2 * Freescale QuadSPI driver.
4 * Copyright (C) 2013 Freescale Semiconductor, Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/errno.h>
15 #include <linux/platform_device.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
19 #include <linux/clk.h>
20 #include <linux/err.h>
22 #include <linux/of_device.h>
23 #include <linux/timer.h>
24 #include <linux/jiffies.h>
25 #include <linux/completion.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/mtd/spi-nor.h>
29 #include <linux/mutex.h>
30 #include <linux/pm_qos.h>
31 #include <linux/sizes.h>
33 /* Controller needs driver to swap endian */
34 #define QUADSPI_QUIRK_SWAP_ENDIAN (1 << 0)
35 /* Controller needs 4x internal clock */
36 #define QUADSPI_QUIRK_4X_INT_CLK (1 << 1)
38 * TKT253890, Controller needs driver to fill txfifo till 16 byte to
39 * trigger data transfer even though extern data will not transferred.
41 #define QUADSPI_QUIRK_TKT253890 (1 << 2)
42 /* Controller cannot wake up from wait mode, TKT245618 */
43 #define QUADSPI_QUIRK_TKT245618 (1 << 3)
46 #define QUADSPI_MCR 0x00
47 #define QUADSPI_MCR_RESERVED_SHIFT 16
48 #define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
49 #define QUADSPI_MCR_MDIS_SHIFT 14
50 #define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
51 #define QUADSPI_MCR_CLR_TXF_SHIFT 11
52 #define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
53 #define QUADSPI_MCR_CLR_RXF_SHIFT 10
54 #define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
55 #define QUADSPI_MCR_DDR_EN_SHIFT 7
56 #define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
57 #define QUADSPI_MCR_END_CFG_SHIFT 2
58 #define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
59 #define QUADSPI_MCR_SWRSTHD_SHIFT 1
60 #define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
61 #define QUADSPI_MCR_SWRSTSD_SHIFT 0
62 #define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
64 #define QUADSPI_IPCR 0x08
65 #define QUADSPI_IPCR_SEQID_SHIFT 24
66 #define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
68 #define QUADSPI_BUF0CR 0x10
69 #define QUADSPI_BUF1CR 0x14
70 #define QUADSPI_BUF2CR 0x18
71 #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
73 #define QUADSPI_BUF3CR 0x1c
74 #define QUADSPI_BUF3CR_ALLMST_SHIFT 31
75 #define QUADSPI_BUF3CR_ALLMST_MASK (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
76 #define QUADSPI_BUF3CR_ADATSZ_SHIFT 8
77 #define QUADSPI_BUF3CR_ADATSZ_MASK (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
79 #define QUADSPI_BFGENCR 0x20
80 #define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
81 #define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
82 #define QUADSPI_BFGENCR_SEQID_SHIFT 12
83 #define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
85 #define QUADSPI_BUF0IND 0x30
86 #define QUADSPI_BUF1IND 0x34
87 #define QUADSPI_BUF2IND 0x38
88 #define QUADSPI_SFAR 0x100
90 #define QUADSPI_SMPR 0x108
91 #define QUADSPI_SMPR_DDRSMP_SHIFT 16
92 #define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
93 #define QUADSPI_SMPR_FSDLY_SHIFT 6
94 #define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
95 #define QUADSPI_SMPR_FSPHS_SHIFT 5
96 #define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
97 #define QUADSPI_SMPR_HSENA_SHIFT 0
98 #define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
100 #define QUADSPI_RBSR 0x10c
101 #define QUADSPI_RBSR_RDBFL_SHIFT 8
102 #define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
104 #define QUADSPI_RBCT 0x110
105 #define QUADSPI_RBCT_WMRK_MASK 0x1F
106 #define QUADSPI_RBCT_RXBRD_SHIFT 8
107 #define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
109 #define QUADSPI_TBSR 0x150
110 #define QUADSPI_TBDR 0x154
111 #define QUADSPI_SR 0x15c
112 #define QUADSPI_SR_IP_ACC_SHIFT 1
113 #define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
114 #define QUADSPI_SR_AHB_ACC_SHIFT 2
115 #define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
117 #define QUADSPI_FR 0x160
118 #define QUADSPI_FR_TFF_MASK 0x1
120 #define QUADSPI_SFA1AD 0x180
121 #define QUADSPI_SFA2AD 0x184
122 #define QUADSPI_SFB1AD 0x188
123 #define QUADSPI_SFB2AD 0x18c
124 #define QUADSPI_RBDR 0x200
126 #define QUADSPI_LUTKEY 0x300
127 #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
129 #define QUADSPI_LCKCR 0x304
130 #define QUADSPI_LCKER_LOCK 0x1
131 #define QUADSPI_LCKER_UNLOCK 0x2
133 #define QUADSPI_RSER 0x164
134 #define QUADSPI_RSER_TFIE (0x1 << 0)
136 #define QUADSPI_LUT_BASE 0x310
139 * The definition of the LUT register shows below:
141 * ---------------------------------------------------
142 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
143 * ---------------------------------------------------
145 #define OPRND0_SHIFT 0
147 #define INSTR0_SHIFT 10
148 #define OPRND1_SHIFT 16
150 /* Instruction set for the LUT register. */
158 #define LUT_FSL_READ 7
159 #define LUT_FSL_WRITE 8
160 #define LUT_JMP_ON_CS 9
161 #define LUT_ADDR_DDR 10
162 #define LUT_MODE_DDR 11
163 #define LUT_MODE2_DDR 12
164 #define LUT_MODE4_DDR 13
165 #define LUT_FSL_READ_DDR 14
166 #define LUT_FSL_WRITE_DDR 15
167 #define LUT_DATA_LEARN 16
170 * The PAD definitions for LUT register.
