,
1350 sector_t start
, sector_t len
, void *data
)
1352 unsigned *num_devices
= data
;
1360 * Check whether a table has no data devices attached using each
1361 * target's iterate_devices method.
1362 * Returns false if the result is unknown because a target doesn't
1363 * support iterate_devices.
1365 bool dm_table_has_no_data_devices(struct dm_table
*table
)
1367 struct dm_target
*ti
;
1368 unsigned i
, num_devices
;
1370 for (i
= 0; i
< dm_table_get_num_targets(table
); i
++) {
1371 ti
= dm_table_get_target(table
, i
);
1373 if (!ti
->type
->iterate_devices
)
1377 ti
->type
->iterate_devices(ti
, count_device
, &num_devices
);
1385 static int device_is_zoned_model(struct dm_target
*ti
, struct dm_dev
*dev
,
1386 sector_t start
, sector_t len
, void *data
)
1388 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1389 enum blk_zoned_model
*zoned_model
= data
;
1391 return q
&& blk_queue_zoned_model(q
) == *zoned_model
;
1394 static bool dm_table_supports_zoned_model(struct dm_table
*t
,
1395 enum blk_zoned_model zoned_model
)
1397 struct dm_target
*ti
;
1400 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1401 ti
= dm_table_get_target(t
, i
);
1403 if (zoned_model
== BLK_ZONED_HM
&&
1404 !dm_target_supports_zoned_hm(ti
->type
))
1407 if (!ti
->type
->iterate_devices
||
1408 !ti
->type
->iterate_devices(ti
, device_is_zoned_model
, &zoned_model
))
1415 static int device_matches_zone_sectors(struct dm_target
*ti
, struct dm_dev
*dev
,
1416 sector_t start
, sector_t len
, void *data
)
1418 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1419 unsigned int *zone_sectors
= data
;
1421 return q
&& blk_queue_zone_sectors(q
) == *zone_sectors
;
1424 static bool dm_table_matches_zone_sectors(struct dm_table
*t
,
1425 unsigned int zone_sectors
)
1427 struct dm_target
*ti
;
1430 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1431 ti
= dm_table_get_target(t
, i
);
1433 if (!ti
->type
->iterate_devices
||
1434 !ti
->type
->iterate_devices(ti
, device_matches_zone_sectors
, &zone_sectors
))
1441 static int validate_hardware_zoned_model(struct dm_table
*table
,
1442 enum blk_zoned_model zoned_model
,
1443 unsigned int zone_sectors
)
1445 if (zoned_model
== BLK_ZONED_NONE
)
1448 if (!dm_table_supports_zoned_model(table
, zoned_model
)) {
1449 DMERR("%s: zoned model is not consistent across all devices",
1450 dm_device_name(table
->md
));
1454 /* Check zone size validity and compatibility */
1455 if (!zone_sectors
|| !is_power_of_2(zone_sectors
))
1458 if (!dm_table_matches_zone_sectors(table
, zone_sectors
)) {
1459 DMERR("%s: zone sectors is not consistent across all devices",
1460 dm_device_name(table
->md
));
1468 * Establish the new table's queue_limits and validate them.
1470 int dm_calculate_queue_limits(struct dm_table
*table
,
1471 struct queue_limits
*limits
)
1473 struct dm_target
*ti
;
1474 struct queue_limits ti_limits
;
1476 enum blk_zoned_model zoned_model
= BLK_ZONED_NONE
;
1477 unsigned int zone_sectors
= 0;
1479 blk_set_stacking_limits(limits
);
1481 for (i
= 0; i
< dm_table_get_num_targets(table
); i
++) {
1482 blk_set_stacking_limits(&ti_limits
);
1484 ti
= dm_table_get_target(table
, i
);
1486 if (!ti
->type
->iterate_devices
)
1487 goto combine_limits
;
1490 * Combine queue limits of all the devices this target uses.
1492 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
1495 if (zoned_model
== BLK_ZONED_NONE
&& ti_limits
.zoned
!= BLK_ZONED_NONE
) {
1497 * After stacking all limits, validate all devices
1498 * in table support this zoned model and zone sectors.
1500 zoned_model
= ti_limits
.zoned
;
1501 zone_sectors
= ti_limits
.chunk_sectors
;
1504 /* Set I/O hints portion of queue limits */
1505 if (ti
->type
->io_hints
)
1506 ti
->type
->io_hints(ti
, &ti_limits
);
1509 * Check each device area is consistent with the target's
1510 * overall queue limits.
