libata: no special completion processing for EH commands
[linux/fpc-iii.git] / drivers / ata / libata-core.c
blob8c5fad1775063292bf50ef8a16e8c563b025015d
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_host.h>
62 #include <linux/libata.h>
63 #include <asm/byteorder.h>
64 #include <linux/cdrom.h>
66 #include "libata.h"
69 /* debounce timing parameters in msecs { interval, duration, timeout } */
70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
74 const struct ata_port_operations ata_base_port_ops = {
75 .prereset = ata_std_prereset,
76 .postreset = ata_std_postreset,
77 .error_handler = ata_std_error_handler,
80 const struct ata_port_operations sata_port_ops = {
81 .inherits = &ata_base_port_ops,
83 .qc_defer = ata_std_qc_defer,
84 .hardreset = sata_std_hardreset,
87 static unsigned int ata_dev_init_params(struct ata_device *dev,
88 u16 heads, u16 sectors);
89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
90 static unsigned int ata_dev_set_feature(struct ata_device *dev,
91 u8 enable, u8 feature);
92 static void ata_dev_xfermask(struct ata_device *dev);
93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
95 unsigned int ata_print_id = 1;
96 static struct workqueue_struct *ata_wq;
98 struct workqueue_struct *ata_aux_wq;
100 struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
107 unsigned int lflags;
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
160 static int atapi_an;
161 module_param(atapi_an, int, 0444);
162 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
164 MODULE_AUTHOR("Jeff Garzik");
165 MODULE_DESCRIPTION("Library module for ATA devices");
166 MODULE_LICENSE("GPL");
167 MODULE_VERSION(DRV_VERSION);
171 * ata_force_cbl - force cable type according to libata.force
172 * @ap: ATA port of interest
174 * Force cable type according to libata.force and whine about it.
175 * The last entry which has matching port number is used, so it
176 * can be specified as part of device force parameters. For
177 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
178 * same effect.
180 * LOCKING:
181 * EH context.
183 void ata_force_cbl(struct ata_port *ap)
185 int i;
187 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
188 const struct ata_force_ent *fe = &ata_force_tbl[i];
190 if (fe->port != -1 && fe->port != ap->print_id)
191 continue;
193 if (fe->param.cbl == ATA_CBL_NONE)
194 continue;
196 ap->cbl = fe->param.cbl;
197 ata_port_printk(ap, KERN_NOTICE,
198 "FORCE: cable set to %s\n", fe->param.name);
199 return;
204 * ata_force_link_limits - force link limits according to libata.force
205 * @link: ATA link of interest
207 * Force link flags and SATA spd limit according to libata.force
208 * and whine about it. When only the port part is specified
209 * (e.g. 1:), the limit applies to all links connected to both
210 * the host link and all fan-out ports connected via PMP. If the
211 * device part is specified as 0 (e.g. 1.00:), it specifies the
212 * first fan-out link not the host link. Device number 15 always
213 * points to the host link whether PMP is attached or not.
215 * LOCKING:
216 * EH context.
218 static void ata_force_link_limits(struct ata_link *link)
220 bool did_spd = false;
221 int linkno, i;
223 if (ata_is_host_link(link))
224 linkno = 15;
225 else
226 linkno = link->pmp;
228 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
229 const struct ata_force_ent *fe = &ata_force_tbl[i];
231 if (fe->port != -1 && fe->port != link->ap->print_id)
232 continue;
234 if (fe->device != -1 && fe->device != linkno)
235 continue;
237 /* only honor the first spd limit */
238 if (!did_spd && fe->param.spd_limit) {
239 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
240 ata_link_printk(link, KERN_NOTICE,
241 "FORCE: PHY spd limit set to %s\n",
242 fe->param.name);
243 did_spd = true;
246 /* let lflags stack */
247 if (fe->param.lflags) {
248 link->flags |= fe->param.lflags;
249 ata_link_printk(link, KERN_NOTICE,
250 "FORCE: link flag 0x%x forced -> 0x%x\n",
251 fe->param.lflags, link->flags);
257 * ata_force_xfermask - force xfermask according to libata.force
258 * @dev: ATA device of interest
260 * Force xfer_mask according to libata.force and whine about it.
261 * For consistency with link selection, device number 15 selects
262 * the first device connected to the host link.
264 * LOCKING:
265 * EH context.
267 static void ata_force_xfermask(struct ata_device *dev)
269 int devno = dev->link->pmp + dev->devno;
270 int alt_devno = devno;
271 int i;
273 /* allow n.15 for the first device attached to host port */
274 if (ata_is_host_link(dev->link) && devno == 0)
275 alt_devno = 15;
277 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
278 const struct ata_force_ent *fe = &ata_force_tbl[i];
279 unsigned long pio_mask, mwdma_mask, udma_mask;
281 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
282 continue;
284 if (fe->device != -1 && fe->device != devno &&
285 fe->device != alt_devno)
286 continue;
288 if (!fe->param.xfer_mask)
289 continue;
291 ata_unpack_xfermask(fe->param.xfer_mask,
292 &pio_mask, &mwdma_mask, &udma_mask);
293 if (udma_mask)
294 dev->udma_mask = udma_mask;
295 else if (mwdma_mask) {
296 dev->udma_mask = 0;
297 dev->mwdma_mask = mwdma_mask;
298 } else {
299 dev->udma_mask = 0;
300 dev->mwdma_mask = 0;
301 dev->pio_mask = pio_mask;
304 ata_dev_printk(dev, KERN_NOTICE,
305 "FORCE: xfer_mask set to %s\n", fe->param.name);
306 return;
311 * ata_force_horkage - force horkage according to libata.force
312 * @dev: ATA device of interest
314 * Force horkage according to libata.force and whine about it.
315 * For consistency with link selection, device number 15 selects
316 * the first device connected to the host link.
318 * LOCKING:
319 * EH context.
321 static void ata_force_horkage(struct ata_device *dev)
323 int devno = dev->link->pmp + dev->devno;
324 int alt_devno = devno;
325 int i;
327 /* allow n.15 for the first device attached to host port */
328 if (ata_is_host_link(dev->link) && devno == 0)
329 alt_devno = 15;
331 for (i = 0; i < ata_force_tbl_size; i++) {
332 const struct ata_force_ent *fe = &ata_force_tbl[i];
334 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
335 continue;
337 if (fe->device != -1 && fe->device != devno &&
338 fe->device != alt_devno)
339 continue;
341 if (!(~dev->horkage & fe->param.horkage_on) &&
342 !(dev->horkage & fe->param.horkage_off))
343 continue;
345 dev->horkage |= fe->param.horkage_on;
346 dev->horkage &= ~fe->param.horkage_off;
348 ata_dev_printk(dev, KERN_NOTICE,
349 "FORCE: horkage modified (%s)\n", fe->param.name);
354 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
355 * @opcode: SCSI opcode
357 * Determine ATAPI command type from @opcode.
359 * LOCKING:
360 * None.
362 * RETURNS:
363 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
365 int atapi_cmd_type(u8 opcode)
367 switch (opcode) {
368 case GPCMD_READ_10:
369 case GPCMD_READ_12:
370 return ATAPI_READ;
372 case GPCMD_WRITE_10:
373 case GPCMD_WRITE_12:
374 case GPCMD_WRITE_AND_VERIFY_10:
375 return ATAPI_WRITE;
377 case GPCMD_READ_CD:
378 case GPCMD_READ_CD_MSF:
379 return ATAPI_READ_CD;
381 case ATA_16:
382 case ATA_12:
383 if (atapi_passthru16)
384 return ATAPI_PASS_THRU;
385 /* fall thru */
386 default:
387 return ATAPI_MISC;
392 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
393 * @tf: Taskfile to convert
394 * @pmp: Port multiplier port
395 * @is_cmd: This FIS is for command
396 * @fis: Buffer into which data will output
398 * Converts a standard ATA taskfile to a Serial ATA
399 * FIS structure (Register - Host to Device).
401 * LOCKING:
402 * Inherited from caller.
404 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
406 fis[0] = 0x27; /* Register - Host to Device FIS */
407 fis[1] = pmp & 0xf; /* Port multiplier number*/
408 if (is_cmd)
409 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
411 fis[2] = tf->command;
412 fis[3] = tf->feature;
414 fis[4] = tf->lbal;
415 fis[5] = tf->lbam;
416 fis[6] = tf->lbah;
417 fis[7] = tf->device;
419 fis[8] = tf->hob_lbal;
420 fis[9] = tf->hob_lbam;
421 fis[10] = tf->hob_lbah;
422 fis[11] = tf->hob_feature;
424 fis[12] = tf->nsect;
425 fis[13] = tf->hob_nsect;
426 fis[14] = 0;
427 fis[15] = tf->ctl;
429 fis[16] = 0;
430 fis[17] = 0;
431 fis[18] = 0;
432 fis[19] = 0;
436 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
437 * @fis: Buffer from which data will be input
438 * @tf: Taskfile to output
440 * Converts a serial ATA FIS structure to a standard ATA taskfile.
442 * LOCKING:
443 * Inherited from caller.
446 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
448 tf->command = fis[2]; /* status */
449 tf->feature = fis[3]; /* error */
451 tf->lbal = fis[4];
452 tf->lbam = fis[5];
453 tf->lbah = fis[6];
454 tf->device = fis[7];
456 tf->hob_lbal = fis[8];
457 tf->hob_lbam = fis[9];
458 tf->hob_lbah = fis[10];
460 tf->nsect = fis[12];
461 tf->hob_nsect = fis[13];
464 static const u8 ata_rw_cmds[] = {
465 /* pio multi */
466 ATA_CMD_READ_MULTI,
467 ATA_CMD_WRITE_MULTI,
468 ATA_CMD_READ_MULTI_EXT,
469 ATA_CMD_WRITE_MULTI_EXT,
473 ATA_CMD_WRITE_MULTI_FUA_EXT,
474 /* pio */
475 ATA_CMD_PIO_READ,
476 ATA_CMD_PIO_WRITE,
477 ATA_CMD_PIO_READ_EXT,
478 ATA_CMD_PIO_WRITE_EXT,
483 /* dma */
484 ATA_CMD_READ,
485 ATA_CMD_WRITE,
486 ATA_CMD_READ_EXT,
487 ATA_CMD_WRITE_EXT,
491 ATA_CMD_WRITE_FUA_EXT
495 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
496 * @tf: command to examine and configure
497 * @dev: device tf belongs to
499 * Examine the device configuration and tf->flags to calculate
500 * the proper read/write commands and protocol to use.
502 * LOCKING:
503 * caller.
505 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
507 u8 cmd;
509 int index, fua, lba48, write;
511 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
512 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
513 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
515 if (dev->flags & ATA_DFLAG_PIO) {
516 tf->protocol = ATA_PROT_PIO;
517 index = dev->multi_count ? 0 : 8;
518 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
519 /* Unable to use DMA due to host limitation */
520 tf->protocol = ATA_PROT_PIO;
521 index = dev->multi_count ? 0 : 8;
522 } else {
523 tf->protocol = ATA_PROT_DMA;
524 index = 16;
527 cmd = ata_rw_cmds[index + fua + lba48 + write];
528 if (cmd) {
529 tf->command = cmd;
530 return 0;
532 return -1;
536 * ata_tf_read_block - Read block address from ATA taskfile
537 * @tf: ATA taskfile of interest
538 * @dev: ATA device @tf belongs to
540 * LOCKING:
541 * None.
543 * Read block address from @tf. This function can handle all
544 * three address formats - LBA, LBA48 and CHS. tf->protocol and
545 * flags select the address format to use.
547 * RETURNS:
548 * Block address read from @tf.
550 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
552 u64 block = 0;
554 if (tf->flags & ATA_TFLAG_LBA) {
555 if (tf->flags & ATA_TFLAG_LBA48) {
556 block |= (u64)tf->hob_lbah << 40;
557 block |= (u64)tf->hob_lbam << 32;
558 block |= (u64)tf->hob_lbal << 24;
559 } else
560 block |= (tf->device & 0xf) << 24;
562 block |= tf->lbah << 16;
563 block |= tf->lbam << 8;
564 block |= tf->lbal;
565 } else {
566 u32 cyl, head, sect;
568 cyl = tf->lbam | (tf->lbah << 8);
569 head = tf->device & 0xf;
570 sect = tf->lbal;
572 if (!sect) {
573 ata_dev_printk(dev, KERN_WARNING, "device reported "
574 "invalid CHS sector 0\n");
575 sect = 1; /* oh well */
578 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
581 return block;
585 * ata_build_rw_tf - Build ATA taskfile for given read/write request
586 * @tf: Target ATA taskfile
587 * @dev: ATA device @tf belongs to
588 * @block: Block address
589 * @n_block: Number of blocks
590 * @tf_flags: RW/FUA etc...
591 * @tag: tag
593 * LOCKING:
594 * None.
596 * Build ATA taskfile @tf for read/write request described by
597 * @block, @n_block, @tf_flags and @tag on @dev.
599 * RETURNS:
601 * 0 on success, -ERANGE if the request is too large for @dev,
602 * -EINVAL if the request is invalid.
604 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
605 u64 block, u32 n_block, unsigned int tf_flags,
606 unsigned int tag)
608 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
609 tf->flags |= tf_flags;
611 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
612 /* yay, NCQ */
613 if (!lba_48_ok(block, n_block))
614 return -ERANGE;
616 tf->protocol = ATA_PROT_NCQ;
617 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
619 if (tf->flags & ATA_TFLAG_WRITE)
620 tf->command = ATA_CMD_FPDMA_WRITE;
621 else
622 tf->command = ATA_CMD_FPDMA_READ;
624 tf->nsect = tag << 3;
625 tf->hob_feature = (n_block >> 8) & 0xff;
626 tf->feature = n_block & 0xff;
628 tf->hob_lbah = (block >> 40) & 0xff;
629 tf->hob_lbam = (block >> 32) & 0xff;
630 tf->hob_lbal = (block >> 24) & 0xff;
631 tf->lbah = (block >> 16) & 0xff;
632 tf->lbam = (block >> 8) & 0xff;
633 tf->lbal = block & 0xff;
635 tf->device = 1 << 6;
636 if (tf->flags & ATA_TFLAG_FUA)
637 tf->device |= 1 << 7;
638 } else if (dev->flags & ATA_DFLAG_LBA) {
639 tf->flags |= ATA_TFLAG_LBA;
641 if (lba_28_ok(block, n_block)) {
642 /* use LBA28 */
643 tf->device |= (block >> 24) & 0xf;
644 } else if (lba_48_ok(block, n_block)) {
645 if (!(dev->flags & ATA_DFLAG_LBA48))
646 return -ERANGE;
648 /* use LBA48 */
649 tf->flags |= ATA_TFLAG_LBA48;
651 tf->hob_nsect = (n_block >> 8) & 0xff;
653 tf->hob_lbah = (block >> 40) & 0xff;
654 tf->hob_lbam = (block >> 32) & 0xff;
655 tf->hob_lbal = (block >> 24) & 0xff;
656 } else
657 /* request too large even for LBA48 */
658 return -ERANGE;
660 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
661 return -EINVAL;
663 tf->nsect = n_block & 0xff;
665 tf->lbah = (block >> 16) & 0xff;
666 tf->lbam = (block >> 8) & 0xff;
667 tf->lbal = block & 0xff;
669 tf->device |= ATA_LBA;
670 } else {
671 /* CHS */
672 u32 sect, head, cyl, track;
674 /* The request -may- be too large for CHS addressing. */
675 if (!lba_28_ok(block, n_block))
676 return -ERANGE;
678 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
679 return -EINVAL;
681 /* Convert LBA to CHS */
682 track = (u32)block / dev->sectors;
683 cyl = track / dev->heads;
684 head = track % dev->heads;
685 sect = (u32)block % dev->sectors + 1;
687 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
688 (u32)block, track, cyl, head, sect);
690 /* Check whether the converted CHS can fit.
691 Cylinder: 0-65535
692 Head: 0-15
693 Sector: 1-255*/
694 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
695 return -ERANGE;
697 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
698 tf->lbal = sect;
699 tf->lbam = cyl;
700 tf->lbah = cyl >> 8;
701 tf->device |= head;
704 return 0;
708 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
709 * @pio_mask: pio_mask
710 * @mwdma_mask: mwdma_mask
711 * @udma_mask: udma_mask
713 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
714 * unsigned int xfer_mask.
716 * LOCKING:
717 * None.
719 * RETURNS:
720 * Packed xfer_mask.
722 unsigned long ata_pack_xfermask(unsigned long pio_mask,
723 unsigned long mwdma_mask,
724 unsigned long udma_mask)
726 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
727 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
728 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
732 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
733 * @xfer_mask: xfer_mask to unpack
734 * @pio_mask: resulting pio_mask
735 * @mwdma_mask: resulting mwdma_mask
736 * @udma_mask: resulting udma_mask
738 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
739 * Any NULL distination masks will be ignored.
