2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
28 #define DM_MSG_PREFIX "core"
31 * Cookies are numeric values sent with CHANGE and REMOVE
32 * uevents while resuming, removing or renaming the device.
34 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
35 #define DM_COOKIE_LENGTH 24
37 static const char *_name
= DM_NAME
;
39 static unsigned int major
= 0;
40 static unsigned int _major
= 0;
42 static DEFINE_IDR(_minor_idr
);
44 static DEFINE_SPINLOCK(_minor_lock
);
46 static void do_deferred_remove(struct work_struct
*w
);
48 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
50 static struct workqueue_struct
*deferred_remove_workqueue
;
52 atomic_t dm_global_event_nr
= ATOMIC_INIT(0);
53 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq
);
56 * One of these is allocated per bio.
59 struct mapped_device
*md
;
63 unsigned long start_time
;
64 spinlock_t endio_lock
;
65 struct dm_stats_aux stats_aux
;
68 #define MINOR_ALLOCED ((void *)-1)
71 * Bits for the md->flags field.
73 #define DMF_BLOCK_IO_FOR_SUSPEND 0
74 #define DMF_SUSPENDED 1
77 #define DMF_DELETING 4
78 #define DMF_NOFLUSH_SUSPENDING 5
79 #define DMF_DEFERRED_REMOVE 6
80 #define DMF_SUSPENDED_INTERNALLY 7
82 #define DM_NUMA_NODE NUMA_NO_NODE
83 static int dm_numa_node
= DM_NUMA_NODE
;
86 * For mempools pre-allocation at the table loading time.
88 struct dm_md_mempools
{
94 struct list_head list
;
99 static struct kmem_cache
*_io_cache
;
100 static struct kmem_cache
*_rq_tio_cache
;
101 static struct kmem_cache
*_rq_cache
;
104 * Bio-based DM's mempools' reserved IOs set by the user.
106 #define RESERVED_BIO_BASED_IOS 16
107 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
109 static int __dm_get_module_param_int(int *module_param
, int min
, int max
)
111 int param
= ACCESS_ONCE(*module_param
);
112 int modified_param
= 0;
113 bool modified
= true;
116 modified_param
= min
;
117 else if (param
> max
)
118 modified_param
= max
;
123 (void)cmpxchg(module_param
, param
, modified_param
);
124 param
= modified_param
;
130 unsigned __dm_get_module_param(unsigned *module_param
,
131 unsigned def
, unsigned max
)
133 unsigned param
= ACCESS_ONCE(*module_param
);
134 unsigned modified_param
= 0;
137 modified_param
= def
;
138 else if (param
> max
)
139 modified_param
= max
;
141 if (modified_param
) {
142 (void)cmpxchg(module_param
, param
, modified_param
);
143 param
= modified_param
;
149 unsigned dm_get_reserved_bio_based_ios(void)
151 return __dm_get_module_param(&reserved_bio_based_ios
,
152 RESERVED_BIO_BASED_IOS
, DM_RESERVED_MAX_IOS
);
154 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
156 static unsigned dm_get_numa_node(void)
158 return __dm_get_module_param_int(&dm_numa_node
,
159 DM_NUMA_NODE
, num_online_nodes() - 1);
162 static int __init
local_init(void)
166 /* allocate a slab for the dm_ios */
167 _io_cache
= KMEM_CACHE(dm_io
, 0);
171 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
173 goto out_free_io_cache
;
175 _rq_cache
= kmem_cache_create("dm_old_clone_request", sizeof(struct request
),
176 __alignof__(struct request
), 0, NULL
);
178 goto out_free_rq_tio_cache
;
180 r
= dm_uevent_init();
182 goto out_free_rq_cache
;
184 deferred_remove_workqueue
= alloc_workqueue("kdmremove", WQ_UNBOUND
, 1);
185 if (!deferred_remove_workqueue
) {
187 goto out_uevent_exit
;
191 r
= register_blkdev(_major
, _name
);
193 goto out_free_workqueue
;
201 destroy_workqueue(deferred_remove_workqueue
);
205 kmem_cache_destroy(_rq_cache
);
206 out_free_rq_tio_cache
:
207 kmem_cache_destroy(_rq_tio_cache
);
209 kmem_cache_destroy(_io_cache
);
214 static void local_exit(void)
216 flush_scheduled_work();
217 destroy_workqueue(deferred_remove_workqueue
);
219 kmem_cache_destroy(_rq_cache
);
220 kmem_cache_destroy(_rq_tio_cache
);
221 kmem_cache_destroy(_io_cache
);
222 unregister_blkdev(_major
, _name
);
227 DMINFO("cleaned up");
230 static int (*_inits
[])(void) __initdata
= {
241 static void (*_exits
[])(void) = {
252 static int __init
dm_init(void)
254 const int count
= ARRAY_SIZE(_inits
);
258 for (i
= 0; i
< count
; i
++) {
273 static void __exit
dm_exit(void)
275 int i
= ARRAY_SIZE(_exits
);
281 * Should be empty by this point.
283 idr_destroy(&_minor_idr
);
287 * Block device functions
289 int dm_deleting_md(struct mapped_device
*md
)
291 return test_bit(DMF_DELETING
, &md
->flags
);
294 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
296 struct mapped_device
*md
;
298 spin_lock(&_minor_lock
);
300 md
= bdev
->bd_disk
->private_data
;
304 if (test_bit(DMF_FREEING
, &md
->flags
) ||
305 dm_deleting_md(md
)) {
311 atomic_inc(&md
->open_count
);
313 spin_unlock(&_minor_lock
);
315 return md
? 0 : -ENXIO
;
318 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
320 struct mapped_device
*md
;
322 spin_lock(&_minor_lock
);
324 md
= disk
->private_data
;
328 if (atomic_dec_and_test(&md
->open_count
) &&
329 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
330 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
334 spin_unlock(&_minor_lock
);
337 int dm_open_count(struct mapped_device
*md
)
339 return atomic_read(&md
->open_count
);
343 * Guarantees nothing is using the device before it's deleted.
345 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
349 spin_lock(&_minor_lock
);
351 if (dm_open_count(md
)) {
354 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
355 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
358 set_bit(DMF_DELETING
, &md
->flags
);
360 spin_unlock(&_minor_lock
);
365 int dm_cancel_deferred_remove(struct mapped_device
*md
)
369 spin_lock(&_minor_lock
);
371 if (test_bit(DMF_DELETING
, &md
->flags
))
374 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
376 spin_unlock(&_minor_lock
);
381 static void do_deferred_remove(struct work_struct
*w
)
383 dm_deferred_remove();
386 sector_t
dm_get_size(struct mapped_device
*md
)
388 return get_capacity(md
->disk
);
391 struct request_queue
*dm_get_md_queue(struct mapped_device
*md
)
396 struct dm_stats
*dm_get_stats(struct mapped_device
*md
)
401 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
403 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
405 return dm_get_geometry(md
, geo
);
408 static int dm_grab_bdev_for_ioctl(struct mapped_device
*md
,
409 struct block_device
**bdev
,
412 struct dm_target
*tgt
;
413 struct dm_table
*map
;
418 map
= dm_get_live_table(md
, &srcu_idx
);
419 if (!map
|| !dm_table_get_size(map
))
422 /* We only support devices that have a single target */
423 if (dm_table_get_num_targets(map
) != 1)
426 tgt
= dm_table_get_target(map
, 0);
427 if (!tgt
->type
->prepare_ioctl
)
430 if (dm_suspended_md(md
)) {
435 r
= tgt
->type
->prepare_ioctl(tgt
, bdev
, mode
);
440 dm_put_live_table(md
, srcu_idx
);
444 dm_put_live_table(md
, srcu_idx
);
445 if (r
== -ENOTCONN
&& !fatal_signal_pending(current
)) {
452 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
453 unsigned int cmd
, unsigned long arg
)
455 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
458 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
464 * Target determined this ioctl is being issued against a
465 * subset of the parent bdev; require extra privileges.
