watchdog/core: Rename some softlockup_* functions
[linux/fpc-iii.git] / drivers / md / dm.c
blob04ae795e8a5f4d5843260772d9f624d2734f3d31
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
28 #define DM_MSG_PREFIX "core"
31 * Cookies are numeric values sent with CHANGE and REMOVE
32 * uevents while resuming, removing or renaming the device.
34 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
35 #define DM_COOKIE_LENGTH 24
37 static const char *_name = DM_NAME;
39 static unsigned int major = 0;
40 static unsigned int _major = 0;
42 static DEFINE_IDR(_minor_idr);
44 static DEFINE_SPINLOCK(_minor_lock);
46 static void do_deferred_remove(struct work_struct *w);
48 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 static struct workqueue_struct *deferred_remove_workqueue;
52 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
53 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
56 * One of these is allocated per bio.
58 struct dm_io {
59 struct mapped_device *md;
60 blk_status_t status;
61 atomic_t io_count;
62 struct bio *bio;
63 unsigned long start_time;
64 spinlock_t endio_lock;
65 struct dm_stats_aux stats_aux;
68 #define MINOR_ALLOCED ((void *)-1)
71 * Bits for the md->flags field.
73 #define DMF_BLOCK_IO_FOR_SUSPEND 0
74 #define DMF_SUSPENDED 1
75 #define DMF_FROZEN 2
76 #define DMF_FREEING 3
77 #define DMF_DELETING 4
78 #define DMF_NOFLUSH_SUSPENDING 5
79 #define DMF_DEFERRED_REMOVE 6
80 #define DMF_SUSPENDED_INTERNALLY 7
82 #define DM_NUMA_NODE NUMA_NO_NODE
83 static int dm_numa_node = DM_NUMA_NODE;
86 * For mempools pre-allocation at the table loading time.
88 struct dm_md_mempools {
89 mempool_t *io_pool;
90 struct bio_set *bs;
93 struct table_device {
94 struct list_head list;
95 atomic_t count;
96 struct dm_dev dm_dev;
99 static struct kmem_cache *_io_cache;
100 static struct kmem_cache *_rq_tio_cache;
101 static struct kmem_cache *_rq_cache;
104 * Bio-based DM's mempools' reserved IOs set by the user.
106 #define RESERVED_BIO_BASED_IOS 16
107 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
109 static int __dm_get_module_param_int(int *module_param, int min, int max)
111 int param = ACCESS_ONCE(*module_param);
112 int modified_param = 0;
113 bool modified = true;
115 if (param < min)
116 modified_param = min;
117 else if (param > max)
118 modified_param = max;
119 else
120 modified = false;
122 if (modified) {
123 (void)cmpxchg(module_param, param, modified_param);
124 param = modified_param;
127 return param;
130 unsigned __dm_get_module_param(unsigned *module_param,
131 unsigned def, unsigned max)
133 unsigned param = ACCESS_ONCE(*module_param);
134 unsigned modified_param = 0;
136 if (!param)
137 modified_param = def;
138 else if (param > max)
139 modified_param = max;
141 if (modified_param) {
142 (void)cmpxchg(module_param, param, modified_param);
143 param = modified_param;
146 return param;
149 unsigned dm_get_reserved_bio_based_ios(void)
151 return __dm_get_module_param(&reserved_bio_based_ios,
152 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
154 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
156 static unsigned dm_get_numa_node(void)
158 return __dm_get_module_param_int(&dm_numa_node,
159 DM_NUMA_NODE, num_online_nodes() - 1);
162 static int __init local_init(void)
164 int r = -ENOMEM;
166 /* allocate a slab for the dm_ios */
167 _io_cache = KMEM_CACHE(dm_io, 0);
168 if (!_io_cache)
169 return r;
171 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
172 if (!_rq_tio_cache)
173 goto out_free_io_cache;
175 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
176 __alignof__(struct request), 0, NULL);
177 if (!_rq_cache)
178 goto out_free_rq_tio_cache;
180 r = dm_uevent_init();
181 if (r)
182 goto out_free_rq_cache;
184 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
185 if (!deferred_remove_workqueue) {
186 r = -ENOMEM;
187 goto out_uevent_exit;
190 _major = major;
191 r = register_blkdev(_major, _name);
192 if (r < 0)
193 goto out_free_workqueue;
195 if (!_major)
196 _major = r;
198 return 0;
200 out_free_workqueue:
201 destroy_workqueue(deferred_remove_workqueue);
202 out_uevent_exit:
203 dm_uevent_exit();
204 out_free_rq_cache:
205 kmem_cache_destroy(_rq_cache);
206 out_free_rq_tio_cache:
207 kmem_cache_destroy(_rq_tio_cache);
208 out_free_io_cache:
209 kmem_cache_destroy(_io_cache);
211 return r;
214 static void local_exit(void)
216 flush_scheduled_work();
217 destroy_workqueue(deferred_remove_workqueue);
219 kmem_cache_destroy(_rq_cache);
220 kmem_cache_destroy(_rq_tio_cache);
221 kmem_cache_destroy(_io_cache);
222 unregister_blkdev(_major, _name);
223 dm_uevent_exit();
225 _major = 0;
227 DMINFO("cleaned up");
230 static int (*_inits[])(void) __initdata = {
231 local_init,
232 dm_target_init,
233 dm_linear_init,
234 dm_stripe_init,
235 dm_io_init,
236 dm_kcopyd_init,
237 dm_interface_init,
238 dm_statistics_init,
241 static void (*_exits[])(void) = {
242 local_exit,
243 dm_target_exit,
244 dm_linear_exit,
245 dm_stripe_exit,
246 dm_io_exit,
247 dm_kcopyd_exit,
248 dm_interface_exit,
249 dm_statistics_exit,
252 static int __init dm_init(void)
254 const int count = ARRAY_SIZE(_inits);
256 int r, i;
258 for (i = 0; i < count; i++) {
259 r = _inits[i]();
260 if (r)
261 goto bad;
264 return 0;
266 bad:
267 while (i--)
268 _exits[i]();
270 return r;
273 static void __exit dm_exit(void)
275 int i = ARRAY_SIZE(_exits);
277 while (i--)
278 _exits[i]();
281 * Should be empty by this point.
283 idr_destroy(&_minor_idr);
287 * Block device functions
289 int dm_deleting_md(struct mapped_device *md)
291 return test_bit(DMF_DELETING, &md->flags);
294 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
296 struct mapped_device *md;
298 spin_lock(&_minor_lock);
300 md = bdev->bd_disk->private_data;
301 if (!md)
302 goto out;
304 if (test_bit(DMF_FREEING, &md->flags) ||
305 dm_deleting_md(md)) {
306 md = NULL;
307 goto out;
310 dm_get(md);
311 atomic_inc(&md->open_count);
312 out:
313 spin_unlock(&_minor_lock);
315 return md ? 0 : -ENXIO;
318 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
320 struct mapped_device *md;
322 spin_lock(&_minor_lock);
324 md = disk->private_data;
325 if (WARN_ON(!md))
326 goto out;
328 if (atomic_dec_and_test(&md->open_count) &&
329 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
330 queue_work(deferred_remove_workqueue, &deferred_remove_work);
332 dm_put(md);
333 out:
334 spin_unlock(&_minor_lock);
337 int dm_open_count(struct mapped_device *md)
339 return atomic_read(&md->open_count);
343 * Guarantees nothing is using the device before it's deleted.
345 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
347 int r = 0;
349 spin_lock(&_minor_lock);
351 if (dm_open_count(md)) {
352 r = -EBUSY;
353 if (mark_deferred)
354 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
355 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
356 r = -EEXIST;
357 else
358 set_bit(DMF_DELETING, &md->flags);
360 spin_unlock(&_minor_lock);
362 return r;
365 int dm_cancel_deferred_remove(struct mapped_device *md)
367 int r = 0;
369 spin_lock(&_minor_lock);
371 if (test_bit(DMF_DELETING, &md->flags))
372 r = -EBUSY;
373 else
374 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
376 spin_unlock(&_minor_lock);
378 return r;
381 static void do_deferred_remove(struct work_struct *w)
383 dm_deferred_remove();
386 sector_t dm_get_size(struct mapped_device *md)
388 return get_capacity(md->disk);
391 struct request_queue *dm_get_md_queue(struct mapped_device *md)
393 return md->queue;
396 struct dm_stats *dm_get_stats(struct mapped_device *md)
398 return &md->stats;
401 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
403 struct mapped_device *md = bdev->bd_disk->private_data;
405 return dm_get_geometry(md, geo);
408 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
409 struct block_device **bdev,
410 fmode_t *mode)
412 struct dm_target *tgt;
413 struct dm_table *map;
414 int srcu_idx, r;
416 retry:
417 r = -ENOTTY;
418 map = dm_get_live_table(md, &srcu_idx);
419 if (!map || !dm_table_get_size(map))
420 goto out;
422 /* We only support devices that have a single target */
423 if (dm_table_get_num_targets(map) != 1)
424 goto out;
426 tgt = dm_table_get_target(map, 0);
427 if (!tgt->type->prepare_ioctl)
428 goto out;
430 if (dm_suspended_md(md)) {
431 r = -EAGAIN;
432 goto out;
435 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
436 if (r < 0)
437 goto out;
439 bdgrab(*bdev);
440 dm_put_live_table(md, srcu_idx);
441 return r;
443 out:
444 dm_put_live_table(md, srcu_idx);
445 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
446 msleep(10);
447 goto retry;
449 return r;
452 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
453 unsigned int cmd, unsigned long arg)
455 struct mapped_device *md = bdev->bd_disk->private_data;
456 int r;
458 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
459 if (r < 0)
460 return r;
462 if (r > 0) {
464 * Target determined this ioctl is being issued against a
465 * subset of the parent bdev; require extra privileges.