741 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
742 unsigned long *mwdma_mask, unsigned long *udma_mask)
744 if (pio_mask)
745 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
746 if (mwdma_mask)
747 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
748 if (udma_mask)
749 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
752 static const struct ata_xfer_ent {
753 int shift, bits;
754 u8 base;
755 } ata_xfer_tbl[] = {
756 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
757 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
758 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
759 { -1, },
763 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
764 * @xfer_mask: xfer_mask of interest
766 * Return matching XFER_* value for @xfer_mask. Only the highest
767 * bit of @xfer_mask is considered.
769 * LOCKING:
770 * None.
772 * RETURNS:
773 * Matching XFER_* value, 0xff if no match found.
775 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
777 int highbit = fls(xfer_mask) - 1;
778 const struct ata_xfer_ent *ent;
780 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
781 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
782 return ent->base + highbit - ent->shift;
783 return 0xff;
787 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
788 * @xfer_mode: XFER_* of interest
790 * Return matching xfer_mask for @xfer_mode.
792 * LOCKING:
793 * None.
795 * RETURNS:
796 * Matching xfer_mask, 0 if no match found.
798 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
800 const struct ata_xfer_ent *ent;
802 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
803 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
804 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
805 & ~((1 << ent->shift) - 1);
806 return 0;
810 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
811 * @xfer_mode: XFER_* of interest
813 * Return matching xfer_shift for @xfer_mode.
815 * LOCKING:
816 * None.
818 * RETURNS:
819 * Matching xfer_shift, -1 if no match found.
821 int ata_xfer_mode2shift(unsigned long xfer_mode)
823 const struct ata_xfer_ent *ent;
825 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
826 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
827 return ent->shift;
828 return -1;
832 * ata_mode_string - convert xfer_mask to string
833 * @xfer_mask: mask of bits supported; only highest bit counts.
835 * Determine string which represents the highest speed
836 * (highest bit in @modemask).
838 * LOCKING:
839 * None.
841 * RETURNS:
842 * Constant C string representing highest speed listed in
843 * @mode_mask, or the constant C string "<n/a>".
845 const char *ata_mode_string(unsigned long xfer_mask)
847 static const char * const xfer_mode_str[] = {
848 "PIO0",
849 "PIO1",
850 "PIO2",
851 "PIO3",
852 "PIO4",
853 "PIO5",
854 "PIO6",
855 "MWDMA0",
856 "MWDMA1",
857 "MWDMA2",
858 "MWDMA3",
859 "MWDMA4",
860 "UDMA/16",
861 "UDMA/25",
862 "UDMA/33",
863 "UDMA/44",
864 "UDMA/66",
865 "UDMA/100",
866 "UDMA/133",
867 "UDMA7",
869 int highbit;
871 highbit = fls(xfer_mask) - 1;
872 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
873 return xfer_mode_str[highbit];
874 return "<n/a>";
877 static const char *sata_spd_string(unsigned int spd)
879 static const char * const spd_str[] = {
880 "1.5 Gbps",
881 "3.0 Gbps",
884 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
885 return "<unknown>";
886 return spd_str[spd - 1];
889 void ata_dev_disable(struct ata_device *dev)
891 if (ata_dev_enabled(dev)) {
892 if (ata_msg_drv(dev->link->ap))
893 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
894 ata_acpi_on_disable(dev);
895 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
896 ATA_DNXFER_QUIET);
897 dev->class++;
901 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
903 struct ata_link *link = dev->link;
904 struct ata_port *ap = link->ap;
905 u32 scontrol;
906 unsigned int err_mask;
907 int rc;
910 * disallow DIPM for drivers which haven't set
911 * ATA_FLAG_IPM. This is because when DIPM is enabled,
912 * phy ready will be set in the interrupt status on
913 * state changes, which will cause some drivers to
914 * think there are errors - additionally drivers will
915 * need to disable hot plug.
917 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
918 ap->pm_policy = NOT_AVAILABLE;
919 return -EINVAL;
923 * For DIPM, we will only enable it for the
924 * min_power setting.
926 * Why? Because Disks are too stupid to know that
927 * If the host rejects a request to go to SLUMBER
928 * they should retry at PARTIAL, and instead it
929 * just would give up. So, for medium_power to
930 * work at all, we need to only allow HIPM.
932 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
933 if (rc)
934 return rc;
936 switch (policy) {
937 case MIN_POWER:
938 /* no restrictions on IPM transitions */
939 scontrol &= ~(0x3 << 8);
940 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
941 if (rc)
942 return rc;
944 /* enable DIPM */
945 if (dev->flags & ATA_DFLAG_DIPM)
946 err_mask = ata_dev_set_feature(dev,
947 SETFEATURES_SATA_ENABLE, SATA_DIPM);
948 break;
949 case MEDIUM_POWER:
950 /* allow IPM to PARTIAL */
951 scontrol &= ~(0x1 << 8);
952 scontrol |= (0x2 << 8);
953 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
954 if (rc)
955 return rc;
958 * we don't have to disable DIPM since IPM flags
959 * disallow transitions to SLUMBER, which effectively
960 * disable DIPM if it does not support PARTIAL
962 break;
963 case NOT_AVAILABLE:
964 case MAX_PERFORMANCE:
965 /* disable all IPM transitions */
966 scontrol |= (0x3 << 8);
967 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
968 if (rc)
969 return rc;
972 * we don't have to disable DIPM since IPM flags
973 * disallow all transitions which effectively
974 * disable DIPM anyway.
976 break;
979 /* FIXME: handle SET FEATURES failure */
980 (void) err_mask;
982 return 0;
986 * ata_dev_enable_pm - enable SATA interface power management
987 * @dev: device to enable power management
988 * @policy: the link power management policy
990 * Enable SATA Interface power management. This will enable
991 * Device Interface Power Management (DIPM) for min_power
992 * policy, and then call driver specific callbacks for
993 * enabling Host Initiated Power management.
995 * Locking: Caller.
996 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
998 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1000 int rc = 0;
1001 struct ata_port *ap = dev->link->ap;
1003 /* set HIPM first, then DIPM */
1004 if (ap->ops->enable_pm)
1005 rc = ap->ops->enable_pm(ap, policy);
1006 if (rc)
1007 goto enable_pm_out;
1008 rc = ata_dev_set_dipm(dev, policy);
1010 enable_pm_out:
1011 if (rc)
1012 ap->pm_policy = MAX_PERFORMANCE;
1013 else
1014 ap->pm_policy = policy;
1015 return /* rc */; /* hopefully we can use 'rc' eventually */
1018 #ifdef CONFIG_PM
1020 * ata_dev_disable_pm - disable SATA interface power management
1021 * @dev: device to disable power management
1023 * Disable SATA Interface power management. This will disable
1024 * Device Interface Power Management (DIPM) without changing
1025 * policy, call driver specific callbacks for disabling Host
1026 * Initiated Power management.
1028 * Locking: Caller.
1029 * Returns: void
1031 static void ata_dev_disable_pm(struct ata_device *dev)
1033 struct ata_port *ap = dev->link->ap;
1035 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1036 if (ap->ops->disable_pm)
1037 ap->ops->disable_pm(ap);
1039 #endif /* CONFIG_PM */
1041 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1043 ap->pm_policy = policy;
1044 ap->link.eh_info.action |= ATA_EH_LPM;
1045 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1046 ata_port_schedule_eh(ap);
1049 #ifdef CONFIG_PM
1050 static void ata_lpm_enable(struct ata_host *host)
1052 struct ata_link *link;
1053 struct ata_port *ap;
1054 struct ata_device *dev;
1055 int i;
1057 for (i = 0; i < host->n_ports; i++) {
1058 ap = host->ports[i];
1059 ata_port_for_each_link(link, ap) {
1060 ata_link_for_each_dev(dev, link)
1061 ata_dev_disable_pm(dev);
1066 static void ata_lpm_disable(struct ata_host *host)
1068 int i;
1070 for (i = 0; i < host->n_ports; i++) {
1071 struct ata_port *ap = host->ports[i];
1072 ata_lpm_schedule(ap, ap->pm_policy);
1075 #endif /* CONFIG_PM */
1078 * ata_dev_classify - determine device type based on ATA-spec signature
1079 * @tf: ATA taskfile register set for device to be identified
1081 * Determine from taskfile register contents whether a device is
1082 * ATA or ATAPI, as per "Signature and persistence" section
1083 * of ATA/PI spec (volume 1, sect 5.14).
1085 * LOCKING:
1086 * None.
1088 * RETURNS:
1089 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1090 * %ATA_DEV_UNKNOWN the event of failure.
1092 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1094 /* Apple's open source Darwin code hints that some devices only
1095 * put a proper signature into the LBA mid/high registers,
1096 * So, we only check those. It's sufficient for uniqueness.
1098 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1099 * signatures for ATA and ATAPI devices attached on SerialATA,
1100 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1101 * spec has never mentioned about using different signatures
1102 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1103 * Multiplier specification began to use 0x69/0x96 to identify
1104 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1105 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1106 * 0x69/0x96 shortly and described them as reserved for
1107 * SerialATA.
1109 * We follow the current spec and consider that 0x69/0x96
1110 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1112 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1113 DPRINTK("found ATA device by sig\n");
1114 return ATA_DEV_ATA;
1117 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1118 DPRINTK("found ATAPI device by sig\n");
1119 return ATA_DEV_ATAPI;
1122 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1123 DPRINTK("found PMP device by sig\n");
1124 return ATA_DEV_PMP;
1127 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1128 printk(KERN_INFO "ata: SEMB device ignored\n");
1129 return ATA_DEV_SEMB_UNSUP; /* not yet */
1132 DPRINTK("unknown device\n");
1133 return ATA_DEV_UNKNOWN;
1137 * ata_id_string - Convert IDENTIFY DEVICE page into string
1138 * @id: IDENTIFY DEVICE results we will examine
1139 * @s: string into which data is output
1140 * @ofs: offset into identify device page
1141 * @len: length of string to return. must be an even number.
1143 * The strings in the IDENTIFY DEVICE page are broken up into
1144 * 16-bit chunks. Run through the string, and output each
1145 * 8-bit chunk linearly, regardless of platform.
1147 * LOCKING:
1148 * caller.
1151 void ata_id_string(const u16 *id, unsigned char *s,
1152 unsigned int ofs, unsigned int len)
1154 unsigned int c;
1156 BUG_ON(len & 1);
1158 while (len > 0) {
1159 c = id[ofs] >> 8;
1160 *s = c;
1161 s++;
1163 c = id[ofs] & 0xff;
1164 *s = c;
1165 s++;
1167 ofs++;
1168 len -= 2;
1173 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1174 * @id: IDENTIFY DEVICE results we will examine
1175 * @s: string into which data is output
1176 * @ofs: offset into identify device page
1177 * @len: length of string to return. must be an odd number.
1179 * This function is identical to ata_id_string except that it
1180 * trims trailing spaces and terminates the resulting string with
1181 * null. @len must be actual maximum length (even number) + 1.
1183 * LOCKING:
1184 * caller.
1186 void ata_id_c_string(const u16 *id, unsigned char *s,
1187 unsigned int ofs, unsigned int len)
1189 unsigned char *p;
1191 ata_id_string(id, s, ofs, len - 1);
1193 p = s + strnlen(s, len - 1);
1194 while (p > s && p[-1] == ' ')
1195 p--;
1196 *p = '\0';
1199 static u64 ata_id_n_sectors(const u16 *id)
1201 if (ata_id_has_lba(id)) {
1202 if (ata_id_has_lba48(id))
1203 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1204 else
1205 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1206 } else {
1207 if (ata_id_current_chs_valid(id))
1208 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1209 id[ATA_ID_CUR_SECTORS];
1210 else
1211 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1212 id[ATA_ID_SECTORS];
1216 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1218 u64 sectors = 0;
1220 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1221 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1222 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1223 sectors |= (tf->lbah & 0xff) << 16;
1224 sectors |= (tf->lbam & 0xff) << 8;
1225 sectors |= (tf->lbal & 0xff);
1227 return sectors;
1230 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1232 u64 sectors = 0;
1234 sectors |= (tf->device & 0x0f) << 24;
1235 sectors |= (tf->lbah & 0xff) << 16;
1236 sectors |= (tf->lbam & 0xff) << 8;
1237 sectors |= (tf->lbal & 0xff);
1239 return sectors;
1243 * ata_read_native_max_address - Read native max address
1244 * @dev: target device
1245 * @max_sectors: out parameter for the result native max address
1247 * Perform an LBA48 or LBA28 native size query upon the device in
1248 * question.
1250 * RETURNS:
1251 * 0 on success, -EACCES if command is aborted by the drive.
1252 * -EIO on other errors.
1254 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1256 unsigned int err_mask;
1257 struct ata_taskfile tf;
1258 int lba48 = ata_id_has_lba48(dev->id);
1260 ata_tf_init(dev, &tf);
1262 /* always clear all address registers */
1263 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1265 if (lba48) {
1266 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1267 tf.flags |= ATA_TFLAG_LBA48;
1268 } else
1269 tf.command = ATA_CMD_READ_NATIVE_MAX;
1271 tf.protocol |= ATA_PROT_NODATA;
1272 tf.device |= ATA_LBA;
1274 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1275 if (err_mask) {
1276 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1277 "max address (err_mask=0x%x)\n", err_mask);
1278 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1279 return -EACCES;
1280 return -EIO;
1283 if (lba48)
1284 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1285 else
1286 *max_sectors = ata_tf_to_lba(&tf) + 1;
1287 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1288 (*max_sectors)--;
1289 return 0;
1293 * ata_set_max_sectors - Set max sectors
1294 * @dev: target device
1295 * @new_sectors: new max sectors value to set for the device
1297 * Set max sectors of @dev to @new_sectors.
1299 * RETURNS:
1300 * 0 on success, -EACCES if command is aborted or denied (due to
1301 * previous non-volatile SET_MAX) by the drive. -EIO on other
1302 * errors.
1304 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1306 unsigned int err_mask;
1307 struct ata_taskfile tf;
1308 int lba48 = ata_id_has_lba48(dev->id);
1310 new_sectors--;
1312 ata_tf_init(dev, &tf);
1314 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1316 if (lba48) {
1317 tf.command = ATA_CMD_SET_MAX_EXT;
1318 tf.flags |= ATA_TFLAG_LBA48;
1320 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1321 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1322 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1323 } else {
1324 tf.command = ATA_CMD_SET_MAX;
1326 tf.device |= (new_sectors >> 24) & 0xf;
1329 tf.protocol |= ATA_PROT_NODATA;
1330 tf.device |= ATA_LBA;
1332 tf.lbal = (new_sectors >> 0) & 0xff;
1333 tf.lbam = (new_sectors >> 8) & 0xff;
1334 tf.lbah = (new_sectors >> 16) & 0xff;
1336 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1337 if (err_mask) {
1338 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1339 "max address (err_mask=0x%x)\n", err_mask);
1340 if (err_mask == AC_ERR_DEV &&
1341 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1342 return -EACCES;
1343 return -EIO;
1346 return 0;
1350 * ata_hpa_resize - Resize a device with an HPA set
1351 * @dev: Device to resize
1353 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1354 * it if required to the full size of the media. The caller must check
1355 * the drive has the HPA feature set enabled.
1357 * RETURNS:
1358 * 0 on success, -errno on failure.
1360 static int ata_hpa_resize(struct ata_device *dev)
1362 struct ata_eh_context *ehc = &dev->link->eh_context;
1363 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1364 u64 sectors = ata_id_n_sectors(dev->id);
1365 u64 native_sectors;
1366 int rc;
1368 /* do we need to do it? */
1369 if (dev->class != ATA_DEV_ATA ||
1370 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1371 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1372 return 0;
1374 /* read native max address */
1375 rc = ata_read_native_max_address(dev, &native_sectors);
1376 if (rc) {
1377 /* If device aborted the command or HPA isn't going to
1378 * be unlocked, skip HPA resizing.
1380 if (rc == -EACCES || !ata_ignore_hpa) {
1381 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1382 "broken, skipping HPA handling\n");
1383 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1385 /* we can continue if device aborted the command */
1386 if (rc == -EACCES)
1387 rc = 0;
1390 return rc;
1393 /* nothing to do? */
1394 if (native_sectors <= sectors || !ata_ignore_hpa) {
1395 if (!print_info || native_sectors == sectors)
1396 return 0;
1398 if (native_sectors > sectors)
1399 ata_dev_printk(dev, KERN_INFO,
1400 "HPA detected: current %llu, native %llu\n",
1401 (unsigned long long)sectors,
1402 (unsigned long long)native_sectors);
1403 else if (native_sectors < sectors)
1404 ata_dev_printk(dev, KERN_WARNING,
1405 "native sectors (%llu) is smaller than "
1406 "sectors (%llu)\n",
1407 (unsigned long long)native_sectors,
1408 (unsigned long long)sectors);
1409 return 0;
1412 /* let's unlock HPA */
1413 rc = ata_set_max_sectors(dev, native_sectors);
1414 if (rc == -EACCES) {
1415 /* if device aborted the command, skip HPA resizing */
1416 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1417 "(%llu -> %llu), skipping HPA handling\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)native_sectors);
1420 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1421 return 0;
1422 } else if (rc)
1423 return rc;
1425 /* re-read IDENTIFY data */
1426 rc = ata_dev_reread_id(dev, 0);
1427 if (rc) {
1428 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1429 "data after HPA resizing\n");
1430 return rc;
1433 if (print_info) {
1434 u64 new_sectors = ata_id_n_sectors(dev->id);
1435 ata_dev_printk(dev, KERN_INFO,
1436 "HPA unlocked: %llu -> %llu, native %llu\n",
1437 (unsigned long long)sectors,
1438 (unsigned long long)new_sectors,
1439 (unsigned long long)native_sectors);
1442 return 0;
1446 * ata_dump_id - IDENTIFY DEVICE info debugging output
1447 * @id: IDENTIFY DEVICE page to dump
1449 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1450 * page.