467 if (!capable(CAP_SYS_RAWIO
)) {
469 "%s: sending ioctl %x to DM device without required privilege.",
476 r
= __blkdev_driver_ioctl(bdev
, mode
, cmd
, arg
);
482 static struct dm_io
*alloc_io(struct mapped_device
*md
)
484 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
487 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
489 mempool_free(io
, md
->io_pool
);
492 static void free_tio(struct dm_target_io
*tio
)
494 bio_put(&tio
->clone
);
497 int md_in_flight(struct mapped_device
*md
)
499 return atomic_read(&md
->pending
[READ
]) +
500 atomic_read(&md
->pending
[WRITE
]);
503 static void start_io_acct(struct dm_io
*io
)
505 struct mapped_device
*md
= io
->md
;
506 struct bio
*bio
= io
->bio
;
508 int rw
= bio_data_dir(bio
);
510 io
->start_time
= jiffies
;
512 cpu
= part_stat_lock();
513 part_round_stats(md
->queue
, cpu
, &dm_disk(md
)->part0
);
515 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
516 atomic_inc_return(&md
->pending
[rw
]));
518 if (unlikely(dm_stats_used(&md
->stats
)))
519 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
520 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
521 false, 0, &io
->stats_aux
);
524 static void end_io_acct(struct dm_io
*io
)
526 struct mapped_device
*md
= io
->md
;
527 struct bio
*bio
= io
->bio
;
528 unsigned long duration
= jiffies
- io
->start_time
;
530 int rw
= bio_data_dir(bio
);
532 generic_end_io_acct(md
->queue
, rw
, &dm_disk(md
)->part0
, io
->start_time
);
534 if (unlikely(dm_stats_used(&md
->stats
)))
535 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
536 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
537 true, duration
, &io
->stats_aux
);
540 * After this is decremented the bio must not be touched if it is
543 pending
= atomic_dec_return(&md
->pending
[rw
]);
544 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
545 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
547 /* nudge anyone waiting on suspend queue */
553 * Add the bio to the list of deferred io.
555 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
559 spin_lock_irqsave(&md
->deferred_lock
, flags
);
560 bio_list_add(&md
->deferred
, bio
);
561 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
562 queue_work(md
->wq
, &md
->work
);
566 * Everyone (including functions in this file), should use this
567 * function to access the md->map field, and make sure they call
568 * dm_put_live_table() when finished.
570 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
572 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
574 return srcu_dereference(md
->map
, &md
->io_barrier
);
577 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
579 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
582 void dm_sync_table(struct mapped_device
*md
)
584 synchronize_srcu(&md
->io_barrier
);
585 synchronize_rcu_expedited();
589 * A fast alternative to dm_get_live_table/dm_put_live_table.
590 * The caller must not block between these two functions.
592 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
595 return rcu_dereference(md
->map
);
598 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
604 * Open a table device so we can use it as a map destination.
606 static int open_table_device(struct table_device
*td
, dev_t dev
,
607 struct mapped_device
*md
)
609 static char *_claim_ptr
= "I belong to device-mapper";
610 struct block_device
*bdev
;
614 BUG_ON(td
->dm_dev
.bdev
);
616 bdev
= blkdev_get_by_dev(dev
, td
->dm_dev
.mode
| FMODE_EXCL
, _claim_ptr
);
618 return PTR_ERR(bdev
);
620 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
622 blkdev_put(bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
626 td
->dm_dev
.bdev
= bdev
;
627 td
->dm_dev
.dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
632 * Close a table device that we've been using.
634 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
636 if (!td
->dm_dev
.bdev
)
639 bd_unlink_disk_holder(td
->dm_dev
.bdev
, dm_disk(md
));
640 blkdev_put(td
->dm_dev
.bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
641 put_dax(td
->dm_dev
.dax_dev
);
642 td
->dm_dev
.bdev
= NULL
;
643 td
->dm_dev
.dax_dev
= NULL
;
646 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
648 struct table_device
*td
;
650 list_for_each_entry(td
, l
, list
)
651 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
657 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, fmode_t mode
,
658 struct dm_dev
**result
) {
660 struct table_device
*td
;
662 mutex_lock(&md
->table_devices_lock
);
663 td
= find_table_device(&md
->table_devices
, dev
, mode
);
665 td
= kmalloc_node(sizeof(*td
), GFP_KERNEL
, md
->numa_node_id
);
667 mutex_unlock(&md
->table_devices_lock
);
671 td
->dm_dev
.mode
= mode
;
672 td
->dm_dev
.bdev
= NULL
;
674 if ((r
= open_table_device(td
, dev
, md
))) {
675 mutex_unlock(&md
->table_devices_lock
);
680 format_dev_t(td
->dm_dev
.name
, dev
);
682 atomic_set(&td
->count
, 0);
683 list_add(&td
->list
, &md
->table_devices
);
685 atomic_inc(&td
->count
);
686 mutex_unlock(&md
->table_devices_lock
);
688 *result
= &td
->dm_dev
;
691 EXPORT_SYMBOL_GPL(dm_get_table_device
);
693 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
695 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
697 mutex_lock(&md
->table_devices_lock
);
698 if (atomic_dec_and_test(&td
->count
)) {
699 close_table_device(td
, md
);
703 mutex_unlock(&md
->table_devices_lock
);
705 EXPORT_SYMBOL(dm_put_table_device
);
707 static void free_table_devices(struct list_head
*devices
)
709 struct list_head
*tmp
, *next
;
711 list_for_each_safe(tmp
, next
, devices
) {
712 struct table_device
*td
= list_entry(tmp
, struct table_device
, list
);
714 DMWARN("dm_destroy: %s still exists with %d references",
715 td
->dm_dev
.name
, atomic_read(&td
->count
));
721 * Get the geometry associated with a dm device
723 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
731 * Set the geometry of a device.
733 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
735 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
737 if (geo
->start
> sz
) {
738 DMWARN("Start sector is beyond the geometry limits.");
747 /*-----------------------------------------------------------------
749 * A more elegant soln is in the works that uses the queue
750 * merge fn, unfortunately there are a couple of changes to
751 * the block layer that I want to make for this. So in the
752 * interests of getting something for people to use I give
753 * you this clearly demarcated crap.
754 *---------------------------------------------------------------*/
756 static int __noflush_suspending(struct mapped_device
*md
)
758 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
762 * Decrements the number of outstanding ios that a bio has been
763 * cloned into, completing the original io if necc.
765 static void dec_pending(struct dm_io
*io
, blk_status_t error
)
768 blk_status_t io_error
;
770 struct mapped_device
*md
= io
->md
;
772 /* Push-back supersedes any I/O errors */
773 if (unlikely(error
)) {
774 spin_lock_irqsave(&io
->endio_lock
, flags
);
775 if (!(io
->status
== BLK_STS_DM_REQUEUE
&&
776 __noflush_suspending(md
)))
778 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
781 if (atomic_dec_and_test(&io
->io_count
)) {
782 if (io
->status
== BLK_STS_DM_REQUEUE
) {
784 * Target requested pushing back the I/O.
786 spin_lock_irqsave(&md
->deferred_lock
, flags
);
787 if (__noflush_suspending(md
))
788 bio_list_add_head(&md
->deferred
, io
->bio
);
790 /* noflush suspend was interrupted. */
791 io
->status
= BLK_STS_IOERR
;
792 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
795 io_error
= io
->status
;
800 if (io_error
== BLK_STS_DM_REQUEUE
)
803 if ((bio
->bi_opf
& REQ_PREFLUSH
) && bio
->bi_iter
.bi_size
) {
805 * Preflush done for flush with data, reissue
806 * without REQ_PREFLUSH.
808 bio
->bi_opf
&= ~REQ_PREFLUSH
;
811 /* done with normal IO or empty flush */
812 bio
->bi_status
= io_error
;
818 void disable_write_same(struct mapped_device
*md
)
820 struct queue_limits
*limits
= dm_get_queue_limits(md
);
822 /* device doesn't really support WRITE SAME, disable it */
823 limits
->max_write_same_sectors
= 0;
826 void disable_write_zeroes(struct mapped_device
*md
)
828 struct queue_limits
*limits
= dm_get_queue_limits(md
);
830 /* device doesn't really support WRITE ZEROES, disable it */
831 limits
->max_write_zeroes_sectors
= 0;
834 static void clone_endio(struct bio
*bio
)
836 blk_status_t error
= bio
->bi_status
;
837 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
838 struct dm_io
*io
= tio
->io
;
839 struct mapped_device
*md
= tio
->io
->md
;
840 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
842 if (unlikely(error
== BLK_STS_TARGET
)) {
843 if (bio_op(bio
) == REQ_OP_WRITE_SAME
&&
844 !bio
->bi_disk
->queue
->limits
.max_write_same_sectors
)
845 disable_write_same(md
);
846 if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
&&
847 !bio
->bi_disk
->queue
->limits
.max_write_zeroes_sectors
)
848 disable_write_zeroes(md
);
852 int r
= endio(tio
->ti
, bio
, &error
);
854 case DM_ENDIO_REQUEUE
:
855 error
= BLK_STS_DM_REQUEUE
;
859 case DM_ENDIO_INCOMPLETE
:
860 /* The target will handle the io */
863 DMWARN("unimplemented target endio return value: %d", r
);
869 dec_pending(io
, error
);
873 * Return maximum size of I/O possible at the supplied sector up to the current
876 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
878 sector_t target_offset
= dm_target_offset(ti
, sector
);
880 return ti
->len
- target_offset
;
883 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
885 sector_t len
= max_io_len_target_boundary(sector
, ti
);
886 sector_t offset
, max_len
;
889 * Does the target need to split even further?