1512 if (ti
->type
->iterate_devices(ti
, device_area_is_invalid
,
1518 * Merge this target's queue limits into the overall limits
1521 if (blk_stack_limits(limits
, &ti_limits
, 0) < 0)
1522 DMWARN("%s: adding target device "
1523 "(start sect %llu len %llu) "
1524 "caused an alignment inconsistency",
1525 dm_device_name(table
->md
),
1526 (unsigned long long) ti
->begin
,
1527 (unsigned long long) ti
->len
);
1530 * FIXME: this should likely be moved to blk_stack_limits(), would
1531 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1533 if (limits
->zoned
== BLK_ZONED_NONE
&& ti_limits
.zoned
!= BLK_ZONED_NONE
) {
1535 * By default, the stacked limits zoned model is set to
1536 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1537 * this model using the first target model reported
1538 * that is not BLK_ZONED_NONE. This will be either the
1539 * first target device zoned model or the model reported
1540 * by the target .io_hints.
1542 limits
->zoned
= ti_limits
.zoned
;
1547 * Verify that the zoned model and zone sectors, as determined before
1548 * any .io_hints override, are the same across all devices in the table.
1549 * - this is especially relevant if .io_hints is emulating a disk-managed
1550 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1553 if (limits
->zoned
!= BLK_ZONED_NONE
) {
1555 * ...IF the above limits stacking determined a zoned model
1556 * validate that all of the table's devices conform to it.
1558 zoned_model
= limits
->zoned
;
1559 zone_sectors
= limits
->chunk_sectors
;
1561 if (validate_hardware_zoned_model(table
, zoned_model
, zone_sectors
))
1564 return validate_hardware_logical_block_alignment(table
, limits
);
1568 * Verify that all devices have an integrity profile that matches the
1569 * DM device's registered integrity profile. If the profiles don't
1570 * match then unregister the DM device's integrity profile.
1572 static void dm_table_verify_integrity(struct dm_table
*t
)
1574 struct gendisk
*template_disk
= NULL
;
1576 if (t
->integrity_added
)
1579 if (t
->integrity_supported
) {
1581 * Verify that the original integrity profile
1582 * matches all the devices in this table.
1584 template_disk
= dm_table_get_integrity_disk(t
);
1585 if (template_disk
&&
1586 blk_integrity_compare(dm_disk(t
->md
), template_disk
) >= 0)
1590 if (integrity_profile_exists(dm_disk(t
->md
))) {
1591 DMWARN("%s: unable to establish an integrity profile",
1592 dm_device_name(t
->md
));
1593 blk_integrity_unregister(dm_disk(t
->md
));
1597 static int device_flush_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1598 sector_t start
, sector_t len
, void *data
)
1600 unsigned long flush
= (unsigned long) data
;
1601 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1603 return q
&& (q
->queue_flags
& flush
);
1606 static bool dm_table_supports_flush(struct dm_table
*t
, unsigned long flush
)
1608 struct dm_target
*ti
;
1612 * Require at least one underlying device to support flushes.
1613 * t->devices includes internal dm devices such as mirror logs
1614 * so we need to use iterate_devices here, which targets
1615 * supporting flushes must provide.
1617 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1618 ti
= dm_table_get_target(t
, i
);
1620 if (!ti
->num_flush_bios
)
1623 if (ti
->flush_supported
)
1626 if (ti
->type
->iterate_devices
&&
1627 ti
->type
->iterate_devices(ti
, device_flush_capable
, (void *) flush
))
1634 static int device_dax_write_cache_enabled(struct dm_target
*ti
,
1635 struct dm_dev
*dev
, sector_t start
,
1636 sector_t len
, void *data
)
1638 struct dax_device
*dax_dev
= dev
->dax_dev
;
1643 if (dax_write_cache_enabled(dax_dev
))
1648 static int dm_table_supports_dax_write_cache(struct dm_table
*t
)
1650 struct dm_target
*ti
;
1653 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1654 ti
= dm_table_get_target(t
, i
);
1656 if (ti
->type
->iterate_devices
&&
1657 ti
->type
->iterate_devices(ti
,
1658 device_dax_write_cache_enabled
, NULL
))
1665 static int device_is_nonrot(struct dm_target
*ti
, struct dm_dev
*dev
,
1666 sector_t start
, sector_t len
, void *data
)
1668 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1670 return q
&& blk_queue_nonrot(q
);
1673 static int device_is_not_random(struct dm_target
*ti
, struct dm_dev
*dev
,
1674 sector_t start
, sector_t len