1452 * LOCKING:
1453 * caller.
1456 static inline void ata_dump_id(const u16 *id)
1458 DPRINTK("49==0x%04x "
1459 "53==0x%04x "
1460 "63==0x%04x "
1461 "64==0x%04x "
1462 "75==0x%04x \n",
1463 id[49],
1464 id[53],
1465 id[63],
1466 id[64],
1467 id[75]);
1468 DPRINTK("80==0x%04x "
1469 "81==0x%04x "
1470 "82==0x%04x "
1471 "83==0x%04x "
1472 "84==0x%04x \n",
1473 id[80],
1474 id[81],
1475 id[82],
1476 id[83],
1477 id[84]);
1478 DPRINTK("88==0x%04x "
1479 "93==0x%04x\n",
1480 id[88],
1481 id[93]);
1485 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1486 * @id: IDENTIFY data to compute xfer mask from
1488 * Compute the xfermask for this device. This is not as trivial
1489 * as it seems if we must consider early devices correctly.
1491 * FIXME: pre IDE drive timing (do we care ?).
1493 * LOCKING:
1494 * None.
1496 * RETURNS:
1497 * Computed xfermask
1499 unsigned long ata_id_xfermask(const u16 *id)
1501 unsigned long pio_mask, mwdma_mask, udma_mask;
1503 /* Usual case. Word 53 indicates word 64 is valid */
1504 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1505 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1506 pio_mask <<= 3;
1507 pio_mask |= 0x7;
1508 } else {
1509 /* If word 64 isn't valid then Word 51 high byte holds
1510 * the PIO timing number for the maximum. Turn it into
1511 * a mask.
1513 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1514 if (mode < 5) /* Valid PIO range */
1515 pio_mask = (2 << mode) - 1;
1516 else
1517 pio_mask = 1;
1519 /* But wait.. there's more. Design your standards by
1520 * committee and you too can get a free iordy field to
1521 * process. However its the speeds not the modes that
1522 * are supported... Note drivers using the timing API
1523 * will get this right anyway
1527 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1529 if (ata_id_is_cfa(id)) {
1531 * Process compact flash extended modes
1533 int pio = id[163] & 0x7;
1534 int dma = (id[163] >> 3) & 7;
1536 if (pio)
1537 pio_mask |= (1 << 5);
1538 if (pio > 1)
1539 pio_mask |= (1 << 6);
1540 if (dma)
1541 mwdma_mask |= (1 << 3);
1542 if (dma > 1)
1543 mwdma_mask |= (1 << 4);
1546 udma_mask = 0;
1547 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1548 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1550 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1554 * ata_pio_queue_task - Queue port_task
1555 * @ap: The ata_port to queue port_task for
1556 * @fn: workqueue function to be scheduled
1557 * @data: data for @fn to use
1558 * @delay: delay time in msecs for workqueue function
1560 * Schedule @fn(@data) for execution after @delay jiffies using
1561 * port_task. There is one port_task per port and it's the
1562 * user(low level driver)'s responsibility to make sure that only
1563 * one task is active at any given time.
1565 * libata core layer takes care of synchronization between
1566 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1567 * synchronization.
1569 * LOCKING:
1570 * Inherited from caller.
1572 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1574 ap->port_task_data = data;
1576 /* may fail if ata_port_flush_task() in progress */
1577 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1581 * ata_port_flush_task - Flush port_task
1582 * @ap: The ata_port to flush port_task for
1584 * After this function completes, port_task is guranteed not to
1585 * be running or scheduled.
1587 * LOCKING:
1588 * Kernel thread context (may sleep)
1590 void ata_port_flush_task(struct ata_port *ap)
1592 DPRINTK("ENTER\n");
1594 cancel_rearming_delayed_work(&ap->port_task);
1596 if (ata_msg_ctl(ap))
1597 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1600 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1602 struct completion *waiting = qc->private_data;
1604 complete(waiting);
1608 * ata_exec_internal_sg - execute libata internal command
1609 * @dev: Device to which the command is sent
1610 * @tf: Taskfile registers for the command and the result
1611 * @cdb: CDB for packet command
1612 * @dma_dir: Data tranfer direction of the command
1613 * @sgl: sg list for the data buffer of the command
1614 * @n_elem: Number of sg entries
1615 * @timeout: Timeout in msecs (0 for default)
1617 * Executes libata internal command with timeout. @tf contains
1618 * command on entry and result on return. Timeout and error
1619 * conditions are reported via return value. No recovery action
1620 * is taken after a command times out. It's caller's duty to
1621 * clean up after timeout.
1623 * LOCKING:
1624 * None. Should be called with kernel context, might sleep.
1626 * RETURNS:
1627 * Zero on success, AC_ERR_* mask on failure
1629 unsigned ata_exec_internal_sg(struct ata_device *dev,
1630 struct ata_taskfile *tf, const u8 *cdb,
1631 int dma_dir, struct scatterlist *sgl,
1632 unsigned int n_elem, unsigned long timeout)
1634 struct ata_link *link = dev->link;
1635 struct ata_port *ap = link->ap;
1636 u8 command = tf->command;
1637 int auto_timeout = 0;
1638 struct ata_queued_cmd *qc;
1639 unsigned int tag, preempted_tag;
1640 u32 preempted_sactive, preempted_qc_active;
1641 int preempted_nr_active_links;
1642 DECLARE_COMPLETION_ONSTACK(wait);
1643 unsigned long flags;
1644 unsigned int err_mask;
1645 int rc;
1647 spin_lock_irqsave(ap->lock, flags);
1649 /* no internal command while frozen */
1650 if (ap->pflags & ATA_PFLAG_FROZEN) {
1651 spin_unlock_irqrestore(ap->lock, flags);
1652 return AC_ERR_SYSTEM;
1655 /* initialize internal qc */
1657 /* XXX: Tag 0 is used for drivers with legacy EH as some
1658 * drivers choke if any other tag is given. This breaks
1659 * ata_tag_internal() test for those drivers. Don't use new
1660 * EH stuff without converting to it.
1662 if (ap->ops->error_handler)
1663 tag = ATA_TAG_INTERNAL;
1664 else
1665 tag = 0;
1667 if (test_and_set_bit(tag, &ap->qc_allocated))
1668 BUG();
1669 qc = __ata_qc_from_tag(ap, tag);
1671 qc->tag = tag;
1672 qc->scsicmd = NULL;
1673 qc->ap = ap;
1674 qc->dev = dev;
1675 ata_qc_reinit(qc);
1677 preempted_tag = link->active_tag;
1678 preempted_sactive = link->sactive;
1679 preempted_qc_active = ap->qc_active;
1680 preempted_nr_active_links = ap->nr_active_links;
1681 link->active_tag = ATA_TAG_POISON;
1682 link->sactive = 0;
1683 ap->qc_active = 0;
1684 ap->nr_active_links = 0;
1686 /* prepare & issue qc */
1687 qc->tf = *tf;
1688 if (cdb)
1689 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1690 qc->flags |= ATA_QCFLAG_RESULT_TF;
1691 qc->dma_dir = dma_dir;
1692 if (dma_dir != DMA_NONE) {
1693 unsigned int i, buflen = 0;
1694 struct scatterlist *sg;
1696 for_each_sg(sgl, sg, n_elem, i)
1697 buflen += sg->length;
1699 ata_sg_init(qc, sgl, n_elem);
1700 qc->nbytes = buflen;
1703 qc->private_data = &wait;
1704 qc->complete_fn = ata_qc_complete_internal;
1706 ata_qc_issue(qc);
1708 spin_unlock_irqrestore(ap->lock, flags);
1710 if (!timeout) {
1711 if (ata_probe_timeout)
1712 timeout = ata_probe_timeout * 1000;
1713 else {
1714 timeout = ata_internal_cmd_timeout(dev, command);
1715 auto_timeout = 1;
1719 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1721 ata_port_flush_task(ap);
1723 if (!rc) {
1724 spin_lock_irqsave(ap->lock, flags);
1726 /* We're racing with irq here. If we lose, the
1727 * following test prevents us from completing the qc
1728 * twice. If we win, the port is frozen and will be
1729 * cleaned up by ->post_internal_cmd().
1731 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1732 qc->err_mask |= AC_ERR_TIMEOUT;
1734 if (ap->ops->error_handler)
1735 ata_port_freeze(ap);
1736 else
1737 ata_qc_complete(qc);
1739 if (ata_msg_warn(ap))
1740 ata_dev_printk(dev, KERN_WARNING,
1741 "qc timeout (cmd 0x%x)\n", command);
1744 spin_unlock_irqrestore(ap->lock, flags);
1747 /* do post_internal_cmd */
1748 if (ap->ops->post_internal_cmd)
1749 ap->ops->post_internal_cmd(qc);
1751 /* perform minimal error analysis */
1752 if (qc->flags & ATA_QCFLAG_FAILED) {
1753 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1754 qc->err_mask |= AC_ERR_DEV;
1756 if (!qc->err_mask)
1757 qc->err_mask |= AC_ERR_OTHER;
1759 if (qc->err_mask & ~AC_ERR_OTHER)
1760 qc->err_mask &= ~AC_ERR_OTHER;
1763 /* finish up */
1764 spin_lock_irqsave(ap->lock, flags);
1766 *tf = qc->result_tf;
1767 err_mask = qc->err_mask;
1769 ata_qc_free(qc);
1770 link->active_tag = preempted_tag;
1771 link->sactive = preempted_sactive;
1772 ap->qc_active = preempted_qc_active;
1773 ap->nr_active_links = preempted_nr_active_links;
1775 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1776 * Until those drivers are fixed, we detect the condition
1777 * here, fail the command with AC_ERR_SYSTEM and reenable the
1778 * port.
1780 * Note that this doesn't change any behavior as internal
1781 * command failure results in disabling the device in the
1782 * higher layer for LLDDs without new reset/EH callbacks.
1784 * Kill the following code as soon as those drivers are fixed.
1786 if (ap->flags & ATA_FLAG_DISABLED) {
1787 err_mask |= AC_ERR_SYSTEM;
1788 ata_port_probe(ap);
1791 spin_unlock_irqrestore(ap->lock, flags);
1793 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1794 ata_internal_cmd_timed_out(dev, command);
1796 return err_mask;
1800 * ata_exec_internal - execute libata internal command
1801 * @dev: Device to which the command is sent
1802 * @tf: Taskfile registers for the command and the result
1803 * @cdb: CDB for packet command
1804 * @dma_dir: Data tranfer direction of the command
1805 * @buf: Data buffer of the command
1806 * @buflen: Length of data buffer
1807 * @timeout: Timeout in msecs (0 for default)
1809 * Wrapper around ata_exec_internal_sg() which takes simple
1810 * buffer instead of sg list.
1812 * LOCKING:
1813 * None. Should be called with kernel context, might sleep.
1815 * RETURNS:
1816 * Zero on success, AC_ERR_* mask on failure
1818 unsigned ata_exec_internal(struct ata_device *dev,
1819 struct ata_taskfile *tf, const u8 *cdb,
1820 int dma_dir, void *buf, unsigned int buflen,
1821 unsigned long timeout)
1823 struct scatterlist *psg = NULL, sg;
1824 unsigned int n_elem = 0;
1826 if (dma_dir != DMA_NONE) {
1827 WARN_ON(!buf);
1828 sg_init_one(&sg, buf, buflen);
1829 psg = &sg;
1830 n_elem++;
1833 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1834 timeout);
1838 * ata_do_simple_cmd - execute simple internal command
1839 * @dev: Device to which the command is sent
1840 * @cmd: Opcode to execute
1842 * Execute a 'simple' command, that only consists of the opcode
1843 * 'cmd' itself, without filling any other registers
1845 * LOCKING:
1846 * Kernel thread context (may sleep).
1848 * RETURNS:
1849 * Zero on success, AC_ERR_* mask on failure
1851 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1853 struct ata_taskfile tf;
1855 ata_tf_init(dev, &tf);
1857 tf.command = cmd;
1858 tf.flags |= ATA_TFLAG_DEVICE;
1859 tf.protocol = ATA_PROT_NODATA;
1861 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1865 * ata_pio_need_iordy - check if iordy needed
1866 * @adev: ATA device
1868 * Check if the current speed of the device requires IORDY. Used
1869 * by various controllers for chip configuration.
1872 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1874 /* Controller doesn't support IORDY. Probably a pointless check
1875 as the caller should know this */
1876 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1877 return 0;
1878 /* PIO3 and higher it is mandatory */
1879 if (adev->pio_mode > XFER_PIO_2)
1880 return 1;
1881 /* We turn it on when possible */
1882 if (ata_id_has_iordy(adev->id))
1883 return 1;
1884 return 0;
1888 * ata_pio_mask_no_iordy - Return the non IORDY mask
1889 * @adev: ATA device
1891 * Compute the highest mode possible if we are not using iordy. Return
1892 * -1 if no iordy mode is available.
1895 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1897 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1898 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1899 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1900 /* Is the speed faster than the drive allows non IORDY ? */
1901 if (pio) {
1902 /* This is cycle times not frequency - watch the logic! */
1903 if (pio > 240) /* PIO2 is 240nS per cycle */
1904 return 3 << ATA_SHIFT_PIO;
1905 return 7 << ATA_SHIFT_PIO;
1908 return 3 << ATA_SHIFT_PIO;
1912 * ata_do_dev_read_id - default ID read method
1913 * @dev: device
1914 * @tf: proposed taskfile
1915 * @id: data buffer
1917 * Issue the identify taskfile and hand back the buffer containing
1918 * identify data. For some RAID controllers and for pre ATA devices
1919 * this function is wrapped or replaced by the driver
1921 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1922 struct ata_taskfile *tf, u16 *id)
1924 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1925 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1929 * ata_dev_read_id - Read ID data from the specified device
1930 * @dev: target device
1931 * @p_class: pointer to class of the target device (may be changed)
1932 * @flags: ATA_READID_* flags
1933 * @id: buffer to read IDENTIFY data into
1935 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1936 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1937 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1938 * for pre-ATA4 drives.
1940 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1941 * now we abort if we hit that case.
1943 * LOCKING:
1944 * Kernel thread context (may sleep)
1946 * RETURNS:
1947 * 0 on success, -errno otherwise.
1949 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1950 unsigned int flags, u16 *id)
1952 struct ata_port *ap = dev->link->ap;
1953 unsigned int class = *p_class;
1954 struct ata_taskfile tf;
1955 unsigned int err_mask = 0;
1956 const char *reason;
1957 int may_fallback = 1, tried_spinup = 0;
1958 int rc;
1960 if (ata_msg_ctl(ap))
1961 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1963 retry:
1964 ata_tf_init(dev, &tf);
1966 switch (class) {
1967 case ATA_DEV_ATA:
1968 tf.command = ATA_CMD_ID_ATA;
1969 break;
1970 case ATA_DEV_ATAPI:
1971 tf.command = ATA_CMD_ID_ATAPI;
1972 break;
1973 default:
1974 rc = -ENODEV;
1975 reason = "unsupported class";
1976 goto err_out;
1979 tf.protocol = ATA_PROT_PIO;
1981 /* Some devices choke if TF registers contain garbage. Make
1982 * sure those are properly initialized.
1984 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1986 /* Device presence detection is unreliable on some
1987 * controllers. Always poll IDENTIFY if available.
1989 tf.flags |= ATA_TFLAG_POLLING;
1991 if (ap->ops->read_id)
1992 err_mask = ap->ops->read_id(dev, &tf, id);
1993 else
1994 err_mask = ata_do_dev_read_id(dev, &tf, id);
1996 if (err_mask) {
1997 if (err_mask & AC_ERR_NODEV_HINT) {
1998 ata_dev_printk(dev, KERN_DEBUG,
1999 "NODEV after polling detection\n");
2000 return -ENOENT;
2003 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2004 /* Device or controller might have reported
2005 * the wrong device class. Give a shot at the
2006 * other IDENTIFY if the current one is
2007 * aborted by the device.