891 if (ti
->max_io_len
) {
892 offset
= dm_target_offset(ti
, sector
);
893 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
894 max_len
= sector_div(offset
, ti
->max_io_len
);
896 max_len
= offset
& (ti
->max_io_len
- 1);
897 max_len
= ti
->max_io_len
- max_len
;
906 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
908 if (len
> UINT_MAX
) {
909 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
910 (unsigned long long)len
, UINT_MAX
);
911 ti
->error
= "Maximum size of target IO is too large";
915 ti
->max_io_len
= (uint32_t) len
;
919 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
921 static struct dm_target
*dm_dax_get_live_target(struct mapped_device
*md
,
922 sector_t sector
, int *srcu_idx
)
924 struct dm_table
*map
;
925 struct dm_target
*ti
;
927 map
= dm_get_live_table(md
, srcu_idx
);
931 ti
= dm_table_find_target(map
, sector
);
932 if (!dm_target_is_valid(ti
))
938 static long dm_dax_direct_access(struct dax_device
*dax_dev
, pgoff_t pgoff
,
939 long nr_pages
, void **kaddr
, pfn_t
*pfn
)
941 struct mapped_device
*md
= dax_get_private(dax_dev
);
942 sector_t sector
= pgoff
* PAGE_SECTORS
;
943 struct dm_target
*ti
;
944 long len
, ret
= -EIO
;
947 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
951 if (!ti
->type
->direct_access
)
953 len
= max_io_len(sector
, ti
) / PAGE_SECTORS
;
956 nr_pages
= min(len
, nr_pages
);
957 if (ti
->type
->direct_access
)
958 ret
= ti
->type
->direct_access(ti
, pgoff
, nr_pages
, kaddr
, pfn
);
961 dm_put_live_table(md
, srcu_idx
);
966 static size_t dm_dax_copy_from_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
967 void *addr
, size_t bytes
, struct iov_iter
*i
)
969 struct mapped_device
*md
= dax_get_private(dax_dev
);
970 sector_t sector
= pgoff
* PAGE_SECTORS
;
971 struct dm_target
*ti
;
975 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
979 if (!ti
->type
->dax_copy_from_iter
) {
980 ret
= copy_from_iter(addr
, bytes
, i
);
983 ret
= ti
->type
->dax_copy_from_iter(ti
, pgoff
, addr
, bytes
, i
);
985 dm_put_live_table(md
, srcu_idx
);
990 static void dm_dax_flush(struct dax_device
*dax_dev
, pgoff_t pgoff
, void *addr
,
993 struct mapped_device
*md
= dax_get_private(dax_dev
);
994 sector_t sector
= pgoff
* PAGE_SECTORS
;
995 struct dm_target
*ti
;
998 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1002 if (ti
->type
->dax_flush
)
1003 ti
->type
->dax_flush(ti
, pgoff
, addr
, size
);
1005 dm_put_live_table(md
, srcu_idx
);
1009 * A target may call dm_accept_partial_bio only from the map routine. It is
1010 * allowed for all bio types except REQ_PREFLUSH.
1012 * dm_accept_partial_bio informs the dm that the target only wants to process
1013 * additional n_sectors sectors of the bio and the rest of the data should be
1014 * sent in a next bio.
1016 * A diagram that explains the arithmetics:
1017 * +--------------------+---------------+-------+
1019 * +--------------------+---------------+-------+
1021 * <-------------- *tio->len_ptr --------------->
1022 * <------- bi_size ------->
1025 * Region 1 was already iterated over with bio_advance or similar function.
1026 * (it may be empty if the target doesn't use bio_advance)
1027 * Region 2 is the remaining bio size that the target wants to process.
1028 * (it may be empty if region 1 is non-empty, although there is no reason
1030 * The target requires that region 3 is to be sent in the next bio.
1032 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1033 * the partially processed part (the sum of regions 1+2) must be the same for all
1034 * copies of the bio.
1036 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
1038 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1039 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
1040 BUG_ON(bio
->bi_opf
& REQ_PREFLUSH
);
1041 BUG_ON(bi_size
> *tio
->len_ptr
);
1042 BUG_ON(n_sectors
> bi_size
);
1043 *tio
->len_ptr
-= bi_size
- n_sectors
;
1044 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1046 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1049 * The zone descriptors obtained with a zone report indicate
1050 * zone positions within the target device. The zone descriptors
1051 * must be remapped to match their position within the dm device.
1052 * A target may call dm_remap_zone_report after completion of a
1053 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1054 * from the target device mapping to the dm device.
1056 void dm_remap_zone_report(struct dm_target
*ti
, struct bio
*bio
, sector_t start
)
1058 #ifdef CONFIG_BLK_DEV_ZONED
1059 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1060 struct bio
*report_bio
= tio
->io
->bio
;
1061 struct blk_zone_report_hdr
*hdr
= NULL
;
1062 struct blk_zone
*zone
;
1063 unsigned int nr_rep
= 0;
1065 struct bio_vec bvec
;
1066 struct bvec_iter iter
;
1073 * Remap the start sector of the reported zones. For sequential zones,
1074 * also remap the write pointer position.
1076 bio_for_each_segment(bvec
, report_bio
, iter
) {
1077 addr
= kmap_atomic(bvec
.bv_page
);
1079 /* Remember the report header in the first page */
1082 ofst
= sizeof(struct blk_zone_report_hdr
);
1086 /* Set zones start sector */
1087 while (hdr
->nr_zones
&& ofst
< bvec
.bv_len
) {
1089 if (zone
->start
>= start
+ ti
->len
) {
1093 zone
->start
= zone
->start
+ ti
->begin
- start
;
1094 if (zone
->type
!= BLK_ZONE_TYPE_CONVENTIONAL
) {
1095 if (zone
->cond
== BLK_ZONE_COND_FULL
)
1096 zone
->wp
= zone
->start
+ zone
->len
;
1097 else if (zone
->cond
== BLK_ZONE_COND_EMPTY
)
1098 zone
->wp
= zone
->start
;
1100 zone
->wp
= zone
->wp
+ ti
->begin
- start
;
1102 ofst
+= sizeof(struct blk_zone
);
1108 kunmap_atomic(addr
);
1115 hdr
->nr_zones
= nr_rep
;
1119 bio_advance(report_bio
, report_bio
->bi_iter
.bi_size
);
1121 #else /* !CONFIG_BLK_DEV_ZONED */
1122 bio
->bi_status
= BLK_STS_NOTSUPP
;
1125 EXPORT_SYMBOL_GPL(dm_remap_zone_report
);
1128 * Flush current->bio_list when the target map method blocks.
1129 * This fixes deadlocks in snapshot and possibly in other targets.