467 if (!capable(CAP_SYS_RAWIO)) {
468 DMWARN_LIMIT(
469 "%s: sending ioctl %x to DM device without required privilege.",
470 current->comm, cmd);
471 r = -ENOIOCTLCMD;
472 goto out;
476 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
477 out:
478 bdput(bdev);
479 return r;
482 static struct dm_io *alloc_io(struct mapped_device *md)
484 return mempool_alloc(md->io_pool, GFP_NOIO);
487 static void free_io(struct mapped_device *md, struct dm_io *io)
489 mempool_free(io, md->io_pool);
492 static void free_tio(struct dm_target_io *tio)
494 bio_put(&tio->clone);
497 int md_in_flight(struct mapped_device *md)
499 return atomic_read(&md->pending[READ]) +
500 atomic_read(&md->pending[WRITE]);
503 static void start_io_acct(struct dm_io *io)
505 struct mapped_device *md = io->md;
506 struct bio *bio = io->bio;
507 int cpu;
508 int rw = bio_data_dir(bio);
510 io->start_time = jiffies;
512 cpu = part_stat_lock();
513 part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
514 part_stat_unlock();
515 atomic_set(&dm_disk(md)->part0.in_flight[rw],
516 atomic_inc_return(&md->pending[rw]));
518 if (unlikely(dm_stats_used(&md->stats)))
519 dm_stats_account_io(&md->stats, bio_data_dir(bio),
520 bio->bi_iter.bi_sector, bio_sectors(bio),
521 false, 0, &io->stats_aux);
524 static void end_io_acct(struct dm_io *io)
526 struct mapped_device *md = io->md;
527 struct bio *bio = io->bio;
528 unsigned long duration = jiffies - io->start_time;
529 int pending;
530 int rw = bio_data_dir(bio);
532 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
534 if (unlikely(dm_stats_used(&md->stats)))
535 dm_stats_account_io(&md->stats, bio_data_dir(bio),
536 bio->bi_iter.bi_sector, bio_sectors(bio),
537 true, duration, &io->stats_aux);
540 * After this is decremented the bio must not be touched if it is
541 * a flush.
543 pending = atomic_dec_return(&md->pending[rw]);
544 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
545 pending += atomic_read(&md->pending[rw^0x1]);
547 /* nudge anyone waiting on suspend queue */
548 if (!pending)
549 wake_up(&md->wait);
553 * Add the bio to the list of deferred io.
555 static void queue_io(struct mapped_device *md, struct bio *bio)
557 unsigned long flags;
559 spin_lock_irqsave(&md->deferred_lock, flags);
560 bio_list_add(&md->deferred, bio);
561 spin_unlock_irqrestore(&md->deferred_lock, flags);
562 queue_work(md->wq, &md->work);
566 * Everyone (including functions in this file), should use this
567 * function to access the md->map field, and make sure they call
568 * dm_put_live_table() when finished.
570 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
572 *srcu_idx = srcu_read_lock(&md->io_barrier);
574 return srcu_dereference(md->map, &md->io_barrier);
577 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
579 srcu_read_unlock(&md->io_barrier, srcu_idx);
582 void dm_sync_table(struct mapped_device *md)
584 synchronize_srcu(&md->io_barrier);
585 synchronize_rcu_expedited();
589 * A fast alternative to dm_get_live_table/dm_put_live_table.
590 * The caller must not block between these two functions.
592 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
594 rcu_read_lock();
595 return rcu_dereference(md->map);
598 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
600 rcu_read_unlock();
604 * Open a table device so we can use it as a map destination.
606 static int open_table_device(struct table_device *td, dev_t dev,
607 struct mapped_device *md)
609 static char *_claim_ptr = "I belong to device-mapper";
610 struct block_device *bdev;
612 int r;
614 BUG_ON(td->dm_dev.bdev);
616 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
617 if (IS_ERR(bdev))
618 return PTR_ERR(bdev);
620 r = bd_link_disk_holder(bdev, dm_disk(md));
621 if (r) {
622 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
623 return r;
626 td->dm_dev.bdev = bdev;
627 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
628 return 0;
632 * Close a table device that we've been using.
634 static void close_table_device(struct table_device *td, struct mapped_device *md)
636 if (!td->dm_dev.bdev)
637 return;
639 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
640 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
641 put_dax(td->dm_dev.dax_dev);
642 td->dm_dev.bdev = NULL;
643 td->dm_dev.dax_dev = NULL;
646 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
647 fmode_t mode) {
648 struct table_device *td;
650 list_for_each_entry(td, l, list)
651 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
652 return td;
654 return NULL;
657 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
658 struct dm_dev **result) {
659 int r;
660 struct table_device *td;
662 mutex_lock(&md->table_devices_lock);
663 td = find_table_device(&md->table_devices, dev, mode);
664 if (!td) {
665 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
666 if (!td) {
667 mutex_unlock(&md->table_devices_lock);
668 return -ENOMEM;
671 td->dm_dev.mode = mode;
672 td->dm_dev.bdev = NULL;
674 if ((r = open_table_device(td, dev, md))) {
675 mutex_unlock(&md->table_devices_lock);
676 kfree(td);
677 return r;
680 format_dev_t(td->dm_dev.name, dev);
682 atomic_set(&td->count, 0);
683 list_add(&td->list, &md->table_devices);
685 atomic_inc(&td->count);
686 mutex_unlock(&md->table_devices_lock);
688 *result = &td->dm_dev;
689 return 0;
691 EXPORT_SYMBOL_GPL(dm_get_table_device);
693 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
695 struct table_device *td = container_of(d, struct table_device, dm_dev);
697 mutex_lock(&md->table_devices_lock);
698 if (atomic_dec_and_test(&td->count)) {
699 close_table_device(td, md);
700 list_del(&td->list);
701 kfree(td);
703 mutex_unlock(&md->table_devices_lock);
705 EXPORT_SYMBOL(dm_put_table_device);
707 static void free_table_devices(struct list_head *devices)
709 struct list_head *tmp, *next;
711 list_for_each_safe(tmp, next, devices) {
712 struct table_device *td = list_entry(tmp, struct table_device, list);
714 DMWARN("dm_destroy: %s still exists with %d references",
715 td->dm_dev.name, atomic_read(&td->count));
716 kfree(td);
721 * Get the geometry associated with a dm device
723 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
725 *geo = md->geometry;
727 return 0;
731 * Set the geometry of a device.
733 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
735 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
737 if (geo->start > sz) {
738 DMWARN("Start sector is beyond the geometry limits.");
739 return -EINVAL;
742 md->geometry = *geo;
744 return 0;
747 /*-----------------------------------------------------------------
748 * CRUD START:
749 * A more elegant soln is in the works that uses the queue
750 * merge fn, unfortunately there are a couple of changes to
751 * the block layer that I want to make for this. So in the
752 * interests of getting something for people to use I give
753 * you this clearly demarcated crap.
754 *---------------------------------------------------------------*/
756 static int __noflush_suspending(struct mapped_device *md)
758 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
762 * Decrements the number of outstanding ios that a bio has been
763 * cloned into, completing the original io if necc.
765 static void dec_pending(struct dm_io *io, blk_status_t error)
767 unsigned long flags;
768 blk_status_t io_error;
769 struct bio *bio;
770 struct mapped_device *md = io->md;
772 /* Push-back supersedes any I/O errors */
773 if (unlikely(error)) {
774 spin_lock_irqsave(&io->endio_lock, flags);
775 if (!(io->status == BLK_STS_DM_REQUEUE &&
776 __noflush_suspending(md)))
777 io->status = error;
778 spin_unlock_irqrestore(&io->endio_lock, flags);
781 if (atomic_dec_and_test(&io->io_count)) {
782 if (io->status == BLK_STS_DM_REQUEUE) {
784 * Target requested pushing back the I/O.
786 spin_lock_irqsave(&md->deferred_lock, flags);
787 if (__noflush_suspending(md))
788 bio_list_add_head(&md->deferred, io->bio);
789 else
790 /* noflush suspend was interrupted. */
791 io->status = BLK_STS_IOERR;
792 spin_unlock_irqrestore(&md->deferred_lock, flags);
795 io_error = io->status;
796 bio = io->bio;
797 end_io_acct(io);
798 free_io(md, io);
800 if (io_error == BLK_STS_DM_REQUEUE)
801 return;
803 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
805 * Preflush done for flush with data, reissue
806 * without REQ_PREFLUSH.