2009 if (may_fallback) {
2010 may_fallback = 0;
2012 if (class == ATA_DEV_ATA)
2013 class = ATA_DEV_ATAPI;
2014 else
2015 class = ATA_DEV_ATA;
2016 goto retry;
2019 /* Control reaches here iff the device aborted
2020 * both flavors of IDENTIFYs which happens
2021 * sometimes with phantom devices.
2023 ata_dev_printk(dev, KERN_DEBUG,
2024 "both IDENTIFYs aborted, assuming NODEV\n");
2025 return -ENOENT;
2028 rc = -EIO;
2029 reason = "I/O error";
2030 goto err_out;
2033 /* Falling back doesn't make sense if ID data was read
2034 * successfully at least once.
2036 may_fallback = 0;
2038 swap_buf_le16(id, ATA_ID_WORDS);
2040 /* sanity check */
2041 rc = -EINVAL;
2042 reason = "device reports invalid type";
2044 if (class == ATA_DEV_ATA) {
2045 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2046 goto err_out;
2047 } else {
2048 if (ata_id_is_ata(id))
2049 goto err_out;
2052 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2053 tried_spinup = 1;
2055 * Drive powered-up in standby mode, and requires a specific
2056 * SET_FEATURES spin-up subcommand before it will accept
2057 * anything other than the original IDENTIFY command.
2059 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2060 if (err_mask && id[2] != 0x738c) {
2061 rc = -EIO;
2062 reason = "SPINUP failed";
2063 goto err_out;
2066 * If the drive initially returned incomplete IDENTIFY info,
2067 * we now must reissue the IDENTIFY command.
2069 if (id[2] == 0x37c8)
2070 goto retry;
2073 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2075 * The exact sequence expected by certain pre-ATA4 drives is:
2076 * SRST RESET
2077 * IDENTIFY (optional in early ATA)
2078 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2079 * anything else..
2080 * Some drives were very specific about that exact sequence.
2082 * Note that ATA4 says lba is mandatory so the second check
2083 * shoud never trigger.
2085 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2086 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2087 if (err_mask) {
2088 rc = -EIO;
2089 reason = "INIT_DEV_PARAMS failed";
2090 goto err_out;
2093 /* current CHS translation info (id[53-58]) might be
2094 * changed. reread the identify device info.
2096 flags &= ~ATA_READID_POSTRESET;
2097 goto retry;
2101 *p_class = class;
2103 return 0;
2105 err_out:
2106 if (ata_msg_warn(ap))
2107 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2108 "(%s, err_mask=0x%x)\n", reason, err_mask);
2109 return rc;
2112 static inline u8 ata_dev_knobble(struct ata_device *dev)
2114 struct ata_port *ap = dev->link->ap;
2115 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2118 static void ata_dev_config_ncq(struct ata_device *dev,
2119 char *desc, size_t desc_sz)
2121 struct ata_port *ap = dev->link->ap;
2122 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2124 if (!ata_id_has_ncq(dev->id)) {
2125 desc[0] = '\0';
2126 return;
2128 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2129 snprintf(desc, desc_sz, "NCQ (not used)");
2130 return;
2132 if (ap->flags & ATA_FLAG_NCQ) {
2133 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2134 dev->flags |= ATA_DFLAG_NCQ;
2137 if (hdepth >= ddepth)
2138 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2139 else
2140 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2144 * ata_dev_configure - Configure the specified ATA/ATAPI device
2145 * @dev: Target device to configure
2147 * Configure @dev according to @dev->id. Generic and low-level
2148 * driver specific fixups are also applied.
2150 * LOCKING:
2151 * Kernel thread context (may sleep)
2153 * RETURNS:
2154 * 0 on success, -errno otherwise
2156 int ata_dev_configure(struct ata_device *dev)
2158 struct ata_port *ap = dev->link->ap;
2159 struct ata_eh_context *ehc = &dev->link->eh_context;
2160 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2161 const u16 *id = dev->id;
2162 unsigned long xfer_mask;
2163 char revbuf[7]; /* XYZ-99\0 */
2164 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2165 char modelbuf[ATA_ID_PROD_LEN+1];
2166 int rc;
2168 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2169 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2170 __func__);
2171 return 0;
2174 if (ata_msg_probe(ap))
2175 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2177 /* set horkage */
2178 dev->horkage |= ata_dev_blacklisted(dev);
2179 ata_force_horkage(dev);
2181 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2182 ata_dev_printk(dev, KERN_INFO,
2183 "unsupported device, disabling\n");
2184 ata_dev_disable(dev);
2185 return 0;
2188 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2189 dev->class == ATA_DEV_ATAPI) {
2190 ata_dev_printk(dev, KERN_WARNING,
2191 "WARNING: ATAPI is %s, device ignored.\n",
2192 atapi_enabled ? "not supported with this driver"
2193 : "disabled");
2194 ata_dev_disable(dev);
2195 return 0;
2198 /* let ACPI work its magic */
2199 rc = ata_acpi_on_devcfg(dev);
2200 if (rc)
2201 return rc;
2203 /* massage HPA, do it early as it might change IDENTIFY data */
2204 rc = ata_hpa_resize(dev);
2205 if (rc)
2206 return rc;
2208 /* print device capabilities */
2209 if (ata_msg_probe(ap))
2210 ata_dev_printk(dev, KERN_DEBUG,
2211 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2212 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2213 __func__,
2214 id[49], id[82], id[83], id[84],
2215 id[85], id[86], id[87], id[88]);
2217 /* initialize to-be-configured parameters */
2218 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2219 dev->max_sectors = 0;
2220 dev->cdb_len = 0;
2221 dev->n_sectors = 0;
2222 dev->cylinders = 0;
2223 dev->heads = 0;
2224 dev->sectors = 0;
2227 * common ATA, ATAPI feature tests
2230 /* find max transfer mode; for printk only */
2231 xfer_mask = ata_id_xfermask(id);
2233 if (ata_msg_probe(ap))
2234 ata_dump_id(id);
2236 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2237 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2238 sizeof(fwrevbuf));
2240 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2241 sizeof(modelbuf));
2243 /* ATA-specific feature tests */
2244 if (dev->class == ATA_DEV_ATA) {
2245 if (ata_id_is_cfa(id)) {
2246 if (id[162] & 1) /* CPRM may make this media unusable */
2247 ata_dev_printk(dev, KERN_WARNING,
2248 "supports DRM functions and may "
2249 "not be fully accessable.\n");
2250 snprintf(revbuf, 7, "CFA");
2251 } else {
2252 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2253 /* Warn the user if the device has TPM extensions */
2254 if (ata_id_has_tpm(id))
2255 ata_dev_printk(dev, KERN_WARNING,
2256 "supports DRM functions and may "
2257 "not be fully accessable.\n");
2260 dev->n_sectors = ata_id_n_sectors(id);
2262 if (dev->id[59] & 0x100)
2263 dev->multi_count = dev->id[59] & 0xff;
2265 if (ata_id_has_lba(id)) {
2266 const char *lba_desc;
2267 char ncq_desc[20];
2269 lba_desc = "LBA";
2270 dev->flags |= ATA_DFLAG_LBA;
2271 if (ata_id_has_lba48(id)) {
2272 dev->flags |= ATA_DFLAG_LBA48;
2273 lba_desc = "LBA48";
2275 if (dev->n_sectors >= (1UL << 28) &&
2276 ata_id_has_flush_ext(id))
2277 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2280 /* config NCQ */
2281 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2283 /* print device info to dmesg */
2284 if (ata_msg_drv(ap) && print_info) {
2285 ata_dev_printk(dev, KERN_INFO,
2286 "%s: %s, %s, max %s\n",
2287 revbuf, modelbuf, fwrevbuf,
2288 ata_mode_string(xfer_mask));
2289 ata_dev_printk(dev, KERN_INFO,
2290 "%Lu sectors, multi %u: %s %s\n",
2291 (unsigned long long)dev->n_sectors,
2292 dev->multi_count, lba_desc, ncq_desc);
2294 } else {
2295 /* CHS */
2297 /* Default translation */
2298 dev->cylinders = id[1];
2299 dev->heads = id[3];
2300 dev->sectors = id[6];
2302 if (ata_id_current_chs_valid(id)) {
2303 /* Current CHS translation is valid. */
2304 dev->cylinders = id[54];
2305 dev->heads = id[55];
2306 dev->sectors = id[56];
2309 /* print device info to dmesg */
2310 if (ata_msg_drv(ap) && print_info) {
2311 ata_dev_printk(dev, KERN_INFO,
2312 "%s: %s, %s, max %s\n",
2313 revbuf, modelbuf, fwrevbuf,
2314 ata_mode_string(xfer_mask));
2315 ata_dev_printk(dev, KERN_INFO,
2316 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2317 (unsigned long long)dev->n_sectors,
2318 dev->multi_count, dev->cylinders,
2319 dev->heads, dev->sectors);
2323 dev->cdb_len = 16;
2326 /* ATAPI-specific feature tests */
2327 else if (dev->class == ATA_DEV_ATAPI) {
2328 const char *cdb_intr_string = "";
2329 const char *atapi_an_string = "";
2330 const char *dma_dir_string = "";
2331 u32 sntf;
2333 rc = atapi_cdb_len(id);
2334 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2335 if (ata_msg_warn(ap))
2336 ata_dev_printk(dev, KERN_WARNING,
2337 "unsupported CDB len\n");
2338 rc = -EINVAL;
2339 goto err_out_nosup;
2341 dev->cdb_len = (unsigned int) rc;
2343 /* Enable ATAPI AN if both the host and device have
2344 * the support. If PMP is attached, SNTF is required
2345 * to enable ATAPI AN to discern between PHY status
2346 * changed notifications and ATAPI ANs.
2348 if (atapi_an &&
2349 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2350 (!sata_pmp_attached(ap) ||
2351 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2352 unsigned int err_mask;
2354 /* issue SET feature command to turn this on */
2355 err_mask = ata_dev_set_feature(dev,
2356 SETFEATURES_SATA_ENABLE, SATA_AN);
2357 if (err_mask)
2358 ata_dev_printk(dev, KERN_ERR,
2359 "failed to enable ATAPI AN "
2360 "(err_mask=0x%x)\n", err_mask);
2361 else {
2362 dev->flags |= ATA_DFLAG_AN;
2363 atapi_an_string = ", ATAPI AN";
2367 if (ata_id_cdb_intr(dev->id)) {
2368 dev->flags |= ATA_DFLAG_CDB_INTR;
2369 cdb_intr_string = ", CDB intr";
2372 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2373 dev->flags |= ATA_DFLAG_DMADIR;
2374 dma_dir_string = ", DMADIR";
2377 /* print device info to dmesg */
2378 if (ata_msg_drv(ap) && print_info)
2379 ata_dev_printk(dev, KERN_INFO,
2380 "ATAPI: %s, %s, max %s%s%s%s\n",
2381 modelbuf, fwrevbuf,
2382 ata_mode_string(xfer_mask),
2383 cdb_intr_string, atapi_an_string,
2384 dma_dir_string);
2387 /* determine max_sectors */
2388 dev->max_sectors = ATA_MAX_SECTORS;
2389 if (dev->flags & ATA_DFLAG_LBA48)
2390 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2392 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2393 if (ata_id_has_hipm(dev->id))
2394 dev->flags |= ATA_DFLAG_HIPM;
2395 if (ata_id_has_dipm(dev->id))
2396 dev->flags |= ATA_DFLAG_DIPM;
2399 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2400 200 sectors */
2401 if (ata_dev_knobble(dev)) {
2402 if (ata_msg_drv(ap) && print_info)
2403 ata_dev_printk(dev, KERN_INFO,
2404 "applying bridge limits\n");
2405 dev->udma_mask &= ATA_UDMA5;
2406 dev->max_sectors = ATA_MAX_SECTORS;
2409 if ((dev->class == ATA_DEV_ATAPI) &&
2410 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2411 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2412 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2415 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2416 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2417 dev->max_sectors);
2419 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2420 dev->horkage |= ATA_HORKAGE_IPM;
2422 /* reset link pm_policy for this port to no pm */
2423 ap->pm_policy = MAX_PERFORMANCE;
2426 if (ap->ops->dev_config)
2427 ap->ops->dev_config(dev);
2429 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2430 /* Let the user know. We don't want to disallow opens for
2431 rescue purposes, or in case the vendor is just a blithering
2432 idiot. Do this after the dev_config call as some controllers
2433 with buggy firmware may want to avoid reporting false device
2434 bugs */
2436 if (print_info) {
2437 ata_dev_printk(dev, KERN_WARNING,
2438 "Drive reports diagnostics failure. This may indicate a drive\n");
2439 ata_dev_printk(dev, KERN_WARNING,
2440 "fault or invalid emulation. Contact drive vendor for information.\n");
2444 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2445 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2446 "firmware update to be fully functional.\n");
2447 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2448 "or visit http://ata.wiki.kernel.org.\n");
2451 return 0;
2453 err_out_nosup:
2454 if (ata_msg_probe(ap))
2455 ata_dev_printk(dev, KERN_DEBUG,
2456 "%s: EXIT, err\n", __func__);
2457 return rc;
2461 * ata_cable_40wire - return 40 wire cable type
2462 * @ap: port
2464 * Helper method for drivers which want to hardwire 40 wire cable
2465 * detection.
2468 int ata_cable_40wire(struct ata_port *ap)
2470 return ATA_CBL_PATA40;
2474 * ata_cable_80wire - return 80 wire cable type
2475 * @ap: port
2477 * Helper method for drivers which want to hardwire 80 wire cable
2478 * detection.
2481 int ata_cable_80wire(struct ata_port *ap)
2483 return ATA_CBL_PATA80;
2487 * ata_cable_unknown - return unknown PATA cable.
2488 * @ap: port
2490 * Helper method for drivers which have no PATA cable detection.
2493 int ata_cable_unknown(struct ata_port *ap)
2495 return ATA_CBL_PATA_UNK;
2499 * ata_cable_ignore - return ignored PATA cable.
2500 * @ap: port
2502 * Helper method for drivers which don't use cable type to limit
2503 * transfer mode.
2505 int ata_cable_ignore(struct ata_port *ap)
2507 return ATA_CBL_PATA_IGN;
2511 * ata_cable_sata - return SATA cable type
2512 * @ap: port
2514 * Helper method for drivers which have SATA cables
2517 int ata_cable_sata(struct ata_port *ap)
2519 return ATA_CBL_SATA;
2523 * ata_bus_probe - Reset and probe ATA bus
2524 * @ap: Bus to probe
2526 * Master ATA bus probing function. Initiates a hardware-dependent
2527 * bus reset, then attempts to identify any devices found on
2528 * the bus.
2530 * LOCKING:
2531 * PCI/etc. bus probe sem.
2533 * RETURNS:
2534 * Zero on success, negative errno otherwise.
2537 int ata_bus_probe(struct ata_port *ap)
2539 unsigned int classes[ATA_MAX_DEVICES];
2540 int tries[ATA_MAX_DEVICES];
2541 int rc;
2542 struct ata_device *dev;
2544 ata_port_probe(ap);
2546 ata_link_for_each_dev(dev, &ap->link)
2547 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2549 retry:
2550 ata_link_for_each_dev(dev, &ap->link) {
2551 /* If we issue an SRST then an ATA drive (not ATAPI)
2552 * may change configuration and be in PIO0 timing. If
2553 * we do a hard reset (or are coming from power on)
2554 * this is true for ATA or ATAPI. Until we've set a
2555 * suitable controller mode we should not touch the
2556 * bus as we may be talking too fast.
2558 dev->pio_mode = XFER_PIO_0;
2560 /* If the controller has a pio mode setup function
2561 * then use it to set the chipset to rights. Don't
2562 * touch the DMA setup as that will be dealt with when
2563 * configuring devices.