1132 struct blk_plug plug
;
1133 struct blk_plug_cb cb
;
1136 static void flush_current_bio_list(struct blk_plug_cb
*cb
, bool from_schedule
)
1138 struct dm_offload
*o
= container_of(cb
, struct dm_offload
, cb
);
1139 struct bio_list list
;
1143 INIT_LIST_HEAD(&o
->cb
.list
);
1145 if (unlikely(!current
->bio_list
))
1148 for (i
= 0; i
< 2; i
++) {
1149 list
= current
->bio_list
[i
];
1150 bio_list_init(¤t
->bio_list
[i
]);
1152 while ((bio
= bio_list_pop(&list
))) {
1153 struct bio_set
*bs
= bio
->bi_pool
;
1154 if (unlikely(!bs
) || bs
== fs_bio_set
||
1155 !bs
->rescue_workqueue
) {
1156 bio_list_add(¤t
->bio_list
[i
], bio
);
1160 spin_lock(&bs
->rescue_lock
);
1161 bio_list_add(&bs
->rescue_list
, bio
);
1162 queue_work(bs
->rescue_workqueue
, &bs
->rescue_work
);
1163 spin_unlock(&bs
->rescue_lock
);
1168 static void dm_offload_start(struct dm_offload
*o
)
1170 blk_start_plug(&o
->plug
);
1171 o
->cb
.callback
= flush_current_bio_list
;
1172 list_add(&o
->cb
.list
, ¤t
->plug
->cb_list
);
1175 static void dm_offload_end(struct dm_offload
*o
)
1177 list_del(&o
->cb
.list
);
1178 blk_finish_plug(&o
->plug
);
1181 static void __map_bio(struct dm_target_io
*tio
)
1185 struct dm_offload o
;
1186 struct bio
*clone
= &tio
->clone
;
1187 struct dm_target
*ti
= tio
->ti
;
1189 clone
->bi_end_io
= clone_endio
;
1192 * Map the clone. If r == 0 we don't need to do
1193 * anything, the target has assumed ownership of
1196 atomic_inc(&tio
->io
->io_count
);
1197 sector
= clone
->bi_iter
.bi_sector
;
1199 dm_offload_start(&o
);
1200 r
= ti
->type
->map(ti
, clone
);
1204 case DM_MAPIO_SUBMITTED
:
1206 case DM_MAPIO_REMAPPED
:
1207 /* the bio has been remapped so dispatch it */
1208 trace_block_bio_remap(clone
->bi_disk
->queue
, clone
,
1209 bio_dev(tio
->io
->bio
), sector
);
1210 generic_make_request(clone
);
1213 dec_pending(tio
->io
, BLK_STS_IOERR
);
1216 case DM_MAPIO_REQUEUE
:
1217 dec_pending(tio
->io
, BLK_STS_DM_REQUEUE
);
1221 DMWARN("unimplemented target map return value: %d", r
);
1227 struct mapped_device
*md
;
1228 struct dm_table
*map
;
1232 unsigned sector_count
;
1235 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1237 bio
->bi_iter
.bi_sector
= sector
;
1238 bio
->bi_iter
.bi_size
= to_bytes(len
);
1242 * Creates a bio that consists of range of complete bvecs.
1244 static int clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1245 sector_t sector
, unsigned len
)
1247 struct bio
*clone
= &tio
->clone
;
1249 __bio_clone_fast(clone
, bio
);
1251 if (unlikely(bio_integrity(bio
) != NULL
)) {
1254 if (unlikely(!dm_target_has_integrity(tio
->ti
->type
) &&
1255 !dm_target_passes_integrity(tio
->ti
->type
))) {
1256 DMWARN("%s: the target %s doesn't support integrity data.",
1257 dm_device_name(tio
->io
->md
),
1258 tio
->ti
->type
->name
);
1262 r
= bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1267 if (bio_op(bio
) != REQ_OP_ZONE_REPORT
)
1268 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1269 clone
->bi_iter
.bi_size
= to_bytes(len
);
1271 if (unlikely(bio_integrity(bio
) != NULL
))
1272 bio_integrity_trim(clone
);
1277 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1278 struct dm_target
*ti
,
1279 unsigned target_bio_nr
)
1281 struct dm_target_io
*tio
;
1284 clone
= bio_alloc_bioset(GFP_NOIO
, 0, ci
->md
->bs
);
1285 tio
= container_of(clone
, struct dm_target_io
, clone
);
1289 tio
->target_bio_nr
= target_bio_nr
;
1294 static void __clone_and_map_simple_bio(struct clone_info
*ci
,
1295 struct dm_target
*ti
,
1296 unsigned target_bio_nr
, unsigned *len
)
1298 struct dm_target_io
*tio
= alloc_tio(ci
, ti
, target_bio_nr
);
1299 struct bio
*clone
= &tio
->clone
;
1303 __bio_clone_fast(clone
, ci
->bio
);
1305 bio_setup_sector(clone
, ci
->sector
, *len
);
1310 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1311 unsigned num_bios
, unsigned *len
)
1313 unsigned target_bio_nr
;
1315 for (target_bio_nr
= 0; target_bio_nr
< num_bios
; target_bio_nr
++)
1316 __clone_and_map_simple_bio(ci
, ti
, target_bio_nr
, len
);
1319 static int __send_empty_flush(struct clone_info
*ci
)
1321 unsigned target_nr
= 0;
1322 struct dm_target
*ti
;
1324 BUG_ON(bio_has_data(ci
->bio
));
1325 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1326 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1331 static int __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1332 sector_t sector
, unsigned *len
)
1334 struct bio
*bio
= ci
->bio
;
1335 struct dm_target_io
*tio
;
1336 unsigned target_bio_nr
;
1337 unsigned num_target_bios
= 1;
1341 * Does the target want to receive duplicate copies of the bio?
1343 if (bio_data_dir(bio
) == WRITE
&& ti
->num_write_bios
)
1344 num_target_bios
= ti
->num_write_bios(ti
, bio
);
1346 for (target_bio_nr
= 0; target_bio_nr
< num_target_bios
; target_bio_nr
++) {
1347 tio
= alloc_tio(ci
, ti
, target_bio_nr
);
1349 r
= clone_bio(tio
, bio
, sector
, *len
);
1360 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1362 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1364 return ti
->num_discard_bios
;
1367 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1369 return ti
->num_write_same_bios
;
1372 static unsigned get_num_write_zeroes_bios(struct dm_target
*ti
)
1374 return ti
->num_write_zeroes_bios
;
1377 typedef bool (*is_split_required_fn
)(struct dm_target
*ti
);
1379 static bool is_split_required_for_discard(struct dm_target
*ti
)
1381 return ti
->split_discard_bios
;
1384 static int __send_changing_extent_only(struct clone_info
*ci
,
1385 get_num_bios_fn get_num_bios
,
1386 is_split_required_fn is_split_required
)
1388 struct dm_target
*ti
;
1393 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1394 if (!dm_target_is_valid(ti
))
1398 * Even though the device advertised support for this type of
1399 * request, that does not mean every target supports it, and
1400 * reconfiguration might also have changed that since the
1401 * check was performed.
1403 num_bios
= get_num_bios
? get_num_bios(ti
) : 0;
1407 if (is_split_required
&& !is_split_required(ti
))
1408 len
= min((sector_t
)ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1410 len
= min((sector_t
)ci
->sector_count
, max_io_len(ci
->sector
, ti
));
1412 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1415 } while (ci
->sector_count
-= len
);
1420 static int __send_discard(struct clone_info
*ci
)
1422 return __send_changing_extent_only(ci
, get_num_discard_bios
,
1423 is_split_required_for_discard
);
1426 static int __send_write_same(struct clone_info
*ci
)
1428 return __send_changing_extent_only(ci
, get_num_write_same_bios
, NULL
);
1431 static int __send_write_zeroes(struct clone_info
*ci
)
1433 return __send_changing_extent_only(ci
, get_num_write_zeroes_bios
, NULL
);
1437 * Select the correct strategy for processing a non-flush bio.
1439 static int __split_and_process_non_flush(struct clone_info
*ci
)
1441 struct bio
*bio
= ci
->bio
;
1442 struct dm_target
*ti
;
1446 if (unlikely(bio_op(bio
) == REQ_OP_DISCARD
))
1447 return __send_discard(ci
);
1448 else if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
1449 return __send_write_same(ci
);
1450 else if (unlikely(bio_op(bio
) == REQ_OP_WRITE_ZEROES
))
1451 return __send_write_zeroes(ci
);
1453 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1454 if (!dm_target_is_valid(ti
))
1457 if (bio_op(bio
) == REQ_OP_ZONE_REPORT
)
1458 len
= ci
->sector_count
;
1460 len
= min_t(sector_t
, max_io_len(ci
->sector
, ti
),
1463 r
= __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1468 ci
->sector_count
-= len
;
1474 * Entry point to split a bio into clones and submit them to the targets.
