2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
29 * Abstract: Contain all routines that are required for FSA host/adapter
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/sched.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/slab.h>
41 #include <linux/completion.h>
42 #include <linux/blkdev.h>
43 #include <linux/delay.h>
44 #include <linux/kthread.h>
45 #include <linux/interrupt.h>
46 #include <linux/semaphore.h>
47 #include <linux/bcd.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_cmnd.h>
56 * fib_map_alloc - allocate the fib objects
57 * @dev: Adapter to allocate for
59 * Allocate and map the shared PCI space for the FIB blocks used to
60 * talk to the Adaptec firmware.
63 static int fib_map_alloc(struct aac_dev
*dev
)
65 if (dev
->max_fib_size
> AAC_MAX_NATIVE_SIZE
)
66 dev
->max_cmd_size
= AAC_MAX_NATIVE_SIZE
;
68 dev
->max_cmd_size
= dev
->max_fib_size
;
69 if (dev
->max_fib_size
< AAC_MAX_NATIVE_SIZE
) {
70 dev
->max_cmd_size
= AAC_MAX_NATIVE_SIZE
;
72 dev
->max_cmd_size
= dev
->max_fib_size
;
76 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
77 &dev
->pdev
->dev
, dev
->max_cmd_size
, dev
->scsi_host_ptr
->can_queue
,
78 AAC_NUM_MGT_FIB
, &dev
->hw_fib_pa
));
79 dev
->hw_fib_va
= dma_alloc_coherent(&dev
->pdev
->dev
,
80 (dev
->max_cmd_size
+ sizeof(struct aac_fib_xporthdr
))
81 * (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
) + (ALIGN32
- 1),
82 &dev
->hw_fib_pa
, GFP_KERNEL
);
83 if (dev
->hw_fib_va
== NULL
)
89 * aac_fib_map_free - free the fib objects
90 * @dev: Adapter to free
92 * Free the PCI mappings and the memory allocated for FIB blocks
96 void aac_fib_map_free(struct aac_dev
*dev
)
102 if(!dev
->hw_fib_va
|| !dev
->max_cmd_size
)
105 num_fibs
= dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
;
106 fib_size
= dev
->max_fib_size
+ sizeof(struct aac_fib_xporthdr
);
107 alloc_size
= fib_size
* num_fibs
+ ALIGN32
- 1;
109 dma_free_coherent(&dev
->pdev
->dev
, alloc_size
, dev
->hw_fib_va
,
112 dev
->hw_fib_va
= NULL
;
116 void aac_fib_vector_assign(struct aac_dev
*dev
)
120 struct fib
*fibptr
= NULL
;
122 for (i
= 0, fibptr
= &dev
->fibs
[i
];
123 i
< (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
);
125 if ((dev
->max_msix
== 1) ||
126 (i
> ((dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
- 1)
127 - dev
->vector_cap
))) {
128 fibptr
->vector_no
= 0;
130 fibptr
->vector_no
= vector
;
132 if (vector
== dev
->max_msix
)
139 * aac_fib_setup - setup the fibs
140 * @dev: Adapter to set up
142 * Allocate the PCI space for the fibs, map it and then initialise the
143 * fib area, the unmapped fib data and also the free list
146 int aac_fib_setup(struct aac_dev
* dev
)
149 struct hw_fib
*hw_fib
;
150 dma_addr_t hw_fib_pa
;
154 while (((i
= fib_map_alloc(dev
)) == -ENOMEM
)
155 && (dev
->scsi_host_ptr
->can_queue
> (64 - AAC_NUM_MGT_FIB
))) {
156 max_cmds
= (dev
->scsi_host_ptr
->can_queue
+AAC_NUM_MGT_FIB
) >> 1;
157 dev
->scsi_host_ptr
->can_queue
= max_cmds
- AAC_NUM_MGT_FIB
;
158 if (dev
->comm_interface
!= AAC_COMM_MESSAGE_TYPE3
)
159 dev
->init
->r7
.max_io_commands
= cpu_to_le32(max_cmds
);
164 memset(dev
->hw_fib_va
, 0,
165 (dev
->max_cmd_size
+ sizeof(struct aac_fib_xporthdr
)) *
166 (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
));
168 /* 32 byte alignment for PMC */
169 hw_fib_pa
= (dev
->hw_fib_pa
+ (ALIGN32
- 1)) & ~(ALIGN32
- 1);
170 hw_fib
= (struct hw_fib
*)((unsigned char *)dev
->hw_fib_va
+
171 (hw_fib_pa
- dev
->hw_fib_pa
));
173 /* add Xport header */
174 hw_fib
= (struct hw_fib
*)((unsigned char *)hw_fib
+
175 sizeof(struct aac_fib_xporthdr
));
176 hw_fib_pa
+= sizeof(struct aac_fib_xporthdr
);
179 * Initialise the fibs
181 for (i
= 0, fibptr
= &dev
->fibs
[i
];
182 i
< (dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
);
186 fibptr
->size
= sizeof(struct fib
);
188 fibptr
->hw_fib_va
= hw_fib
;
189 fibptr
->data
= (void *) fibptr
->hw_fib_va
->data
;
190 fibptr
->next
= fibptr
+1; /* Forward chain the fibs */
191 sema_init(&fibptr
->event_wait
, 0);
192 spin_lock_init(&fibptr
->event_lock
);
193 hw_fib
->header
.XferState
= cpu_to_le32(0xffffffff);
194 hw_fib
->header
.SenderSize
=
195 cpu_to_le16(dev
->max_fib_size
); /* ?? max_cmd_size */
196 fibptr
->hw_fib_pa
= hw_fib_pa
;
197 fibptr
->hw_sgl_pa
= hw_fib_pa
+
198 offsetof(struct aac_hba_cmd_req
, sge
[2]);
200 * one element is for the ptr to the separate sg list,
201 * second element for 32 byte alignment
203 fibptr
->hw_error_pa
= hw_fib_pa
+
204 offsetof(struct aac_native_hba
, resp
.resp_bytes
[0]);
206 hw_fib
= (struct hw_fib
*)((unsigned char *)hw_fib
+
207 dev
->max_cmd_size
+ sizeof(struct aac_fib_xporthdr
));
208 hw_fib_pa
= hw_fib_pa
+
209 dev
->max_cmd_size
+ sizeof(struct aac_fib_xporthdr
);
213 *Assign vector numbers to fibs
215 aac_fib_vector_assign(dev
);
218 * Add the fib chain to the free list
220 dev
->fibs
[dev
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
- 1].next
= NULL
;
222 * Set 8 fibs aside for management tools
224 dev
->free_fib
= &dev
->fibs
[dev
->scsi_host_ptr
->can_queue
];
229 * aac_fib_alloc_tag-allocate a fib using tags
230 * @dev: Adapter to allocate the fib for
232 * Allocate a fib from the adapter fib pool using tags
233 * from the blk layer.
236 struct fib
*aac_fib_alloc_tag(struct aac_dev
*dev
, struct scsi_cmnd
*scmd
)
240 fibptr
= &dev
->fibs
[scmd
->request
->tag
];
242 * Null out fields that depend on being zero at the start of
245 fibptr
->hw_fib_va
->header
.XferState
= 0;
246 fibptr
->type
= FSAFS_NTC_FIB_CONTEXT
;
247 fibptr
->callback_data
= NULL
;
248 fibptr
->callback
= NULL
;
254 * aac_fib_alloc - allocate a fib
255 * @dev: Adapter to allocate the fib for
257 * Allocate a fib from the adapter fib pool. If the pool is empty we
261 struct fib
*aac_fib_alloc(struct aac_dev
*dev
)
265 spin_lock_irqsave(&dev
->fib_lock
, flags
);
266 fibptr
= dev
->free_fib
;
268 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
271 dev
->free_fib
= fibptr
->next
;
272 spin_unlock_irqrestore(&dev
->fib_lock
, flags
);
274 * Set the proper node type code and node byte size
276 fibptr
->type
= FSAFS_NTC_FIB_CONTEXT
;
277 fibptr
->size
= sizeof(struct fib
);
279 * Null out fields that depend on being zero at the start of
282 fibptr
->hw_fib_va
->header
.XferState
= 0;
284 fibptr
->callback
= NULL
;
285 fibptr
->callback_data
= NULL
;
291 * aac_fib_free - free a fib
292 * @fibptr: fib to free up
294 * Frees up a fib and places it on the appropriate queue
297 void aac_fib_free(struct fib
*fibptr
)
301 if (fibptr
->done
== 2)
304 spin_lock_irqsave(&fibptr
->dev
->fib_lock
, flags
);
305 if (unlikely(fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
))
306 aac_config
.fib_timeouts
++;
307 if (!(fibptr
->flags
& FIB_CONTEXT_FLAG_NATIVE_HBA
) &&
308 fibptr
->hw_fib_va
->header
.XferState
!= 0) {
309 printk(KERN_WARNING
"aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
311 le32_to_cpu(fibptr
->hw_fib_va
->header
.XferState
));
313 fibptr
->next
= fibptr
->dev
->free_fib
;
314 fibptr
->dev
->free_fib
= fibptr
;
315 spin_unlock_irqrestore(&fibptr
->dev
->fib_lock
, flags
);
319 * aac_fib_init - initialise a fib
320 * @fibptr: The fib to initialize
322 * Set up the generic fib fields ready for use
325 void aac_fib_init(struct fib
*fibptr
)
327 struct hw_fib
*hw_fib
= fibptr
->hw_fib_va
;
329 memset(&hw_fib
->header
, 0, sizeof(struct aac_fibhdr
));
330 hw_fib
->header
.StructType
= FIB_MAGIC
;
331 hw_fib
->header
.Size
= cpu_to_le16(fibptr
->dev
->max_fib_size
);
332 hw_fib
->header
.XferState
= cpu_to_le32(HostOwned
| FibInitialized
| FibEmpty
| FastResponseCapable
);
333 hw_fib
->header
.u
.ReceiverFibAddress
= cpu_to_le32(fibptr
->hw_fib_pa
);
334 hw_fib
->header
.SenderSize
= cpu_to_le16(fibptr
->dev
->max_fib_size
);
338 * fib_deallocate - deallocate a fib
339 * @fibptr: fib to deallocate
341 * Will deallocate and return to the free pool the FIB pointed to by the
345 static void fib_dealloc(struct fib
* fibptr
)
347 struct hw_fib
*hw_fib
= fibptr
->hw_fib_va
;
348 hw_fib
->header
.XferState
= 0;
352 * Commuication primitives define and support the queuing method we use to
353 * support host to adapter commuication. All queue accesses happen through
354 * these routines and are the only routines which have a knowledge of the
355 * how these queues are implemented.