808 bio->bi_opf &= ~REQ_PREFLUSH;
809 queue_io(md, bio);
810 } else {
811 /* done with normal IO or empty flush */
812 bio->bi_status = io_error;
813 bio_endio(bio);
818 void disable_write_same(struct mapped_device *md)
820 struct queue_limits *limits = dm_get_queue_limits(md);
822 /* device doesn't really support WRITE SAME, disable it */
823 limits->max_write_same_sectors = 0;
826 void disable_write_zeroes(struct mapped_device *md)
828 struct queue_limits *limits = dm_get_queue_limits(md);
830 /* device doesn't really support WRITE ZEROES, disable it */
831 limits->max_write_zeroes_sectors = 0;
834 static void clone_endio(struct bio *bio)
836 blk_status_t error = bio->bi_status;
837 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
838 struct dm_io *io = tio->io;
839 struct mapped_device *md = tio->io->md;
840 dm_endio_fn endio = tio->ti->type->end_io;
842 if (unlikely(error == BLK_STS_TARGET)) {
843 if (bio_op(bio) == REQ_OP_WRITE_SAME &&
844 !bio->bi_disk->queue->limits.max_write_same_sectors)
845 disable_write_same(md);
846 if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
847 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
848 disable_write_zeroes(md);
851 if (endio) {
852 int r = endio(tio->ti, bio, &error);
853 switch (r) {
854 case DM_ENDIO_REQUEUE:
855 error = BLK_STS_DM_REQUEUE;
856 /*FALLTHRU*/
857 case DM_ENDIO_DONE:
858 break;
859 case DM_ENDIO_INCOMPLETE:
860 /* The target will handle the io */
861 return;
862 default:
863 DMWARN("unimplemented target endio return value: %d", r);
864 BUG();
868 free_tio(tio);
869 dec_pending(io, error);
873 * Return maximum size of I/O possible at the supplied sector up to the current
874 * target boundary.
876 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
878 sector_t target_offset = dm_target_offset(ti, sector);
880 return ti->len - target_offset;
883 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
885 sector_t len = max_io_len_target_boundary(sector, ti);
886 sector_t offset, max_len;
889 * Does the target need to split even further?
891 if (ti->max_io_len) {
892 offset = dm_target_offset(ti, sector);
893 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
894 max_len = sector_div(offset, ti->max_io_len);
895 else
896 max_len = offset & (ti->max_io_len - 1);
897 max_len = ti->max_io_len - max_len;
899 if (len > max_len)
900 len = max_len;
903 return len;
906 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
908 if (len > UINT_MAX) {
909 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
910 (unsigned long long)len, UINT_MAX);
911 ti->error = "Maximum size of target IO is too large";
912 return -EINVAL;
915 ti->max_io_len = (uint32_t) len;
917 return 0;
919 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
921 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
922 sector_t sector, int *srcu_idx)
924 struct dm_table *map;
925 struct dm_target *ti;
927 map = dm_get_live_table(md, srcu_idx);
928 if (!map)
929 return NULL;
931 ti = dm_table_find_target(map, sector);
932 if (!dm_target_is_valid(ti))
933 return NULL;
935 return ti;
938 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
939 long nr_pages, void **kaddr, pfn_t *pfn)
941 struct mapped_device *md = dax_get_private(dax_dev);
942 sector_t sector = pgoff * PAGE_SECTORS;
943 struct dm_target *ti;
944 long len, ret = -EIO;
945 int srcu_idx;
947 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
949 if (!ti)
950 goto out;
951 if (!ti->type->direct_access)
952 goto out;
953 len = max_io_len(sector, ti) / PAGE_SECTORS;
954 if (len < 1)
955 goto out;
956 nr_pages = min(len, nr_pages);
957 if (ti->type->direct_access)
958 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
960 out:
961 dm_put_live_table(md, srcu_idx);
963 return ret;
966 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
967 void *addr, size_t bytes, struct iov_iter *i)
969 struct mapped_device *md = dax_get_private(dax_dev);
970 sector_t sector = pgoff * PAGE_SECTORS;
971 struct dm_target *ti;
972 long ret = 0;
973 int srcu_idx;
975 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
977 if (!ti)
978 goto out;
979 if (!ti->type->dax_copy_from_iter) {
980 ret = copy_from_iter(addr, bytes, i);
981 goto out;
983 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
984 out:
985 dm_put_live_table(md, srcu_idx);
987 return ret;
990 static void dm_dax_flush(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
991 size_t size)
993 struct mapped_device *md = dax_get_private(dax_dev);
994 sector_t sector = pgoff * PAGE_SECTORS;
995 struct dm_target *ti;
996 int srcu_idx;
998 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1000 if (!ti)
1001 goto out;
1002 if (ti->type->dax_flush)
1003 ti->type->dax_flush(ti, pgoff, addr, size);
1004 out:
1005 dm_put_live_table(md, srcu_idx);
1009 * A target may call dm_accept_partial_bio only from the map routine. It is
1010 * allowed for all bio types except REQ_PREFLUSH.
1012 * dm_accept_partial_bio informs the dm that the target only wants to process
1013 * additional n_sectors sectors of the bio and the rest of the data should be
1014 * sent in a next bio.
1016 * A diagram that explains the arithmetics:
1017 * +--------------------+---------------+-------+
1018 * | 1 | 2 | 3 |
1019 * +--------------------+---------------+-------+
1021 * <-------------- *tio->len_ptr --------------->
1022 * <------- bi_size ------->
1023 * <-- n_sectors -->
1025 * Region 1 was already iterated over with bio_advance or similar function.
1026 * (it may be empty if the target doesn't use bio_advance)
1027 * Region 2 is the remaining bio size that the target wants to process.
1028 * (it may be empty if region 1 is non-empty, although there is no reason
1029 * to make it empty)
1030 * The target requires that region 3 is to be sent in the next bio.
1032 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1033 * the partially processed part (the sum of regions 1+2) must be the same for all
1034 * copies of the bio.
1036 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1038 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1039 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1040 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1041 BUG_ON(bi_size > *tio->len_ptr);
1042 BUG_ON(n_sectors > bi_size);
1043 *tio->len_ptr -= bi_size - n_sectors;
1044 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1046 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1049 * The zone descriptors obtained with a zone report indicate
1050 * zone positions within the target device. The zone descriptors
1051 * must be remapped to match their position within the dm device.
1052 * A target may call dm_remap_zone_report after completion of a
1053 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1054 * from the target device mapping to the dm device.
1056 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1058 #ifdef CONFIG_BLK_DEV_ZONED
1059 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1060 struct bio *report_bio = tio->io->bio;
1061 struct blk_zone_report_hdr *hdr = NULL;
1062 struct blk_zone *zone;
1063 unsigned int nr_rep = 0;
1064 unsigned int ofst;
1065 struct bio_vec bvec;
1066 struct bvec_iter iter;
1067 void *addr;
1069 if (bio->bi_status)
1070 return;
1073 * Remap the start sector of the reported zones. For sequential zones,
1074 * also remap the write pointer position.
1076 bio_for_each_segment(bvec, report_bio, iter) {
1077 addr = kmap_atomic(bvec.bv_page);
1079 /* Remember the report header in the first page */
1080 if (!hdr) {
1081 hdr = addr;
1082 ofst = sizeof(struct blk_zone_report_hdr);
1083 } else
1084 ofst = 0;
1086 /* Set zones start sector */
1087 while (hdr->nr_zones && ofst < bvec.bv_len) {
1088 zone = addr + ofst;
1089 if (zone->start >= start + ti->len) {
1090 hdr->nr_zones = 0;
1091 break;
1093 zone->start = zone->start + ti->begin - start;
1094 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1095 if (zone->cond == BLK_ZONE_COND_FULL)
1096 zone->wp = zone->start + zone->len;
1097 else if (zone->cond == BLK_ZONE_COND_EMPTY)
1098 zone->wp = zone->start;
1099 else
1100 zone->wp = zone->wp + ti->begin - start;
1102 ofst += sizeof(struct blk_zone);
1103 hdr->nr_zones--;
1104 nr_rep++;
1107 if (addr != hdr)
1108 kunmap_atomic(addr);
1110 if (!hdr->nr_zones)
1111 break;
1114 if (hdr) {
1115 hdr->nr_zones = nr_rep;
1116 kunmap_atomic(hdr);
1119 bio_advance(report_bio, report_bio->bi_iter.bi_size);
1121 #else /* !CONFIG_BLK_DEV_ZONED */
1122 bio->bi_status = BLK_STS_NOTSUPP;
1123 #endif
1125 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1128 * Flush current->bio_list when the target map method blocks.
1129 * This fixes deadlocks in snapshot and possibly in other targets.