1476 static void __split_and_process_bio(struct mapped_device
*md
,
1477 struct dm_table
*map
, struct bio
*bio
)
1479 struct clone_info ci
;
1482 if (unlikely(!map
)) {
1489 ci
.io
= alloc_io(md
);
1491 atomic_set(&ci
.io
->io_count
, 1);
1494 spin_lock_init(&ci
.io
->endio_lock
);
1495 ci
.sector
= bio
->bi_iter
.bi_sector
;
1497 start_io_acct(ci
.io
);
1499 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1500 ci
.bio
= &ci
.md
->flush_bio
;
1501 ci
.sector_count
= 0;
1502 error
= __send_empty_flush(&ci
);
1503 /* dec_pending submits any data associated with flush */
1504 } else if (bio_op(bio
) == REQ_OP_ZONE_RESET
) {
1506 ci
.sector_count
= 0;
1507 error
= __split_and_process_non_flush(&ci
);
1510 ci
.sector_count
= bio_sectors(bio
);
1511 while (ci
.sector_count
&& !error
)
1512 error
= __split_and_process_non_flush(&ci
);
1515 /* drop the extra reference count */
1516 dec_pending(ci
.io
, errno_to_blk_status(error
));
1518 /*-----------------------------------------------------------------
1520 *---------------------------------------------------------------*/
1523 * The request function that just remaps the bio built up by
1526 static blk_qc_t
dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1528 int rw
= bio_data_dir(bio
);
1529 struct mapped_device
*md
= q
->queuedata
;
1531 struct dm_table
*map
;
1533 map
= dm_get_live_table(md
, &srcu_idx
);
1535 generic_start_io_acct(q
, rw
, bio_sectors(bio
), &dm_disk(md
)->part0
);
1537 /* if we're suspended, we have to queue this io for later */
1538 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1539 dm_put_live_table(md
, srcu_idx
);
1541 if (!(bio
->bi_opf
& REQ_RAHEAD
))
1545 return BLK_QC_T_NONE
;
1548 __split_and_process_bio(md
, map
, bio
);
1549 dm_put_live_table(md
, srcu_idx
);
1550 return BLK_QC_T_NONE
;
1553 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1556 struct mapped_device
*md
= congested_data
;
1557 struct dm_table
*map
;
1559 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1560 if (dm_request_based(md
)) {
1562 * With request-based DM we only need to check the
1563 * top-level queue for congestion.
1565 r
= md
->queue
->backing_dev_info
->wb
.state
& bdi_bits
;
1567 map
= dm_get_live_table_fast(md
);
1569 r
= dm_table_any_congested(map
, bdi_bits
);
1570 dm_put_live_table_fast(md
);
1577 /*-----------------------------------------------------------------
1578 * An IDR is used to keep track of allocated minor numbers.
1579 *---------------------------------------------------------------*/
1580 static void free_minor(int minor
)
1582 spin_lock(&_minor_lock
);
1583 idr_remove(&_minor_idr
, minor
);
1584 spin_unlock(&_minor_lock
);
1588 * See if the device with a specific minor # is free.
1590 static int specific_minor(int minor
)
1594 if (minor
>= (1 << MINORBITS
))
1597 idr_preload(GFP_KERNEL
);
1598 spin_lock(&_minor_lock
);
1600 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1602 spin_unlock(&_minor_lock
);
1605 return r
== -ENOSPC
? -EBUSY
: r
;
1609 static int next_free_minor(int *minor
)
1613 idr_preload(GFP_KERNEL
);
1614 spin_lock(&_minor_lock
);
1616 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1618 spin_unlock(&_minor_lock
);
1626 static const struct block_device_operations dm_blk_dops
;
1627 static const struct dax_operations dm_dax_ops
;
1629 static void dm_wq_work(struct work_struct
*work
);
1631 void dm_init_md_queue(struct mapped_device
*md
)
1634 * Request-based dm devices cannot be stacked on top of bio-based dm
1635 * devices. The type of this dm device may not have been decided yet.
1636 * The type is decided at the first table loading time.
1637 * To prevent problematic device stacking, clear the queue flag
1638 * for request stacking support until then.
1640 * This queue is new, so no concurrency on the queue_flags.
1642 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1645 * Initialize data that will only be used by a non-blk-mq DM queue
1646 * - must do so here (in alloc_dev callchain) before queue is used
1648 md
->queue
->queuedata
= md
;
1649 md
->queue
->backing_dev_info
->congested_data
= md
;
1652 void dm_init_normal_md_queue(struct mapped_device
*md
)
1654 md
->use_blk_mq
= false;
1655 dm_init_md_queue(md
);
1658 * Initialize aspects of queue that aren't relevant for blk-mq
1660 md
->queue
->backing_dev_info
->congested_fn
= dm_any_congested
;
1663 static void cleanup_mapped_device(struct mapped_device
*md
)
1666 destroy_workqueue(md
->wq
);
1667 if (md
->kworker_task
)
1668 kthread_stop(md
->kworker_task
);
1669 mempool_destroy(md
->io_pool
);
1671 bioset_free(md
->bs
);
1674 kill_dax(md
->dax_dev
);
1675 put_dax(md
->dax_dev
);
1680 spin_lock(&_minor_lock
);
1681 md
->disk
->private_data
= NULL
;
1682 spin_unlock(&_minor_lock
);
1683 del_gendisk(md
->disk
);
1688 blk_cleanup_queue(md
->queue
);
1690 cleanup_srcu_struct(&md
->io_barrier
);
1697 dm_mq_cleanup_mapped_device(md
);
1701 * Allocate and initialise a blank device with a given minor.
1703 static struct mapped_device
*alloc_dev(int minor
)
1705 int r
, numa_node_id
= dm_get_numa_node();
1706 struct dax_device
*dax_dev
;
1707 struct mapped_device
*md
;
1710 md
= kzalloc_node(sizeof(*md
), GFP_KERNEL
, numa_node_id
);
1712 DMWARN("unable to allocate device, out of memory.");
1716 if (!try_module_get(THIS_MODULE
))
1717 goto bad_module_get
;
1719 /* get a minor number for the dev */
1720 if (minor
== DM_ANY_MINOR
)
1721 r
= next_free_minor(&minor
);
1723 r
= specific_minor(minor
);
1727 r
= init_srcu_struct(&md
->io_barrier
);
1729 goto bad_io_barrier
;
1731 md
->numa_node_id
= numa_node_id
;
1732 md
->use_blk_mq
= dm_use_blk_mq_default();
1733 md
->init_tio_pdu
= false;
1734 md
->type
= DM_TYPE_NONE
;
1735 mutex_init(&md
->suspend_lock
);
1736 mutex_init(&md
->type_lock
);
1737 mutex_init(&md
->table_devices_lock
);
1738 spin_lock_init(&md
->deferred_lock
);
1739 atomic_set(&md
->holders
, 1);
1740 atomic_set(&md
->open_count
, 0);
1741 atomic_set(&md
->event_nr
, 0);
1742 atomic_set(&md
->uevent_seq
, 0);
1743 INIT_LIST_HEAD(&md
->uevent_list
);
1744 INIT_LIST_HEAD(&md
->table_devices
);
1745 spin_lock_init(&md
->uevent_lock
);
1747 md
->queue
= blk_alloc_queue_node(GFP_KERNEL
, numa_node_id
);
1751 dm_init_md_queue(md
);
1753 md
->disk
= alloc_disk_node(1, numa_node_id
);
1757 atomic_set(&md
->pending
[0], 0);
1758 atomic_set(&md
->pending
[1], 0);
1759 init_waitqueue_head(&md
->wait
);
1760 INIT_WORK(&md
->work
, dm_wq_work
);
1761 init_waitqueue_head(&md
->eventq
);
1762 init_completion(&md
->kobj_holder
.completion
);
1763 md
->kworker_task
= NULL
;
1765 md
->disk
->major
= _major
;
1766 md
->disk
->first_minor
= minor
;
1767 md
->disk
->fops
= &dm_blk_dops
;
1768 md
->disk
->queue
= md
->queue
;
1769 md
->disk
->private_data
= md
;
1770 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1772 dax_dev
= alloc_dax(md
, md
->disk
->disk_name
, &dm_dax_ops
);
1775 md
->dax_dev
= dax_dev
;
1778 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1780 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
1784 md
->bdev
= bdget_disk(md
->disk
, 0);
1788 bio_init(&md
->flush_bio
, NULL
, 0);
1789 bio_set_dev(&md
->flush_bio
, md
->bdev
);
1790 md
->flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1792 dm_stats_init(&md
->stats
);
1794 /* Populate the mapping, nobody knows we exist yet */
1795 spin_lock(&_minor_lock
);
1796 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1797 spin_unlock(&_minor_lock
);
1799 BUG_ON(old_md
!= MINOR_ALLOCED
);
1804 cleanup_mapped_device(md
);
1808 module_put(THIS_MODULE
);
1814 static void unlock_fs(struct mapped_device
*md
);
1816 static void free_dev(struct mapped_device
*md
)
1818 int minor
= MINOR(disk_devt(md
->disk
));
1822 cleanup_mapped_device(md
);
1824 free_table_devices(&md
->table_devices
);
1825 dm_stats_cleanup(&md
->stats
);
1828 module_put(THIS_MODULE
);
1832 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1834 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
1837 /* The md already has necessary mempools. */
1838 if (dm_table_bio_based(t
)) {
1840 * Reload bioset because front_pad may have changed
1841 * because a different table was loaded.