172 * The pad stands for the lines number of IO[0:3].
173 * For example, the Quad read need four IO lines, so you should
174 * set LUT_PAD4 which means we use four IO lines.
180 /* Oprands for the LUT register. */
181 #define ADDR24BIT 0x18
182 #define ADDR32BIT 0x20
184 /* Macros for constructing the LUT register. */
185 #define LUT0(ins, pad, opr) \
186 (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
187 ((LUT_##ins) << INSTR0_SHIFT))
189 #define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
191 /* other macros for LUT register. */
192 #define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
193 #define QUADSPI_LUT_NUM 64
195 /* SEQID -- we can have 16 seqids at most. */
201 #define SEQID_CHIP_ERASE 5
206 #define SEQID_EN4B 10
207 #define SEQID_BRWR 11
209 #define QUADSPI_MIN_IOMAP SZ_4M
211 enum fsl_qspi_devtype
{
219 struct fsl_qspi_devtype_data
{
220 enum fsl_qspi_devtype devtype
;
227 static const struct fsl_qspi_devtype_data vybrid_data
= {
228 .devtype
= FSL_QUADSPI_VYBRID
,
231 .ahb_buf_size
= 1024,
232 .driver_data
= QUADSPI_QUIRK_SWAP_ENDIAN
,
235 static const struct fsl_qspi_devtype_data imx6sx_data
= {
236 .devtype
= FSL_QUADSPI_IMX6SX
,
239 .ahb_buf_size
= 1024,
240 .driver_data
= QUADSPI_QUIRK_4X_INT_CLK
241 | QUADSPI_QUIRK_TKT245618
,
244 static const struct fsl_qspi_devtype_data imx7d_data
= {
245 .devtype
= FSL_QUADSPI_IMX7D
,
248 .ahb_buf_size
= 1024,
249 .driver_data
= QUADSPI_QUIRK_TKT253890
250 | QUADSPI_QUIRK_4X_INT_CLK
,
253 static const struct fsl_qspi_devtype_data imx6ul_data
= {
254 .devtype
= FSL_QUADSPI_IMX6UL
,
257 .ahb_buf_size
= 1024,
258 .driver_data
= QUADSPI_QUIRK_TKT253890
259 | QUADSPI_QUIRK_4X_INT_CLK
,
262 static struct fsl_qspi_devtype_data ls1021a_data
= {
263 .devtype
= FSL_QUADSPI_LS1021A
,
266 .ahb_buf_size
= 1024,
270 #define FSL_QSPI_MAX_CHIP 4
272 struct spi_nor nor
[FSL_QSPI_MAX_CHIP
];
273 void __iomem
*iobase
;
274 void __iomem
*ahb_addr
;
278 struct clk
*clk
, *clk_en
;
281 const struct fsl_qspi_devtype_data
*devtype_data
;
285 unsigned int chip_base_addr
; /* We may support two chips. */
286 bool has_second_chip
;
289 struct pm_qos_request pm_qos_req
;
292 static inline int needs_swap_endian(struct fsl_qspi
*q
)
294 return q
->devtype_data
->driver_data
& QUADSPI_QUIRK_SWAP_ENDIAN
;
297 static inline int needs_4x_clock(struct fsl_qspi
*q
)
299 return q
->devtype_data
->driver_data
& QUADSPI_QUIRK_4X_INT_CLK
;
302 static inline int needs_fill_txfifo(struct fsl_qspi
*q
)
304 return q
->devtype_data
->driver_data
& QUADSPI_QUIRK_TKT253890
;
307 static inline int needs_wakeup_wait_mode(struct fsl_qspi
*q
)
309 return q
->devtype_data
->driver_data
& QUADSPI_QUIRK_TKT245618
;
313 * R/W functions for big- or little-endian registers:
314 * The qSPI controller's endian is independent of the CPU core's endian.
315 * So far, although the CPU core is little-endian but the qSPI have two
316 * versions for big-endian and little-endian.