359 * aac_get_entry - get a queue entry
362 * @entry: Entry return
363 * @index: Index return
364 * @nonotify: notification control
366 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
367 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
371 static int aac_get_entry (struct aac_dev
* dev
, u32 qid
, struct aac_entry
**entry
, u32
* index
, unsigned long *nonotify
)
373 struct aac_queue
* q
;
377 * All of the queues wrap when they reach the end, so we check
378 * to see if they have reached the end and if they have we just
379 * set the index back to zero. This is a wrap. You could or off
380 * the high bits in all updates but this is a bit faster I think.
383 q
= &dev
->queues
->queue
[qid
];
385 idx
= *index
= le32_to_cpu(*(q
->headers
.producer
));
386 /* Interrupt Moderation, only interrupt for first two entries */
387 if (idx
!= le32_to_cpu(*(q
->headers
.consumer
))) {
389 if (qid
== AdapNormCmdQueue
)
390 idx
= ADAP_NORM_CMD_ENTRIES
;
392 idx
= ADAP_NORM_RESP_ENTRIES
;
394 if (idx
!= le32_to_cpu(*(q
->headers
.consumer
)))
398 if (qid
== AdapNormCmdQueue
) {
399 if (*index
>= ADAP_NORM_CMD_ENTRIES
)
400 *index
= 0; /* Wrap to front of the Producer Queue. */
402 if (*index
>= ADAP_NORM_RESP_ENTRIES
)
403 *index
= 0; /* Wrap to front of the Producer Queue. */
407 if ((*index
+ 1) == le32_to_cpu(*(q
->headers
.consumer
))) {
408 printk(KERN_WARNING
"Queue %d full, %u outstanding.\n",
409 qid
, atomic_read(&q
->numpending
));
412 *entry
= q
->base
+ *index
;
418 * aac_queue_get - get the next free QE
420 * @index: Returned index
421 * @priority: Priority of fib
422 * @fib: Fib to associate with the queue entry
423 * @wait: Wait if queue full
424 * @fibptr: Driver fib object to go with fib
425 * @nonotify: Don't notify the adapter
427 * Gets the next free QE off the requested priorty adapter command
428 * queue and associates the Fib with the QE. The QE represented by
429 * index is ready to insert on the queue when this routine returns
433 int aac_queue_get(struct aac_dev
* dev
, u32
* index
, u32 qid
, struct hw_fib
* hw_fib
, int wait
, struct fib
* fibptr
, unsigned long *nonotify
)
435 struct aac_entry
* entry
= NULL
;
438 if (qid
== AdapNormCmdQueue
) {
439 /* if no entries wait for some if caller wants to */
440 while (!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
)) {
441 printk(KERN_ERR
"GetEntries failed\n");
444 * Setup queue entry with a command, status and fib mapped
446 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
449 while (!aac_get_entry(dev
, qid
, &entry
, index
, nonotify
)) {
450 /* if no entries wait for some if caller wants to */
453 * Setup queue entry with command, status and fib mapped
455 entry
->size
= cpu_to_le32(le16_to_cpu(hw_fib
->header
.Size
));
456 entry
->addr
= hw_fib
->header
.SenderFibAddress
;
457 /* Restore adapters pointer to the FIB */
458 hw_fib
->header
.u
.ReceiverFibAddress
= hw_fib
->header
.SenderFibAddress
; /* Let the adapter now where to find its data */
462 * If MapFib is true than we need to map the Fib and put pointers
463 * in the queue entry.
466 entry
->addr
= cpu_to_le32(fibptr
->hw_fib_pa
);
471 static inline int aac_check_eeh_failure(struct aac_dev
*dev
)
473 /* Check for an EEH failure for the given
474 * device node. Function eeh_dev_check_failure()
475 * returns 0 if there has not been an EEH error
476 * otherwise returns a non-zero value.
478 * Need to be called before any PCI operation,
479 * i.e.,before aac_adapter_check_health()
481 struct eeh_dev
*edev
= pci_dev_to_eeh_dev(dev
->pdev
);
483 if (eeh_dev_check_failure(edev
)) {
484 /* The EEH mechanisms will handle this
485 * error and reset the device if
493 static inline int aac_check_eeh_failure(struct aac_dev
*dev
)
500 * Define the highest level of host to adapter communication routines.
501 * These routines will support host to adapter FS commuication. These
502 * routines have no knowledge of the commuication method used. This level
503 * sends and receives FIBs. This level has no knowledge of how these FIBs
504 * get passed back and forth.
508 * aac_fib_send - send a fib to the adapter
509 * @command: Command to send
511 * @size: Size of fib data area
512 * @priority: Priority of Fib
513 * @wait: Async/sync select
514 * @reply: True if a reply is wanted
515 * @callback: Called with reply
516 * @callback_data: Passed to callback
518 * Sends the requested FIB to the adapter and optionally will wait for a
519 * response FIB. If the caller does not wish to wait for a response than
520 * an event to wait on must be supplied. This event will be set when a
521 * response FIB is received from the adapter.
524 int aac_fib_send(u16 command
, struct fib
*fibptr
, unsigned long size
,
525 int priority
, int wait
, int reply
, fib_callback callback
,
528 struct aac_dev
* dev
= fibptr
->dev
;
529 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
530 unsigned long flags
= 0;
531 unsigned long mflags
= 0;
532 unsigned long sflags
= 0;
534 if (!(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)))
537 if (hw_fib
->header
.XferState
& cpu_to_le32(AdapterProcessed
))
541 * There are 5 cases with the wait and response requested flags.
542 * The only invalid cases are if the caller requests to wait and
543 * does not request a response and if the caller does not want a
544 * response and the Fib is not allocated from pool. If a response
545 * is not requesed the Fib will just be deallocaed by the DPC
546 * routine when the response comes back from the adapter. No
547 * further processing will be done besides deleting the Fib. We
548 * will have a debug mode where the adapter can notify the host
549 * it had a problem and the host can log that fact.
552 if (wait
&& !reply
) {
554 } else if (!wait
&& reply
) {
555 hw_fib
->header
.XferState
|= cpu_to_le32(Async
| ResponseExpected
);
556 FIB_COUNTER_INCREMENT(aac_config
.AsyncSent
);
557 } else if (!wait
&& !reply
) {
558 hw_fib
->header
.XferState
|= cpu_to_le32(NoResponseExpected
);
559 FIB_COUNTER_INCREMENT(aac_config
.NoResponseSent
);
560 } else if (wait
&& reply
) {
561 hw_fib
->header
.XferState
|= cpu_to_le32(ResponseExpected
);
562 FIB_COUNTER_INCREMENT(aac_config
.NormalSent
);
565 * Map the fib into 32bits by using the fib number
568 hw_fib
->header
.SenderFibAddress
=
569 cpu_to_le32(((u32
)(fibptr
- dev
->fibs
)) << 2);
571 /* use the same shifted value for handle to be compatible
572 * with the new native hba command handle
574 hw_fib
->header
.Handle
=
575 cpu_to_le32((((u32
)(fibptr
- dev
->fibs
)) << 2) + 1);
578 * Set FIB state to indicate where it came from and if we want a
579 * response from the adapter. Also load the command from the
582 * Map the hw fib pointer as a 32bit value
584 hw_fib
->header
.Command
= cpu_to_le16(command
);
585 hw_fib
->header
.XferState
|= cpu_to_le32(SentFromHost
);
587 * Set the size of the Fib we want to send to the adapter
589 hw_fib
->header
.Size
= cpu_to_le16(sizeof(struct aac_fibhdr
) + size
);
590 if (le16_to_cpu(hw_fib
->header
.Size
) > le16_to_cpu(hw_fib
->header
.SenderSize
)) {
594 * Get a queue entry connect the FIB to it and send an notify
595 * the adapter a command is ready.
597 hw_fib
->header
.XferState
|= cpu_to_le32(NormalPriority
);
600 * Fill in the Callback and CallbackContext if we are not
604 fibptr
->callback
= callback
;
605 fibptr
->callback_data
= callback_data
;
606 fibptr
->flags
= FIB_CONTEXT_FLAG
;
611 FIB_COUNTER_INCREMENT(aac_config
.FibsSent
);
613 dprintk((KERN_DEBUG
"Fib contents:.\n"));
614 dprintk((KERN_DEBUG
" Command = %d.\n", le32_to_cpu(hw_fib
->header
.Command
)));
615 dprintk((KERN_DEBUG
" SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount
*)fib_data(fibptr
))->command
)));
616 dprintk((KERN_DEBUG
" XferState = %x.\n", le32_to_cpu(hw_fib
->header
.XferState
)));
617 dprintk((KERN_DEBUG
" hw_fib va being sent=%p\n",fibptr
->hw_fib_va
));
618 dprintk((KERN_DEBUG
" hw_fib pa being sent=%lx\n",(ulong
)fibptr
->hw_fib_pa
));
619 dprintk((KERN_DEBUG
" fib being sent=%p\n",fibptr
));
626 spin_lock_irqsave(&dev
->manage_lock
, mflags
);
627 if (dev
->management_fib_count
>= AAC_NUM_MGT_FIB
) {
628 printk(KERN_INFO
"No management Fibs Available:%d\n",
629 dev
->management_fib_count
);
630 spin_unlock_irqrestore(&dev
->manage_lock
, mflags
);
633 dev
->management_fib_count
++;
634 spin_unlock_irqrestore(&dev
->manage_lock
, mflags
);
635 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
638 if (dev
->sync_mode
) {
640 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
641 spin_lock_irqsave(&dev
->sync_lock
, sflags
);
643 list_add_tail(&fibptr
->fiblink
, &dev
->sync_fib_list
);
644 spin_unlock_irqrestore(&dev
->sync_lock
, sflags
);
646 dev
->sync_fib
= fibptr
;
647 spin_unlock_irqrestore(&dev
->sync_lock
, sflags
);
648 aac_adapter_sync_cmd(dev
, SEND_SYNCHRONOUS_FIB
,
649 (u32
)fibptr
->hw_fib_pa
, 0, 0, 0, 0, 0,
650 NULL
, NULL
, NULL
, NULL
, NULL
);
653 fibptr
->flags
|= FIB_CONTEXT_FLAG_WAIT
;
654 if (down_interruptible(&fibptr
->event_wait
)) {
655 fibptr
->flags
&= ~FIB_CONTEXT_FLAG_WAIT
;
663 if (aac_adapter_deliver(fibptr
) != 0) {
664 printk(KERN_ERR
"aac_fib_send: returned -EBUSY\n");
666 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
667 spin_lock_irqsave(&dev
->manage_lock
, mflags
);
668 dev
->management_fib_count
--;
669 spin_unlock_irqrestore(&dev
->manage_lock
, mflags
);
676 * If the caller wanted us to wait for response wait now.