1843 bioset_free(md
->bs
);
1848 * There's no need to reload with request-based dm
1849 * because the size of front_pad doesn't change.
1850 * Note for future: If you are to reload bioset,
1851 * prep-ed requests in the queue may refer
1852 * to bio from the old bioset, so you must walk
1853 * through the queue to unprep.
1858 BUG_ON(!p
|| md
->io_pool
|| md
->bs
);
1860 md
->io_pool
= p
->io_pool
;
1866 /* mempool bind completed, no longer need any mempools in the table */
1867 dm_table_free_md_mempools(t
);
1871 * Bind a table to the device.
1873 static void event_callback(void *context
)
1875 unsigned long flags
;
1877 struct mapped_device
*md
= (struct mapped_device
*) context
;
1879 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1880 list_splice_init(&md
->uevent_list
, &uevents
);
1881 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1883 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1885 atomic_inc(&md
->event_nr
);
1886 atomic_inc(&dm_global_event_nr
);
1887 wake_up(&md
->eventq
);
1888 wake_up(&dm_global_eventq
);
1892 * Protected by md->suspend_lock obtained by dm_swap_table().
1894 static void __set_size(struct mapped_device
*md
, sector_t size
)
1896 lockdep_assert_held(&md
->suspend_lock
);
1898 set_capacity(md
->disk
, size
);
1900 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
1904 * Returns old map, which caller must destroy.
1906 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
1907 struct queue_limits
*limits
)
1909 struct dm_table
*old_map
;
1910 struct request_queue
*q
= md
->queue
;
1913 lockdep_assert_held(&md
->suspend_lock
);
1915 size
= dm_table_get_size(t
);
1918 * Wipe any geometry if the size of the table changed.
1920 if (size
!= dm_get_size(md
))
1921 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
1923 __set_size(md
, size
);
1925 dm_table_event_callback(t
, event_callback
, md
);
1928 * The queue hasn't been stopped yet, if the old table type wasn't
1929 * for request-based during suspension. So stop it to prevent
1930 * I/O mapping before resume.
1931 * This must be done before setting the queue restrictions,
1932 * because request-based dm may be run just after the setting.
1934 if (dm_table_request_based(t
)) {
1937 * Leverage the fact that request-based DM targets are
1938 * immutable singletons and establish md->immutable_target
1939 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1941 md
->immutable_target
= dm_table_get_immutable_target(t
);
1944 __bind_mempools(md
, t
);
1946 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
1947 rcu_assign_pointer(md
->map
, (void *)t
);
1948 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
1950 dm_table_set_restrictions(t
, q
, limits
);
1958 * Returns unbound table for the caller to free.
1960 static struct dm_table
*__unbind(struct mapped_device
*md
)
1962 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
1967 dm_table_event_callback(map
, NULL
, NULL
);
1968 RCU_INIT_POINTER(md
->map
, NULL
);
1975 * Constructor for a new device.
1977 int dm_create(int minor
, struct mapped_device
**result
)
1979 struct mapped_device
*md
;
1981 md
= alloc_dev(minor
);
1992 * Functions to manage md->type.
1993 * All are required to hold md->type_lock.
1995 void dm_lock_md_type(struct mapped_device
*md
)
1997 mutex_lock(&md
->type_lock
);
2000 void dm_unlock_md_type(struct mapped_device
*md
)
2002 mutex_unlock(&md
->type_lock
);
2005 void dm_set_md_type(struct mapped_device
*md
, enum dm_queue_mode type
)
2007 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2011 enum dm_queue_mode
dm_get_md_type(struct mapped_device
*md
)
2016 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2018 return md
->immutable_target_type
;
2022 * The queue_limits are only valid as long as you have a reference
2025 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2027 BUG_ON(!atomic_read(&md
->holders
));
2028 return &md
->queue
->limits
;
2030 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2033 * Setup the DM device's queue based on md's type
2035 int dm_setup_md_queue(struct mapped_device
*md
, struct dm_table
*t
)
2038 enum dm_queue_mode type
= dm_get_md_type(md
);
2041 case DM_TYPE_REQUEST_BASED
:
2042 r
= dm_old_init_request_queue(md
, t
);
2044 DMERR("Cannot initialize queue for request-based mapped device");
2048 case DM_TYPE_MQ_REQUEST_BASED
:
2049 r
= dm_mq_init_request_queue(md
, t
);
2051 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2055 case DM_TYPE_BIO_BASED
:
2056 case DM_TYPE_DAX_BIO_BASED
:
2057 dm_init_normal_md_queue(md
);
2058 blk_queue_make_request(md
->queue
, dm_make_request
);
2060 * DM handles splitting bios as needed. Free the bio_split bioset
2061 * since it won't be used (saves 1 process per bio-based DM device).
2063 bioset_free(md
->queue
->bio_split
);
2064 md
->queue
->bio_split
= NULL
;
2066 if (type
== DM_TYPE_DAX_BIO_BASED
)
2067 queue_flag_set_unlocked(QUEUE_FLAG_DAX
, md
->queue
);
2077 struct mapped_device
*dm_get_md(dev_t dev
)
2079 struct mapped_device
*md
;
2080 unsigned minor
= MINOR(dev
);
2082 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2085 spin_lock(&_minor_lock
);
2087 md
= idr_find(&_minor_idr
, minor
);
2089 if ((md
== MINOR_ALLOCED
||
2090 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2091 dm_deleting_md(md
) ||
2092 test_bit(DMF_FREEING
, &md
->flags
))) {
2100 spin_unlock(&_minor_lock
);
2104 EXPORT_SYMBOL_GPL(dm_get_md
);
2106 void *dm_get_mdptr(struct mapped_device
*md
)
2108 return md
->interface_ptr
;
2111 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2113 md
->interface_ptr
= ptr
;
2116 void dm_get(struct mapped_device
*md
)
2118 atomic_inc(&md
->holders
);
2119 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2122 int dm_hold(struct mapped_device
*md
)
2124 spin_lock(&_minor_lock
);
2125 if (test_bit(DMF_FREEING
, &md
->flags
)) {
2126 spin_unlock(&_minor_lock
);
2130 spin_unlock(&_minor_lock
);
2133 EXPORT_SYMBOL_GPL(dm_hold
);
2135 const char *dm_device_name(struct mapped_device
*md
)
2139 EXPORT_SYMBOL_GPL(dm_device_name
);
2141 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2143 struct request_queue
*q
= dm_get_md_queue(md
);
2144 struct dm_table
*map
;
2149 spin_lock(&_minor_lock
);
2150 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2151 set_bit(DMF_FREEING
, &md
->flags
);
2152 spin_unlock(&_minor_lock
);
2154 blk_set_queue_dying(q
);
2156 if (dm_request_based(md
) && md
->kworker_task
)
2157 kthread_flush_worker(&md
->kworker
);
2160 * Take suspend_lock so that presuspend and postsuspend methods
2161 * do not race with internal suspend.
2163 mutex_lock(&md
->suspend_lock
);
2164 map
= dm_get_live_table(md
, &srcu_idx
);
2165 if (!dm_suspended_md(md
)) {
2166 dm_table_presuspend_targets(map
);
2167 dm_table_postsuspend_targets(map
);
2169 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2170 dm_put_live_table(md
, srcu_idx
);
2171 mutex_unlock(&md
->suspend_lock
);
2174 * Rare, but there may be I/O requests still going to complete,
2175 * for example. Wait for all references to disappear.
2176 * No one should increment the reference count of the mapped_device,
2177 * after the mapped_device state becomes DMF_FREEING.