318 static void qspi_writel(struct fsl_qspi
*q
, u32 val
, void __iomem
*addr
)
321 iowrite32be(val
, addr
);
323 iowrite32(val
, addr
);
326 static u32
qspi_readl(struct fsl_qspi
*q
, void __iomem
*addr
)
329 return ioread32be(addr
);
331 return ioread32(addr
);
335 * An IC bug makes us to re-arrange the 32-bit data.
336 * The following chips, such as IMX6SLX, have fixed this bug.
338 static inline u32
fsl_qspi_endian_xchg(struct fsl_qspi
*q
, u32 a
)
340 return needs_swap_endian(q
) ? __swab32(a
) : a
;
343 static inline void fsl_qspi_unlock_lut(struct fsl_qspi
*q
)
345 qspi_writel(q
, QUADSPI_LUTKEY_VALUE
, q
->iobase
+ QUADSPI_LUTKEY
);
346 qspi_writel(q
, QUADSPI_LCKER_UNLOCK
, q
->iobase
+ QUADSPI_LCKCR
);
349 static inline void fsl_qspi_lock_lut(struct fsl_qspi
*q
)
351 qspi_writel(q
, QUADSPI_LUTKEY_VALUE
, q
->iobase
+ QUADSPI_LUTKEY
);
352 qspi_writel(q
, QUADSPI_LCKER_LOCK
, q
->iobase
+ QUADSPI_LCKCR
);
355 static irqreturn_t
fsl_qspi_irq_handler(int irq
, void *dev_id
)
357 struct fsl_qspi
*q
= dev_id
;
360 /* clear interrupt */
361 reg
= qspi_readl(q
, q
->iobase
+ QUADSPI_FR
);
362 qspi_writel(q
, reg
, q
->iobase
+ QUADSPI_FR
);
364 if (reg
& QUADSPI_FR_TFF_MASK
)
367 dev_dbg(q
->dev
, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q
->chip_base_addr
, reg
);
371 static void fsl_qspi_init_lut(struct fsl_qspi
*q
)
373 void __iomem
*base
= q
->iobase
;
374 int rxfifo
= q
->devtype_data
->rxfifo
;
378 struct spi_nor
*nor
= &q
->nor
[0];
379 u8 addrlen
= (nor
->addr_width
== 3) ? ADDR24BIT
: ADDR32BIT
;
380 u8 read_op
= nor
->read_opcode
;
381 u8 read_dm
= nor
->read_dummy
;
383 fsl_qspi_unlock_lut(q
);
385 /* Clear all the LUT table */
386 for (i
= 0; i
< QUADSPI_LUT_NUM
; i
++)
387 qspi_writel(q
, 0, base
+ QUADSPI_LUT_BASE
+ i
* 4);
390 lut_base
= SEQID_READ
* 4;
392 qspi_writel(q
, LUT0(CMD
, PAD1
, read_op
) | LUT1(ADDR
, PAD1
, addrlen
),
393 base
+ QUADSPI_LUT(lut_base
));
394 qspi_writel(q
, LUT0(DUMMY
, PAD1
, read_dm
) |
395 LUT1(FSL_READ
, PAD4
, rxfifo
),
396 base
+ QUADSPI_LUT(lut_base
+ 1));
399 lut_base
= SEQID_WREN
* 4;
400 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_WREN
),
401 base
+ QUADSPI_LUT(lut_base
));
404 lut_base
= SEQID_PP
* 4;
406 qspi_writel(q
, LUT0(CMD
, PAD1
, nor
->program_opcode
) |
407 LUT1(ADDR
, PAD1
, addrlen
),
408 base
+ QUADSPI_LUT(lut_base
));
409 qspi_writel(q
, LUT0(FSL_WRITE
, PAD1
, 0),
410 base
+ QUADSPI_LUT(lut_base
+ 1));
413 lut_base
= SEQID_RDSR
* 4;
414 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_RDSR
) |
415 LUT1(FSL_READ
, PAD1
, 0x1),
416 base
+ QUADSPI_LUT(lut_base
));
419 lut_base
= SEQID_SE
* 4;
421 qspi_writel(q
, LUT0(CMD
, PAD1
, nor
->erase_opcode
) |
422 LUT1(ADDR
, PAD1
, addrlen
),
423 base
+ QUADSPI_LUT(lut_base
));
425 /* Erase the whole chip */
426 lut_base
= SEQID_CHIP_ERASE
* 4;
427 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_CHIP_ERASE
),
428 base
+ QUADSPI_LUT(lut_base
));
431 lut_base
= SEQID_RDID
* 4;
432 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_RDID
) |
433 LUT1(FSL_READ
, PAD1
, 0x8),
434 base
+ QUADSPI_LUT(lut_base
));
437 lut_base
= SEQID_WRSR
* 4;
438 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_WRSR
) |
439 LUT1(FSL_WRITE
, PAD1
, 0x2),