680 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
681 /* Only set for first known interruptable command */
684 * *VERY* Dangerous to time out a command, the
685 * assumption is made that we have no hope of
686 * functioning because an interrupt routing or other
687 * hardware failure has occurred.
689 unsigned long timeout
= jiffies
+ (180 * HZ
); /* 3 minutes */
690 while (down_trylock(&fibptr
->event_wait
)) {
692 if (time_is_before_eq_jiffies(timeout
)) {
693 struct aac_queue
* q
= &dev
->queues
->queue
[AdapNormCmdQueue
];
694 atomic_dec(&q
->numpending
);
696 printk(KERN_ERR
"aacraid: aac_fib_send: first asynchronous command timed out.\n"
697 "Usually a result of a PCI interrupt routing problem;\n"
698 "update mother board BIOS or consider utilizing one of\n"
699 "the SAFE mode kernel options (acpi, apic etc)\n");
704 if (aac_check_eeh_failure(dev
))
707 if ((blink
= aac_adapter_check_health(dev
)) > 0) {
709 printk(KERN_ERR
"aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
710 "Usually a result of a serious unrecoverable hardware problem\n",
716 * Allow other processes / CPUS to use core
720 } else if (down_interruptible(&fibptr
->event_wait
)) {
721 /* Do nothing ... satisfy
722 * down_interruptible must_check */
725 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
726 if (fibptr
->done
== 0) {
727 fibptr
->done
= 2; /* Tell interrupt we aborted */
728 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
731 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
732 BUG_ON(fibptr
->done
== 0);
734 if(unlikely(fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
))
739 * If the user does not want a response than return success otherwise
748 int aac_hba_send(u8 command
, struct fib
*fibptr
, fib_callback callback
,
751 struct aac_dev
*dev
= fibptr
->dev
;
753 unsigned long flags
= 0;
754 unsigned long mflags
= 0;
756 fibptr
->flags
= (FIB_CONTEXT_FLAG
| FIB_CONTEXT_FLAG_NATIVE_HBA
);
759 fibptr
->callback
= callback
;
760 fibptr
->callback_data
= callback_data
;
765 if (command
== HBA_IU_TYPE_SCSI_CMD_REQ
) {
766 struct aac_hba_cmd_req
*hbacmd
=
767 (struct aac_hba_cmd_req
*)fibptr
->hw_fib_va
;
769 hbacmd
->iu_type
= command
;
770 /* bit1 of request_id must be 0 */
772 cpu_to_le32((((u32
)(fibptr
- dev
->fibs
)) << 2) + 1);
773 fibptr
->flags
|= FIB_CONTEXT_FLAG_SCSI_CMD
;
774 } else if (command
!= HBA_IU_TYPE_SCSI_TM_REQ
)
779 spin_lock_irqsave(&dev
->manage_lock
, mflags
);
780 if (dev
->management_fib_count
>= AAC_NUM_MGT_FIB
) {
781 spin_unlock_irqrestore(&dev
->manage_lock
, mflags
);
784 dev
->management_fib_count
++;
785 spin_unlock_irqrestore(&dev
->manage_lock
, mflags
);
786 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
789 if (aac_adapter_deliver(fibptr
) != 0) {
791 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
792 spin_lock_irqsave(&dev
->manage_lock
, mflags
);
793 dev
->management_fib_count
--;
794 spin_unlock_irqrestore(&dev
->manage_lock
, mflags
);
798 FIB_COUNTER_INCREMENT(aac_config
.NativeSent
);
802 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
804 if (aac_check_eeh_failure(dev
))
807 fibptr
->flags
|= FIB_CONTEXT_FLAG_WAIT
;
808 if (down_interruptible(&fibptr
->event_wait
))
810 fibptr
->flags
&= ~(FIB_CONTEXT_FLAG_WAIT
);
812 spin_lock_irqsave(&fibptr
->event_lock
, flags
);
813 if ((fibptr
->done
== 0) || (fibptr
->done
== 2)) {
814 fibptr
->done
= 2; /* Tell interrupt we aborted */
815 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
818 spin_unlock_irqrestore(&fibptr
->event_lock
, flags
);
819 WARN_ON(fibptr
->done
== 0);
821 if (unlikely(fibptr
->flags
& FIB_CONTEXT_FLAG_TIMED_OUT
))
831 * aac_consumer_get - get the top of the queue
834 * @entry: Return entry
836 * Will return a pointer to the entry on the top of the queue requested that
837 * we are a consumer of, and return the address of the queue entry. It does
838 * not change the state of the queue.
841 int aac_consumer_get(struct aac_dev
* dev
, struct aac_queue
* q
, struct aac_entry
**entry
)
845 if (le32_to_cpu(*q
->headers
.producer
) == le32_to_cpu(*q
->headers
.consumer
)) {
849 * The consumer index must be wrapped if we have reached
850 * the end of the queue, else we just use the entry
851 * pointed to by the header index
853 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
856 index
= le32_to_cpu(*q
->headers
.consumer
);
857 *entry
= q
->base
+ index
;
864 * aac_consumer_free - free consumer entry
869 * Frees up the current top of the queue we are a consumer of. If the
870 * queue was full notify the producer that the queue is no longer full.
873 void aac_consumer_free(struct aac_dev
* dev
, struct aac_queue
*q
, u32 qid
)
878 if ((le32_to_cpu(*q
->headers
.producer
)+1) == le32_to_cpu(*q
->headers
.consumer
))
881 if (le32_to_cpu(*q
->headers
.consumer
) >= q
->entries
)
882 *q
->headers
.consumer
= cpu_to_le32(1);
884 le32_add_cpu(q
->headers
.consumer
, 1);
889 case HostNormCmdQueue
:
890 notify
= HostNormCmdNotFull
;
892 case HostNormRespQueue
:
893 notify
= HostNormRespNotFull
;
899 aac_adapter_notify(dev
, notify
);
904 * aac_fib_adapter_complete - complete adapter issued fib
905 * @fibptr: fib to complete
908 * Will do all necessary work to complete a FIB that was sent from
912 int aac_fib_adapter_complete(struct fib
*fibptr
, unsigned short size
)
914 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
915 struct aac_dev
* dev
= fibptr
->dev
;
916 struct aac_queue
* q
;
917 unsigned long nointr
= 0;
918 unsigned long qflags
;
920 if (dev
->comm_interface
== AAC_COMM_MESSAGE_TYPE1
||
921 dev
->comm_interface
== AAC_COMM_MESSAGE_TYPE2
||
922 dev
->comm_interface
== AAC_COMM_MESSAGE_TYPE3
) {
927 if (hw_fib
->header
.XferState
== 0) {
928 if (dev
->comm_interface
== AAC_COMM_MESSAGE
)
933 * If we plan to do anything check the structure type first.
935 if (hw_fib
->header
.StructType
!= FIB_MAGIC
&&
936 hw_fib
->header
.StructType
!= FIB_MAGIC2
&&
937 hw_fib
->header
.StructType
!= FIB_MAGIC2_64
) {
938 if (dev
->comm_interface
== AAC_COMM_MESSAGE
)
943 * This block handles the case where the adapter had sent us a
944 * command and we have finished processing the command. We
945 * call completeFib when we are done processing the command
946 * and want to send a response back to the adapter. This will
947 * send the completed cdb to the adapter.
949 if (hw_fib
->header
.XferState
& cpu_to_le32(SentFromAdapter
)) {
950 if (dev
->comm_interface
== AAC_COMM_MESSAGE
) {
954 hw_fib
->header
.XferState
|= cpu_to_le32(HostProcessed
);
956 size
+= sizeof(struct aac_fibhdr
);
957 if (size
> le16_to_cpu(hw_fib
->header
.SenderSize
))
959 hw_fib
->header
.Size
= cpu_to_le16(size
);
961 q
= &dev
->queues
->queue
[AdapNormRespQueue
];
962 spin_lock_irqsave(q
->lock
, qflags
);
963 aac_queue_get(dev
, &index
, AdapNormRespQueue
, hw_fib
, 1, NULL
, &nointr
);
964 *(q
->headers
.producer
) = cpu_to_le32(index
+ 1);
965 spin_unlock_irqrestore(q
->lock
, qflags
);
966 if (!(nointr
& (int)aac_config
.irq_mod
))
967 aac_adapter_notify(dev
, AdapNormRespQueue
);
970 printk(KERN_WARNING
"aac_fib_adapter_complete: "
971 "Unknown xferstate detected.\n");
978 * aac_fib_complete - fib completion handler
979 * @fib: FIB to complete
981 * Will do all necessary work to complete a FIB.
984 int aac_fib_complete(struct fib
*fibptr
)
986 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
988 if (fibptr
->flags
& FIB_CONTEXT_FLAG_NATIVE_HBA
) {
994 * Check for a fib which has already been completed or with a
995 * status wait timeout
998 if (hw_fib
->header
.XferState
== 0 || fibptr
->done
== 2)
1001 * If we plan to do anything check the structure type first.
1004 if (hw_fib
->header
.StructType
!= FIB_MAGIC
&&
1005 hw_fib
->header
.StructType
!= FIB_MAGIC2
&&
1006 hw_fib
->header
.StructType
!= FIB_MAGIC2_64
)
1009 * This block completes a cdb which orginated on the host and we
1010 * just need to deallocate the cdb or reinit it. At this point the
1011 * command is complete that we had sent to the adapter and this
1012 * cdb could be reused.