1131 struct dm_offload {
1132 struct blk_plug plug;
1133 struct blk_plug_cb cb;
1136 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1138 struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1139 struct bio_list list;
1140 struct bio *bio;
1141 int i;
1143 INIT_LIST_HEAD(&o->cb.list);
1145 if (unlikely(!current->bio_list))
1146 return;
1148 for (i = 0; i < 2; i++) {
1149 list = current->bio_list[i];
1150 bio_list_init(&current->bio_list[i]);
1152 while ((bio = bio_list_pop(&list))) {
1153 struct bio_set *bs = bio->bi_pool;
1154 if (unlikely(!bs) || bs == fs_bio_set ||
1155 !bs->rescue_workqueue) {
1156 bio_list_add(&current->bio_list[i], bio);
1157 continue;
1160 spin_lock(&bs->rescue_lock);
1161 bio_list_add(&bs->rescue_list, bio);
1162 queue_work(bs->rescue_workqueue, &bs->rescue_work);
1163 spin_unlock(&bs->rescue_lock);
1168 static void dm_offload_start(struct dm_offload *o)
1170 blk_start_plug(&o->plug);
1171 o->cb.callback = flush_current_bio_list;
1172 list_add(&o->cb.list, &current->plug->cb_list);
1175 static void dm_offload_end(struct dm_offload *o)
1177 list_del(&o->cb.list);
1178 blk_finish_plug(&o->plug);
1181 static void __map_bio(struct dm_target_io *tio)
1183 int r;
1184 sector_t sector;
1185 struct dm_offload o;
1186 struct bio *clone = &tio->clone;
1187 struct dm_target *ti = tio->ti;
1189 clone->bi_end_io = clone_endio;
1192 * Map the clone. If r == 0 we don't need to do
1193 * anything, the target has assumed ownership of
1194 * this io.
1196 atomic_inc(&tio->io->io_count);
1197 sector = clone->bi_iter.bi_sector;
1199 dm_offload_start(&o);
1200 r = ti->type->map(ti, clone);
1201 dm_offload_end(&o);
1203 switch (r) {
1204 case DM_MAPIO_SUBMITTED:
1205 break;
1206 case DM_MAPIO_REMAPPED:
1207 /* the bio has been remapped so dispatch it */
1208 trace_block_bio_remap(clone->bi_disk->queue, clone,
1209 bio_dev(tio->io->bio), sector);
1210 generic_make_request(clone);
1211 break;
1212 case DM_MAPIO_KILL:
1213 dec_pending(tio->io, BLK_STS_IOERR);
1214 free_tio(tio);
1215 break;
1216 case DM_MAPIO_REQUEUE:
1217 dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1218 free_tio(tio);
1219 break;
1220 default:
1221 DMWARN("unimplemented target map return value: %d", r);
1222 BUG();
1226 struct clone_info {
1227 struct mapped_device *md;
1228 struct dm_table *map;
1229 struct bio *bio;
1230 struct dm_io *io;
1231 sector_t sector;
1232 unsigned sector_count;
1235 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1237 bio->bi_iter.bi_sector = sector;
1238 bio->bi_iter.bi_size = to_bytes(len);
1242 * Creates a bio that consists of range of complete bvecs.
1244 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1245 sector_t sector, unsigned len)
1247 struct bio *clone = &tio->clone;
1249 __bio_clone_fast(clone, bio);
1251 if (unlikely(bio_integrity(bio) != NULL)) {
1252 int r;
1254 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1255 !dm_target_passes_integrity(tio->ti->type))) {
1256 DMWARN("%s: the target %s doesn't support integrity data.",
1257 dm_device_name(tio->io->md),
1258 tio->ti->type->name);
1259 return -EIO;
1262 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1263 if (r < 0)
1264 return r;
1267 if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1268 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1269 clone->bi_iter.bi_size = to_bytes(len);
1271 if (unlikely(bio_integrity(bio) != NULL))
1272 bio_integrity_trim(clone);
1274 return 0;
1277 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1278 struct dm_target *ti,
1279 unsigned target_bio_nr)
1281 struct dm_target_io *tio;
1282 struct bio *clone;
1284 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1285 tio = container_of(clone, struct dm_target_io, clone);
1287 tio->io = ci->io;
1288 tio->ti = ti;
1289 tio->target_bio_nr = target_bio_nr;
1291 return tio;
1294 static void __clone_and_map_simple_bio(struct clone_info *ci,
1295 struct dm_target *ti,
1296 unsigned target_bio_nr, unsigned *len)
1298 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1299 struct bio *clone = &tio->clone;
1301 tio->len_ptr = len;
1303 __bio_clone_fast(clone, ci->bio);
1304 if (len)
1305 bio_setup_sector(clone, ci->sector, *len);
1307 __map_bio(tio);
1310 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1311 unsigned num_bios, unsigned *len)
1313 unsigned target_bio_nr;
1315 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1316 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1319 static int __send_empty_flush(struct clone_info *ci)
1321 unsigned target_nr = 0;
1322 struct dm_target *ti;
1324 BUG_ON(bio_has_data(ci->bio));
1325 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1326 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1328 return 0;
1331 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1332 sector_t sector, unsigned *len)
1334 struct bio *bio = ci->bio;
1335 struct dm_target_io *tio;
1336 unsigned target_bio_nr;
1337 unsigned num_target_bios = 1;
1338 int r = 0;
1341 * Does the target want to receive duplicate copies of the bio?
1343 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1344 num_target_bios = ti->num_write_bios(ti, bio);
1346 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1347 tio = alloc_tio(ci, ti, target_bio_nr);
1348 tio->len_ptr = len;
1349 r = clone_bio(tio, bio, sector, *len);
1350 if (r < 0) {
1351 free_tio(tio);
1352 break;
1354 __map_bio(tio);
1357 return r;
1360 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1362 static unsigned get_num_discard_bios(struct dm_target *ti)
1364 return ti->num_discard_bios;
1367 static unsigned get_num_write_same_bios(struct dm_target *ti)
1369 return ti->num_write_same_bios;
1372 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1374 return ti->num_write_zeroes_bios;
1377 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1379 static bool is_split_required_for_discard(struct dm_target *ti)
1381 return ti->split_discard_bios;
1384 static int __send_changing_extent_only(struct clone_info *ci,
1385 get_num_bios_fn get_num_bios,
1386 is_split_required_fn is_split_required)
1388 struct dm_target *ti;
1389 unsigned len;
1390 unsigned num_bios;
1392 do {
1393 ti = dm_table_find_target(ci->map, ci->sector);
1394 if (!dm_target_is_valid(ti))
1395 return -EIO;
1398 * Even though the device advertised support for this type of
1399 * request, that does not mean every target supports it, and
1400 * reconfiguration might also have changed that since the
1401 * check was performed.
1403 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1404 if (!num_bios)
1405 return -EOPNOTSUPP;
1407 if (is_split_required && !is_split_required(ti))
1408 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1409 else
1410 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1412 __send_duplicate_bios(ci, ti, num_bios, &len);
1414 ci->sector += len;
1415 } while (ci->sector_count -= len);
1417 return 0;
1420 static int __send_discard(struct clone_info *ci)
1422 return __send_changing_extent_only(ci, get_num_discard_bios,
1423 is_split_required_for_discard);
1426 static int __send_write_same(struct clone_info *ci)
1428 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1431 static int __send_write_zeroes(struct clone_info *ci)
1433 return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1437 * Select the correct strategy for processing a non-flush bio.
1439 static int __split_and_process_non_flush(struct clone_info *ci)
1441 struct bio *bio = ci->bio;
1442 struct dm_target *ti;
1443 unsigned len;
1444 int r;
1446 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1447 return __send_discard(ci);
1448 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1449 return __send_write_same(ci);
1450 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1451 return __send_write_zeroes(ci);
1453 ti = dm_table_find_target(ci->map, ci->sector);
1454 if (!dm_target_is_valid(ti))
1455 return -EIO;
1457 if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1458 len = ci->sector_count;
1459 else
1460 len = min_t(sector_t, max_io_len(ci->sector, ti),
1461 ci->sector_count);
1463 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1464 if (r < 0)
1465 return r;
1467 ci->sector += len;
1468 ci->sector_count -= len;
1470 return 0;
1474 * Entry point to split a bio into clones and submit them to the targets.
1476 static void __split_and_process_bio(struct mapped_device *md,
1477 struct dm_table *map, struct bio *bio)
1479 struct clone_info ci;
1480 int error = 0;
1482 if (unlikely(!map)) {
1483 bio_io_error(bio);
1484 return;
1487 ci.map = map;
1488 ci.md = md;
1489 ci.io = alloc_io(md);
1490 ci.io->status = 0;
1491 atomic_set(&ci.io->io_count, 1);
1492 ci.io->bio = bio;
1493 ci.io->md = md;
1494 spin_lock_init(&ci.io->endio_lock);
1495 ci.sector = bio->bi_iter.bi_sector;
1497 start_io_acct(ci.io);
1499 if (bio->bi_opf & REQ_PREFLUSH) {
1500 ci.bio = &ci.md->flush_bio;
1501 ci.sector_count = 0;
1502 error = __send_empty_flush(&ci);
1503 /* dec_pending submits any data associated with flush */
1504 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1505 ci.bio = bio;
1506 ci.sector_count = 0;
1507 error = __split_and_process_non_flush(&ci);
1508 } else {
1509 ci.bio = bio;
1510 ci.sector_count = bio_sectors(bio);
1511 while (ci.sector_count && !error)
1512 error = __split_and_process_non_flush(&ci);
1515 /* drop the extra reference count */
1516 dec_pending(ci.io, errno_to_blk_status(error));
1518 /*-----------------------------------------------------------------
1519 * CRUD END
1520 *---------------------------------------------------------------*/
1523 * The request function that just remaps the bio built up by
1524 * dm_merge_bvec.