440 base
+ QUADSPI_LUT(lut_base
));
442 /* Read Configuration Register */
443 lut_base
= SEQID_RDCR
* 4;
444 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_RDCR
) |
445 LUT1(FSL_READ
, PAD1
, 0x1),
446 base
+ QUADSPI_LUT(lut_base
));
449 lut_base
= SEQID_WRDI
* 4;
450 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_WRDI
),
451 base
+ QUADSPI_LUT(lut_base
));
453 /* Enter 4 Byte Mode (Micron) */
454 lut_base
= SEQID_EN4B
* 4;
455 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_EN4B
),
456 base
+ QUADSPI_LUT(lut_base
));
458 /* Enter 4 Byte Mode (Spansion) */
459 lut_base
= SEQID_BRWR
* 4;
460 qspi_writel(q
, LUT0(CMD
, PAD1
, SPINOR_OP_BRWR
),
461 base
+ QUADSPI_LUT(lut_base
));
463 fsl_qspi_lock_lut(q
);
466 /* Get the SEQID for the command */
467 static int fsl_qspi_get_seqid(struct fsl_qspi
*q
, u8 cmd
)
470 case SPINOR_OP_READ_1_1_4
:
480 case SPINOR_OP_CHIP_ERASE
:
481 return SEQID_CHIP_ERASE
;
495 if (cmd
== q
->nor
[0].erase_opcode
)
497 dev_err(q
->dev
, "Unsupported cmd 0x%.2x\n", cmd
);
504 fsl_qspi_runcmd(struct fsl_qspi
*q
, u8 cmd
, unsigned int addr
, int len
)
506 void __iomem
*base
= q
->iobase
;
511 init_completion(&q
->c
);
512 dev_dbg(q
->dev
, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
513 q
->chip_base_addr
, addr
, len
, cmd
);
516 reg
= qspi_readl(q
, base
+ QUADSPI_MCR
);
518 qspi_writel(q
, q
->memmap_phy
+ q
->chip_base_addr
+ addr
,
519 base
+ QUADSPI_SFAR
);
520 qspi_writel(q
, QUADSPI_RBCT_WMRK_MASK
| QUADSPI_RBCT_RXBRD_USEIPS
,
521 base
+ QUADSPI_RBCT
);
522 qspi_writel(q
, reg
| QUADSPI_MCR_CLR_RXF_MASK
, base
+ QUADSPI_MCR
);
525 reg2
= qspi_readl(q
, base
+ QUADSPI_SR
);
526 if (reg2
& (QUADSPI_SR_IP_ACC_MASK
| QUADSPI_SR_AHB_ACC_MASK
)) {
528 dev_dbg(q
->dev
, "The controller is busy, 0x%x\n", reg2
);
534 /* trigger the LUT now */
535 seqid
= fsl_qspi_get_seqid(q
, cmd
);
536 qspi_writel(q
, (seqid
<< QUADSPI_IPCR_SEQID_SHIFT
) | len
,
537 base
+ QUADSPI_IPCR
);
539 /* Wait for the interrupt. */
540 if (!wait_for_completion_timeout(&q
->c
, msecs_to_jiffies(1000))) {
542 "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
543 cmd
, addr
, qspi_readl(q
, base
+ QUADSPI_FR
),
544 qspi_readl(q
, base
+ QUADSPI_SR
));
550 /* restore the MCR */
551 qspi_writel(q
, reg
, base
+ QUADSPI_MCR
);
556 /* Read out the data from the QUADSPI_RBDR buffer registers. */
557 static void fsl_qspi_read_data(struct fsl_qspi
*q
, int len
, u8
*rxbuf
)
563 tmp
= qspi_readl(q
, q
->iobase
+ QUADSPI_RBDR
+ i
* 4);
564 tmp
= fsl_qspi_endian_xchg(q
, tmp
);
565 dev_dbg(q
->dev
, "chip addr:0x%.8x, rcv:0x%.8x\n",
566 q
->chip_base_addr
, tmp
);
569 *((u32
*)rxbuf
) = tmp
;
572 memcpy(rxbuf
, &tmp
, len
);
582 * If we have changed the content of the flash by writing or erasing,
583 * we need to invalidate the AHB buffer. If we do not do so, we may read out
584 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
585 * domain at the same time.
587 static inline void fsl_qspi_invalid(struct fsl_qspi
*q
)
591 reg
= qspi_readl(q
, q
->iobase
+ QUADSPI_MCR
);
592 reg
|= QUADSPI_MCR_SWRSTHD_MASK
| QUADSPI_MCR_SWRSTSD_MASK
;
593 qspi_writel(q
, reg
, q
->iobase
+ QUADSPI_MCR
);
596 * The minimum delay : 1 AHB + 2 SFCK clocks.
597 * Delay 1 us is enough.