1015 if((hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
)) &&
1016 (hw_fib
->header
.XferState
& cpu_to_le32(AdapterProcessed
)))
1018 fib_dealloc(fibptr
);
1020 else if(hw_fib
->header
.XferState
& cpu_to_le32(SentFromHost
))
1023 * This handles the case when the host has aborted the I/O
1024 * to the adapter because the adapter is not responding
1026 fib_dealloc(fibptr
);
1027 } else if(hw_fib
->header
.XferState
& cpu_to_le32(HostOwned
)) {
1028 fib_dealloc(fibptr
);
1036 * aac_printf - handle printf from firmware
1038 * @val: Message info
1040 * Print a message passed to us by the controller firmware on the
1044 void aac_printf(struct aac_dev
*dev
, u32 val
)
1046 char *cp
= dev
->printfbuf
;
1047 if (dev
->printf_enabled
)
1049 int length
= val
& 0xffff;
1050 int level
= (val
>> 16) & 0xffff;
1053 * The size of the printfbuf is set in port.c
1054 * There is no variable or define for it
1058 if (cp
[length
] != 0)
1060 if (level
== LOG_AAC_HIGH_ERROR
)
1061 printk(KERN_WARNING
"%s:%s", dev
->name
, cp
);
1063 printk(KERN_INFO
"%s:%s", dev
->name
, cp
);
1068 static inline int aac_aif_data(struct aac_aifcmd
*aifcmd
, uint32_t index
)
1070 return le32_to_cpu(((__le32
*)aifcmd
->data
)[index
]);
1074 static void aac_handle_aif_bu(struct aac_dev
*dev
, struct aac_aifcmd
*aifcmd
)
1076 switch (aac_aif_data(aifcmd
, 1)) {
1077 case AifBuCacheDataLoss
:
1078 if (aac_aif_data(aifcmd
, 2))
1079 dev_info(&dev
->pdev
->dev
, "Backup unit had cache data loss - [%d]\n",
1080 aac_aif_data(aifcmd
, 2));
1082 dev_info(&dev
->pdev
->dev
, "Backup Unit had cache data loss\n");
1084 case AifBuCacheDataRecover
:
1085 if (aac_aif_data(aifcmd
, 2))
1086 dev_info(&dev
->pdev
->dev
, "DDR cache data recovered successfully - [%d]\n",
1087 aac_aif_data(aifcmd
, 2));
1089 dev_info(&dev
->pdev
->dev
, "DDR cache data recovered successfully\n");
1095 * aac_handle_aif - Handle a message from the firmware
1096 * @dev: Which adapter this fib is from
1097 * @fibptr: Pointer to fibptr from adapter
1099 * This routine handles a driver notify fib from the adapter and
1100 * dispatches it to the appropriate routine for handling.
1103 #define AIF_SNIFF_TIMEOUT (500*HZ)
1104 static void aac_handle_aif(struct aac_dev
* dev
, struct fib
* fibptr
)
1106 struct hw_fib
* hw_fib
= fibptr
->hw_fib_va
;
1107 struct aac_aifcmd
* aifcmd
= (struct aac_aifcmd
*)hw_fib
->data
;
1108 u32 channel
, id
, lun
, container
;
1109 struct scsi_device
*device
;
1115 } device_config_needed
= NOTHING
;
1117 /* Sniff for container changes */
1119 if (!dev
|| !dev
->fsa_dev
)
1121 container
= channel
= id
= lun
= (u32
)-1;
1124 * We have set this up to try and minimize the number of
1125 * re-configures that take place. As a result of this when
1126 * certain AIF's come in we will set a flag waiting for another
1127 * type of AIF before setting the re-config flag.
1129 switch (le32_to_cpu(aifcmd
->command
)) {
1130 case AifCmdDriverNotify
:
1131 switch (le32_to_cpu(((__le32
*)aifcmd
->data
)[0])) {
1132 case AifRawDeviceRemove
:
1133 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
1134 if ((container
>> 28)) {
1135 container
= (u32
)-1;
1138 channel
= (container
>> 24) & 0xF;
1139 if (channel
>= dev
->maximum_num_channels
) {
1140 container
= (u32
)-1;
1143 id
= container
& 0xFFFF;
1144 if (id
>= dev
->maximum_num_physicals
) {
1145 container
= (u32
)-1;
1148 lun
= (container
>> 16) & 0xFF;
1149 container
= (u32
)-1;
1150 channel
= aac_phys_to_logical(channel
);
1151 device_config_needed
= DELETE
;
1155 * Morph or Expand complete
1157 case AifDenMorphComplete
:
1158 case AifDenVolumeExtendComplete
:
1159 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
1160 if (container
>= dev
->maximum_num_containers
)
1164 * Find the scsi_device associated with the SCSI
1165 * address. Make sure we have the right array, and if
1166 * so set the flag to initiate a new re-config once we
1167 * see an AifEnConfigChange AIF come through.
1170 if ((dev
!= NULL
) && (dev
->scsi_host_ptr
!= NULL
)) {
1171 device
= scsi_device_lookup(dev
->scsi_host_ptr
,
1172 CONTAINER_TO_CHANNEL(container
),
1173 CONTAINER_TO_ID(container
),
1174 CONTAINER_TO_LUN(container
));
1176 dev
->fsa_dev
[container
].config_needed
= CHANGE
;
1177 dev
->fsa_dev
[container
].config_waiting_on
= AifEnConfigChange
;
1178 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
1179 scsi_device_put(device
);
1185 * If we are waiting on something and this happens to be
1186 * that thing then set the re-configure flag.
1188 if (container
!= (u32
)-1) {
1189 if (container
>= dev
->maximum_num_containers
)
1191 if ((dev
->fsa_dev
[container
].config_waiting_on
==
1192 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
1193 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
1194 dev
->fsa_dev
[container
].config_waiting_on
= 0;
1195 } else for (container
= 0;
1196 container
< dev
->maximum_num_containers
; ++container
) {
1197 if ((dev
->fsa_dev
[container
].config_waiting_on
==
1198 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
1199 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
1200 dev
->fsa_dev
[container
].config_waiting_on
= 0;
1204 case AifCmdEventNotify
:
1205 switch (le32_to_cpu(((__le32
*)aifcmd
->data
)[0])) {
1206 case AifEnBatteryEvent
:
1207 dev
->cache_protected
=
1208 (((__le32
*)aifcmd
->data
)[1] == cpu_to_le32(3));
1213 case AifEnAddContainer
:
1214 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
1215 if (container
>= dev
->maximum_num_containers
)
1217 dev
->fsa_dev
[container
].config_needed
= ADD
;
1218 dev
->fsa_dev
[container
].config_waiting_on
=
1220 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
1226 case AifEnDeleteContainer
:
1227 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
1228 if (container
>= dev
->maximum_num_containers
)
1230 dev
->fsa_dev
[container
].config_needed
= DELETE
;
1231 dev
->fsa_dev
[container
].config_waiting_on
=
1233 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
1237 * Container change detected. If we currently are not
1238 * waiting on something else, setup to wait on a Config Change.
1240 case AifEnContainerChange
:
1241 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
1242 if (container
>= dev
->maximum_num_containers
)
1244 if (dev
->fsa_dev
[container
].config_waiting_on
&&
1245 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
1247 dev
->fsa_dev
[container
].config_needed
= CHANGE
;
1248 dev
->fsa_dev
[container
].config_waiting_on
=
1250 dev
->fsa_dev
[container
].config_waiting_stamp
= jiffies
;
1253 case AifEnConfigChange
:
1257 case AifEnDeleteJBOD
:
1258 container
= le32_to_cpu(((__le32
*)aifcmd
->data
)[1]);
1259 if ((container
>> 28)) {
1260 container
= (u32
)-1;
1263 channel
= (container
>> 24) & 0xF;
1264 if (channel
>= dev
->maximum_num_channels
) {
1265 container
= (u32
)-1;
1268 id
= container
& 0xFFFF;
1269 if (id
>= dev
->maximum_num_physicals
) {
1270 container
= (u32
)-1;
1273 lun
= (container
>> 16) & 0xFF;
1274 container
= (u32
)-1;
1275 channel
= aac_phys_to_logical(channel
);
1276 device_config_needed
=
1277 (((__le32
*)aifcmd
->data
)[0] ==
1278 cpu_to_le32(AifEnAddJBOD
)) ? ADD
: DELETE
;
1279 if (device_config_needed
== ADD
) {
1280 device
= scsi_device_lookup(dev
->scsi_host_ptr
,
1285 scsi_remove_device(device
);
1286 scsi_device_put(device
);
1291 case AifEnEnclosureManagement
:
1293 * If in JBOD mode, automatic exposure of new
1294 * physical target to be suppressed until configured.
1298 switch (le32_to_cpu(((__le32
*)aifcmd
->data
)[3])) {
1299 case EM_DRIVE_INSERTION
:
1300 case EM_DRIVE_REMOVAL
:
1301 case EM_SES_DRIVE_INSERTION
:
1302 case EM_SES_DRIVE_REMOVAL
:
1303 container
= le32_to_cpu(
1304 ((__le32
*)aifcmd
->data
)[2]);
1305 if ((container
>> 28)) {
1306 container
= (u32
)-1;
1309 channel
= (container
>> 24) & 0xF;
1310 if (channel
>= dev
->maximum_num_channels
) {
1311 container
= (u32
)-1;
1314 id
= container
& 0xFFFF;
1315 lun
= (container
>> 16) & 0xFF;
1316 container
= (u32
)-1;
1317 if (id
>= dev
->maximum_num_physicals
) {
1318 /* legacy dev_t ? */
1319 if ((0x2000 <= id
) || lun
|| channel
||
1320 ((channel
= (id
>> 7) & 0x3F) >=
1321 dev
->maximum_num_channels
))
1323 lun
= (id
>> 4) & 7;
1326 channel
= aac_phys_to_logical(channel
);
1327 device_config_needed
=
1328 ((((__le32
*)aifcmd
->data
)[3]
1329 == cpu_to_le32(EM_DRIVE_INSERTION
)) ||
1330 (((__le32
*)aifcmd
->data
)[3]
1331 == cpu_to_le32(EM_SES_DRIVE_INSERTION
))) ?