1526 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1528 int rw = bio_data_dir(bio);
1529 struct mapped_device *md = q->queuedata;
1530 int srcu_idx;
1531 struct dm_table *map;
1533 map = dm_get_live_table(md, &srcu_idx);
1535 generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1537 /* if we're suspended, we have to queue this io for later */
1538 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1539 dm_put_live_table(md, srcu_idx);
1541 if (!(bio->bi_opf & REQ_RAHEAD))
1542 queue_io(md, bio);
1543 else
1544 bio_io_error(bio);
1545 return BLK_QC_T_NONE;
1548 __split_and_process_bio(md, map, bio);
1549 dm_put_live_table(md, srcu_idx);
1550 return BLK_QC_T_NONE;
1553 static int dm_any_congested(void *congested_data, int bdi_bits)
1555 int r = bdi_bits;
1556 struct mapped_device *md = congested_data;
1557 struct dm_table *map;
1559 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1560 if (dm_request_based(md)) {
1562 * With request-based DM we only need to check the
1563 * top-level queue for congestion.
1565 r = md->queue->backing_dev_info->wb.state & bdi_bits;
1566 } else {
1567 map = dm_get_live_table_fast(md);
1568 if (map)
1569 r = dm_table_any_congested(map, bdi_bits);
1570 dm_put_live_table_fast(md);
1574 return r;
1577 /*-----------------------------------------------------------------
1578 * An IDR is used to keep track of allocated minor numbers.
1579 *---------------------------------------------------------------*/
1580 static void free_minor(int minor)
1582 spin_lock(&_minor_lock);
1583 idr_remove(&_minor_idr, minor);
1584 spin_unlock(&_minor_lock);
1588 * See if the device with a specific minor # is free.
1590 static int specific_minor(int minor)
1592 int r;
1594 if (minor >= (1 << MINORBITS))
1595 return -EINVAL;
1597 idr_preload(GFP_KERNEL);
1598 spin_lock(&_minor_lock);
1600 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1602 spin_unlock(&_minor_lock);
1603 idr_preload_end();
1604 if (r < 0)
1605 return r == -ENOSPC ? -EBUSY : r;
1606 return 0;
1609 static int next_free_minor(int *minor)
1611 int r;
1613 idr_preload(GFP_KERNEL);
1614 spin_lock(&_minor_lock);
1616 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1618 spin_unlock(&_minor_lock);
1619 idr_preload_end();
1620 if (r < 0)
1621 return r;
1622 *minor = r;
1623 return 0;
1626 static const struct block_device_operations dm_blk_dops;
1627 static const struct dax_operations dm_dax_ops;
1629 static void dm_wq_work(struct work_struct *work);
1631 void dm_init_md_queue(struct mapped_device *md)
1634 * Request-based dm devices cannot be stacked on top of bio-based dm
1635 * devices. The type of this dm device may not have been decided yet.
1636 * The type is decided at the first table loading time.
1637 * To prevent problematic device stacking, clear the queue flag
1638 * for request stacking support until then.
1640 * This queue is new, so no concurrency on the queue_flags.
1642 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1645 * Initialize data that will only be used by a non-blk-mq DM queue
1646 * - must do so here (in alloc_dev callchain) before queue is used
1648 md->queue->queuedata = md;
1649 md->queue->backing_dev_info->congested_data = md;
1652 void dm_init_normal_md_queue(struct mapped_device *md)
1654 md->use_blk_mq = false;
1655 dm_init_md_queue(md);
1658 * Initialize aspects of queue that aren't relevant for blk-mq
1660 md->queue->backing_dev_info->congested_fn = dm_any_congested;
1663 static void cleanup_mapped_device(struct mapped_device *md)
1665 if (md->wq)
1666 destroy_workqueue(md->wq);
1667 if (md->kworker_task)
1668 kthread_stop(md->kworker_task);
1669 mempool_destroy(md->io_pool);
1670 if (md->bs)
1671 bioset_free(md->bs);
1673 if (md->dax_dev) {
1674 kill_dax(md->dax_dev);
1675 put_dax(md->dax_dev);
1676 md->dax_dev = NULL;
1679 if (md->disk) {
1680 spin_lock(&_minor_lock);
1681 md->disk->private_data = NULL;
1682 spin_unlock(&_minor_lock);
1683 del_gendisk(md->disk);
1684 put_disk(md->disk);
1687 if (md->queue)
1688 blk_cleanup_queue(md->queue);
1690 cleanup_srcu_struct(&md->io_barrier);
1692 if (md->bdev) {
1693 bdput(md->bdev);
1694 md->bdev = NULL;
1697 dm_mq_cleanup_mapped_device(md);
1701 * Allocate and initialise a blank device with a given minor.
1703 static struct mapped_device *alloc_dev(int minor)
1705 int r, numa_node_id = dm_get_numa_node();
1706 struct dax_device *dax_dev;
1707 struct mapped_device *md;
1708 void *old_md;
1710 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1711 if (!md) {
1712 DMWARN("unable to allocate device, out of memory.");
1713 return NULL;
1716 if (!try_module_get(THIS_MODULE))
1717 goto bad_module_get;
1719 /* get a minor number for the dev */
1720 if (minor == DM_ANY_MINOR)
1721 r = next_free_minor(&minor);
1722 else
1723 r = specific_minor(minor);
1724 if (r < 0)
1725 goto bad_minor;
1727 r = init_srcu_struct(&md->io_barrier);
1728 if (r < 0)
1729 goto bad_io_barrier;
1731 md->numa_node_id = numa_node_id;
1732 md->use_blk_mq = dm_use_blk_mq_default();
1733 md->init_tio_pdu = false;
1734 md->type = DM_TYPE_NONE;
1735 mutex_init(&md->suspend_lock);
1736 mutex_init(&md->type_lock);
1737 mutex_init(&md->table_devices_lock);
1738 spin_lock_init(&md->deferred_lock);
1739 atomic_set(&md->holders, 1);
1740 atomic_set(&md->open_count, 0);
1741 atomic_set(&md->event_nr, 0);
1742 atomic_set(&md->uevent_seq, 0);
1743 INIT_LIST_HEAD(&md->uevent_list);
1744 INIT_LIST_HEAD(&md->table_devices);
1745 spin_lock_init(&md->uevent_lock);
1747 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1748 if (!md->queue)
1749 goto bad;
1751 dm_init_md_queue(md);
1753 md->disk = alloc_disk_node(1, numa_node_id);
1754 if (!md->disk)
1755 goto bad;
1757 atomic_set(&md->pending[0], 0);
1758 atomic_set(&md->pending[1], 0);
1759 init_waitqueue_head(&md->wait);
1760 INIT_WORK(&md->work, dm_wq_work);
1761 init_waitqueue_head(&md->eventq);
1762 init_completion(&md->kobj_holder.completion);
1763 md->kworker_task = NULL;
1765 md->disk->major = _major;
1766 md->disk->first_minor = minor;
1767 md->disk->fops = &dm_blk_dops;
1768 md->disk->queue = md->queue;
1769 md->disk->private_data = md;
1770 sprintf(md->disk->disk_name, "dm-%d", minor);
1772 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1773 if (!dax_dev)
1774 goto bad;
1775 md->dax_dev = dax_dev;
1777 add_disk(md->disk);
1778 format_dev_t(md->name, MKDEV(_major, minor));
1780 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1781 if (!md->wq)
1782 goto bad;
1784 md->bdev = bdget_disk(md->disk, 0);
1785 if (!md->bdev)
1786 goto bad;
1788 bio_init(&md->flush_bio, NULL, 0);
1789 bio_set_dev(&md->flush_bio, md->bdev);
1790 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1792 dm_stats_init(&md->stats);
1794 /* Populate the mapping, nobody knows we exist yet */
1795 spin_lock(&_minor_lock);
1796 old_md = idr_replace(&_minor_idr, md, minor);
1797 spin_unlock(&_minor_lock);
1799 BUG_ON(old_md != MINOR_ALLOCED);
1801 return md;
1803 bad:
1804 cleanup_mapped_device(md);
1805 bad_io_barrier:
1806 free_minor(minor);
1807 bad_minor:
1808 module_put(THIS_MODULE);
1809 bad_module_get:
1810 kfree(md);
1811 return NULL;
1814 static void unlock_fs(struct mapped_device *md);
1816 static void free_dev(struct mapped_device *md)
1818 int minor = MINOR(disk_devt(md->disk));
1820 unlock_fs(md);
1822 cleanup_mapped_device(md);
1824 free_table_devices(&md->table_devices);
1825 dm_stats_cleanup(&md->stats);
1826 free_minor(minor);
1828 module_put(THIS_MODULE);
1829 kfree(md);
1832 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1834 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1836 if (md->bs) {
1837 /* The md already has necessary mempools. */
1838 if (dm_table_bio_based(t)) {
1840 * Reload bioset because front_pad may have changed
1841 * because a different table was loaded.
1843 bioset_free(md->bs);
1844 md->bs = p->bs;
1845 p->bs = NULL;
1848 * There's no need to reload with request-based dm
1849 * because the size of front_pad doesn't change.
1850 * Note for future: If you are to reload bioset,
1851 * prep-ed requests in the queue may refer
1852 * to bio from the old bioset, so you must walk
1853 * through the queue to unprep.