601 reg
&= ~(QUADSPI_MCR_SWRSTHD_MASK
| QUADSPI_MCR_SWRSTSD_MASK
);
602 qspi_writel(q
, reg
, q
->iobase
+ QUADSPI_MCR
);
605 static ssize_t
fsl_qspi_nor_write(struct fsl_qspi
*q
, struct spi_nor
*nor
,
606 u8 opcode
, unsigned int to
, u32
*txbuf
,
612 dev_dbg(q
->dev
, "to 0x%.8x:0x%.8x, len : %d\n",
613 q
->chip_base_addr
, to
, count
);
615 /* clear the TX FIFO. */
616 tmp
= qspi_readl(q
, q
->iobase
+ QUADSPI_MCR
);
617 qspi_writel(q
, tmp
| QUADSPI_MCR_CLR_TXF_MASK
, q
->iobase
+ QUADSPI_MCR
);
619 /* fill the TX data to the FIFO */
620 for (j
= 0, i
= ((count
+ 3) / 4); j
< i
; j
++) {
621 tmp
= fsl_qspi_endian_xchg(q
, *txbuf
);
622 qspi_writel(q
, tmp
, q
->iobase
+ QUADSPI_TBDR
);
626 /* fill the TXFIFO upto 16 bytes for i.MX7d */
627 if (needs_fill_txfifo(q
))
629 qspi_writel(q
, tmp
, q
->iobase
+ QUADSPI_TBDR
);
632 ret
= fsl_qspi_runcmd(q
, opcode
, to
, count
);
640 static void fsl_qspi_set_map_addr(struct fsl_qspi
*q
)
642 int nor_size
= q
->nor_size
;
643 void __iomem
*base
= q
->iobase
;
645 qspi_writel(q
, nor_size
+ q
->memmap_phy
, base
+ QUADSPI_SFA1AD
);
646 qspi_writel(q
, nor_size
* 2 + q
->memmap_phy
, base
+ QUADSPI_SFA2AD
);
647 qspi_writel(q
, nor_size
* 3 + q
->memmap_phy
, base
+ QUADSPI_SFB1AD
);
648 qspi_writel(q
, nor_size
* 4 + q
->memmap_phy
, base
+ QUADSPI_SFB2AD
);
652 * There are two different ways to read out the data from the flash:
653 * the "IP Command Read" and the "AHB Command Read".
655 * The IC guy suggests we use the "AHB Command Read" which is faster
656 * then the "IP Command Read". (What's more is that there is a bug in
657 * the "IP Command Read" in the Vybrid.)
659 * After we set up the registers for the "AHB Command Read", we can use
660 * the memcpy to read the data directly. A "missed" access to the buffer
661 * causes the controller to clear the buffer, and use the sequence pointed
662 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
664 static void fsl_qspi_init_abh_read(struct fsl_qspi
*q
)
666 void __iomem
*base
= q
->iobase
;
669 /* AHB configuration for access buffer 0/1/2 .*/
670 qspi_writel(q
, QUADSPI_BUFXCR_INVALID_MSTRID
, base
+ QUADSPI_BUF0CR
);
671 qspi_writel(q
, QUADSPI_BUFXCR_INVALID_MSTRID
, base
+ QUADSPI_BUF1CR
);
672 qspi_writel(q
, QUADSPI_BUFXCR_INVALID_MSTRID
, base
+ QUADSPI_BUF2CR
);
674 * Set ADATSZ with the maximum AHB buffer size to improve the
677 qspi_writel(q
, QUADSPI_BUF3CR_ALLMST_MASK
|
678 ((q
->devtype_data
->ahb_buf_size
/ 8)
679 << QUADSPI_BUF3CR_ADATSZ_SHIFT
),
680 base
+ QUADSPI_BUF3CR
);
682 /* We only use the buffer3 */
683 qspi_writel(q
, 0, base
+ QUADSPI_BUF0IND
);
684 qspi_writel(q
, 0, base
+ QUADSPI_BUF1IND
);
685 qspi_writel(q
, 0, base
+ QUADSPI_BUF2IND
);
687 /* Set the default lut sequence for AHB Read. */
688 seqid
= fsl_qspi_get_seqid(q
, q
->nor
[0].read_opcode
);
689 qspi_writel(q
, seqid
<< QUADSPI_BFGENCR_SEQID_SHIFT
,
690 q
->iobase
+ QUADSPI_BFGENCR
);
693 /* This function was used to prepare and enable QSPI clock */
694 static int fsl_qspi_clk_prep_enable(struct fsl_qspi
*q
)
698 ret
= clk_prepare_enable(q
->clk_en
);
702 ret
= clk_prepare_enable(q
->clk
);
704 clk_disable_unprepare(q
->clk_en
);
708 if (needs_wakeup_wait_mode(q
))
709 pm_qos_add_request(&q
->pm_qos_req
, PM_QOS_CPU_DMA_LATENCY
, 0);
714 /* This function was used to disable and unprepare QSPI clock */