1335 case AifBuManagerEvent
:
1336 aac_handle_aif_bu(dev
, aifcmd
);
1341 * If we are waiting on something and this happens to be
1342 * that thing then set the re-configure flag.
1344 if (container
!= (u32
)-1) {
1345 if (container
>= dev
->maximum_num_containers
)
1347 if ((dev
->fsa_dev
[container
].config_waiting_on
==
1348 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
1349 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
1350 dev
->fsa_dev
[container
].config_waiting_on
= 0;
1351 } else for (container
= 0;
1352 container
< dev
->maximum_num_containers
; ++container
) {
1353 if ((dev
->fsa_dev
[container
].config_waiting_on
==
1354 le32_to_cpu(*(__le32
*)aifcmd
->data
)) &&
1355 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
))
1356 dev
->fsa_dev
[container
].config_waiting_on
= 0;
1360 case AifCmdJobProgress
:
1362 * These are job progress AIF's. When a Clear is being
1363 * done on a container it is initially created then hidden from
1364 * the OS. When the clear completes we don't get a config
1365 * change so we monitor the job status complete on a clear then
1366 * wait for a container change.
1369 if (((__le32
*)aifcmd
->data
)[1] == cpu_to_le32(AifJobCtrZero
) &&
1370 (((__le32
*)aifcmd
->data
)[6] == ((__le32
*)aifcmd
->data
)[5] ||
1371 ((__le32
*)aifcmd
->data
)[4] == cpu_to_le32(AifJobStsSuccess
))) {
1373 container
< dev
->maximum_num_containers
;
1376 * Stomp on all config sequencing for all
1379 dev
->fsa_dev
[container
].config_waiting_on
=
1380 AifEnContainerChange
;
1381 dev
->fsa_dev
[container
].config_needed
= ADD
;
1382 dev
->fsa_dev
[container
].config_waiting_stamp
=
1386 if (((__le32
*)aifcmd
->data
)[1] == cpu_to_le32(AifJobCtrZero
) &&
1387 ((__le32
*)aifcmd
->data
)[6] == 0 &&
1388 ((__le32
*)aifcmd
->data
)[4] == cpu_to_le32(AifJobStsRunning
)) {
1390 container
< dev
->maximum_num_containers
;
1393 * Stomp on all config sequencing for all
1396 dev
->fsa_dev
[container
].config_waiting_on
=
1397 AifEnContainerChange
;
1398 dev
->fsa_dev
[container
].config_needed
= DELETE
;
1399 dev
->fsa_dev
[container
].config_waiting_stamp
=
1408 if (device_config_needed
== NOTHING
)
1409 for (; container
< dev
->maximum_num_containers
; ++container
) {
1410 if ((dev
->fsa_dev
[container
].config_waiting_on
== 0) &&
1411 (dev
->fsa_dev
[container
].config_needed
!= NOTHING
) &&
1412 time_before(jiffies
, dev
->fsa_dev
[container
].config_waiting_stamp
+ AIF_SNIFF_TIMEOUT
)) {
1413 device_config_needed
=
1414 dev
->fsa_dev
[container
].config_needed
;
1415 dev
->fsa_dev
[container
].config_needed
= NOTHING
;
1416 channel
= CONTAINER_TO_CHANNEL(container
);
1417 id
= CONTAINER_TO_ID(container
);
1418 lun
= CONTAINER_TO_LUN(container
);
1422 if (device_config_needed
== NOTHING
)
1426 * If we decided that a re-configuration needs to be done,
1427 * schedule it here on the way out the door, please close the door
1432 * Find the scsi_device associated with the SCSI address,
1433 * and mark it as changed, invalidating the cache. This deals
1434 * with changes to existing device IDs.
1437 if (!dev
|| !dev
->scsi_host_ptr
)
1440 * force reload of disk info via aac_probe_container
1442 if ((channel
== CONTAINER_CHANNEL
) &&
1443 (device_config_needed
!= NOTHING
)) {
1444 if (dev
->fsa_dev
[container
].valid
== 1)
1445 dev
->fsa_dev
[container
].valid
= 2;
1446 aac_probe_container(dev
, container
);
1448 device
= scsi_device_lookup(dev
->scsi_host_ptr
, channel
, id
, lun
);
1450 switch (device_config_needed
) {
1452 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1453 scsi_remove_device(device
);
1455 if (scsi_device_online(device
)) {
1456 scsi_device_set_state(device
, SDEV_OFFLINE
);
1457 sdev_printk(KERN_INFO
, device
,
1458 "Device offlined - %s\n",
1459 (channel
== CONTAINER_CHANNEL
) ?
1461 "enclosure services event");
1466 if (!scsi_device_online(device
)) {
1467 sdev_printk(KERN_INFO
, device
,
1468 "Device online - %s\n",
1469 (channel
== CONTAINER_CHANNEL
) ?
1471 "enclosure services event");
1472 scsi_device_set_state(device
, SDEV_RUNNING
);
1476 if ((channel
== CONTAINER_CHANNEL
)
1477 && (!dev
->fsa_dev
[container
].valid
)) {
1478 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1479 scsi_remove_device(device
);
1481 if (!scsi_device_online(device
))
1483 scsi_device_set_state(device
, SDEV_OFFLINE
);
1484 sdev_printk(KERN_INFO
, device
,
1485 "Device offlined - %s\n",
1490 scsi_rescan_device(&device
->sdev_gendev
);
1495 scsi_device_put(device
);
1496 device_config_needed
= NOTHING
;
1498 if (device_config_needed
== ADD
)
1499 scsi_add_device(dev
->scsi_host_ptr
, channel
, id
, lun
);
1500 if (channel
== CONTAINER_CHANNEL
) {
1502 device_config_needed
= NOTHING
;
1507 static int _aac_reset_adapter(struct aac_dev
*aac
, int forced
, u8 reset_type
)
1511 struct Scsi_Host
*host
;
1512 struct scsi_device
*dev
;
1513 struct scsi_cmnd
*command
;
1514 struct scsi_cmnd
*command_list
;
1518 int num_of_fibs
= 0;
1522 * - host is locked, unless called by the aacraid thread.
1523 * (a matter of convenience, due to legacy issues surrounding
1524 * eh_host_adapter_reset).
1525 * - in_reset is asserted, so no new i/o is getting to the
1527 * - The card is dead, or will be very shortly ;-/ so no new
1528 * commands are completing in the interrupt service.
1530 host
= aac
->scsi_host_ptr
;
1531 scsi_block_requests(host
);
1532 aac_adapter_disable_int(aac
);
1533 if (aac
->thread
->pid
!= current
->pid
) {
1534 spin_unlock_irq(host
->host_lock
);
1535 kthread_stop(aac
->thread
);
1540 * If a positive health, means in a known DEAD PANIC
1541 * state and the adapter could be reset to `try again'.
1543 bled
= forced
? 0 : aac_adapter_check_health(aac
);
1544 retval
= aac_adapter_restart(aac
, bled
, reset_type
);
1550 * Loop through the fibs, close the synchronous FIBS
1553 num_of_fibs
= aac
->scsi_host_ptr
->can_queue
+ AAC_NUM_MGT_FIB
;
1554 for (index
= 0; index
< num_of_fibs
; index
++) {
1556 struct fib
*fib
= &aac
->fibs
[index
];
1557 __le32 XferState
= fib
->hw_fib_va
->header
.XferState
;
1558 bool is_response_expected
= false;
1560 if (!(XferState
& cpu_to_le32(NoResponseExpected
| Async
)) &&
1561 (XferState
& cpu_to_le32(ResponseExpected
)))
1562 is_response_expected
= true;
1564 if (is_response_expected
1565 || fib
->flags
& FIB_CONTEXT_FLAG_WAIT
) {
1566 unsigned long flagv
;
1567 spin_lock_irqsave(&fib
->event_lock
, flagv
);
1568 up(&fib
->event_wait
);
1569 spin_unlock_irqrestore(&fib
->event_lock
, flagv
);
1574 /* Give some extra time for ioctls to complete. */
1577 index
= aac
->cardtype
;
1580 * Re-initialize the adapter, first free resources, then carefully
1581 * apply the initialization sequence to come back again. Only risk
1582 * is a change in Firmware dropping cache, it is assumed the caller
1583 * will ensure that i/o is queisced and the card is flushed in that
1586 aac_fib_map_free(aac
);
1587 dma_free_coherent(&aac
->pdev
->dev
, aac
->comm_size
, aac
->comm_addr
,
1589 aac
->comm_addr
= NULL
;
1594 kfree(aac
->fsa_dev
);
1595 aac
->fsa_dev
= NULL
;
1597 dmamask
= DMA_BIT_MASK(32);
1598 quirks
= aac_get_driver_ident(index
)->quirks
;
1599 if (quirks
& AAC_QUIRK_31BIT
)
1600 retval
= pci_set_dma_mask(aac
->pdev
, dmamask
);
1601 else if (!(quirks
& AAC_QUIRK_SRC
))
1602 retval
= pci_set_dma_mask(aac
->pdev
, dmamask
);
1604 retval
= pci_set_consistent_dma_mask(aac
->pdev
, dmamask
);
1606 if (quirks
& AAC_QUIRK_31BIT
&& !retval
) {
1607 dmamask
= DMA_BIT_MASK(31);
1608 retval
= pci_set_consistent_dma_mask(aac
->pdev
, dmamask
);
1614 if ((retval
= (*(aac_get_driver_ident(index
)->init
))(aac
)))
1618 aac
->thread
= kthread_run(aac_command_thread
, aac
, "%s",
1620 if (IS_ERR(aac
->thread
)) {
1621 retval
= PTR_ERR(aac
->thread
);
1625 (void)aac_get_adapter_info(aac
);
1626 if ((quirks
& AAC_QUIRK_34SG
) && (host
->sg_tablesize
> 34)) {
1627 host
->sg_tablesize
= 34;
1628 host
->max_sectors
= (host
->sg_tablesize
* 8) + 112;
1630 if ((quirks
& AAC_QUIRK_17SG
) && (host
->sg_tablesize
> 17)) {
1631 host
->sg_tablesize
= 17;
1632 host
->max_sectors
= (host
->sg_tablesize
* 8) + 112;
1634 aac_get_config_status(aac
, 1);
1635 aac_get_containers(aac
);
1637 * This is where the assumption that the Adapter is quiesced
1640 command_list
= NULL
;
1641 __shost_for_each_device(dev
, host
) {
1642 unsigned long flags
;
1643 spin_lock_irqsave(&dev
->list_lock
, flags
);
1644 list_for_each_entry(command
, &dev
->cmd_list
, list
)
1645 if (command
->SCp
.phase
== AAC_OWNER_FIRMWARE
) {
1646 command
->SCp
.buffer
= (struct scatterlist
*)command_list
;
1647 command_list
= command
;
1649 spin_unlock_irqrestore(&dev
->list_lock
, flags
);
1651 while ((command
= command_list
)) {
1652 command_list
= (struct scsi_cmnd
*)command
->SCp
.buffer
;
1653 command
->SCp
.buffer
= NULL
;
1654 command
->result
= DID_OK
<< 16
1655 | COMMAND_COMPLETE
<< 8
1656 | SAM_STAT_TASK_SET_FULL
;
1657 command
->SCp
.phase
= AAC_OWNER_ERROR_HANDLER
;
1658 command
->scsi_done(command
);
1661 * Any Device that was already marked offline needs to be cleaned up
1663 __shost_for_each_device(dev
, host
) {
1664 if (!scsi_device_online(dev
)) {
1665 sdev_printk(KERN_INFO
, dev
, "Removing offline device\n");
1666 scsi_remove_device(dev
);
1667 scsi_device_put(dev
);
1674 scsi_unblock_requests(host
);
1676 * Issue bus rescan to catch any configuration that might have
1680 dev_info(&aac
->pdev
->dev
, "Issuing bus rescan\n");
1681 scsi_scan_host(host
);
1684 spin_lock_irq(host
->host_lock
);
1689 int aac_reset_adapter(struct aac_dev
*aac
, int forced
, u8 reset_type
)
1691 unsigned long flagv
= 0;
1693 struct Scsi_Host
* host
;
1696 if (spin_trylock_irqsave(&aac
->fib_lock
, flagv
) == 0)
1699 if (aac
->in_reset
) {
1700 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1704 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1707 * Wait for all commands to complete to this specific
1708 * target (block maximum 60 seconds). Although not necessary,
1709 * it does make us a good storage citizen.