2180 while (atomic_read(&md
->holders
))
2182 else if (atomic_read(&md
->holders
))
2183 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2184 dm_device_name(md
), atomic_read(&md
->holders
));
2187 dm_table_destroy(__unbind(md
));
2191 void dm_destroy(struct mapped_device
*md
)
2193 __dm_destroy(md
, true);
2196 void dm_destroy_immediate(struct mapped_device
*md
)
2198 __dm_destroy(md
, false);
2201 void dm_put(struct mapped_device
*md
)
2203 atomic_dec(&md
->holders
);
2205 EXPORT_SYMBOL_GPL(dm_put
);
2207 static int dm_wait_for_completion(struct mapped_device
*md
, long task_state
)
2213 prepare_to_wait(&md
->wait
, &wait
, task_state
);
2215 if (!md_in_flight(md
))
2218 if (signal_pending_state(task_state
, current
)) {
2225 finish_wait(&md
->wait
, &wait
);
2231 * Process the deferred bios
2233 static void dm_wq_work(struct work_struct
*work
)
2235 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2239 struct dm_table
*map
;
2241 map
= dm_get_live_table(md
, &srcu_idx
);
2243 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2244 spin_lock_irq(&md
->deferred_lock
);
2245 c
= bio_list_pop(&md
->deferred
);
2246 spin_unlock_irq(&md
->deferred_lock
);
2251 if (dm_request_based(md
))
2252 generic_make_request(c
);
2254 __split_and_process_bio(md
, map
, c
);
2257 dm_put_live_table(md
, srcu_idx
);
2260 static void dm_queue_flush(struct mapped_device
*md
)
2262 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2263 smp_mb__after_atomic();
2264 queue_work(md
->wq
, &md
->work
);
2268 * Swap in a new table, returning the old one for the caller to destroy.
2270 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2272 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2273 struct queue_limits limits
;
2276 mutex_lock(&md
->suspend_lock
);
2278 /* device must be suspended */
2279 if (!dm_suspended_md(md
))
2283 * If the new table has no data devices, retain the existing limits.
2284 * This helps multipath with queue_if_no_path if all paths disappear,
2285 * then new I/O is queued based on these limits, and then some paths
2288 if (dm_table_has_no_data_devices(table
)) {
2289 live_map
= dm_get_live_table_fast(md
);
2291 limits
= md
->queue
->limits
;
2292 dm_put_live_table_fast(md
);
2296 r
= dm_calculate_queue_limits(table
, &limits
);
2303 map
= __bind(md
, table
, &limits
);
2306 mutex_unlock(&md
->suspend_lock
);
2311 * Functions to lock and unlock any filesystem running on the
2314 static int lock_fs(struct mapped_device
*md
)
2318 WARN_ON(md
->frozen_sb
);
2320 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2321 if (IS_ERR(md
->frozen_sb
)) {
2322 r
= PTR_ERR(md
->frozen_sb
);
2323 md
->frozen_sb
= NULL
;
2327 set_bit(DMF_FROZEN
, &md
->flags
);
2332 static void unlock_fs(struct mapped_device
*md
)
2334 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2337 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2338 md
->frozen_sb
= NULL
;
2339 clear_bit(DMF_FROZEN
, &md
->flags
);
2343 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2344 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2345 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2347 * If __dm_suspend returns 0, the device is completely quiescent
2348 * now. There is no request-processing activity. All new requests
2349 * are being added to md->deferred list.
2351 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
2352 unsigned suspend_flags
, long task_state
,
2353 int dmf_suspended_flag
)
2355 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
2356 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
2359 lockdep_assert_held(&md
->suspend_lock
);
2362 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2363 * This flag is cleared before dm_suspend returns.
2366 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2368 pr_debug("%s: suspending with flush\n", dm_device_name(md
));
2371 * This gets reverted if there's an error later and the targets
2372 * provide the .presuspend_undo hook.
2374 dm_table_presuspend_targets(map
);
2377 * Flush I/O to the device.
2378 * Any I/O submitted after lock_fs() may not be flushed.
2379 * noflush takes precedence over do_lockfs.
2380 * (lock_fs() flushes I/Os and waits for them to complete.)
2382 if (!noflush
&& do_lockfs
) {
2385 dm_table_presuspend_undo_targets(map
);
2391 * Here we must make sure that no processes are submitting requests
2392 * to target drivers i.e. no one may be executing
2393 * __split_and_process_bio. This is called from dm_request and
2396 * To get all processes out of __split_and_process_bio in dm_request,
2397 * we take the write lock. To prevent any process from reentering
2398 * __split_and_process_bio from dm_request and quiesce the thread
2399 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2400 * flush_workqueue(md->wq).
2402 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2404 synchronize_srcu(&md
->io_barrier
);
2407 * Stop md->queue before flushing md->wq in case request-based
2408 * dm defers requests to md->wq from md->queue.
2410 if (dm_request_based(md
)) {
2411 dm_stop_queue(md
->queue
);
2412 if (md
->kworker_task
)
2413 kthread_flush_worker(&md
->kworker
);
2416 flush_workqueue(md
->wq
);
2419 * At this point no more requests are entering target request routines.
2420 * We call dm_wait_for_completion to wait for all existing requests
2423 r
= dm_wait_for_completion(md
, task_state
);
2425 set_bit(dmf_suspended_flag
, &md
->flags
);
2428 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2430 synchronize_srcu(&md
->io_barrier
);
2432 /* were we interrupted ? */
2436 if (dm_request_based(md
))
2437 dm_start_queue(md
->queue
);
2440 dm_table_presuspend_undo_targets(map
);
2441 /* pushback list is already flushed, so skip flush */
2448 * We need to be able to change a mapping table under a mounted
2449 * filesystem. For example we might want to move some data in
2450 * the background. Before the table can be swapped with
2451 * dm_bind_table, dm_suspend must be called to flush any in
2452 * flight bios and ensure that any further io gets deferred.
2455 * Suspend mechanism in request-based dm.
2457 * 1. Flush all I/Os by lock_fs() if needed.
2458 * 2. Stop dispatching any I/O by stopping the request_queue.
2459 * 3. Wait for all in-flight I/Os to be completed or requeued.
2461 * To abort suspend, start the request_queue.
2463 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2465 struct dm_table
*map
= NULL
;
2469 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2471 if (dm_suspended_md(md
)) {
2476 if (dm_suspended_internally_md(md
)) {
2477 /* already internally suspended, wait for internal resume */
2478 mutex_unlock(&md
->suspend_lock
);
2479 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2485 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2487 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
, DMF_SUSPENDED
);
2491 dm_table_postsuspend_targets(map
);
2494 mutex_unlock(&md
->suspend_lock
);
2498 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
2501 int r
= dm_table_resume_targets(map
);
2509 * Flushing deferred I/Os must be done after targets are resumed
2510 * so that mapping of targets can work correctly.
2511 * Request-based dm is queueing the deferred I/Os in its request_queue.
2513 if (dm_request_based(md
))
2514 dm_start_queue(md
->queue
);
2521 int dm_resume(struct mapped_device
*md
)
2524 struct dm_table
*map
= NULL
;
2528 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2530 if (!dm_suspended_md(md
))
2533 if (dm_suspended_internally_md(md
)) {
2534 /* already internally suspended, wait for internal resume */
2535 mutex_unlock(&md
->suspend_lock
);
2536 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2542 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2543 if (!map
|| !dm_table_get_size(map
))
2546 r
= __dm_resume(md
, map
);
2550 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2552 mutex_unlock(&md
->suspend_lock
);
2558 * Internal suspend/resume works like userspace-driven suspend. It waits
2559 * until all bios finish and prevents issuing new bios to the target drivers.
2560 * It may be used only from the kernel.
2563 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2565 struct dm_table
*map
= NULL
;
2567 lockdep_assert_held(&md
->suspend_lock
);
2569 if (md
->internal_suspend_count
++)
2570 return; /* nested internal suspend */
2572 if (dm_suspended_md(md
)) {
2573 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2574 return; /* nest suspend */
2577 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2580 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2581 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2582 * would require changing .presuspend to return an error -- avoid this
2583 * until there is a need for more elaborate variants of internal suspend.
2585 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
,
2586 DMF_SUSPENDED_INTERNALLY
);
2588 dm_table_postsuspend_targets(map
);
2591 static void __dm_internal_resume(struct mapped_device
*md
)
2593 BUG_ON(!md
->internal_suspend_count
);
2595 if (--md
->internal_suspend_count
)
2596 return; /* resume from nested internal suspend */
2598 if (dm_suspended_md(md
))
2599 goto done
; /* resume from nested suspend */
2602 * NOTE: existing callers don't need to call dm_table_resume_targets
2603 * (which may fail -- so best to avoid it for now by passing NULL map)
2605 (void) __dm_resume(md
, NULL
);
2608 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2609 smp_mb__after_atomic();
2610 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
2613 void dm_internal_suspend_noflush(struct mapped_device
*md
)
2615 mutex_lock(&md
->suspend_lock
);
2616 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
2617 mutex_unlock(&md
->suspend_lock
);
2619 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
2621 void dm_internal_resume(struct mapped_device
*md
)
2623 mutex_lock(&md
->suspend_lock
);
2624 __dm_internal_resume(md
);
2625 mutex_unlock(&md
->suspend_lock
);
2627 EXPORT_SYMBOL_GPL(dm_internal_resume
);
2630 * Fast variants of internal suspend/resume hold md->suspend_lock,
2631 * which prevents interaction with userspace-driven suspend.