2565 if (ap->ops->set_piomode)
2566 ap->ops->set_piomode(ap, dev);
2569 /* reset and determine device classes */
2570 ap->ops->phy_reset(ap);
2572 ata_link_for_each_dev(dev, &ap->link) {
2573 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2574 dev->class != ATA_DEV_UNKNOWN)
2575 classes[dev->devno] = dev->class;
2576 else
2577 classes[dev->devno] = ATA_DEV_NONE;
2579 dev->class = ATA_DEV_UNKNOWN;
2582 ata_port_probe(ap);
2584 /* read IDENTIFY page and configure devices. We have to do the identify
2585 specific sequence bass-ackwards so that PDIAG- is released by
2586 the slave device */
2588 ata_link_for_each_dev_reverse(dev, &ap->link) {
2589 if (tries[dev->devno])
2590 dev->class = classes[dev->devno];
2592 if (!ata_dev_enabled(dev))
2593 continue;
2595 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2596 dev->id);
2597 if (rc)
2598 goto fail;
2601 /* Now ask for the cable type as PDIAG- should have been released */
2602 if (ap->ops->cable_detect)
2603 ap->cbl = ap->ops->cable_detect(ap);
2605 /* We may have SATA bridge glue hiding here irrespective of the
2606 reported cable types and sensed types */
2607 ata_link_for_each_dev(dev, &ap->link) {
2608 if (!ata_dev_enabled(dev))
2609 continue;
2610 /* SATA drives indicate we have a bridge. We don't know which
2611 end of the link the bridge is which is a problem */
2612 if (ata_id_is_sata(dev->id))
2613 ap->cbl = ATA_CBL_SATA;
2616 /* After the identify sequence we can now set up the devices. We do
2617 this in the normal order so that the user doesn't get confused */
2619 ata_link_for_each_dev(dev, &ap->link) {
2620 if (!ata_dev_enabled(dev))
2621 continue;
2623 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2624 rc = ata_dev_configure(dev);
2625 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2626 if (rc)
2627 goto fail;
2630 /* configure transfer mode */
2631 rc = ata_set_mode(&ap->link, &dev);
2632 if (rc)
2633 goto fail;
2635 ata_link_for_each_dev(dev, &ap->link)
2636 if (ata_dev_enabled(dev))
2637 return 0;
2639 /* no device present, disable port */
2640 ata_port_disable(ap);
2641 return -ENODEV;
2643 fail:
2644 tries[dev->devno]--;
2646 switch (rc) {
2647 case -EINVAL:
2648 /* eeek, something went very wrong, give up */
2649 tries[dev->devno] = 0;
2650 break;
2652 case -ENODEV:
2653 /* give it just one more chance */
2654 tries[dev->devno] = min(tries[dev->devno], 1);
2655 case -EIO:
2656 if (tries[dev->devno] == 1) {
2657 /* This is the last chance, better to slow
2658 * down than lose it.
2660 sata_down_spd_limit(&ap->link);
2661 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2665 if (!tries[dev->devno])
2666 ata_dev_disable(dev);
2668 goto retry;
2672 * ata_port_probe - Mark port as enabled
2673 * @ap: Port for which we indicate enablement
2675 * Modify @ap data structure such that the system
2676 * thinks that the entire port is enabled.
2678 * LOCKING: host lock, or some other form of
2679 * serialization.
2682 void ata_port_probe(struct ata_port *ap)
2684 ap->flags &= ~ATA_FLAG_DISABLED;
2688 * sata_print_link_status - Print SATA link status
2689 * @link: SATA link to printk link status about
2691 * This function prints link speed and status of a SATA link.
2693 * LOCKING:
2694 * None.
2696 static void sata_print_link_status(struct ata_link *link)
2698 u32 sstatus, scontrol, tmp;
2700 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2701 return;
2702 sata_scr_read(link, SCR_CONTROL, &scontrol);
2704 if (ata_link_online(link)) {
2705 tmp = (sstatus >> 4) & 0xf;
2706 ata_link_printk(link, KERN_INFO,
2707 "SATA link up %s (SStatus %X SControl %X)\n",
2708 sata_spd_string(tmp), sstatus, scontrol);
2709 } else {
2710 ata_link_printk(link, KERN_INFO,
2711 "SATA link down (SStatus %X SControl %X)\n",
2712 sstatus, scontrol);
2717 * ata_dev_pair - return other device on cable
2718 * @adev: device
2720 * Obtain the other device on the same cable, or if none is
2721 * present NULL is returned
2724 struct ata_device *ata_dev_pair(struct ata_device *adev)
2726 struct ata_link *link = adev->link;
2727 struct ata_device *pair = &link->device[1 - adev->devno];
2728 if (!ata_dev_enabled(pair))
2729 return NULL;
2730 return pair;
2734 * ata_port_disable - Disable port.
2735 * @ap: Port to be disabled.
2737 * Modify @ap data structure such that the system
2738 * thinks that the entire port is disabled, and should
2739 * never attempt to probe or communicate with devices
2740 * on this port.
2742 * LOCKING: host lock, or some other form of
2743 * serialization.
2746 void ata_port_disable(struct ata_port *ap)
2748 ap->link.device[0].class = ATA_DEV_NONE;
2749 ap->link.device[1].class = ATA_DEV_NONE;
2750 ap->flags |= ATA_FLAG_DISABLED;
2754 * sata_down_spd_limit - adjust SATA spd limit downward
2755 * @link: Link to adjust SATA spd limit for
2757 * Adjust SATA spd limit of @link downward. Note that this
2758 * function only adjusts the limit. The change must be applied
2759 * using sata_set_spd().
2761 * LOCKING:
2762 * Inherited from caller.
2764 * RETURNS:
2765 * 0 on success, negative errno on failure
2767 int sata_down_spd_limit(struct ata_link *link)
2769 u32 sstatus, spd, mask;
2770 int rc, highbit;
2772 if (!sata_scr_valid(link))
2773 return -EOPNOTSUPP;
2775 /* If SCR can be read, use it to determine the current SPD.
2776 * If not, use cached value in link->sata_spd.
2778 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2779 if (rc == 0)
2780 spd = (sstatus >> 4) & 0xf;
2781 else
2782 spd = link->sata_spd;
2784 mask = link->sata_spd_limit;
2785 if (mask <= 1)
2786 return -EINVAL;
2788 /* unconditionally mask off the highest bit */
2789 highbit = fls(mask) - 1;
2790 mask &= ~(1 << highbit);
2792 /* Mask off all speeds higher than or equal to the current
2793 * one. Force 1.5Gbps if current SPD is not available.
2795 if (spd > 1)
2796 mask &= (1 << (spd - 1)) - 1;
2797 else
2798 mask &= 1;
2800 /* were we already at the bottom? */
2801 if (!mask)
2802 return -EINVAL;
2804 link->sata_spd_limit = mask;
2806 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2807 sata_spd_string(fls(mask)));
2809 return 0;
2812 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2814 struct ata_link *host_link = &link->ap->link;
2815 u32 limit, target, spd;
2817 limit = link->sata_spd_limit;
2819 /* Don't configure downstream link faster than upstream link.
2820 * It doesn't speed up anything and some PMPs choke on such
2821 * configuration.
2823 if (!ata_is_host_link(link) && host_link->sata_spd)
2824 limit &= (1 << host_link->sata_spd) - 1;
2826 if (limit == UINT_MAX)
2827 target = 0;
2828 else
2829 target = fls(limit);
2831 spd = (*scontrol >> 4) & 0xf;
2832 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2834 return spd != target;
2838 * sata_set_spd_needed - is SATA spd configuration needed
2839 * @link: Link in question
2841 * Test whether the spd limit in SControl matches
2842 * @link->sata_spd_limit. This function is used to determine
2843 * whether hardreset is necessary to apply SATA spd
2844 * configuration.
2846 * LOCKING:
2847 * Inherited from caller.
2849 * RETURNS:
2850 * 1 if SATA spd configuration is needed, 0 otherwise.
2852 static int sata_set_spd_needed(struct ata_link *link)
2854 u32 scontrol;
2856 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2857 return 1;
2859 return __sata_set_spd_needed(link, &scontrol);
2863 * sata_set_spd - set SATA spd according to spd limit
2864 * @link: Link to set SATA spd for
2866 * Set SATA spd of @link according to sata_spd_limit.
2868 * LOCKING:
2869 * Inherited from caller.
2871 * RETURNS:
2872 * 0 if spd doesn't need to be changed, 1 if spd has been
2873 * changed. Negative errno if SCR registers are inaccessible.
2875 int sata_set_spd(struct ata_link *link)
2877 u32 scontrol;
2878 int rc;
2880 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2881 return rc;
2883 if (!__sata_set_spd_needed(link, &scontrol))
2884 return 0;
2886 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2887 return rc;
2889 return 1;
2893 * This mode timing computation functionality is ported over from
2894 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2897 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2898 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2899 * for UDMA6, which is currently supported only by Maxtor drives.
2901 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2904 static const struct ata_timing ata_timing[] = {
2905 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2906 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2907 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2908 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2909 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2910 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2911 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2912 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2914 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2915 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2916 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2918 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2919 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2920 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2921 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2922 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2924 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2925 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2926 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2927 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2928 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2929 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2930 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2931 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2933 { 0xFF }
2936 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2937 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2939 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2941 q->setup = EZ(t->setup * 1000, T);
2942 q->act8b = EZ(t->act8b * 1000, T);
2943 q->rec8b = EZ(t->rec8b * 1000, T);
2944 q->cyc8b = EZ(t->cyc8b * 1000, T);
2945 q->active = EZ(t->active * 1000, T);
2946 q->recover = EZ(t->recover * 1000, T);
2947 q->cycle = EZ(t->cycle * 1000, T);
2948 q->udma = EZ(t->udma * 1000, UT);
2951 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2952 struct ata_timing *m, unsigned int what)
2954 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2955 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2956 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2957 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2958 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2959 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2960 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2961 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2964 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2966 const struct ata_timing *t = ata_timing;
2968 while (xfer_mode > t->mode)
2969 t++;
2971 if (xfer_mode == t->mode)
2972 return t;
2973 return NULL;
2976 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2977 struct ata_timing *t, int T, int UT)
2979 const struct ata_timing *s;
2980 struct ata_timing p;
2983 * Find the mode.
2986 if (!(s = ata_timing_find_mode(speed)))
2987 return -EINVAL;
2989 memcpy(t, s, sizeof(*s));
2992 * If the drive is an EIDE drive, it can tell us it needs extended
2993 * PIO/MW_DMA cycle timing.
2996 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2997 memset(&p, 0, sizeof(p));
2998 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2999 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3000 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3001 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3002 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3004 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3008 * Convert the timing to bus clock counts.
3011 ata_timing_quantize(t, t, T, UT);
3014 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3015 * S.M.A.R.T * and some other commands. We have to ensure that the
3016 * DMA cycle timing is slower/equal than the fastest PIO timing.
3019 if (speed > XFER_PIO_6) {
3020 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3021 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3025 * Lengthen active & recovery time so that cycle time is correct.
3028 if (t->act8b + t->rec8b < t->cyc8b) {
3029 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3030 t->rec8b = t->cyc8b - t->act8b;
3033 if (t->active + t->recover < t->cycle) {
3034 t->active += (t->cycle - (t->active + t->recover)) / 2;
3035 t->recover = t->cycle - t->active;
3038 /* In a few cases quantisation may produce enough errors to
3039 leave t->cycle too low for the sum of active and recovery
3040 if so we must correct this */
3041 if (t->active + t->recover > t->cycle)
3042 t->cycle = t->active + t->recover;
3044 return 0;
3048 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3049 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3050 * @cycle: cycle duration in ns
3052 * Return matching xfer mode for @cycle. The returned mode is of
3053 * the transfer type specified by @xfer_shift. If @cycle is too
3054 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3055 * than the fastest known mode, the fasted mode is returned.
3057 * LOCKING:
3058 * None.
3060 * RETURNS:
3061 * Matching xfer_mode, 0xff if no match found.
3063 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3065 u8 base_mode = 0xff, last_mode = 0xff;
3066 const struct ata_xfer_ent *ent;
3067 const struct ata_timing *t;
3069 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3070 if (ent->shift == xfer_shift)
3071 base_mode = ent->base;
3073 for (t = ata_timing_find_mode(base_mode);
3074 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3075 unsigned short this_cycle;
3077 switch (xfer_shift) {
3078 case ATA_SHIFT_PIO:
3079 case ATA_SHIFT_MWDMA:
3080 this_cycle = t->cycle;
3081 break;
3082 case ATA_SHIFT_UDMA:
3083 this_cycle = t->udma;
3084 break;
3085 default:
3086 return 0xff;
3089 if (cycle > this_cycle)
3090 break;
3092 last_mode = t->mode;
3095 return last_mode;
3099 * ata_down_xfermask_limit - adjust dev xfer masks downward
3100 * @dev: Device to adjust xfer masks
3101 * @sel: ATA_DNXFER_* selector
3103 * Adjust xfer masks of @dev downward. Note that this function
3104 * does not apply the change. Invoking ata_set_mode() afterwards
3105 * will apply the limit.
3107 * LOCKING:
3108 * Inherited from caller.
3110 * RETURNS:
3111 * 0 on success, negative errno on failure
3113 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3115 char buf[32];
3116 unsigned long orig_mask, xfer_mask;
3117 unsigned long pio_mask, mwdma_mask, udma_mask;
3118 int quiet, highbit;
3120 quiet = !!(sel & ATA_DNXFER_QUIET);
3121 sel &= ~ATA_DNXFER_QUIET;
3123 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3124 dev->mwdma_mask,
3125 dev->udma_mask);
3126 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3128 switch (sel) {
3129 case ATA_DNXFER_PIO:
3130 highbit = fls(pio_mask) - 1;
3131 pio_mask &= ~(1 << highbit);
3132 break;
3134 case ATA_DNXFER_DMA:
3135 if (udma_mask) {
3136 highbit = fls(udma_mask) - 1;
3137 udma_mask &= ~(1 << highbit);
3138 if (!udma_mask)
3139 return -ENOENT;
3140 } else if (mwdma_mask) {
3141 highbit = fls(mwdma_mask) - 1;
3142 mwdma_mask &= ~(1 << highbit);
3143 if (!mwdma_mask)
3144 return -ENOENT;
3146 break;
3148 case ATA_DNXFER_40C:
3149 udma_mask &= ATA_UDMA_MASK_40C;
3150 break;
3152 case ATA_DNXFER_FORCE_PIO0:
3153 pio_mask &= 1;
3154 case ATA_DNXFER_FORCE_PIO:
3155 mwdma_mask = 0;
3156 udma_mask = 0;
3157 break;
3159 default:
3160 BUG();
3163 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3165 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3166 return -ENOENT;
3168 if (!quiet) {
3169 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3170 snprintf(buf, sizeof(buf), "%s:%s",
3171 ata_mode_string(xfer_mask),
3172 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3173 else
3174 snprintf(buf, sizeof(buf), "%s",
3175 ata_mode_string(xfer_mask));
3177 ata_dev_printk(dev, KERN_WARNING,
3178 "limiting speed to %s\n", buf);
3181 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3182 &dev->udma_mask);
3184 return 0;
3187 static int ata_dev_set_mode(struct ata_device *dev)
3189 struct ata_eh_context *ehc = &dev->link->eh_context;
3190 const char *dev_err_whine = "";
3191 int ign_dev_err = 0;
3192 unsigned int err_mask;
3193 int rc;
3195 dev->flags &= ~ATA_DFLAG_PIO;
3196 if (dev->xfer_shift == ATA_SHIFT_PIO)
3197 dev->flags |= ATA_DFLAG_PIO;
3199 err_mask = ata_dev_set_xfermode(dev);
3201 if (err_mask & ~AC_ERR_DEV)
3202 goto fail;
3204 /* revalidate */
3205 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3206 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3207 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3208 if (rc)
3209 return rc;
3211 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3212 /* Old CFA may refuse this command, which is just fine */
3213 if (ata_id_is_cfa(dev->id))
3214 ign_dev_err = 1;
3215 /* Catch several broken garbage emulations plus some pre
3216 ATA devices */
3217 if (ata_id_major_version(dev->id) == 0 &&
3218 dev->pio_mode <= XFER_PIO_2)
3219 ign_dev_err = 1;
3220 /* Some very old devices and some bad newer ones fail
3221 any kind of SET_XFERMODE request but support PIO0-2
3222 timings and no IORDY */
3223 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3224 ign_dev_err = 1;
3226 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3227 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3228 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3229 dev->dma_mode == XFER_MW_DMA_0 &&
3230 (dev->id[63] >> 8) & 1)
3231 ign_dev_err = 1;
3233 /* if the device is actually configured correctly, ignore dev err */
3234 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3235 ign_dev_err = 1;
3237 if (err_mask & AC_ERR_DEV) {
3238 if (!ign_dev_err)
3239 goto fail;
3240 else
3241 dev_err_whine = " (device error ignored)";
3244 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3245 dev->xfer_shift, (int)dev->xfer_mode);
3247 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3248 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3249 dev_err_whine);
3251 return 0;
3253 fail:
3254 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3255 "(err_mask=0x%x)\n", err_mask);
3256 return -EIO;
3260 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3261 * @link: link on which timings will be programmed
3262 * @r_failed_dev: out parameter for failed device
3264 * Standard implementation of the function used to tune and set
3265 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3266 * ata_dev_set_mode() fails, pointer to the failing device is
3267 * returned in @r_failed_dev.
3269 * LOCKING:
3270 * PCI/etc. bus probe sem.