1711 host
= aac
->scsi_host_ptr
;
1712 scsi_block_requests(host
);
1713 if (forced
< 2) for (retval
= 60; retval
; --retval
) {
1714 struct scsi_device
* dev
;
1715 struct scsi_cmnd
* command
;
1718 __shost_for_each_device(dev
, host
) {
1719 spin_lock_irqsave(&dev
->list_lock
, flagv
);
1720 list_for_each_entry(command
, &dev
->cmd_list
, list
) {
1721 if (command
->SCp
.phase
== AAC_OWNER_FIRMWARE
) {
1726 spin_unlock_irqrestore(&dev
->list_lock
, flagv
);
1732 * We can exit If all the commands are complete
1739 /* Quiesce build, flush cache, write through mode */
1741 aac_send_shutdown(aac
);
1742 spin_lock_irqsave(host
->host_lock
, flagv
);
1743 bled
= forced
? forced
:
1744 (aac_check_reset
!= 0 && aac_check_reset
!= 1);
1745 retval
= _aac_reset_adapter(aac
, bled
, reset_type
);
1746 spin_unlock_irqrestore(host
->host_lock
, flagv
);
1748 if ((forced
< 2) && (retval
== -ENODEV
)) {
1749 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1750 struct fib
* fibctx
= aac_fib_alloc(aac
);
1752 struct aac_pause
*cmd
;
1755 aac_fib_init(fibctx
);
1757 cmd
= (struct aac_pause
*) fib_data(fibctx
);
1759 cmd
->command
= cpu_to_le32(VM_ContainerConfig
);
1760 cmd
->type
= cpu_to_le32(CT_PAUSE_IO
);
1761 cmd
->timeout
= cpu_to_le32(1);
1762 cmd
->min
= cpu_to_le32(1);
1763 cmd
->noRescan
= cpu_to_le32(1);
1764 cmd
->count
= cpu_to_le32(0);
1766 status
= aac_fib_send(ContainerCommand
,
1768 sizeof(struct aac_pause
),
1770 -2 /* Timeout silently */, 1,
1774 aac_fib_complete(fibctx
);
1775 /* FIB should be freed only after getting
1776 * the response from the F/W */
1777 if (status
!= -ERESTARTSYS
)
1778 aac_fib_free(fibctx
);
1785 int aac_check_health(struct aac_dev
* aac
)
1788 unsigned long time_now
, flagv
= 0;
1789 struct list_head
* entry
;
1791 /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1792 if (spin_trylock_irqsave(&aac
->fib_lock
, flagv
) == 0)
1795 if (aac
->in_reset
|| !(BlinkLED
= aac_adapter_check_health(aac
))) {
1796 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1803 * aac_aifcmd.command = AifCmdEventNotify = 1
1804 * aac_aifcmd.seqnum = 0xFFFFFFFF
1805 * aac_aifcmd.data[0] = AifEnExpEvent = 23
1806 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1807 * aac.aifcmd.data[2] = AifHighPriority = 3
1808 * aac.aifcmd.data[3] = BlinkLED
1811 time_now
= jiffies
/HZ
;
1812 entry
= aac
->fib_list
.next
;
1815 * For each Context that is on the
1816 * fibctxList, make a copy of the
1817 * fib, and then set the event to wake up the
1818 * thread that is waiting for it.
1820 while (entry
!= &aac
->fib_list
) {
1822 * Extract the fibctx
1824 struct aac_fib_context
*fibctx
= list_entry(entry
, struct aac_fib_context
, next
);
1825 struct hw_fib
* hw_fib
;
1828 * Check if the queue is getting
1831 if (fibctx
->count
> 20) {
1833 * It's *not* jiffies folks,
1834 * but jiffies / HZ, so do not
1837 u32 time_last
= fibctx
->jiffies
;
1839 * Has it been > 2 minutes
1840 * since the last read off
1843 if ((time_now
- time_last
) > aif_timeout
) {
1844 entry
= entry
->next
;
1845 aac_close_fib_context(aac
, fibctx
);
1850 * Warning: no sleep allowed while
1853 hw_fib
= kzalloc(sizeof(struct hw_fib
), GFP_ATOMIC
);
1854 fib
= kzalloc(sizeof(struct fib
), GFP_ATOMIC
);
1855 if (fib
&& hw_fib
) {
1856 struct aac_aifcmd
* aif
;
1858 fib
->hw_fib_va
= hw_fib
;
1861 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
1862 fib
->size
= sizeof (struct fib
);
1863 fib
->data
= hw_fib
->data
;
1864 aif
= (struct aac_aifcmd
*)hw_fib
->data
;
1865 aif
->command
= cpu_to_le32(AifCmdEventNotify
);
1866 aif
->seqnum
= cpu_to_le32(0xFFFFFFFF);
1867 ((__le32
*)aif
->data
)[0] = cpu_to_le32(AifEnExpEvent
);
1868 ((__le32
*)aif
->data
)[1] = cpu_to_le32(AifExeFirmwarePanic
);
1869 ((__le32
*)aif
->data
)[2] = cpu_to_le32(AifHighPriority
);
1870 ((__le32
*)aif
->data
)[3] = cpu_to_le32(BlinkLED
);
1873 * Put the FIB onto the
1876 list_add_tail(&fib
->fiblink
, &fibctx
->fib_list
);
1879 * Set the event to wake up the
1880 * thread that will waiting.
1882 up(&fibctx
->wait_sem
);
1884 printk(KERN_WARNING
"aifd: didn't allocate NewFib.\n");
1888 entry
= entry
->next
;
1891 spin_unlock_irqrestore(&aac
->fib_lock
, flagv
);
1894 printk(KERN_ERR
"%s: Host adapter is dead (or got a PCI error) %d\n",
1895 aac
->name
, BlinkLED
);
1899 printk(KERN_ERR
"%s: Host adapter BLINK LED 0x%x\n", aac
->name
, BlinkLED
);
1907 static void aac_resolve_luns(struct aac_dev
*dev
)
1909 int bus
, target
, channel
;
1910 struct scsi_device
*sdev
;
1914 for (bus
= 0; bus
< AAC_MAX_BUSES
; bus
++) {
1915 for (target
= 0; target
< AAC_MAX_TARGETS
; target
++) {
1917 if (bus
== CONTAINER_CHANNEL
)
1918 channel
= CONTAINER_CHANNEL
;
1920 channel
= aac_phys_to_logical(bus
);
1922 devtype
= dev
->hba_map
[bus
][target
].devtype
;
1923 new_devtype
= dev
->hba_map
[bus
][target
].new_devtype
;
1925 sdev
= scsi_device_lookup(dev
->scsi_host_ptr
, channel
,
1928 if (!sdev
&& new_devtype
)
1929 scsi_add_device(dev
->scsi_host_ptr
, channel
,
1931 else if (sdev
&& new_devtype
!= devtype
)
1932 scsi_remove_device(sdev
);
1933 else if (sdev
&& new_devtype
== devtype
)
1934 scsi_rescan_device(&sdev
->sdev_gendev
);
1937 scsi_device_put(sdev
);
1939 dev
->hba_map
[bus
][target
].devtype
= new_devtype
;
1945 * aac_handle_sa_aif Handle a message from the firmware
1946 * @dev: Which adapter this fib is from
1947 * @fibptr: Pointer to fibptr from adapter
1949 * This routine handles a driver notify fib from the adapter and
1950 * dispatches it to the appropriate routine for handling.