1855 goto out;
1858 BUG_ON(!p || md->io_pool || md->bs);
1860 md->io_pool = p->io_pool;
1861 p->io_pool = NULL;
1862 md->bs = p->bs;
1863 p->bs = NULL;
1865 out:
1866 /* mempool bind completed, no longer need any mempools in the table */
1867 dm_table_free_md_mempools(t);
1871 * Bind a table to the device.
1873 static void event_callback(void *context)
1875 unsigned long flags;
1876 LIST_HEAD(uevents);
1877 struct mapped_device *md = (struct mapped_device *) context;
1879 spin_lock_irqsave(&md->uevent_lock, flags);
1880 list_splice_init(&md->uevent_list, &uevents);
1881 spin_unlock_irqrestore(&md->uevent_lock, flags);
1883 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1885 atomic_inc(&md->event_nr);
1886 atomic_inc(&dm_global_event_nr);
1887 wake_up(&md->eventq);
1888 wake_up(&dm_global_eventq);
1892 * Protected by md->suspend_lock obtained by dm_swap_table().
1894 static void __set_size(struct mapped_device *md, sector_t size)
1896 lockdep_assert_held(&md->suspend_lock);
1898 set_capacity(md->disk, size);
1900 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1904 * Returns old map, which caller must destroy.
1906 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1907 struct queue_limits *limits)
1909 struct dm_table *old_map;
1910 struct request_queue *q = md->queue;
1911 sector_t size;
1913 lockdep_assert_held(&md->suspend_lock);
1915 size = dm_table_get_size(t);
1918 * Wipe any geometry if the size of the table changed.
1920 if (size != dm_get_size(md))
1921 memset(&md->geometry, 0, sizeof(md->geometry));
1923 __set_size(md, size);
1925 dm_table_event_callback(t, event_callback, md);
1928 * The queue hasn't been stopped yet, if the old table type wasn't
1929 * for request-based during suspension. So stop it to prevent
1930 * I/O mapping before resume.
1931 * This must be done before setting the queue restrictions,
1932 * because request-based dm may be run just after the setting.
1934 if (dm_table_request_based(t)) {
1935 dm_stop_queue(q);
1937 * Leverage the fact that request-based DM targets are
1938 * immutable singletons and establish md->immutable_target
1939 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1941 md->immutable_target = dm_table_get_immutable_target(t);
1944 __bind_mempools(md, t);
1946 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1947 rcu_assign_pointer(md->map, (void *)t);
1948 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1950 dm_table_set_restrictions(t, q, limits);
1951 if (old_map)
1952 dm_sync_table(md);
1954 return old_map;
1958 * Returns unbound table for the caller to free.
1960 static struct dm_table *__unbind(struct mapped_device *md)
1962 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1964 if (!map)
1965 return NULL;
1967 dm_table_event_callback(map, NULL, NULL);
1968 RCU_INIT_POINTER(md->map, NULL);
1969 dm_sync_table(md);
1971 return map;
1975 * Constructor for a new device.
1977 int dm_create(int minor, struct mapped_device **result)
1979 struct mapped_device *md;
1981 md = alloc_dev(minor);
1982 if (!md)
1983 return -ENXIO;
1985 dm_sysfs_init(md);
1987 *result = md;
1988 return 0;
1992 * Functions to manage md->type.
1993 * All are required to hold md->type_lock.
1995 void dm_lock_md_type(struct mapped_device *md)
1997 mutex_lock(&md->type_lock);
2000 void dm_unlock_md_type(struct mapped_device *md)
2002 mutex_unlock(&md->type_lock);
2005 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2007 BUG_ON(!mutex_is_locked(&md->type_lock));
2008 md->type = type;
2011 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2013 return md->type;
2016 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2018 return md->immutable_target_type;
2022 * The queue_limits are only valid as long as you have a reference
2023 * count on 'md'.
2025 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2027 BUG_ON(!atomic_read(&md->holders));
2028 return &md->queue->limits;
2030 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2033 * Setup the DM device's queue based on md's type
2035 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2037 int r;
2038 enum dm_queue_mode type = dm_get_md_type(md);
2040 switch (type) {
2041 case DM_TYPE_REQUEST_BASED:
2042 r = dm_old_init_request_queue(md, t);
2043 if (r) {
2044 DMERR("Cannot initialize queue for request-based mapped device");
2045 return r;
2047 break;
2048 case DM_TYPE_MQ_REQUEST_BASED:
2049 r = dm_mq_init_request_queue(md, t);
2050 if (r) {
2051 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2052 return r;
2054 break;
2055 case DM_TYPE_BIO_BASED:
2056 case DM_TYPE_DAX_BIO_BASED:
2057 dm_init_normal_md_queue(md);
2058 blk_queue_make_request(md->queue, dm_make_request);
2060 * DM handles splitting bios as needed. Free the bio_split bioset
2061 * since it won't be used (saves 1 process per bio-based DM device).
2063 bioset_free(md->queue->bio_split);
2064 md->queue->bio_split = NULL;
2066 if (type == DM_TYPE_DAX_BIO_BASED)
2067 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2068 break;
2069 case DM_TYPE_NONE:
2070 WARN_ON_ONCE(true);
2071 break;
2074 return 0;
2077 struct mapped_device *dm_get_md(dev_t dev)
2079 struct mapped_device *md;
2080 unsigned minor = MINOR(dev);
2082 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2083 return NULL;
2085 spin_lock(&_minor_lock);
2087 md = idr_find(&_minor_idr, minor);
2088 if (md) {
2089 if ((md == MINOR_ALLOCED ||
2090 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2091 dm_deleting_md(md) ||
2092 test_bit(DMF_FREEING, &md->flags))) {
2093 md = NULL;
2094 goto out;
2096 dm_get(md);
2099 out:
2100 spin_unlock(&_minor_lock);
2102 return md;
2104 EXPORT_SYMBOL_GPL(dm_get_md);
2106 void *dm_get_mdptr(struct mapped_device *md)
2108 return md->interface_ptr;
2111 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2113 md->interface_ptr = ptr;
2116 void dm_get(struct mapped_device *md)
2118 atomic_inc(&md->holders);
2119 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2122 int dm_hold(struct mapped_device *md)
2124 spin_lock(&_minor_lock);
2125 if (test_bit(DMF_FREEING, &md->flags)) {
2126 spin_unlock(&_minor_lock);
2127 return -EBUSY;
2129 dm_get(md);
2130 spin_unlock(&_minor_lock);
2131 return 0;
2133 EXPORT_SYMBOL_GPL(dm_hold);
2135 const char *dm_device_name(struct mapped_device *md)
2137 return md->name;
2139 EXPORT_SYMBOL_GPL(dm_device_name);
2141 static void __dm_destroy(struct mapped_device *md, bool wait)
2143 struct request_queue *q = dm_get_md_queue(md);
2144 struct dm_table *map;
2145 int srcu_idx;
2147 might_sleep();
2149 spin_lock(&_minor_lock);
2150 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2151 set_bit(DMF_FREEING, &md->flags);
2152 spin_unlock(&_minor_lock);
2154 blk_set_queue_dying(q);
2156 if (dm_request_based(md) && md->kworker_task)
2157 kthread_flush_worker(&md->kworker);
2160 * Take suspend_lock so that presuspend and postsuspend methods
2161 * do not race with internal suspend.
2163 mutex_lock(&md->suspend_lock);
2164 map = dm_get_live_table(md, &srcu_idx);
2165 if (!dm_suspended_md(md)) {
2166 dm_table_presuspend_targets(map);
2167 dm_table_postsuspend_targets(map);
2169 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2170 dm_put_live_table(md, srcu_idx);
2171 mutex_unlock(&md->suspend_lock);
2174 * Rare, but there may be I/O requests still going to complete,
2175 * for example. Wait for all references to disappear.
2176 * No one should increment the reference count of the mapped_device,
2177 * after the mapped_device state becomes DMF_FREEING.
2179 if (wait)
2180 while (atomic_read(&md->holders))
2181 msleep(1);
2182 else if (atomic_read(&md->holders))
2183 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2184 dm_device_name(md), atomic_read(&md->holders));
2186 dm_sysfs_exit(md);
2187 dm_table_destroy(__unbind(md));
2188 free_dev(md);
2191 void dm_destroy(struct mapped_device *md)
2193 __dm_destroy(md, true);
2196 void dm_destroy_immediate(struct mapped_device *md)
2198 __dm_destroy(md, false);
2201 void dm_put(struct mapped_device *md)
2203 atomic_dec(&md->holders);
2205 EXPORT_SYMBOL_GPL(dm_put);
2207 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2209 int r = 0;
2210 DEFINE_WAIT(wait);
2212 while (1) {
2213 prepare_to_wait(&md->wait, &wait, task_state);
2215 if (!md_in_flight(md))
2216 break;
2218 if (signal_pending_state(task_state, current)) {
2219 r = -EINTR;
2220 break;
2223 io_schedule();
2225 finish_wait(&md->wait, &wait);
2227 return r;
2231 * Process the deferred bios
2233 static void dm_wq_work(struct work_struct *work)
2235 struct mapped_device *md = container_of(work, struct mapped_device,
2236 work);
2237 struct bio *c;
2238 int srcu_idx;
2239 struct dm_table *map;
2241 map = dm_get_live_table(md, &srcu_idx);
2243 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2244 spin_lock_irq(&md->deferred_lock);
2245 c = bio_list_pop(&md->deferred);
2246 spin_unlock_irq(&md->deferred_lock);
2248 if (!c)
2249 break;
2251 if (dm_request_based(md))
2252 generic_make_request(c);
2253 else
2254 __split_and_process_bio(md, map, c);
2257 dm_put_live_table(md, srcu_idx);
2260 static void dm_queue_flush(struct mapped_device *md)
2262 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2263 smp_mb__after_atomic();
2264 queue_work(md->wq, &md->work);
2268 * Swap in a new table, returning the old one for the caller to destroy.