3272 * RETURNS:
3273 * 0 on success, negative errno otherwise
3276 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3278 struct ata_port *ap = link->ap;
3279 struct ata_device *dev;
3280 int rc = 0, used_dma = 0, found = 0;
3282 /* step 1: calculate xfer_mask */
3283 ata_link_for_each_dev(dev, link) {
3284 unsigned long pio_mask, dma_mask;
3285 unsigned int mode_mask;
3287 if (!ata_dev_enabled(dev))
3288 continue;
3290 mode_mask = ATA_DMA_MASK_ATA;
3291 if (dev->class == ATA_DEV_ATAPI)
3292 mode_mask = ATA_DMA_MASK_ATAPI;
3293 else if (ata_id_is_cfa(dev->id))
3294 mode_mask = ATA_DMA_MASK_CFA;
3296 ata_dev_xfermask(dev);
3297 ata_force_xfermask(dev);
3299 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3300 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3302 if (libata_dma_mask & mode_mask)
3303 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3304 else
3305 dma_mask = 0;
3307 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3308 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3310 found = 1;
3311 if (ata_dma_enabled(dev))
3312 used_dma = 1;
3314 if (!found)
3315 goto out;
3317 /* step 2: always set host PIO timings */
3318 ata_link_for_each_dev(dev, link) {
3319 if (!ata_dev_enabled(dev))
3320 continue;
3322 if (dev->pio_mode == 0xff) {
3323 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3324 rc = -EINVAL;
3325 goto out;
3328 dev->xfer_mode = dev->pio_mode;
3329 dev->xfer_shift = ATA_SHIFT_PIO;
3330 if (ap->ops->set_piomode)
3331 ap->ops->set_piomode(ap, dev);
3334 /* step 3: set host DMA timings */
3335 ata_link_for_each_dev(dev, link) {
3336 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev))
3337 continue;
3339 dev->xfer_mode = dev->dma_mode;
3340 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3341 if (ap->ops->set_dmamode)
3342 ap->ops->set_dmamode(ap, dev);
3345 /* step 4: update devices' xfer mode */
3346 ata_link_for_each_dev(dev, link) {
3347 /* don't update suspended devices' xfer mode */
3348 if (!ata_dev_enabled(dev))
3349 continue;
3351 rc = ata_dev_set_mode(dev);
3352 if (rc)
3353 goto out;
3356 /* Record simplex status. If we selected DMA then the other
3357 * host channels are not permitted to do so.
3359 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3360 ap->host->simplex_claimed = ap;
3362 out:
3363 if (rc)
3364 *r_failed_dev = dev;
3365 return rc;
3369 * ata_wait_ready - wait for link to become ready
3370 * @link: link to be waited on
3371 * @deadline: deadline jiffies for the operation
3372 * @check_ready: callback to check link readiness
3374 * Wait for @link to become ready. @check_ready should return
3375 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3376 * link doesn't seem to be occupied, other errno for other error
3377 * conditions.
3379 * Transient -ENODEV conditions are allowed for
3380 * ATA_TMOUT_FF_WAIT.
3382 * LOCKING:
3383 * EH context.
3385 * RETURNS:
3386 * 0 if @linke is ready before @deadline; otherwise, -errno.
3388 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3389 int (*check_ready)(struct ata_link *link))
3391 unsigned long start = jiffies;
3392 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3393 int warned = 0;
3395 if (time_after(nodev_deadline, deadline))
3396 nodev_deadline = deadline;
3398 while (1) {
3399 unsigned long now = jiffies;
3400 int ready, tmp;
3402 ready = tmp = check_ready(link);
3403 if (ready > 0)
3404 return 0;
3406 /* -ENODEV could be transient. Ignore -ENODEV if link
3407 * is online. Also, some SATA devices take a long
3408 * time to clear 0xff after reset. For example,
3409 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3410 * GoVault needs even more than that. Wait for
3411 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3413 * Note that some PATA controllers (pata_ali) explode
3414 * if status register is read more than once when
3415 * there's no device attached.
3417 if (ready == -ENODEV) {
3418 if (ata_link_online(link))
3419 ready = 0;
3420 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3421 !ata_link_offline(link) &&
3422 time_before(now, nodev_deadline))
3423 ready = 0;
3426 if (ready)
3427 return ready;
3428 if (time_after(now, deadline))
3429 return -EBUSY;
3431 if (!warned && time_after(now, start + 5 * HZ) &&
3432 (deadline - now > 3 * HZ)) {
3433 ata_link_printk(link, KERN_WARNING,
3434 "link is slow to respond, please be patient "
3435 "(ready=%d)\n", tmp);
3436 warned = 1;
3439 msleep(50);
3444 * ata_wait_after_reset - wait for link to become ready after reset
3445 * @link: link to be waited on
3446 * @deadline: deadline jiffies for the operation
3447 * @check_ready: callback to check link readiness
3449 * Wait for @link to become ready after reset.
3451 * LOCKING:
3452 * EH context.
3454 * RETURNS:
3455 * 0 if @linke is ready before @deadline; otherwise, -errno.
3457 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3458 int (*check_ready)(struct ata_link *link))
3460 msleep(ATA_WAIT_AFTER_RESET);
3462 return ata_wait_ready(link, deadline, check_ready);
3466 * sata_link_debounce - debounce SATA phy status
3467 * @link: ATA link to debounce SATA phy status for
3468 * @params: timing parameters { interval, duratinon, timeout } in msec
3469 * @deadline: deadline jiffies for the operation
3471 * Make sure SStatus of @link reaches stable state, determined by
3472 * holding the same value where DET is not 1 for @duration polled
3473 * every @interval, before @timeout. Timeout constraints the
3474 * beginning of the stable state. Because DET gets stuck at 1 on
3475 * some controllers after hot unplugging, this functions waits
3476 * until timeout then returns 0 if DET is stable at 1.
3478 * @timeout is further limited by @deadline. The sooner of the
3479 * two is used.
3481 * LOCKING:
3482 * Kernel thread context (may sleep)
3484 * RETURNS:
3485 * 0 on success, -errno on failure.
3487 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3488 unsigned long deadline)
3490 unsigned long interval = params[0];
3491 unsigned long duration = params[1];
3492 unsigned long last_jiffies, t;
3493 u32 last, cur;
3494 int rc;
3496 t = ata_deadline(jiffies, params[2]);
3497 if (time_before(t, deadline))
3498 deadline = t;
3500 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3501 return rc;
3502 cur &= 0xf;
3504 last = cur;
3505 last_jiffies = jiffies;
3507 while (1) {
3508 msleep(interval);
3509 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3510 return rc;
3511 cur &= 0xf;
3513 /* DET stable? */
3514 if (cur == last) {
3515 if (cur == 1 && time_before(jiffies, deadline))
3516 continue;
3517 if (time_after(jiffies,
3518 ata_deadline(last_jiffies, duration)))
3519 return 0;
3520 continue;
3523 /* unstable, start over */
3524 last = cur;
3525 last_jiffies = jiffies;
3527 /* Check deadline. If debouncing failed, return
3528 * -EPIPE to tell upper layer to lower link speed.
3530 if (time_after(jiffies, deadline))
3531 return -EPIPE;
3536 * sata_link_resume - resume SATA link
3537 * @link: ATA link to resume SATA
3538 * @params: timing parameters { interval, duratinon, timeout } in msec
3539 * @deadline: deadline jiffies for the operation
3541 * Resume SATA phy @link and debounce it.
3543 * LOCKING:
3544 * Kernel thread context (may sleep)
3546 * RETURNS:
3547 * 0 on success, -errno on failure.
3549 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3550 unsigned long deadline)
3552 u32 scontrol, serror;
3553 int rc;
3555 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3556 return rc;
3558 scontrol = (scontrol & 0x0f0) | 0x300;
3560 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3561 return rc;
3563 /* Some PHYs react badly if SStatus is pounded immediately
3564 * after resuming. Delay 200ms before debouncing.
3566 msleep(200);
3568 if ((rc = sata_link_debounce(link, params, deadline)))
3569 return rc;
3571 /* clear SError, some PHYs require this even for SRST to work */
3572 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3573 rc = sata_scr_write(link, SCR_ERROR, serror);
3575 return rc != -EINVAL ? rc : 0;
3579 * ata_std_prereset - prepare for reset
3580 * @link: ATA link to be reset
3581 * @deadline: deadline jiffies for the operation
3583 * @link is about to be reset. Initialize it. Failure from
3584 * prereset makes libata abort whole reset sequence and give up
3585 * that port, so prereset should be best-effort. It does its
3586 * best to prepare for reset sequence but if things go wrong, it
3587 * should just whine, not fail.
3589 * LOCKING:
3590 * Kernel thread context (may sleep)
3592 * RETURNS:
3593 * 0 on success, -errno otherwise.
3595 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3597 struct ata_port *ap = link->ap;
3598 struct ata_eh_context *ehc = &link->eh_context;
3599 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3600 int rc;
3602 /* if we're about to do hardreset, nothing more to do */
3603 if (ehc->i.action & ATA_EH_HARDRESET)
3604 return 0;
3606 /* if SATA, resume link */
3607 if (ap->flags & ATA_FLAG_SATA) {
3608 rc = sata_link_resume(link, timing, deadline);
3609 /* whine about phy resume failure but proceed */
3610 if (rc && rc != -EOPNOTSUPP)
3611 ata_link_printk(link, KERN_WARNING, "failed to resume "
3612 "link for reset (errno=%d)\n", rc);
3615 /* no point in trying softreset on offline link */
3616 if (ata_link_offline(link))
3617 ehc->i.action &= ~ATA_EH_SOFTRESET;
3619 return 0;
3623 * sata_link_hardreset - reset link via SATA phy reset
3624 * @link: link to reset
3625 * @timing: timing parameters { interval, duratinon, timeout } in msec
3626 * @deadline: deadline jiffies for the operation
3627 * @online: optional out parameter indicating link onlineness
3628 * @check_ready: optional callback to check link readiness
3630 * SATA phy-reset @link using DET bits of SControl register.
3631 * After hardreset, link readiness is waited upon using
3632 * ata_wait_ready() if @check_ready is specified. LLDs are
3633 * allowed to not specify @check_ready and wait itself after this
3634 * function returns. Device classification is LLD's
3635 * responsibility.
3637 * *@online is set to one iff reset succeeded and @link is online
3638 * after reset.
3640 * LOCKING:
3641 * Kernel thread context (may sleep)
3643 * RETURNS:
3644 * 0 on success, -errno otherwise.
3646 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3647 unsigned long deadline,
3648 bool *online, int (*check_ready)(struct ata_link *))
3650 u32 scontrol;
3651 int rc;
3653 DPRINTK("ENTER\n");
3655 if (online)
3656 *online = false;
3658 if (sata_set_spd_needed(link)) {
3659 /* SATA spec says nothing about how to reconfigure
3660 * spd. To be on the safe side, turn off phy during
3661 * reconfiguration. This works for at least ICH7 AHCI
3662 * and Sil3124.
3664 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3665 goto out;
3667 scontrol = (scontrol & 0x0f0) | 0x304;
3669 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3670 goto out;
3672 sata_set_spd(link);
3675 /* issue phy wake/reset */
3676 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3677 goto out;
3679 scontrol = (scontrol & 0x0f0) | 0x301;
3681 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3682 goto out;
3684 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3685 * 10.4.2 says at least 1 ms.
3687 msleep(1);
3689 /* bring link back */
3690 rc = sata_link_resume(link, timing, deadline);
3691 if (rc)
3692 goto out;
3693 /* if link is offline nothing more to do */
3694 if (ata_link_offline(link))
3695 goto out;
3697 /* Link is online. From this point, -ENODEV too is an error. */
3698 if (online)
3699 *online = true;
3701 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3702 /* If PMP is supported, we have to do follow-up SRST.
3703 * Some PMPs don't send D2H Reg FIS after hardreset if
3704 * the first port is empty. Wait only for
3705 * ATA_TMOUT_PMP_SRST_WAIT.
3707 if (check_ready) {
3708 unsigned long pmp_deadline;
3710 pmp_deadline = ata_deadline(jiffies,
3711 ATA_TMOUT_PMP_SRST_WAIT);
3712 if (time_after(pmp_deadline, deadline))
3713 pmp_deadline = deadline;
3714 ata_wait_ready(link, pmp_deadline, check_ready);
3716 rc = -EAGAIN;
3717 goto out;
3720 rc = 0;
3721 if (check_ready)
3722 rc = ata_wait_ready(link, deadline, check_ready);
3723 out:
3724 if (rc && rc != -EAGAIN) {
3725 /* online is set iff link is online && reset succeeded */
3726 if (online)
3727 *online = false;
3728 ata_link_printk(link, KERN_ERR,
3729 "COMRESET failed (errno=%d)\n", rc);
3731 DPRINTK("EXIT, rc=%d\n", rc);
3732 return rc;
3736 * sata_std_hardreset - COMRESET w/o waiting or classification
3737 * @link: link to reset
3738 * @class: resulting class of attached device
3739 * @deadline: deadline jiffies for the operation
3741 * Standard SATA COMRESET w/o waiting or classification.
3743 * LOCKING:
3744 * Kernel thread context (may sleep)
3746 * RETURNS:
3747 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3749 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3750 unsigned long deadline)
3752 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3753 bool online;
3754 int rc;
3756 /* do hardreset */
3757 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3758 return online ? -EAGAIN : rc;
3762 * ata_std_postreset - standard postreset callback
3763 * @link: the target ata_link
3764 * @classes: classes of attached devices
3766 * This function is invoked after a successful reset. Note that
3767 * the device might have been reset more than once using
3768 * different reset methods before postreset is invoked.
3770 * LOCKING:
3771 * Kernel thread context (may sleep)
3773 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3775 u32 serror;
3777 DPRINTK("ENTER\n");
3779 /* reset complete, clear SError */
3780 if (!sata_scr_read(link, SCR_ERROR, &serror))
3781 sata_scr_write(link, SCR_ERROR, serror);
3783 /* print link status */
3784 sata_print_link_status(link);
3786 DPRINTK("EXIT\n");
3790 * ata_dev_same_device - Determine whether new ID matches configured device
3791 * @dev: device to compare against
3792 * @new_class: class of the new device
3793 * @new_id: IDENTIFY page of the new device
3795 * Compare @new_class and @new_id against @dev and determine
3796 * whether @dev is the device indicated by @new_class and
3797 * @new_id.
3799 * LOCKING:
3800 * None.
3802 * RETURNS:
3803 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3805 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3806 const u16 *new_id)
3808 const u16 *old_id = dev->id;
3809 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3810 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3812 if (dev->class != new_class) {
3813 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3814 dev->class, new_class);
3815 return 0;
3818 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3819 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3820 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3821 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3823 if (strcmp(model[0], model[1])) {
3824 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3825 "'%s' != '%s'\n", model[0], model[1]);
3826 return 0;
3829 if (strcmp(serial[0], serial[1])) {
3830 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3831 "'%s' != '%s'\n", serial[0], serial[1]);
3832 return 0;
3835 return 1;
3839 * ata_dev_reread_id - Re-read IDENTIFY data
3840 * @dev: target ATA device
3841 * @readid_flags: read ID flags
3843 * Re-read IDENTIFY page and make sure @dev is still attached to
3844 * the port.
3846 * LOCKING:
3847 * Kernel thread context (may sleep)
3849 * RETURNS:
3850 * 0 on success, negative errno otherwise
3852 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3854 unsigned int class = dev->class;
3855 u16 *id = (void *)dev->link->ap->sector_buf;
3856 int rc;
3858 /* read ID data */
3859 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3860 if (rc)
3861 return rc;
3863 /* is the device still there? */
3864 if (!ata_dev_same_device(dev, class, id))
3865 return -ENODEV;
3867 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3868 return 0;
3872 * ata_dev_revalidate - Revalidate ATA device
3873 * @dev: device to revalidate
3874 * @new_class: new class code
3875 * @readid_flags: read ID flags
3877 * Re-read IDENTIFY page, make sure @dev is still attached to the
3878 * port and reconfigure it according to the new IDENTIFY page.