1952 static void aac_handle_sa_aif(struct aac_dev
*dev
, struct fib
*fibptr
)
1954 int i
, bus
, target
, container
, rcode
= 0;
1957 struct scsi_device
*sdev
;
1959 if (fibptr
->hbacmd_size
& SA_AIF_HOTPLUG
)
1960 events
= SA_AIF_HOTPLUG
;
1961 else if (fibptr
->hbacmd_size
& SA_AIF_HARDWARE
)
1962 events
= SA_AIF_HARDWARE
;
1963 else if (fibptr
->hbacmd_size
& SA_AIF_PDEV_CHANGE
)
1964 events
= SA_AIF_PDEV_CHANGE
;
1965 else if (fibptr
->hbacmd_size
& SA_AIF_LDEV_CHANGE
)
1966 events
= SA_AIF_LDEV_CHANGE
;
1967 else if (fibptr
->hbacmd_size
& SA_AIF_BPSTAT_CHANGE
)
1968 events
= SA_AIF_BPSTAT_CHANGE
;
1969 else if (fibptr
->hbacmd_size
& SA_AIF_BPCFG_CHANGE
)
1970 events
= SA_AIF_BPCFG_CHANGE
;
1973 case SA_AIF_HOTPLUG
:
1974 case SA_AIF_HARDWARE
:
1975 case SA_AIF_PDEV_CHANGE
:
1976 case SA_AIF_LDEV_CHANGE
:
1977 case SA_AIF_BPCFG_CHANGE
:
1979 fib
= aac_fib_alloc(dev
);
1981 pr_err("aac_handle_sa_aif: out of memory\n");
1984 for (bus
= 0; bus
< AAC_MAX_BUSES
; bus
++)
1985 for (target
= 0; target
< AAC_MAX_TARGETS
; target
++)
1986 dev
->hba_map
[bus
][target
].new_devtype
= 0;
1988 rcode
= aac_report_phys_luns(dev
, fib
, AAC_RESCAN
);
1990 if (rcode
!= -ERESTARTSYS
)
1993 aac_resolve_luns(dev
);
1995 if (events
== SA_AIF_LDEV_CHANGE
||
1996 events
== SA_AIF_BPCFG_CHANGE
) {
1997 aac_get_containers(dev
);
1998 for (container
= 0; container
<
1999 dev
->maximum_num_containers
; ++container
) {
2000 sdev
= scsi_device_lookup(dev
->scsi_host_ptr
,
2003 if (dev
->fsa_dev
[container
].valid
&& !sdev
) {
2004 scsi_add_device(dev
->scsi_host_ptr
,
2007 } else if (!dev
->fsa_dev
[container
].valid
&&
2009 scsi_remove_device(sdev
);
2010 scsi_device_put(sdev
);
2012 scsi_rescan_device(&sdev
->sdev_gendev
);
2013 scsi_device_put(sdev
);
2019 case SA_AIF_BPSTAT_CHANGE
:
2020 /* currently do nothing */
2024 for (i
= 1; i
<= 10; ++i
) {
2025 events
= src_readl(dev
, MUnit
.IDR
);
2026 if (events
& (1<<23)) {
2027 pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2034 static int get_fib_count(struct aac_dev
*dev
)
2036 unsigned int num
= 0;
2037 struct list_head
*entry
;
2038 unsigned long flagv
;
2041 * Warning: no sleep allowed while
2042 * holding spinlock. We take the estimate
2043 * and pre-allocate a set of fibs outside the
2046 num
= le32_to_cpu(dev
->init
->r7
.adapter_fibs_size
)
2047 / sizeof(struct hw_fib
); /* some extra */
2048 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
2049 entry
= dev
->fib_list
.next
;
2050 while (entry
!= &dev
->fib_list
) {
2051 entry
= entry
->next
;
2054 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
2059 static int fillup_pools(struct aac_dev
*dev
, struct hw_fib
**hw_fib_pool
,
2060 struct fib
**fib_pool
,
2063 struct hw_fib
**hw_fib_p
;
2066 hw_fib_p
= hw_fib_pool
;
2068 while (hw_fib_p
< &hw_fib_pool
[num
]) {
2069 *(hw_fib_p
) = kmalloc(sizeof(struct hw_fib
), GFP_KERNEL
);
2070 if (!(*(hw_fib_p
++))) {
2075 *(fib_p
) = kmalloc(sizeof(struct fib
), GFP_KERNEL
);
2076 if (!(*(fib_p
++))) {
2077 kfree(*(--hw_fib_p
));
2083 * Get the actual number of allocated fibs
2085 num
= hw_fib_p
- hw_fib_pool
;
2089 static void wakeup_fibctx_threads(struct aac_dev
*dev
,
2090 struct hw_fib
**hw_fib_pool
,
2091 struct fib
**fib_pool
,
2093 struct hw_fib
*hw_fib
,
2096 unsigned long flagv
;
2097 struct list_head
*entry
;
2098 struct hw_fib
**hw_fib_p
;
2100 u32 time_now
, time_last
;
2101 struct hw_fib
*hw_newfib
;
2103 struct aac_fib_context
*fibctx
;
2105 time_now
= jiffies
/HZ
;
2106 spin_lock_irqsave(&dev
->fib_lock
, flagv
);
2107 entry
= dev
->fib_list
.next
;
2109 * For each Context that is on the
2110 * fibctxList, make a copy of the
2111 * fib, and then set the event to wake up the
2112 * thread that is waiting for it.
2115 hw_fib_p
= hw_fib_pool
;
2117 while (entry
!= &dev
->fib_list
) {
2119 * Extract the fibctx
2121 fibctx
= list_entry(entry
, struct aac_fib_context
,
2124 * Check if the queue is getting
2127 if (fibctx
->count
> 20) {
2129 * It's *not* jiffies folks,
2130 * but jiffies / HZ so do not
2133 time_last
= fibctx
->jiffies
;
2135 * Has it been > 2 minutes
2136 * since the last read off
2139 if ((time_now
- time_last
) > aif_timeout
) {
2140 entry
= entry
->next
;
2141 aac_close_fib_context(dev
, fibctx
);
2146 * Warning: no sleep allowed while
2149 if (hw_fib_p
>= &hw_fib_pool
[num
]) {
2150 pr_warn("aifd: didn't allocate NewFib\n");
2151 entry
= entry
->next
;
2155 hw_newfib
= *hw_fib_p
;
2156 *(hw_fib_p
++) = NULL
;
2160 * Make the copy of the FIB
2162 memcpy(hw_newfib
, hw_fib
, sizeof(struct hw_fib
));
2163 memcpy(newfib
, fib
, sizeof(struct fib
));
2164 newfib
->hw_fib_va
= hw_newfib
;
2166 * Put the FIB onto the
2169 list_add_tail(&newfib
->fiblink
, &fibctx
->fib_list
);
2172 * Set the event to wake up the
2173 * thread that is waiting.
2175 up(&fibctx
->wait_sem
);
2177 entry
= entry
->next
;
2180 * Set the status of this FIB
2182 *(__le32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
2183 aac_fib_adapter_complete(fib
, sizeof(u32
));
2184 spin_unlock_irqrestore(&dev
->fib_lock
, flagv
);
2188 static void aac_process_events(struct aac_dev
*dev
)
2190 struct hw_fib
*hw_fib
;
2192 unsigned long flags
;
2195 t_lock
= dev
->queues
->queue
[HostNormCmdQueue
].lock
;
2196 spin_lock_irqsave(t_lock
, flags
);
2198 while (!list_empty(&(dev
->queues
->queue
[HostNormCmdQueue
].cmdq
))) {
2199 struct list_head
*entry
;
2200 struct aac_aifcmd
*aifcmd
;
2202 struct hw_fib
**hw_fib_pool
, **hw_fib_p
;
2203 struct fib
**fib_pool
, **fib_p
;
2205 set_current_state(TASK_RUNNING
);
2207 entry
= dev
->queues
->queue
[HostNormCmdQueue
].cmdq
.next
;
2210 t_lock
= dev
->queues
->queue
[HostNormCmdQueue
].lock
;
2211 spin_unlock_irqrestore(t_lock
, flags
);
2213 fib
= list_entry(entry
, struct fib
, fiblink
);
2214 hw_fib
= fib
->hw_fib_va
;
2215 if (dev
->sa_firmware
) {
2217 aac_handle_sa_aif(dev
, fib
);
2218 aac_fib_adapter_complete(fib
, (u16
)sizeof(u32
));
2222 * We will process the FIB here or pass it to a
2223 * worker thread that is TBD. We Really can't
2224 * do anything at this point since we don't have
2225 * anything defined for this thread to do.
2227 memset(fib
, 0, sizeof(struct fib
));
2228 fib
->type
= FSAFS_NTC_FIB_CONTEXT
;
2229 fib
->size
= sizeof(struct fib
);
2230 fib
->hw_fib_va
= hw_fib
;
2231 fib
->data
= hw_fib
->data
;
2234 * We only handle AifRequest fibs from the adapter.