715 static void fsl_qspi_clk_disable_unprep(struct fsl_qspi
*q
)
717 if (needs_wakeup_wait_mode(q
))
718 pm_qos_remove_request(&q
->pm_qos_req
);
720 clk_disable_unprepare(q
->clk
);
721 clk_disable_unprepare(q
->clk_en
);
725 /* We use this function to do some basic init for spi_nor_scan(). */
726 static int fsl_qspi_nor_setup(struct fsl_qspi
*q
)
728 void __iomem
*base
= q
->iobase
;
732 /* disable and unprepare clock to avoid glitch pass to controller */
733 fsl_qspi_clk_disable_unprep(q
);
735 /* the default frequency, we will change it in the future. */
736 ret
= clk_set_rate(q
->clk
, 66000000);
740 ret
= fsl_qspi_clk_prep_enable(q
);
744 /* Reset the module */
745 qspi_writel(q
, QUADSPI_MCR_SWRSTSD_MASK
| QUADSPI_MCR_SWRSTHD_MASK
,
749 /* Init the LUT table. */
750 fsl_qspi_init_lut(q
);
752 /* Disable the module */
753 qspi_writel(q
, QUADSPI_MCR_MDIS_MASK
| QUADSPI_MCR_RESERVED_MASK
,
756 reg
= qspi_readl(q
, base
+ QUADSPI_SMPR
);
757 qspi_writel(q
, reg
& ~(QUADSPI_SMPR_FSDLY_MASK
758 | QUADSPI_SMPR_FSPHS_MASK
759 | QUADSPI_SMPR_HSENA_MASK
760 | QUADSPI_SMPR_DDRSMP_MASK
), base
+ QUADSPI_SMPR
);
762 /* Enable the module */
763 qspi_writel(q
, QUADSPI_MCR_RESERVED_MASK
| QUADSPI_MCR_END_CFG_MASK
,
766 /* clear all interrupt status */
767 qspi_writel(q
, 0xffffffff, q
->iobase
+ QUADSPI_FR
);
769 /* enable the interrupt */
770 qspi_writel(q
, QUADSPI_RSER_TFIE
, q
->iobase
+ QUADSPI_RSER
);
775 static int fsl_qspi_nor_setup_last(struct fsl_qspi
*q
)
777 unsigned long rate
= q
->clk_rate
;
780 if (needs_4x_clock(q
))
783 /* disable and unprepare clock to avoid glitch pass to controller */
784 fsl_qspi_clk_disable_unprep(q
);
786 ret
= clk_set_rate(q
->clk
, rate
);
790 ret
= fsl_qspi_clk_prep_enable(q
);
794 /* Init the LUT table again. */
795 fsl_qspi_init_lut(q
);
797 /* Init for AHB read */
798 fsl_qspi_init_abh_read(q
);
803 static const struct of_device_id fsl_qspi_dt_ids
[] = {
804 { .compatible
= "fsl,vf610-qspi", .data
= (void *)&vybrid_data
, },
805 { .compatible
= "fsl,imx6sx-qspi", .data
= (void *)&imx6sx_data
, },
806 { .compatible
= "fsl,imx7d-qspi", .data
= (void *)&imx7d_data
, },
807 { .compatible
= "fsl,imx6ul-qspi", .data
= (void *)&imx6ul_data
, },
808 { .compatible
= "fsl,ls1021a-qspi", .data
= (void *)&ls1021a_data
, },
811 MODULE_DEVICE_TABLE(of
, fsl_qspi_dt_ids
);
813 static void fsl_qspi_set_base_addr(struct fsl_qspi
*q
, struct spi_nor
*nor
)
815 q
->chip_base_addr
= q
->nor_size
* (nor
- q
->nor
);
818 static int fsl_qspi_read_reg(struct spi_nor
*nor
, u8 opcode
, u8
*buf
, int len
)
821 struct fsl_qspi
*q
= nor
->priv
;
823 ret
= fsl_qspi_runcmd(q
, opcode
, 0, len
);
827 fsl_qspi_read_data(q
, len
, buf
);
831 static int fsl_qspi_write_reg(struct spi_nor
*nor
, u8 opcode
, u8
*buf
, int len
)
833 struct fsl_qspi
*q
= nor
->priv
;
837 ret
= fsl_qspi_runcmd(q
, opcode
, 0, 1);
841 if (opcode
== SPINOR_OP_CHIP_ERASE
)
844 } else if (len
> 0) {
845 ret
= fsl_qspi_nor_write(q
, nor
, opcode
, 0,
850 dev_err(q
->dev
, "invalid cmd %d\n", opcode
);
857 static ssize_t
fsl_qspi_write(struct spi_nor
*nor
, loff_t to
,
858 size_t len
, const u_char
*buf
)
860 struct fsl_qspi
*q
= nor
->priv
;
861 ssize_t ret
= fsl_qspi_nor_write(q
, nor
, nor
->program_opcode
, to
,
864 /* invalid the data in the AHB buffer. */
869 static ssize_t
fsl_qspi_read(struct spi_nor
*nor