3880 * LOCKING:
3881 * Kernel thread context (may sleep)
3883 * RETURNS:
3884 * 0 on success, negative errno otherwise
3886 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3887 unsigned int readid_flags)
3889 u64 n_sectors = dev->n_sectors;
3890 int rc;
3892 if (!ata_dev_enabled(dev))
3893 return -ENODEV;
3895 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3896 if (ata_class_enabled(new_class) &&
3897 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3898 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3899 dev->class, new_class);
3900 rc = -ENODEV;
3901 goto fail;
3904 /* re-read ID */
3905 rc = ata_dev_reread_id(dev, readid_flags);
3906 if (rc)
3907 goto fail;
3909 /* configure device according to the new ID */
3910 rc = ata_dev_configure(dev);
3911 if (rc)
3912 goto fail;
3914 /* verify n_sectors hasn't changed */
3915 if (dev->class == ATA_DEV_ATA && n_sectors &&
3916 dev->n_sectors != n_sectors) {
3917 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3918 "%llu != %llu\n",
3919 (unsigned long long)n_sectors,
3920 (unsigned long long)dev->n_sectors);
3922 /* restore original n_sectors */
3923 dev->n_sectors = n_sectors;
3925 rc = -ENODEV;
3926 goto fail;
3929 return 0;
3931 fail:
3932 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3933 return rc;
3936 struct ata_blacklist_entry {
3937 const char *model_num;
3938 const char *model_rev;
3939 unsigned long horkage;
3942 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3943 /* Devices with DMA related problems under Linux */
3944 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3945 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3946 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3947 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3948 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3949 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3950 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3951 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3952 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3953 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3954 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3955 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3956 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3957 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3958 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3959 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3960 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3961 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3962 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3963 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3964 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3965 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3966 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3967 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3968 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3969 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3970 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3971 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3972 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3973 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3974 /* Odd clown on sil3726/4726 PMPs */
3975 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3977 /* Weird ATAPI devices */
3978 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3980 /* Devices we expect to fail diagnostics */
3982 /* Devices where NCQ should be avoided */
3983 /* NCQ is slow */
3984 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3985 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3986 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3987 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3988 /* NCQ is broken */
3989 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3990 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3991 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3992 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3994 /* Seagate NCQ + FLUSH CACHE firmware bug */
3995 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
3996 ATA_HORKAGE_FIRMWARE_WARN },
3997 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
3998 ATA_HORKAGE_FIRMWARE_WARN },
3999 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4000 ATA_HORKAGE_FIRMWARE_WARN },
4001 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4002 ATA_HORKAGE_FIRMWARE_WARN },
4003 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4004 ATA_HORKAGE_FIRMWARE_WARN },
4006 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4007 ATA_HORKAGE_FIRMWARE_WARN },
4008 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4009 ATA_HORKAGE_FIRMWARE_WARN },
4010 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4011 ATA_HORKAGE_FIRMWARE_WARN },
4012 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4013 ATA_HORKAGE_FIRMWARE_WARN },
4014 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4015 ATA_HORKAGE_FIRMWARE_WARN },
4017 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4018 ATA_HORKAGE_FIRMWARE_WARN },
4019 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4020 ATA_HORKAGE_FIRMWARE_WARN },
4021 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4022 ATA_HORKAGE_FIRMWARE_WARN },
4023 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4024 ATA_HORKAGE_FIRMWARE_WARN },
4025 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4026 ATA_HORKAGE_FIRMWARE_WARN },
4028 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4029 ATA_HORKAGE_FIRMWARE_WARN },
4030 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4031 ATA_HORKAGE_FIRMWARE_WARN },
4032 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4033 ATA_HORKAGE_FIRMWARE_WARN },
4034 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4035 ATA_HORKAGE_FIRMWARE_WARN },
4036 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4037 ATA_HORKAGE_FIRMWARE_WARN },
4039 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4040 ATA_HORKAGE_FIRMWARE_WARN },
4041 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4042 ATA_HORKAGE_FIRMWARE_WARN },
4043 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4044 ATA_HORKAGE_FIRMWARE_WARN },
4045 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4046 ATA_HORKAGE_FIRMWARE_WARN },
4047 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4048 ATA_HORKAGE_FIRMWARE_WARN },
4050 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4051 ATA_HORKAGE_FIRMWARE_WARN },
4052 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4053 ATA_HORKAGE_FIRMWARE_WARN },
4054 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4055 ATA_HORKAGE_FIRMWARE_WARN },
4056 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4057 ATA_HORKAGE_FIRMWARE_WARN },
4058 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4059 ATA_HORKAGE_FIRMWARE_WARN },
4061 /* Blacklist entries taken from Silicon Image 3124/3132
4062 Windows driver .inf file - also several Linux problem reports */
4063 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4064 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4065 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4067 /* devices which puke on READ_NATIVE_MAX */
4068 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4069 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4070 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4071 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4073 /* Devices which report 1 sector over size HPA */
4074 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4075 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4076 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4078 /* Devices which get the IVB wrong */
4079 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4080 /* Maybe we should just blacklist TSSTcorp... */
4081 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4082 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4083 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4084 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4085 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4086 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4088 /* End Marker */
4092 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4094 const char *p;
4095 int len;
4098 * check for trailing wildcard: *\0
4100 p = strchr(patt, wildchar);
4101 if (p && ((*(p + 1)) == 0))
4102 len = p - patt;
4103 else {
4104 len = strlen(name);
4105 if (!len) {
4106 if (!*patt)
4107 return 0;
4108 return -1;
4112 return strncmp(patt, name, len);
4115 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4117 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4118 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4119 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4121 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4122 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4124 while (ad->model_num) {
4125 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4126 if (ad->model_rev == NULL)
4127 return ad->horkage;
4128 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4129 return ad->horkage;
4131 ad++;
4133 return 0;
4136 static int ata_dma_blacklisted(const struct ata_device *dev)
4138 /* We don't support polling DMA.
4139 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4140 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4142 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4143 (dev->flags & ATA_DFLAG_CDB_INTR))
4144 return 1;
4145 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4149 * ata_is_40wire - check drive side detection
4150 * @dev: device
4152 * Perform drive side detection decoding, allowing for device vendors
4153 * who can't follow the documentation.
4156 static int ata_is_40wire(struct ata_device *dev)
4158 if (dev->horkage & ATA_HORKAGE_IVB)
4159 return ata_drive_40wire_relaxed(dev->id);
4160 return ata_drive_40wire(dev->id);
4164 * cable_is_40wire - 40/80/SATA decider
4165 * @ap: port to consider
4167 * This function encapsulates the policy for speed management
4168 * in one place. At the moment we don't cache the result but
4169 * there is a good case for setting ap->cbl to the result when
4170 * we are called with unknown cables (and figuring out if it
4171 * impacts hotplug at all).
4173 * Return 1 if the cable appears to be 40 wire.
4176 static int cable_is_40wire(struct ata_port *ap)
4178 struct ata_link *link;
4179 struct ata_device *dev;
4181 /* If the controller thinks we are 40 wire, we are */
4182 if (ap->cbl == ATA_CBL_PATA40)
4183 return 1;
4184 /* If the controller thinks we are 80 wire, we are */
4185 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4186 return 0;
4187 /* If the system is known to be 40 wire short cable (eg laptop),
4188 then we allow 80 wire modes even if the drive isn't sure */
4189 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4190 return 0;
4191 /* If the controller doesn't know we scan
4193 - Note: We look for all 40 wire detects at this point.
4194 Any 80 wire detect is taken to be 80 wire cable
4195 because
4196 - In many setups only the one drive (slave if present)
4197 will give a valid detect
4198 - If you have a non detect capable drive you don't
4199 want it to colour the choice
4201 ata_port_for_each_link(link, ap) {
4202 ata_link_for_each_dev(dev, link) {
4203 if (!ata_is_40wire(dev))
4204 return 0;
4207 return 1;
4211 * ata_dev_xfermask - Compute supported xfermask of the given device
4212 * @dev: Device to compute xfermask for
4214 * Compute supported xfermask of @dev and store it in
4215 * dev->*_mask. This function is responsible for applying all
4216 * known limits including host controller limits, device
4217 * blacklist, etc...
4219 * LOCKING:
4220 * None.
4222 static void ata_dev_xfermask(struct ata_device *dev)
4224 struct ata_link *link = dev->link;
4225 struct ata_port *ap = link->ap;
4226 struct ata_host *host = ap->host;
4227 unsigned long xfer_mask;
4229 /* controller modes available */
4230 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4231 ap->mwdma_mask, ap->udma_mask);
4233 /* drive modes available */
4234 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4235 dev->mwdma_mask, dev->udma_mask);
4236 xfer_mask &= ata_id_xfermask(dev->id);
4239 * CFA Advanced TrueIDE timings are not allowed on a shared
4240 * cable
4242 if (ata_dev_pair(dev)) {
4243 /* No PIO5 or PIO6 */
4244 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4245 /* No MWDMA3 or MWDMA 4 */
4246 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4249 if (ata_dma_blacklisted(dev)) {
4250 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4251 ata_dev_printk(dev, KERN_WARNING,
4252 "device is on DMA blacklist, disabling DMA\n");
4255 if ((host->flags & ATA_HOST_SIMPLEX) &&
4256 host->simplex_claimed && host->simplex_claimed != ap) {
4257 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4258 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4259 "other device, disabling DMA\n");
4262 if (ap->flags & ATA_FLAG_NO_IORDY)
4263 xfer_mask &= ata_pio_mask_no_iordy(dev);
4265 if (ap->ops->mode_filter)
4266 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4268 /* Apply cable rule here. Don't apply it early because when
4269 * we handle hot plug the cable type can itself change.
4270 * Check this last so that we know if the transfer rate was
4271 * solely limited by the cable.
4272 * Unknown or 80 wire cables reported host side are checked
4273 * drive side as well. Cases where we know a 40wire cable
4274 * is used safely for 80 are not checked here.
4276 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4277 /* UDMA/44 or higher would be available */
4278 if (cable_is_40wire(ap)) {
4279 ata_dev_printk(dev, KERN_WARNING,
4280 "limited to UDMA/33 due to 40-wire cable\n");
4281 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4284 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4285 &dev->mwdma_mask, &dev->udma_mask);
4289 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4290 * @dev: Device to which command will be sent
4292 * Issue SET FEATURES - XFER MODE command to device @dev
4293 * on port @ap.
4295 * LOCKING:
4296 * PCI/etc. bus probe sem.
4298 * RETURNS:
4299 * 0 on success, AC_ERR_* mask otherwise.
4302 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4304 struct ata_taskfile tf;
4305 unsigned int err_mask;
4307 /* set up set-features taskfile */
4308 DPRINTK("set features - xfer mode\n");
4310 /* Some controllers and ATAPI devices show flaky interrupt
4311 * behavior after setting xfer mode. Use polling instead.
4313 ata_tf_init(dev, &tf);
4314 tf.command = ATA_CMD_SET_FEATURES;
4315 tf.feature = SETFEATURES_XFER;
4316 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4317 tf.protocol = ATA_PROT_NODATA;
4318 /* If we are using IORDY we must send the mode setting command */
4319 if (ata_pio_need_iordy(dev))
4320 tf.nsect = dev->xfer_mode;
4321 /* If the device has IORDY and the controller does not - turn it off */
4322 else if (ata_id_has_iordy(dev->id))
4323 tf.nsect = 0x01;
4324 else /* In the ancient relic department - skip all of this */
4325 return 0;
4327 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4329 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4330 return err_mask;
4333 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4334 * @dev: Device to which command will be sent
4335 * @enable: Whether to enable or disable the feature
4336 * @feature: The sector count represents the feature to set
4338 * Issue SET FEATURES - SATA FEATURES command to device @dev
4339 * on port @ap with sector count
4341 * LOCKING:
4342 * PCI/etc. bus probe sem.
4344 * RETURNS:
4345 * 0 on success, AC_ERR_* mask otherwise.
4347 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4348 u8 feature)
4350 struct ata_taskfile tf;
4351 unsigned int err_mask;
4353 /* set up set-features taskfile */
4354 DPRINTK("set features - SATA features\n");
4356 ata_tf_init(dev, &tf);
4357 tf.command = ATA_CMD_SET_FEATURES;
4358 tf.feature = enable;
4359 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4360 tf.protocol = ATA_PROT_NODATA;
4361 tf.nsect = feature;
4363 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4365 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4366 return err_mask;
4370 * ata_dev_init_params - Issue INIT DEV PARAMS command
4371 * @dev: Device to which command will be sent
4372 * @heads: Number of heads (taskfile parameter)
4373 * @sectors: Number of sectors (taskfile parameter)
4375 * LOCKING:
4376 * Kernel thread context (may sleep)
4378 * RETURNS:
4379 * 0 on success, AC_ERR_* mask otherwise.
4381 static unsigned int ata_dev_init_params(struct ata_device *dev,
4382 u16 heads, u16 sectors)
4384 struct ata_taskfile tf;
4385 unsigned int err_mask;
4387 /* Number of sectors per track 1-255. Number of heads 1-16 */
4388 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4389 return AC_ERR_INVALID;
4391 /* set up init dev params taskfile */
4392 DPRINTK("init dev params \n");
4394 ata_tf_init(dev, &tf);
4395 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4396 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4397 tf.protocol = ATA_PROT_NODATA;
4398 tf.nsect = sectors;
4399 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4401 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4402 /* A clean abort indicates an original or just out of spec drive
4403 and we should continue as we issue the setup based on the
4404 drive reported working geometry */
4405 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4406 err_mask = 0;
4408 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4409 return err_mask;
4413 * ata_sg_clean - Unmap DMA memory associated with command
4414 * @qc: Command containing DMA memory to be released
4416 * Unmap all mapped DMA memory associated with this command.
4418 * LOCKING:
4419 * spin_lock_irqsave(host lock)
4421 void ata_sg_clean(struct ata_queued_cmd *qc)
4423 struct ata_port *ap = qc->ap;
4424 struct scatterlist *sg = qc->sg;
4425 int dir = qc->dma_dir;
4427 WARN_ON(sg == NULL);
4429 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4431 if (qc->n_elem)
4432 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4434 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4435 qc->sg = NULL;
4439 * atapi_check_dma - Check whether ATAPI DMA can be supported
4440 * @qc: Metadata associated with taskfile to check
4442 * Allow low-level driver to filter ATA PACKET commands, returning
4443 * a status indicating whether or not it is OK to use DMA for the
4444 * supplied PACKET command.
4446 * LOCKING:
4447 * spin_lock_irqsave(host lock)
4449 * RETURNS: 0 when ATAPI DMA can be used
4450 * nonzero otherwise
4452 int atapi_check_dma(struct ata_queued_cmd *qc)
4454 struct ata_port *ap = qc->ap;
4456 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4457 * few ATAPI devices choke on such DMA requests.
4459 if (unlikely(qc->nbytes & 15))
4460 return 1;
4462 if (ap->ops->check_atapi_dma)
4463 return ap->ops->check_atapi_dma(qc);
4465 return 0;
4469 * ata_std_qc_defer - Check whether a qc needs to be deferred
4470 * @qc: ATA command in question
4472 * Non-NCQ commands cannot run with any other command, NCQ or
4473 * not. As upper layer only knows the queue depth, we are
4474 * responsible for maintaining exclusion. This function checks
4475 * whether a new command @qc can be issued.
4477 * LOCKING:
4478 * spin_lock_irqsave(host lock)
4480 * RETURNS:
4481 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4483 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4485 struct ata_link *link = qc->dev->link;
4487 if (qc->tf.protocol == ATA_PROT_NCQ) {
4488 if (!ata_tag_valid(link->active_tag))
4489 return 0;
4490 } else {
4491 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4492 return 0;
4495 return ATA_DEFER_LINK;
4498 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4501 * ata_sg_init - Associate command with scatter-gather table.
4502 * @qc: Command to be associated
4503 * @sg: Scatter-gather table.
4504 * @n_elem: Number of elements in s/g table.
4506 * Initialize the data-related elements of queued_cmd @qc
4507 * to point to a scatter-gather table @sg, containing @n_elem
4508 * elements.
4510 * LOCKING:
4511 * spin_lock_irqsave(host lock)
4513 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4514 unsigned int n_elem)
4516 qc->sg = sg;
4517 qc->n_elem = n_elem;
4518 qc->cursg = qc->sg;
4522 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4523 * @qc: Command with scatter-gather table to be mapped.
4525 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4527 * LOCKING:
4528 * spin_lock_irqsave(host lock)
4530 * RETURNS:
4531 * Zero on success, negative on error.
4534 static int ata_sg_setup(struct ata_queued_cmd *qc)
4536 struct ata_port *ap = qc->ap;
4537 unsigned int n_elem;
4539 VPRINTK("ENTER, ata%u\n", ap->print_id);
4541 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4542 if (n_elem < 1)
4543 return -1;
4545 DPRINTK("%d sg elements mapped\n", n_elem);
4547 qc->n_elem = n_elem;
4548 qc->flags |= ATA_QCFLAG_DMAMAP;
4550 return 0;
4554 * swap_buf_le16 - swap halves of 16-bit words in place
4555 * @buf: Buffer to swap
4556 * @buf_words: Number of 16-bit words in buffer.
4558 * Swap halves of 16-bit words if needed to convert from
4559 * little-endian byte order to native cpu byte order, or
4560 * vice-versa.
4562 * LOCKING:
4563 * Inherited from caller.
4565 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4567 #ifdef __BIG_ENDIAN
4568 unsigned int i;
4570 for (i = 0; i < buf_words; i++)
4571 buf[i] = le16_to_cpu(buf[i]);
4572 #endif /* __BIG_ENDIAN */
4576 * ata_qc_new - Request an available ATA command, for queueing
4577 * @ap: Port associated with device @dev
4578 * @dev: Device from whom we request an available command structure
4580 * LOCKING:
4581 * None.
4584 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4586 struct ata_queued_cmd *qc = NULL;
4587 unsigned int i;
4589 /* no command while frozen */
4590 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4591 return NULL;
4593 /* the last tag is reserved for internal command. */
4594 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4595 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4596 qc = __ata_qc_from_tag(ap, i);
4597 break;
4600 if (qc)
4601 qc->tag = i;
4603 return qc;
4607 * ata_qc_new_init - Request an available ATA command, and initialize it
4608 * @dev: Device from whom we request an available command structure
4610 * LOCKING:
4611 * None.