2237 aifcmd
= (struct aac_aifcmd
*) hw_fib
->data
;
2238 if (aifcmd
->command
== cpu_to_le32(AifCmdDriverNotify
)) {
2239 /* Handle Driver Notify Events */
2240 aac_handle_aif(dev
, fib
);
2241 *(__le32
*)hw_fib
->data
= cpu_to_le32(ST_OK
);
2242 aac_fib_adapter_complete(fib
, (u16
)sizeof(u32
));
2246 * The u32 here is important and intended. We are using
2247 * 32bit wrapping time to fit the adapter field
2251 if (aifcmd
->command
== cpu_to_le32(AifCmdEventNotify
)
2252 || aifcmd
->command
== cpu_to_le32(AifCmdJobProgress
)) {
2253 aac_handle_aif(dev
, fib
);
2257 * get number of fibs to process
2259 num
= get_fib_count(dev
);
2263 hw_fib_pool
= kmalloc_array(num
, sizeof(struct hw_fib
*),
2268 fib_pool
= kmalloc_array(num
, sizeof(struct fib
*), GFP_KERNEL
);
2270 goto free_hw_fib_pool
;
2273 * Fill up fib pointer pools with actual fibs
2276 num
= fillup_pools(dev
, hw_fib_pool
, fib_pool
, num
);
2281 * wakeup the thread that is waiting for
2282 * the response from fw (ioctl)
2284 wakeup_fibctx_threads(dev
, hw_fib_pool
, fib_pool
,
2288 /* Free up the remaining resources */
2289 hw_fib_p
= hw_fib_pool
;
2291 while (hw_fib_p
< &hw_fib_pool
[num
]) {
2302 t_lock
= dev
->queues
->queue
[HostNormCmdQueue
].lock
;
2303 spin_lock_irqsave(t_lock
, flags
);
2306 * There are no more AIF's
2308 t_lock
= dev
->queues
->queue
[HostNormCmdQueue
].lock
;
2309 spin_unlock_irqrestore(t_lock
, flags
);
2312 static int aac_send_wellness_command(struct aac_dev
*dev
, char *wellness_str
,
2315 struct aac_srb
*srbcmd
;
2316 struct sgmap64
*sg64
;
2323 fibptr
= aac_fib_alloc(dev
);
2327 dma_buf
= dma_alloc_coherent(&dev
->pdev
->dev
, datasize
, &addr
,
2332 aac_fib_init(fibptr
);
2334 vbus
= (u32
)le16_to_cpu(dev
->supplement_adapter_info
.virt_device_bus
);
2335 vid
= (u32
)le16_to_cpu(dev
->supplement_adapter_info
.virt_device_target
);
2337 srbcmd
= (struct aac_srb
*)fib_data(fibptr
);
2339 srbcmd
->function
= cpu_to_le32(SRBF_ExecuteScsi
);
2340 srbcmd
->channel
= cpu_to_le32(vbus
);
2341 srbcmd
->id
= cpu_to_le32(vid
);
2343 srbcmd
->flags
= cpu_to_le32(SRB_DataOut
);
2344 srbcmd
->timeout
= cpu_to_le32(10);
2345 srbcmd
->retry_limit
= 0;
2346 srbcmd
->cdb_size
= cpu_to_le32(12);
2347 srbcmd
->count
= cpu_to_le32(datasize
);
2349 memset(srbcmd
->cdb
, 0, sizeof(srbcmd
->cdb
));
2350 srbcmd
->cdb
[0] = BMIC_OUT
;
2351 srbcmd
->cdb
[6] = WRITE_HOST_WELLNESS
;
2352 memcpy(dma_buf
, (char *)wellness_str
, datasize
);
2354 sg64
= (struct sgmap64
*)&srbcmd
->sg
;
2355 sg64
->count
= cpu_to_le32(1);
2356 sg64
->sg
[0].addr
[1] = cpu_to_le32((u32
)(((addr
) >> 16) >> 16));
2357 sg64
->sg
[0].addr
[0] = cpu_to_le32((u32
)(addr
& 0xffffffff));
2358 sg64
->sg
[0].count
= cpu_to_le32(datasize
);
2360 ret
= aac_fib_send(ScsiPortCommand64
, fibptr
, sizeof(struct aac_srb
),
2361 FsaNormal
, 1, 1, NULL
, NULL
);
2363 dma_free_coherent(&dev
->pdev
->dev
, datasize
, dma_buf
, addr
);
2366 * Do not set XferState to zero unless
2367 * receives a response from F/W
2370 aac_fib_complete(fibptr
);
2373 * FIB should be freed only after
2374 * getting the response from the F/W
2376 if (ret
!= -ERESTARTSYS
)
2382 aac_fib_free(fibptr
);
2386 int aac_send_safw_hostttime(struct aac_dev
*dev
, struct timeval
*now
)
2389 char wellness_str
[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2390 u32 datasize
= sizeof(wellness_str
);
2391 unsigned long local_time
;
2394 if (!dev
->sa_firmware
)
2397 local_time
= (u32
)(now
->tv_sec
- (sys_tz
.tz_minuteswest
* 60));
2398 time_to_tm(local_time
, 0, &cur_tm
);
2400 cur_tm
.tm_year
+= 1900;
2401 wellness_str
[8] = bin2bcd(cur_tm
.tm_hour
);
2402 wellness_str
[9] = bin2bcd(cur_tm
.tm_min
);
2403 wellness_str
[10] = bin2bcd(cur_tm
.tm_sec
);
2404 wellness_str
[12] = bin2bcd(cur_tm
.tm_mon
);
2405 wellness_str
[13] = bin2bcd(cur_tm
.tm_mday
);
2406 wellness_str
[14] = bin2bcd(cur_tm
.tm_year
/ 100);
2407 wellness_str
[15] = bin2bcd(cur_tm
.tm_year
% 100);
2409 ret
= aac_send_wellness_command(dev
, wellness_str
, datasize
);
2415 int aac_send_hosttime(struct aac_dev
*dev
, struct timeval
*now
)
2421 fibptr
= aac_fib_alloc(dev
);
2425 aac_fib_init(fibptr
);
2426 info
= (__le32
*)fib_data(fibptr
);
2427 *info
= cpu_to_le32(now
->tv_sec
);
2428 ret
= aac_fib_send(SendHostTime
, fibptr
, sizeof(*info
), FsaNormal
,
2432 * Do not set XferState to zero unless
2433 * receives a response from F/W
2436 aac_fib_complete(fibptr
);
2439 * FIB should be freed only after
2440 * getting the response from the F/W
2442 if (ret
!= -ERESTARTSYS
)
2443 aac_fib_free(fibptr
);
2450 * aac_command_thread - command processing thread
2451 * @dev: Adapter to monitor
2453 * Waits on the commandready event in it's queue. When the event gets set
2454 * it will pull FIBs off it's queue. It will continue to pull FIBs off
2455 * until the queue is empty. When the queue is empty it will wait for
2459 int aac_command_thread(void *data
)
2461 struct aac_dev
*dev
= data
;
2462 DECLARE_WAITQUEUE(wait
, current
);
2463 unsigned long next_jiffies
= jiffies
+ HZ
;
2464 unsigned long next_check_jiffies
= next_jiffies
;
2465 long difference
= HZ
;
2468 * We can only have one thread per adapter for AIF's.
2470 if (dev
->aif_thread
)
2474 * Let the DPC know it has a place to send the AIF's to.
2476 dev
->aif_thread
= 1;
2477 add_wait_queue(&dev
->queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
2478 set_current_state(TASK_INTERRUPTIBLE
);
2479 dprintk ((KERN_INFO
"aac_command_thread start\n"));
2482 aac_process_events(dev
);
2485 * Background activity
2487 if ((time_before(next_check_jiffies
,next_jiffies
))
2488 && ((difference
= next_check_jiffies
- jiffies
) <= 0)) {
2489 next_check_jiffies
= next_jiffies
;
2490 if (aac_adapter_check_health(dev
) == 0) {
2491 difference
= ((long)(unsigned)check_interval
)
2493 next_check_jiffies
= jiffies
+ difference
;
2494 } else if (!dev
->queues
)
2497 if (!time_before(next_check_jiffies
,next_jiffies
)
2498 && ((difference
= next_jiffies
- jiffies
) <= 0)) {
2502 /* Don't even try to talk to adapter if its sick */
2503 ret
= aac_adapter_check_health(dev
);
2504 if (ret
|| !dev
->queues
)
2506 next_check_jiffies
= jiffies
2507 + ((long)(unsigned)check_interval
)
2509 do_gettimeofday(&now
);
2511 /* Synchronize our watches */
2512 if (((1000000 - (1000000 / HZ
)) > now
.tv_usec
)
2513 && (now
.tv_usec
> (1000000 / HZ
)))
2514 difference
= (((1000000 - now
.tv_usec
) * HZ
)
2515 + 500000) / 1000000;
2517 if (now
.tv_usec
> 500000)
2520 if (dev
->sa_firmware
)
2522 aac_send_safw_hostttime(dev
, &now
);
2524 ret
= aac_send_hosttime(dev
, &now
);
2526 difference
= (long)(unsigned)update_interval
*HZ
;
2528 next_jiffies
= jiffies
+ difference
;
2529 if (time_before(next_check_jiffies
,next_jiffies
))
2530 difference
= next_check_jiffies
- jiffies
;
2532 if (difference
<= 0)
2534 set_current_state(TASK_INTERRUPTIBLE
);
2536 if (kthread_should_stop())
2539 schedule_timeout(difference
);
2541 if (kthread_should_stop())
2545 remove_wait_queue(&dev
->queues
->queue
[HostNormCmdQueue
].cmdready
, &wait
);
2546 dev
->aif_thread
= 0;
2550 int aac_acquire_irq(struct aac_dev
*dev
)
2556 if (!dev
->sync_mode
&& dev
->msi_enabled
&& dev
->max_msix
> 1) {
2557 for (i
= 0; i
< dev
->max_msix
; i
++) {
2558 dev
->aac_msix
[i
].vector_no
= i
;
2559 dev
->aac_msix
[i
].dev
= dev
;
2560 if (request_irq(pci_irq_vector(dev
->pdev
, i
),
2561 dev
->a_ops
.adapter_intr
,
2562 0, "aacraid", &(dev
->aac_msix
[i
]))) {
2563 printk(KERN_ERR
"%s%d: Failed to register IRQ for vector %d.\n",
2564 dev
->name
, dev
->id
, i
);
2565 for (j
= 0 ; j
< i
; j
++)
2566 free_irq(pci_irq_vector(dev
->pdev
, j
),
2567 &(dev
->aac_msix
[j
]));
2568 pci_disable_msix(dev
->pdev
);
2573 dev
->aac_msix
[0].vector_no
= 0;
2574 dev
->aac_msix
[0].dev
= dev
;
2576 if (request_irq(dev
->pdev
->irq
, dev
->a_ops
.adapter_intr
,
2577 IRQF_SHARED
, "aacraid",
2578 &(dev
->aac_msix
[0])) < 0) {
2580 pci_disable_msi(dev
->pdev
);
2581 printk(KERN_ERR
"%s%d: Interrupt unavailable.\n",
2582 dev
->name
, dev
->id
);
2589 void aac_free_irq(struct aac_dev
*dev
)
2594 cpu
= cpumask_first(cpu_online_mask
);
2595 if (aac_is_src(dev
)) {
2596 if (dev
->max_msix
> 1) {
2597 for (i
= 0; i
< dev
->max_msix
; i
++)
2598 free_irq(pci_irq_vector(dev
->pdev
, i
),
2599 &(dev
->aac_msix
[i
]));
2601 free_irq(dev
->pdev
->irq
, &(dev
->aac_msix
[0]));
2604 free_irq(dev
->pdev
->irq
, dev
);
2607 pci_disable_msi(dev
->pdev
);
2608 else if (dev
->max_msix
> 1)
2609 pci_disable_msix(dev
->pdev
);