, void *data
)
1676 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1678 return q
&& !blk_queue_add_random(q
);
1681 static int queue_supports_sg_merge(struct dm_target
*ti
, struct dm_dev
*dev
,
1682 sector_t start
, sector_t len
, void *data
)
1684 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1686 return q
&& !test_bit(QUEUE_FLAG_NO_SG_MERGE
, &q
->queue_flags
);
1689 static bool dm_table_all_devices_attribute(struct dm_table
*t
,
1690 iterate_devices_callout_fn func
)
1692 struct dm_target
*ti
;
1695 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1696 ti
= dm_table_get_target(t
, i
);
1698 if (!ti
->type
->iterate_devices
||
1699 !ti
->type
->iterate_devices(ti
, func
, NULL
))
1706 static int device_not_write_same_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1707 sector_t start
, sector_t len
, void *data
)
1709 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1711 return q
&& !q
->limits
.max_write_same_sectors
;
1714 static bool dm_table_supports_write_same(struct dm_table
*t
)
1716 struct dm_target
*ti
;
1719 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1720 ti
= dm_table_get_target(t
, i
);
1722 if (!ti
->num_write_same_bios
)
1725 if (!ti
->type
->iterate_devices
||
1726 ti
->type
->iterate_devices(ti
, device_not_write_same_capable
, NULL
))
1733 static int device_not_write_zeroes_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1734 sector_t start
, sector_t len
, void *data
)
1736 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1738 return q
&& !q
->limits
.max_write_zeroes_sectors
;
1741 static bool dm_table_supports_write_zeroes(struct dm_table
*t
)
1743 struct dm_target
*ti
;
1746 while (i
< dm_table_get_num_targets(t
)) {
1747 ti
= dm_table_get_target(t
, i
++);
1749 if (!ti
->num_write_zeroes_bios
)
1752 if (!ti
->type
->iterate_devices
||
1753 ti
->type
->iterate_devices(ti
, device_not_write_zeroes_capable
, NULL
))
1761 static int device_discard_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1762 sector_t start
, sector_t len
, void *data
)
1764 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1766 return q
&& blk_queue_discard(q
);
1769 static bool dm_table_supports_discards(struct dm_table
*t
)
1771 struct dm_target
*ti
;
1775 * Unless any target used by the table set discards_supported,
1776 * require at least one underlying device to support discards.
1777 * t->devices includes internal dm devices such as mirror logs
1778 * so we need to use iterate_devices here, which targets
1779 * supporting discard selectively must provide.
1781 for (i
= 0; i
< dm_table_get_num_targets(t
); i
++) {
1782 ti
= dm_table_get_target(t
, i
);
1784 if (!ti
->num_discard_bios
)
1787 if (ti
->discards_supported
)
1790 if (ti
->type
->iterate_devices
&&
1791 ti
->type
->iterate_devices(ti
, device_discard_capable
, NULL
))
1798 void dm_table_set_restrictions(struct dm_table
*t
, struct request_queue
*q
,
1799 struct queue_limits
*limits
)
1801 bool wc
= false, fua
= false;
1804 * Copy table's limits to the DM device's request_queue
1806 q
->limits
= *limits
;
1808 if (!dm_table_supports_discards(t
))
1809 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
, q
);
1811 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, q
);
1813 if (dm_table_supports_flush(t
, (1UL << QUEUE_FLAG_WC
))) {
1815 if (dm_table_supports_flush(t
, (1UL << QUEUE_FLAG_FUA
)))
1818 blk_queue_write_cache(q
, wc
, fua
);
1820 if (dm_table_supports_dax_write_cache(t
))
1821 dax_write_cache(t
->md
->dax_dev
, true);
1823 /* Ensure that all underlying devices are non-rotational. */
1824 if (dm_table_all_devices_attribute(t
, device_is_nonrot
))
1825 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, q
);
1827 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT
, q
);
1829 if (!dm_table_supports_write_same(t
))
1830 q
->limits
.max_write_same_sectors
= 0;
1831 if (!dm_table_supports_write_zeroes(t
))
1832 q
->limits
.max_write_zeroes_sectors
= 0;
1834 if (dm_table_all_devices_attribute(t
, queue_supports_sg_merge
))
1835 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE
, q
);
1837 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE
, q
);
1839 dm_table_verify_integrity(t
);
1842 * Determine whether or not this queue's I/O timings contribute
1843 * to the entropy pool, Only request-based targets use this.