2270 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2272 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2273 struct queue_limits limits;
2274 int r;
2276 mutex_lock(&md->suspend_lock);
2278 /* device must be suspended */
2279 if (!dm_suspended_md(md))
2280 goto out;
2283 * If the new table has no data devices, retain the existing limits.
2284 * This helps multipath with queue_if_no_path if all paths disappear,
2285 * then new I/O is queued based on these limits, and then some paths
2286 * reappear.
2288 if (dm_table_has_no_data_devices(table)) {
2289 live_map = dm_get_live_table_fast(md);
2290 if (live_map)
2291 limits = md->queue->limits;
2292 dm_put_live_table_fast(md);
2295 if (!live_map) {
2296 r = dm_calculate_queue_limits(table, &limits);
2297 if (r) {
2298 map = ERR_PTR(r);
2299 goto out;
2303 map = __bind(md, table, &limits);
2305 out:
2306 mutex_unlock(&md->suspend_lock);
2307 return map;
2311 * Functions to lock and unlock any filesystem running on the
2312 * device.
2314 static int lock_fs(struct mapped_device *md)
2316 int r;
2318 WARN_ON(md->frozen_sb);
2320 md->frozen_sb = freeze_bdev(md->bdev);
2321 if (IS_ERR(md->frozen_sb)) {
2322 r = PTR_ERR(md->frozen_sb);
2323 md->frozen_sb = NULL;
2324 return r;
2327 set_bit(DMF_FROZEN, &md->flags);
2329 return 0;
2332 static void unlock_fs(struct mapped_device *md)
2334 if (!test_bit(DMF_FROZEN, &md->flags))
2335 return;
2337 thaw_bdev(md->bdev, md->frozen_sb);
2338 md->frozen_sb = NULL;
2339 clear_bit(DMF_FROZEN, &md->flags);
2343 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2344 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2345 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2347 * If __dm_suspend returns 0, the device is completely quiescent
2348 * now. There is no request-processing activity. All new requests
2349 * are being added to md->deferred list.
2351 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2352 unsigned suspend_flags, long task_state,
2353 int dmf_suspended_flag)
2355 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2356 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2357 int r;
2359 lockdep_assert_held(&md->suspend_lock);
2362 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2363 * This flag is cleared before dm_suspend returns.
2365 if (noflush)
2366 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2367 else
2368 pr_debug("%s: suspending with flush\n", dm_device_name(md));
2371 * This gets reverted if there's an error later and the targets
2372 * provide the .presuspend_undo hook.
2374 dm_table_presuspend_targets(map);
2377 * Flush I/O to the device.
2378 * Any I/O submitted after lock_fs() may not be flushed.
2379 * noflush takes precedence over do_lockfs.
2380 * (lock_fs() flushes I/Os and waits for them to complete.)
2382 if (!noflush && do_lockfs) {
2383 r = lock_fs(md);
2384 if (r) {
2385 dm_table_presuspend_undo_targets(map);
2386 return r;
2391 * Here we must make sure that no processes are submitting requests
2392 * to target drivers i.e. no one may be executing
2393 * __split_and_process_bio. This is called from dm_request and
2394 * dm_wq_work.
2396 * To get all processes out of __split_and_process_bio in dm_request,
2397 * we take the write lock. To prevent any process from reentering
2398 * __split_and_process_bio from dm_request and quiesce the thread
2399 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2400 * flush_workqueue(md->wq).
2402 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2403 if (map)
2404 synchronize_srcu(&md->io_barrier);
2407 * Stop md->queue before flushing md->wq in case request-based
2408 * dm defers requests to md->wq from md->queue.
2410 if (dm_request_based(md)) {
2411 dm_stop_queue(md->queue);
2412 if (md->kworker_task)
2413 kthread_flush_worker(&md->kworker);
2416 flush_workqueue(md->wq);
2419 * At this point no more requests are entering target request routines.
2420 * We call dm_wait_for_completion to wait for all existing requests
2421 * to finish.
2423 r = dm_wait_for_completion(md, task_state);
2424 if (!r)
2425 set_bit(dmf_suspended_flag, &md->flags);
2427 if (noflush)
2428 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2429 if (map)
2430 synchronize_srcu(&md->io_barrier);
2432 /* were we interrupted ? */
2433 if (r < 0) {
2434 dm_queue_flush(md);
2436 if (dm_request_based(md))
2437 dm_start_queue(md->queue);
2439 unlock_fs(md);
2440 dm_table_presuspend_undo_targets(map);
2441 /* pushback list is already flushed, so skip flush */
2444 return r;
2448 * We need to be able to change a mapping table under a mounted
2449 * filesystem. For example we might want to move some data in
2450 * the background. Before the table can be swapped with
2451 * dm_bind_table, dm_suspend must be called to flush any in
2452 * flight bios and ensure that any further io gets deferred.
2455 * Suspend mechanism in request-based dm.
2457 * 1. Flush all I/Os by lock_fs() if needed.
2458 * 2. Stop dispatching any I/O by stopping the request_queue.
2459 * 3. Wait for all in-flight I/Os to be completed or requeued.
2461 * To abort suspend, start the request_queue.
2463 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2465 struct dm_table *map = NULL;
2466 int r = 0;
2468 retry:
2469 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2471 if (dm_suspended_md(md)) {
2472 r = -EINVAL;
2473 goto out_unlock;
2476 if (dm_suspended_internally_md(md)) {
2477 /* already internally suspended, wait for internal resume */
2478 mutex_unlock(&md->suspend_lock);
2479 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2480 if (r)
2481 return r;
2482 goto retry;
2485 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2487 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2488 if (r)
2489 goto out_unlock;
2491 dm_table_postsuspend_targets(map);
2493 out_unlock:
2494 mutex_unlock(&md->suspend_lock);
2495 return r;
2498 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2500 if (map) {
2501 int r = dm_table_resume_targets(map);
2502 if (r)
2503 return r;
2506 dm_queue_flush(md);
2509 * Flushing deferred I/Os must be done after targets are resumed
2510 * so that mapping of targets can work correctly.
2511 * Request-based dm is queueing the deferred I/Os in its request_queue.
2513 if (dm_request_based(md))
2514 dm_start_queue(md->queue);
2516 unlock_fs(md);
2518 return 0;
2521 int dm_resume(struct mapped_device *md)
2523 int r;
2524 struct dm_table *map = NULL;
2526 retry:
2527 r = -EINVAL;
2528 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2530 if (!dm_suspended_md(md))
2531 goto out;
2533 if (dm_suspended_internally_md(md)) {
2534 /* already internally suspended, wait for internal resume */
2535 mutex_unlock(&md->suspend_lock);
2536 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2537 if (r)
2538 return r;
2539 goto retry;
2542 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2543 if (!map || !dm_table_get_size(map))
2544 goto out;
2546 r = __dm_resume(md, map);
2547 if (r)
2548 goto out;
2550 clear_bit(DMF_SUSPENDED, &md->flags);
2551 out:
2552 mutex_unlock(&md->suspend_lock);
2554 return r;
2558 * Internal suspend/resume works like userspace-driven suspend. It waits
2559 * until all bios finish and prevents issuing new bios to the target drivers.
2560 * It may be used only from the kernel.
2563 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2565 struct dm_table *map = NULL;
2567 lockdep_assert_held(&md->suspend_lock);
2569 if (md->internal_suspend_count++)
2570 return; /* nested internal suspend */
2572 if (dm_suspended_md(md)) {
2573 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2574 return; /* nest suspend */
2577 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2580 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2581 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2582 * would require changing .presuspend to return an error -- avoid this
2583 * until there is a need for more elaborate variants of internal suspend.
2585 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2586 DMF_SUSPENDED_INTERNALLY);
2588 dm_table_postsuspend_targets(map);
2591 static void __dm_internal_resume(struct mapped_device *md)
2593 BUG_ON(!md->internal_suspend_count);
2595 if (--md->internal_suspend_count)
2596 return; /* resume from nested internal suspend */
2598 if (dm_suspended_md(md))
2599 goto done; /* resume from nested suspend */
2602 * NOTE: existing callers don't need to call dm_table_resume_targets
2603 * (which may fail -- so best to avoid it for now by passing NULL map)
2605 (void) __dm_resume(md, NULL);
2607 done:
2608 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2609 smp_mb__after_atomic();
2610 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2613 void dm_internal_suspend_noflush(struct mapped_device *md)
2615 mutex_lock(&md->suspend_lock);
2616 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2617 mutex_unlock(&md->suspend_lock);
2619 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2621 void dm_internal_resume(struct mapped_device *md)
2623 mutex_lock(&md->suspend_lock);
2624 __dm_internal_resume(md);
2625 mutex_unlock(&md->suspend_lock);
2627 EXPORT_SYMBOL_GPL(dm_internal_resume);
2630 * Fast variants of internal suspend/resume hold md->suspend_lock,
2631 * which prevents interaction with userspace-driven suspend.