, loff_t from
,
870 size_t len
, u_char
*buf
)
872 struct fsl_qspi
*q
= nor
->priv
;
873 u8 cmd
= nor
->read_opcode
;
875 /* if necessary,ioremap buffer before AHB read, */
877 q
->memmap_offs
= q
->chip_base_addr
+ from
;
878 q
->memmap_len
= len
> QUADSPI_MIN_IOMAP
? len
: QUADSPI_MIN_IOMAP
;
880 q
->ahb_addr
= ioremap_nocache(
881 q
->memmap_phy
+ q
->memmap_offs
,
884 dev_err(q
->dev
, "ioremap failed\n");
887 /* ioremap if the data requested is out of range */
888 } else if (q
->chip_base_addr
+ from
< q
->memmap_offs
889 || q
->chip_base_addr
+ from
+ len
>
890 q
->memmap_offs
+ q
->memmap_len
) {
891 iounmap(q
->ahb_addr
);
893 q
->memmap_offs
= q
->chip_base_addr
+ from
;
894 q
->memmap_len
= len
> QUADSPI_MIN_IOMAP
? len
: QUADSPI_MIN_IOMAP
;
895 q
->ahb_addr
= ioremap_nocache(
896 q
->memmap_phy
+ q
->memmap_offs
,
899 dev_err(q
->dev
, "ioremap failed\n");
904 dev_dbg(q
->dev
, "cmd [%x],read from %p, len:%zd\n",
905 cmd
, q
->ahb_addr
+ q
->chip_base_addr
+ from
- q
->memmap_offs
,
908 /* Read out the data directly from the AHB buffer.*/
909 memcpy(buf
, q
->ahb_addr
+ q
->chip_base_addr
+ from
- q
->memmap_offs
,
915 static int fsl_qspi_erase(struct spi_nor
*nor
, loff_t offs
)
917 struct fsl_qspi
*q
= nor
->priv
;
920 dev_dbg(nor
->dev
, "%dKiB at 0x%08x:0x%08x\n",
921 nor
->mtd
.erasesize
/ 1024, q
->chip_base_addr
, (u32
)offs
);
923 ret
= fsl_qspi_runcmd(q
, nor
->erase_opcode
, offs
, 0);
931 static int fsl_qspi_prep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
933 struct fsl_qspi
*q
= nor
->priv
;
936 mutex_lock(&q
->lock
);
938 ret
= fsl_qspi_clk_prep_enable(q
);
942 fsl_qspi_set_base_addr(q
, nor
);
946 mutex_unlock(&q
->lock
);
950 static void fsl_qspi_unprep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
952 struct fsl_qspi
*q
= nor
->priv
;
954 fsl_qspi_clk_disable_unprep(q
);
955 mutex_unlock(&q
->lock
);
958 static int fsl_qspi_probe(struct platform_device
*pdev
)
960 const struct spi_nor_hwcaps hwcaps
= {
961 .mask
= SNOR_HWCAPS_READ_1_1_4
|
964 struct device_node
*np
= pdev
->dev
.of_node
;
965 struct device
*dev
= &pdev
->dev
;
967 struct resource
*res
;
969 struct mtd_info
*mtd
;
972 q
= devm_kzalloc(dev
, sizeof(*q
), GFP_KERNEL
);
976 q
->nor_num
= of_get_child_count(dev
->of_node
);
977 if (!q
->nor_num
|| q
->nor_num
> FSL_QSPI_MAX_CHIP
)
981 q
->devtype_data
= of_device_get_match_data(dev
);
982 if (!q
->devtype_data
)
984 platform_set_drvdata(pdev
, q
);
986 /* find the resources */
987 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "QuadSPI");
988 q
->iobase
= devm_ioremap_resource(dev
, res
);
989 if (IS_ERR(q
->iobase
))
990 return PTR_ERR(q
->iobase
);
992 q
->big_endian
= of_property_read_bool(np
, "big-endian");
993 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
995 if (!devm_request_mem_region(dev
, res
->start
, resource_size(res
),
997 dev_err(dev
, "can't request region for resource %pR\n", res
);
1001 q
->memmap_phy
= res
->start
;
1003 /* find the clocks */
1004 q
->clk_en
= devm_clk_get(dev
, "qspi_en");
1005 if (IS_ERR(q
->clk_en
))
1006 return PTR_ERR(q
->clk_en
);
1008 q
->clk
= devm_clk_get(dev
, "qspi");
1010 return PTR_ERR(q
->clk
);
1012 ret
= fsl_qspi_clk_prep_enable(q
);
1014 dev_err(dev
, "can not enable the clock\n");
1019 ret
= platform_get_irq(pdev
, 0);
1021 dev_err(dev
, "failed to get the irq: %d\n", ret