1844 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1847 if (blk_queue_add_random(q
) && dm_table_all_devices_attribute(t
, device_is_not_random
))
1848 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM
, q
);
1851 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1852 * visible to other CPUs because, once the flag is set, incoming bios
1853 * are processed by request-based dm, which refers to the queue
1855 * Until the flag set, bios are passed to bio-based dm and queued to
1856 * md->deferred where queue settings are not needed yet.
1857 * Those bios are passed to request-based dm at the resume time.
1860 if (dm_table_request_based(t
))
1861 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE
, q
);
1864 unsigned int dm_table_get_num_targets(struct dm_table
*t
)
1866 return t
->num_targets
;
1869 struct list_head
*dm_table_get_devices(struct dm_table
*t
)
1874 fmode_t
dm_table_get_mode(struct dm_table
*t
)
1878 EXPORT_SYMBOL(dm_table_get_mode
);
1886 static void suspend_targets(struct dm_table
*t
, enum suspend_mode mode
)
1888 int i
= t
->num_targets
;
1889 struct dm_target
*ti
= t
->targets
;
1891 lockdep_assert_held(&t
->md
->suspend_lock
);
1896 if (ti
->type
->presuspend
)
1897 ti
->type
->presuspend(ti
);
1899 case PRESUSPEND_UNDO
:
1900 if (ti
->type
->presuspend_undo
)
1901 ti
->type
->presuspend_undo(ti
);
1904 if (ti
->type
->postsuspend
)
1905 ti
->type
->postsuspend(ti
);
1912 void dm_table_presuspend_targets(struct dm_table
*t
)
1917 suspend_targets(t
, PRESUSPEND
);
1920 void dm_table_presuspend_undo_targets(struct dm_table
*t
)
1925 suspend_targets(t
, PRESUSPEND_UNDO
);
1928 void dm_table_postsuspend_targets(struct dm_table
*t
)
1933 suspend_targets(t
, POSTSUSPEND
);
1936 int dm_table_resume_targets(struct dm_table
*t
)
1940 lockdep_assert_held(&t
->md
->suspend_lock
);
1942 for (i
= 0; i
< t
->num_targets
; i
++) {
1943 struct dm_target
*ti
= t
->targets
+ i
;
1945 if (!ti
->type
->preresume
)
1948 r
= ti
->type
->preresume(ti
);
1950 DMERR("%s: %s: preresume failed, error = %d",
1951 dm_device_name(t
->md
), ti
->type
->name
, r
);
1956 for (i
= 0; i
< t
->num_targets
; i
++) {
1957 struct dm_target
*ti
= t
->targets
+ i
;
1959 if (ti
->type
->resume
)
1960 ti
->type
->resume(ti
);
1966 void dm_table_add_target_callbacks(struct dm_table
*t
, struct dm_target_callbacks
*cb
)
1968 list_add(&cb
->list
, &t
->target_callbacks
);
1970 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks
);
1972 int dm_table_any_congested(struct dm_table
*t
, int bdi_bits
)
1974 struct dm_dev_internal
*dd
;
1975 struct list_head
*devices
= dm_table_get_devices(t
);
1976 struct dm_target_callbacks
*cb
;
1979 list_for_each_entry(dd
, devices
, list
) {
1980 struct request_queue
*q
= bdev_get_queue(dd
->dm_dev
->bdev
);
1981 char b
[BDEVNAME_SIZE
];
1984 r
|= bdi_congested(q
->backing_dev_info
, bdi_bits
);
1986 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1987 dm_device_name(t
->md
),
1988 bdevname(dd
->dm_dev
->bdev
, b
));
1991 list_for_each_entry(cb
, &t
->target_callbacks
, list
)
1992 if (cb
->congested_fn
)
1993 r
|= cb
->congested_fn(cb
, bdi_bits
);
1998 struct mapped_device
*dm_table_get_md(struct dm_table
*t
)
2002 EXPORT_SYMBOL(dm_table_get_md
);
2004 void dm_table_run_md_queue_async(struct dm_table
*t
)
2006 struct mapped_device
*md
;
2007 struct request_queue
*queue
;
2008 unsigned long flags
;
2010 if (!dm_table_request_based(t
))
2013 md
= dm_table_get_md(t
);
2014 queue
= dm_get_md_queue(md
);
2017 blk_mq_run_hw_queues(queue
, true);
2019 spin_lock_irqsave(queue
->queue_lock
, flags
);
2020 blk_run_queue_async(queue
);
2021 spin_unlock_irqrestore(queue
->queue_lock
, flags
);
2025 EXPORT_SYMBOL(dm_table_run_md_queue_async
);