2634 void dm_internal_suspend_fast(struct mapped_device *md)
2636 mutex_lock(&md->suspend_lock);
2637 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2638 return;
2640 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2641 synchronize_srcu(&md->io_barrier);
2642 flush_workqueue(md->wq);
2643 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2645 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2647 void dm_internal_resume_fast(struct mapped_device *md)
2649 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2650 goto done;
2652 dm_queue_flush(md);
2654 done:
2655 mutex_unlock(&md->suspend_lock);
2657 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2659 /*-----------------------------------------------------------------
2660 * Event notification.
2661 *---------------------------------------------------------------*/
2662 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2663 unsigned cookie)
2665 char udev_cookie[DM_COOKIE_LENGTH];
2666 char *envp[] = { udev_cookie, NULL };
2668 if (!cookie)
2669 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2670 else {
2671 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2672 DM_COOKIE_ENV_VAR_NAME, cookie);
2673 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2674 action, envp);
2678 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2680 return atomic_add_return(1, &md->uevent_seq);
2683 uint32_t dm_get_event_nr(struct mapped_device *md)
2685 return atomic_read(&md->event_nr);
2688 int dm_wait_event(struct mapped_device *md, int event_nr)
2690 return wait_event_interruptible(md->eventq,
2691 (event_nr != atomic_read(&md->event_nr)));
2694 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2696 unsigned long flags;
2698 spin_lock_irqsave(&md->uevent_lock, flags);
2699 list_add(elist, &md->uevent_list);
2700 spin_unlock_irqrestore(&md->uevent_lock, flags);
2704 * The gendisk is only valid as long as you have a reference
2705 * count on 'md'.
2707 struct gendisk *dm_disk(struct mapped_device *md)
2709 return md->disk;
2711 EXPORT_SYMBOL_GPL(dm_disk);
2713 struct kobject *dm_kobject(struct mapped_device *md)
2715 return &md->kobj_holder.kobj;
2718 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2720 struct mapped_device *md;
2722 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2724 if (test_bit(DMF_FREEING, &md->flags) ||
2725 dm_deleting_md(md))
2726 return NULL;
2728 dm_get(md);
2729 return md;
2732 int dm_suspended_md(struct mapped_device *md)
2734 return test_bit(DMF_SUSPENDED, &md->flags);
2737 int dm_suspended_internally_md(struct mapped_device *md)
2739 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2742 int dm_test_deferred_remove_flag(struct mapped_device *md)
2744 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2747 int dm_suspended(struct dm_target *ti)
2749 return dm_suspended_md(dm_table_get_md(ti->table));
2751 EXPORT_SYMBOL_GPL(dm_suspended);
2753 int dm_noflush_suspending(struct dm_target *ti)
2755 return __noflush_suspending(dm_table_get_md(ti->table));
2757 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2759 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2760 unsigned integrity, unsigned per_io_data_size)
2762 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2763 unsigned int pool_size = 0;
2764 unsigned int front_pad;
2766 if (!pools)
2767 return NULL;
2769 switch (type) {
2770 case DM_TYPE_BIO_BASED:
2771 case DM_TYPE_DAX_BIO_BASED:
2772 pool_size = dm_get_reserved_bio_based_ios();
2773 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2775 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2776 if (!pools->io_pool)
2777 goto out;
2778 break;
2779 case DM_TYPE_REQUEST_BASED:
2780 case DM_TYPE_MQ_REQUEST_BASED:
2781 pool_size = dm_get_reserved_rq_based_ios();
2782 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2783 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2784 break;
2785 default:
2786 BUG();
2789 pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2790 if (!pools->bs)
2791 goto out;
2793 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2794 goto out;
2796 return pools;
2798 out:
2799 dm_free_md_mempools(pools);
2801 return NULL;
2804 void dm_free_md_mempools(struct dm_md_mempools *pools)
2806 if (!pools)
2807 return;
2809 mempool_destroy(pools->io_pool);
2811 if (pools->bs)
2812 bioset_free(pools->bs);
2814 kfree(pools);
2817 struct dm_pr {
2818 u64 old_key;
2819 u64 new_key;
2820 u32 flags;
2821 bool fail_early;
2824 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2825 void *data)
2827 struct mapped_device *md = bdev->bd_disk->private_data;
2828 struct dm_table *table;
2829 struct dm_target *ti;
2830 int ret = -ENOTTY, srcu_idx;
2832 table = dm_get_live_table(md, &srcu_idx);
2833 if (!table || !dm_table_get_size(table))
2834 goto out;
2836 /* We only support devices that have a single target */
2837 if (dm_table_get_num_targets(table) != 1)
2838 goto out;
2839 ti = dm_table_get_target(table, 0);
2841 ret = -EINVAL;
2842 if (!ti->type->iterate_devices)
2843 goto out;
2845 ret = ti->type->iterate_devices(ti, fn, data);
2846 out:
2847 dm_put_live_table(md, srcu_idx);
2848 return ret;
2852 * For register / unregister we need to manually call out to every path.
2854 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2855 sector_t start, sector_t len, void *data)
2857 struct dm_pr *pr = data;
2858 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2860 if (!ops || !ops->pr_register)
2861 return -EOPNOTSUPP;
2862 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2865 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2866 u32 flags)
2868 struct dm_pr pr = {
2869 .old_key = old_key,
2870 .new_key = new_key,
2871 .flags = flags,
2872 .fail_early = true,
2874 int ret;
2876 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2877 if (ret && new_key) {
2878 /* unregister all paths if we failed to register any path */
2879 pr.old_key = new_key;
2880 pr.new_key = 0;
2881 pr.flags = 0;
2882 pr.fail_early = false;
2883 dm_call_pr(bdev, __dm_pr_register, &pr);
2886 return ret;
2889 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2890 u32 flags)
2892 struct mapped_device *md = bdev->bd_disk->private_data;
2893 const struct pr_ops *ops;
2894 fmode_t mode;
2895 int r;
2897 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2898 if (r < 0)
2899 return r;
2901 ops = bdev->bd_disk->fops->pr_ops;
2902 if (ops && ops->pr_reserve)
2903 r = ops->pr_reserve(bdev, key, type, flags);
2904 else
2905 r = -EOPNOTSUPP;
2907 bdput(bdev);
2908 return r;
2911 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2913 struct mapped_device *md = bdev->bd_disk->private_data;
2914 const struct pr_ops *ops;
2915 fmode_t mode;
2916 int r;
2918 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2919 if (r < 0)
2920 return r;
2922 ops = bdev->bd_disk->fops->pr_ops;
2923 if (ops && ops->pr_release)
2924 r = ops->pr_release(bdev, key, type);
2925 else
2926 r = -EOPNOTSUPP;
2928 bdput(bdev);
2929 return r;
2932 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2933 enum pr_type type, bool abort)
2935 struct mapped_device *md = bdev->bd_disk->private_data;
2936 const struct pr_ops *ops;
2937 fmode_t mode;
2938 int r;
2940 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2941 if (r < 0)
2942 return r;
2944 ops = bdev->bd_disk->fops->pr_ops;
2945 if (ops && ops->pr_preempt)
2946 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2947 else
2948 r = -EOPNOTSUPP;
2950 bdput(bdev);
2951 return r;
2954 static int dm_pr_clear(struct block_device *bdev, u64 key)
2956 struct mapped_device *md = bdev->bd_disk->private_data;
2957 const struct pr_ops *ops;
2958 fmode_t mode;
2959 int r;
2961 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2962 if (r < 0)
2963 return r;
2965 ops = bdev->bd_disk->fops->pr_ops;
2966 if (ops && ops->pr_clear)
2967 r = ops->pr_clear(bdev, key);
2968 else
2969 r = -EOPNOTSUPP;
2971 bdput(bdev);
2972 return r;
2975 static const struct pr_ops dm_pr_ops = {
2976 .pr_register = dm_pr_register,
2977 .pr_reserve = dm_pr_reserve,
2978 .pr_release = dm_pr_release,
2979 .pr_preempt = dm_pr_preempt,
2980 .pr_clear = dm_pr_clear,
2983 static const struct block_device_operations dm_blk_dops = {
2984 .open = dm_blk_open,
2985 .release = dm_blk_close,
2986 .ioctl = dm_blk_ioctl,
2987 .getgeo = dm_blk_getgeo,
2988 .pr_ops = &dm_pr_ops,
2989 .owner = THIS_MODULE
2992 static const struct dax_operations dm_dax_ops = {
2993 .direct_access = dm_dax_direct_access,
2994 .copy_from_iter = dm_dax_copy_from_iter,
2995 .flush = dm_dax_flush,
2999 * module hooks
3001 module_init(dm_init);
3002 module_exit(dm_exit);
3004 module_param(major, uint, 0);
3005 MODULE_PARM_DESC(major, "The major number of the device mapper");
3007 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3008 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3010 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3011 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3013 MODULE_DESCRIPTION(DM_NAME " driver");
3014 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3015 MODULE_LICENSE("GPL");