);
1025 ret
= devm_request_irq(dev
, ret
,
1026 fsl_qspi_irq_handler
, 0, pdev
->name
, q
);
1028 dev_err(dev
, "failed to request irq: %d\n", ret
);
1032 ret
= fsl_qspi_nor_setup(q
);
1036 if (of_get_property(np
, "fsl,qspi-has-second-chip", NULL
))
1037 q
->has_second_chip
= true;
1039 mutex_init(&q
->lock
);
1041 /* iterate the subnodes. */
1042 for_each_available_child_of_node(dev
->of_node
, np
) {
1043 /* skip the holes */
1044 if (!q
->has_second_chip
)
1051 spi_nor_set_flash_node(nor
, np
);
1054 /* fill the hooks */
1055 nor
->read_reg
= fsl_qspi_read_reg
;
1056 nor
->write_reg
= fsl_qspi_write_reg
;
1057 nor
->read
= fsl_qspi_read
;
1058 nor
->write
= fsl_qspi_write
;
1059 nor
->erase
= fsl_qspi_erase
;
1061 nor
->prepare
= fsl_qspi_prep
;
1062 nor
->unprepare
= fsl_qspi_unprep
;
1064 ret
= of_property_read_u32(np
, "spi-max-frequency",
1069 /* set the chip address for READID */
1070 fsl_qspi_set_base_addr(q
, nor
);
1072 ret
= spi_nor_scan(nor
, NULL
, &hwcaps
);
1076 ret
= mtd_device_register(mtd
, NULL
, 0);
1080 /* Set the correct NOR size now. */
1081 if (q
->nor_size
== 0) {
1082 q
->nor_size
= mtd
->size
;
1084 /* Map the SPI NOR to accessiable address */
1085 fsl_qspi_set_map_addr(q
);
1089 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
1090 * may writes 265 bytes per time. The write is working in the
1091 * unit of the TX FIFO, not in the unit of the SPI NOR's page
1094 * So shrink the spi_nor->page_size if it is larger then the
1097 if (nor
->page_size
> q
->devtype_data
->txfifo
)
1098 nor
->page_size
= q
->devtype_data
->txfifo
;
1103 /* finish the rest init. */
1104 ret
= fsl_qspi_nor_setup_last(q
);
1106 goto last_init_failed
;
1108 fsl_qspi_clk_disable_unprep(q
);
1112 for (i
= 0; i
< q
->nor_num
; i
++) {
1113 /* skip the holes */
1114 if (!q
->has_second_chip
)
1116 mtd_device_unregister(&q
->nor
[i
].mtd
);
1119 mutex_destroy(&q
->lock
);
1121 fsl_qspi_clk_disable_unprep(q
);
1123 dev_err(dev
, "Freescale QuadSPI probe failed\n");
1127 static int fsl_qspi_remove(struct platform_device
*pdev
)
1129 struct fsl_qspi
*q
= platform_get_drvdata(pdev
);
1132 for (i
= 0; i
< q
->nor_num
; i
++) {
1133 /* skip the holes */
1134 if (!q
->has_second_chip
)
1136 mtd_device_unregister(&q
->nor
[i
].mtd
);
1139 /* disable the hardware */
1140 qspi_writel(q
, QUADSPI_MCR_MDIS_MASK
, q
->iobase
+ QUADSPI_MCR
);
1141 qspi_writel(q
, 0x0, q
->iobase
+ QUADSPI_RSER
);
1143 mutex_destroy(&q
->lock
);
1146 iounmap(q
->ahb_addr
);
1151 static int fsl_qspi_suspend(struct platform_device
*pdev
, pm_message_t state
)
1156 static int fsl_qspi_resume(struct platform_device
*pdev
)
1159 struct fsl_qspi
*q
= platform_get_drvdata(pdev
);
1161 ret
= fsl_qspi_clk_prep_enable(q
);
1165 fsl_qspi_nor_setup(q
);
1166 fsl_qspi_set_map_addr(q
);
1167 fsl_qspi_nor_setup_last(q
);
1169 fsl_qspi_clk_disable_unprep(q
);
1174 static struct platform_driver fsl_qspi_driver
= {
1176 .name
= "fsl-quadspi",
1177 .bus
= &platform_bus_type
,
1178 .of_match_table
= fsl_qspi_dt_ids
,
1180 .probe
= fsl_qspi_probe
,
1181 .remove
= fsl_qspi_remove
,
1182 .suspend
= fsl_qspi_suspend
,
1183 .resume
= fsl_qspi_resume
,
1185 module_platform_driver(fsl_qspi_driver
);
1187 MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1188 MODULE_AUTHOR("Freescale Semiconductor Inc.");
1189 MODULE_LICENSE("GPL v2");