2634 void dm_internal_suspend_fast(struct mapped_device
*md
)
2636 mutex_lock(&md
->suspend_lock
);
2637 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2640 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2641 synchronize_srcu(&md
->io_barrier
);
2642 flush_workqueue(md
->wq
);
2643 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2645 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
2647 void dm_internal_resume_fast(struct mapped_device
*md
)
2649 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2655 mutex_unlock(&md
->suspend_lock
);
2657 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
2659 /*-----------------------------------------------------------------
2660 * Event notification.
2661 *---------------------------------------------------------------*/
2662 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2665 char udev_cookie
[DM_COOKIE_LENGTH
];
2666 char *envp
[] = { udev_cookie
, NULL
};
2669 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2671 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2672 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2673 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2678 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2680 return atomic_add_return(1, &md
->uevent_seq
);
2683 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2685 return atomic_read(&md
->event_nr
);
2688 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2690 return wait_event_interruptible(md
->eventq
,
2691 (event_nr
!= atomic_read(&md
->event_nr
)));
2694 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2696 unsigned long flags
;
2698 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2699 list_add(elist
, &md
->uevent_list
);
2700 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2704 * The gendisk is only valid as long as you have a reference
2707 struct gendisk
*dm_disk(struct mapped_device
*md
)
2711 EXPORT_SYMBOL_GPL(dm_disk
);
2713 struct kobject
*dm_kobject(struct mapped_device
*md
)
2715 return &md
->kobj_holder
.kobj
;
2718 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2720 struct mapped_device
*md
;
2722 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
2724 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2732 int dm_suspended_md(struct mapped_device
*md
)
2734 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2737 int dm_suspended_internally_md(struct mapped_device
*md
)
2739 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2742 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
2744 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
2747 int dm_suspended(struct dm_target
*ti
)
2749 return dm_suspended_md(dm_table_get_md(ti
->table
));
2751 EXPORT_SYMBOL_GPL(dm_suspended
);
2753 int dm_noflush_suspending(struct dm_target
*ti
)
2755 return __noflush_suspending(dm_table_get_md(ti
->table
));
2757 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2759 struct dm_md_mempools
*dm_alloc_md_mempools(struct mapped_device
*md
, enum dm_queue_mode type
,
2760 unsigned integrity
, unsigned per_io_data_size
)
2762 struct dm_md_mempools
*pools
= kzalloc_node(sizeof(*pools
), GFP_KERNEL
, md
->numa_node_id
);
2763 unsigned int pool_size
= 0;
2764 unsigned int front_pad
;
2770 case DM_TYPE_BIO_BASED
:
2771 case DM_TYPE_DAX_BIO_BASED
:
2772 pool_size
= dm_get_reserved_bio_based_ios();
2773 front_pad
= roundup(per_io_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
2775 pools
->io_pool
= mempool_create_slab_pool(pool_size
, _io_cache
);
2776 if (!pools
->io_pool
)
2779 case DM_TYPE_REQUEST_BASED
:
2780 case DM_TYPE_MQ_REQUEST_BASED
:
2781 pool_size
= dm_get_reserved_rq_based_ios();
2782 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
2783 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2789 pools
->bs
= bioset_create(pool_size
, front_pad
, BIOSET_NEED_RESCUER
);
2793 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
2799 dm_free_md_mempools(pools
);
2804 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2809 mempool_destroy(pools
->io_pool
);
2812 bioset_free(pools
->bs
);
2824 static int dm_call_pr(struct block_device
*bdev
, iterate_devices_callout_fn fn
,
2827 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2828 struct dm_table
*table
;
2829 struct dm_target
*ti
;
2830 int ret
= -ENOTTY
, srcu_idx
;
2832 table
= dm_get_live_table(md
, &srcu_idx
);
2833 if (!table
|| !dm_table_get_size(table
))
2836 /* We only support devices that have a single target */
2837 if (dm_table_get_num_targets(table
) != 1)
2839 ti
= dm_table_get_target(table
, 0);
2842 if (!ti
->type
->iterate_devices
)
2845 ret
= ti
->type
->iterate_devices(ti
, fn
, data
);
2847 dm_put_live_table(md
, srcu_idx
);
2852 * For register / unregister we need to manually call out to every path.
2854 static int __dm_pr_register(struct dm_target
*ti
, struct dm_dev
*dev
,
2855 sector_t start
, sector_t len
, void *data
)
2857 struct dm_pr
*pr
= data
;
2858 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
2860 if (!ops
|| !ops
->pr_register
)
2862 return ops
->pr_register(dev
->bdev
, pr
->old_key
, pr
->new_key
, pr
->flags
);
2865 static int dm_pr_register(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
2876 ret
= dm_call_pr(bdev
, __dm_pr_register
, &pr
);
2877 if (ret
&& new_key
) {
2878 /* unregister all paths if we failed to register any path */
2879 pr
.old_key
= new_key
;
2882 pr
.fail_early
= false;
2883 dm_call_pr(bdev
, __dm_pr_register
, &pr
);
2889 static int dm_pr_reserve(struct block_device
*bdev
, u64 key
, enum pr_type type
,
2892 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2893 const struct pr_ops
*ops
;
2897 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
2901 ops
= bdev
->bd_disk
->fops
->pr_ops
;
2902 if (ops
&& ops
->pr_reserve
)
2903 r
= ops
->pr_reserve(bdev
, key
, type
, flags
);
2911 static int dm_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
2913 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2914 const struct pr_ops
*ops
;
2918 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
2922 ops
= bdev
->bd_disk
->fops
->pr_ops
;
2923 if (ops
&& ops
->pr_release
)
2924 r
= ops
->pr_release(bdev
, key
, type
);
2932 static int dm_pr_preempt(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
2933 enum pr_type type
, bool abort
)
2935 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2936 const struct pr_ops
*ops
;
2940 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
2944 ops
= bdev
->bd_disk
->fops
->pr_ops
;
2945 if (ops
&& ops
->pr_preempt
)
2946 r
= ops
->pr_preempt(bdev
, old_key
, new_key
, type
, abort
);
2954 static int dm_pr_clear(struct block_device
*bdev
, u64 key
)
2956 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
2957 const struct pr_ops
*ops
;
2961 r
= dm_grab_bdev_for_ioctl(md
, &bdev
, &mode
);
2965 ops
= bdev
->bd_disk
->fops
->pr_ops
;
2966 if (ops
&& ops
->pr_clear
)
2967 r
= ops
->pr_clear(bdev
, key
);
2975 static const struct pr_ops dm_pr_ops
= {
2976 .pr_register
= dm_pr_register
,
2977 .pr_reserve
= dm_pr_reserve
,
2978 .pr_release
= dm_pr_release
,
2979 .pr_preempt
= dm_pr_preempt
,
2980 .pr_clear
= dm_pr_clear
,
2983 static const struct block_device_operations dm_blk_dops
= {
2984 .open
= dm_blk_open
,
2985 .release
= dm_blk_close
,
2986 .ioctl
= dm_blk_ioctl
,
2987 .getgeo
= dm_blk_getgeo
,
2988 .pr_ops
= &dm_pr_ops
,
2989 .owner
= THIS_MODULE
2992 static const struct dax_operations dm_dax_ops
= {
2993 .direct_access
= dm_dax_direct_access
,
2994 .copy_from_iter
= dm_dax_copy_from_iter
,
2995 .flush
= dm_dax_flush
,
3001 module_init(dm_init
);
3002 module_exit(dm_exit
);
3004 module_param(major
, uint
, 0);
3005 MODULE_PARM_DESC(major
, "The major number of the device mapper");
3007 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3008 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
3010 module_param(dm_numa_node
, int, S_IRUGO
| S_IWUSR
);
3011 MODULE_PARM_DESC(dm_numa_node
, "NUMA node for DM device memory allocations");
3013 MODULE_DESCRIPTION(DM_NAME
" driver");
3014 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3015 MODULE_LICENSE("GPL");