4614 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4616 struct ata_port *ap = dev->link->ap;
4617 struct ata_queued_cmd *qc;
4619 qc = ata_qc_new(ap);
4620 if (qc) {
4621 qc->scsicmd = NULL;
4622 qc->ap = ap;
4623 qc->dev = dev;
4625 ata_qc_reinit(qc);
4628 return qc;
4632 * ata_qc_free - free unused ata_queued_cmd
4633 * @qc: Command to complete
4635 * Designed to free unused ata_queued_cmd object
4636 * in case something prevents using it.
4638 * LOCKING:
4639 * spin_lock_irqsave(host lock)
4641 void ata_qc_free(struct ata_queued_cmd *qc)
4643 struct ata_port *ap = qc->ap;
4644 unsigned int tag;
4646 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4648 qc->flags = 0;
4649 tag = qc->tag;
4650 if (likely(ata_tag_valid(tag))) {
4651 qc->tag = ATA_TAG_POISON;
4652 clear_bit(tag, &ap->qc_allocated);
4656 void __ata_qc_complete(struct ata_queued_cmd *qc)
4658 struct ata_port *ap = qc->ap;
4659 struct ata_link *link = qc->dev->link;
4661 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4662 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4664 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4665 ata_sg_clean(qc);
4667 /* command should be marked inactive atomically with qc completion */
4668 if (qc->tf.protocol == ATA_PROT_NCQ) {
4669 link->sactive &= ~(1 << qc->tag);
4670 if (!link->sactive)
4671 ap->nr_active_links--;
4672 } else {
4673 link->active_tag = ATA_TAG_POISON;
4674 ap->nr_active_links--;
4677 /* clear exclusive status */
4678 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4679 ap->excl_link == link))
4680 ap->excl_link = NULL;
4682 /* atapi: mark qc as inactive to prevent the interrupt handler
4683 * from completing the command twice later, before the error handler
4684 * is called. (when rc != 0 and atapi request sense is needed)
4686 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4687 ap->qc_active &= ~(1 << qc->tag);
4689 /* call completion callback */
4690 qc->complete_fn(qc);
4693 static void fill_result_tf(struct ata_queued_cmd *qc)
4695 struct ata_port *ap = qc->ap;
4697 qc->result_tf.flags = qc->tf.flags;
4698 ap->ops->qc_fill_rtf(qc);
4701 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4703 struct ata_device *dev = qc->dev;
4705 if (ata_is_nodata(qc->tf.protocol))
4706 return;
4708 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4709 return;
4711 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4715 * ata_qc_complete - Complete an active ATA command
4716 * @qc: Command to complete
4717 * @err_mask: ATA Status register contents
4719 * Indicate to the mid and upper layers that an ATA
4720 * command has completed, with either an ok or not-ok status.
4722 * LOCKING:
4723 * spin_lock_irqsave(host lock)
4725 void ata_qc_complete(struct ata_queued_cmd *qc)
4727 struct ata_port *ap = qc->ap;
4729 /* XXX: New EH and old EH use different mechanisms to
4730 * synchronize EH with regular execution path.
4732 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4733 * Normal execution path is responsible for not accessing a
4734 * failed qc. libata core enforces the rule by returning NULL
4735 * from ata_qc_from_tag() for failed qcs.
4737 * Old EH depends on ata_qc_complete() nullifying completion
4738 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4739 * not synchronize with interrupt handler. Only PIO task is
4740 * taken care of.
4742 if (ap->ops->error_handler) {
4743 struct ata_device *dev = qc->dev;
4744 struct ata_eh_info *ehi = &dev->link->eh_info;
4746 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4748 if (unlikely(qc->err_mask))
4749 qc->flags |= ATA_QCFLAG_FAILED;
4752 * Finish internal commands without any further processing
4753 * and always with the result TF filled.
4755 if (unlikely(ata_tag_internal(qc->tag))) {
4756 fill_result_tf(qc);
4757 __ata_qc_complete(qc);
4758 return;
4762 * Non-internal qc has failed. Fill the result TF and
4763 * summon EH.
4765 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4766 fill_result_tf(qc);
4767 ata_qc_schedule_eh(qc);
4768 return;
4771 /* read result TF if requested */
4772 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4773 fill_result_tf(qc);
4775 /* Some commands need post-processing after successful
4776 * completion.
4778 switch (qc->tf.command) {
4779 case ATA_CMD_SET_FEATURES:
4780 if (qc->tf.feature != SETFEATURES_WC_ON &&
4781 qc->tf.feature != SETFEATURES_WC_OFF)
4782 break;
4783 /* fall through */
4784 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4785 case ATA_CMD_SET_MULTI: /* multi_count changed */
4786 /* revalidate device */
4787 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4788 ata_port_schedule_eh(ap);
4789 break;
4791 case ATA_CMD_SLEEP:
4792 dev->flags |= ATA_DFLAG_SLEEPING;
4793 break;
4796 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4797 ata_verify_xfer(qc);
4799 __ata_qc_complete(qc);
4800 } else {
4801 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4802 return;
4804 /* read result TF if failed or requested */
4805 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4806 fill_result_tf(qc);
4808 __ata_qc_complete(qc);
4813 * ata_qc_complete_multiple - Complete multiple qcs successfully
4814 * @ap: port in question
4815 * @qc_active: new qc_active mask
4817 * Complete in-flight commands. This functions is meant to be
4818 * called from low-level driver's interrupt routine to complete
4819 * requests normally. ap->qc_active and @qc_active is compared
4820 * and commands are completed accordingly.
4822 * LOCKING:
4823 * spin_lock_irqsave(host lock)
4825 * RETURNS:
4826 * Number of completed commands on success, -errno otherwise.
4828 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4830 int nr_done = 0;
4831 u32 done_mask;
4832 int i;
4834 done_mask = ap->qc_active ^ qc_active;
4836 if (unlikely(done_mask & qc_active)) {
4837 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4838 "(%08x->%08x)\n", ap->qc_active, qc_active);
4839 return -EINVAL;
4842 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4843 struct ata_queued_cmd *qc;
4845 if (!(done_mask & (1 << i)))
4846 continue;
4848 if ((qc = ata_qc_from_tag(ap, i))) {
4849 ata_qc_complete(qc);
4850 nr_done++;
4854 return nr_done;
4858 * ata_qc_issue - issue taskfile to device
4859 * @qc: command to issue to device
4861 * Prepare an ATA command to submission to device.
4862 * This includes mapping the data into a DMA-able
4863 * area, filling in the S/G table, and finally
4864 * writing the taskfile to hardware, starting the command.
4866 * LOCKING:
4867 * spin_lock_irqsave(host lock)
4869 void ata_qc_issue(struct ata_queued_cmd *qc)
4871 struct ata_port *ap = qc->ap;
4872 struct ata_link *link = qc->dev->link;
4873 u8 prot = qc->tf.protocol;
4875 /* Make sure only one non-NCQ command is outstanding. The
4876 * check is skipped for old EH because it reuses active qc to
4877 * request ATAPI sense.
4879 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4881 if (ata_is_ncq(prot)) {
4882 WARN_ON(link->sactive & (1 << qc->tag));
4884 if (!link->sactive)
4885 ap->nr_active_links++;
4886 link->sactive |= 1 << qc->tag;
4887 } else {
4888 WARN_ON(link->sactive);
4890 ap->nr_active_links++;
4891 link->active_tag = qc->tag;
4894 qc->flags |= ATA_QCFLAG_ACTIVE;
4895 ap->qc_active |= 1 << qc->tag;
4897 /* We guarantee to LLDs that they will have at least one
4898 * non-zero sg if the command is a data command.
4900 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
4902 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4903 (ap->flags & ATA_FLAG_PIO_DMA)))
4904 if (ata_sg_setup(qc))
4905 goto sg_err;
4907 /* if device is sleeping, schedule reset and abort the link */
4908 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4909 link->eh_info.action |= ATA_EH_RESET;
4910 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4911 ata_link_abort(link);
4912 return;
4915 ap->ops->qc_prep(qc);
4917 qc->err_mask |= ap->ops->qc_issue(qc);
4918 if (unlikely(qc->err_mask))
4919 goto err;
4920 return;
4922 sg_err:
4923 qc->err_mask |= AC_ERR_SYSTEM;
4924 err:
4925 ata_qc_complete(qc);
4929 * sata_scr_valid - test whether SCRs are accessible
4930 * @link: ATA link to test SCR accessibility for
4932 * Test whether SCRs are accessible for @link.
4934 * LOCKING:
4935 * None.
4937 * RETURNS:
4938 * 1 if SCRs are accessible, 0 otherwise.
4940 int sata_scr_valid(struct ata_link *link)
4942 struct ata_port *ap = link->ap;
4944 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
4948 * sata_scr_read - read SCR register of the specified port
4949 * @link: ATA link to read SCR for
4950 * @reg: SCR to read
4951 * @val: Place to store read value
4953 * Read SCR register @reg of @link into *@val. This function is
4954 * guaranteed to succeed if @link is ap->link, the cable type of
4955 * the port is SATA and the port implements ->scr_read.
4957 * LOCKING:
4958 * None if @link is ap->link. Kernel thread context otherwise.
4960 * RETURNS:
4961 * 0 on success, negative errno on failure.
4963 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
4965 if (ata_is_host_link(link)) {
4966 struct ata_port *ap = link->ap;
4968 if (sata_scr_valid(link))
4969 return ap->ops->scr_read(ap, reg, val);
4970 return -EOPNOTSUPP;
4973 return sata_pmp_scr_read(link, reg, val);
4977 * sata_scr_write - write SCR register of the specified port
4978 * @link: ATA link to write SCR for
4979 * @reg: SCR to write
4980 * @val: value to write
4982 * Write @val to SCR register @reg of @link. This function is
4983 * guaranteed to succeed if @link is ap->link, the cable type of
4984 * the port is SATA and the port implements ->scr_read.
4986 * LOCKING:
4987 * None if @link is ap->link. Kernel thread context otherwise.
4989 * RETURNS:
4990 * 0 on success, negative errno on failure.
4992 int sata_scr_write(struct ata_link *link, int reg, u32 val)
4994 if (ata_is_host_link(link)) {
4995 struct ata_port *ap = link->ap;
4997 if (sata_scr_valid(link))
4998 return ap->ops->scr_write(ap, reg, val);
4999 return -EOPNOTSUPP;
5002 return sata_pmp_scr_write(link, reg, val);
5006 * sata_scr_write_flush - write SCR register of the specified port and flush
5007 * @link: ATA link to write SCR for
5008 * @reg: SCR to write
5009 * @val: value to write
5011 * This function is identical to sata_scr_write() except that this
5012 * function performs flush after writing to the register.
5014 * LOCKING:
5015 * None if @link is ap->link. Kernel thread context otherwise.
5017 * RETURNS:
5018 * 0 on success, negative errno on failure.
5020 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5022 if (ata_is_host_link(link)) {
5023 struct ata_port *ap = link->ap;
5024 int rc;
5026 if (sata_scr_valid(link)) {
5027 rc = ap->ops->scr_write(ap, reg, val);
5028 if (rc == 0)
5029 rc = ap->ops->scr_read(ap, reg, &val);
5030 return rc;
5032 return -EOPNOTSUPP;
5035 return sata_pmp_scr_write(link, reg, val);
5039 * ata_link_online - test whether the given link is online
5040 * @link: ATA link to test
5042 * Test whether @link is online. Note that this function returns
5043 * 0 if online status of @link cannot be obtained, so
5044 * ata_link_online(link) != !ata_link_offline(link).
5046 * LOCKING:
5047 * None.
5049 * RETURNS:
5050 * 1 if the port online status is available and online.
5052 int ata_link_online(struct ata_link *link)
5054 u32 sstatus;
5056 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5057 (sstatus & 0xf) == 0x3)
5058 return 1;
5059 return 0;
5063 * ata_link_offline - test whether the given link is offline
5064 * @link: ATA link to test
5066 * Test whether @link is offline. Note that this function
5067 * returns 0 if offline status of @link cannot be obtained, so
5068 * ata_link_online(link) != !ata_link_offline(link).
5070 * LOCKING:
5071 * None.
5073 * RETURNS:
5074 * 1 if the port offline status is available and offline.
5076 int ata_link_offline(struct ata_link *link)
5078 u32 sstatus;
5080 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5081 (sstatus & 0xf) != 0x3)
5082 return 1;
5083 return 0;
5086 #ifdef CONFIG_PM
5087 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5088 unsigned int action, unsigned int ehi_flags,
5089 int wait)
5091 unsigned long flags;
5092 int i, rc;
5094 for (i = 0; i < host->n_ports; i++) {
5095 struct ata_port *ap = host->ports[i];
5096 struct ata_link *link;
5098 /* Previous resume operation might still be in
5099 * progress. Wait for PM_PENDING to clear.
5101 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5102 ata_port_wait_eh(ap);
5103 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5106 /* request PM ops to EH */
5107 spin_lock_irqsave(ap->lock, flags);
5109 ap->pm_mesg = mesg;
5110 if (wait) {
5111 rc = 0;
5112 ap->pm_result = &rc;
5115 ap->pflags |= ATA_PFLAG_PM_PENDING;
5116 __ata_port_for_each_link(link, ap) {
5117 link->eh_info.action |= action;
5118 link->eh_info.flags |= ehi_flags;
5121 ata_port_schedule_eh(ap);
5123 spin_unlock_irqrestore(ap->lock, flags);
5125 /* wait and check result */
5126 if (wait) {
5127 ata_port_wait_eh(ap);
5128 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5129 if (rc)
5130 return rc;
5134 return 0;
5138 * ata_host_suspend - suspend host
5139 * @host: host to suspend
5140 * @mesg: PM message
5142 * Suspend @host. Actual operation is performed by EH. This
5143 * function requests EH to perform PM operations and waits for EH
5144 * to finish.
5146 * LOCKING:
5147 * Kernel thread context (may sleep).
5149 * RETURNS:
5150 * 0 on success, -errno on failure.
5152 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5154 int rc;
5157 * disable link pm on all ports before requesting
5158 * any pm activity
5160 ata_lpm_enable(host);
5162 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5163 if (rc == 0)
5164 host->dev->power.power_state = mesg;
5165 return rc;
5169 * ata_host_resume - resume host
5170 * @host: host to resume
5172 * Resume @host. Actual operation is performed by EH. This
5173 * function requests EH to perform PM operations and returns.
5174 * Note that all resume operations are performed parallely.
5176 * LOCKING:
5177 * Kernel thread context (may sleep).
5179 void ata_host_resume(struct ata_host *host)
5181 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5182 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5183 host->dev->power.power_state = PMSG_ON;
5185 /* reenable link pm */
5186 ata_lpm_disable(host);
5188 #endif
5191 * ata_port_start - Set port up for dma.
5192 * @ap: Port to initialize
5194 * Called just after data structures for each port are
5195 * initialized. Allocates space for PRD table.
5197 * May be used as the port_start() entry in ata_port_operations.
5199 * LOCKING:
5200 * Inherited from caller.
5202 int ata_port_start(struct ata_port *ap)
5204 struct device *dev = ap->dev;
5206 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5207 GFP_KERNEL);
5208 if (!ap->prd)
5209 return -ENOMEM;
5211 return 0;
5215 * ata_dev_init - Initialize an ata_device structure
5216 * @dev: Device structure to initialize
5218 * Initialize @dev in preparation for probing.
5220 * LOCKING:
5221 * Inherited from caller.
5223 void ata_dev_init(struct ata_device *dev)
5225 struct ata_link *link = dev->link;
5226 struct ata_port *ap = link->ap;
5227 unsigned long flags;
5229 /* SATA spd limit is bound to the first device */
5230 link->sata_spd_limit = link->hw_sata_spd_limit;
5231 link->sata_spd = 0;
5233 /* High bits of dev->flags are used to record warm plug
5234 * requests which occur asynchronously. Synchronize using
5235 * host lock.
5237 spin_lock_irqsave(ap->lock, flags);
5238 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5239 dev->horkage = 0;
5240 spin_unlock_irqrestore(ap->lock, flags);
5242 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5243 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5244 dev->pio_mask = UINT_MAX;
5245 dev->mwdma_mask = UINT_MAX;
5246 dev->udma_mask = UINT_MAX;
5250 * ata_link_init - Initialize an ata_link structure
5251 * @ap: ATA port link is attached to
5252 * @link: Link structure to initialize
5253 * @pmp: Port multiplier port number
5255 * Initialize @link.
5257 * LOCKING:
5258 * Kernel thread context (may sleep)
5260 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5262 int i;
5264 /* clear everything except for devices */
5265 memset(link, 0, offsetof(struct ata_link, device[0]));
5267 link->ap = ap;
5268 link->pmp = pmp;
5269 link->active_tag = ATA_TAG_POISON;
5270 link->hw_sata_spd_limit = UINT_MAX;
5272 /* can't use iterator, ap isn't initialized yet */
5273 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5274 struct ata_device *dev = &link->device[i];
5276 dev->link = link;
5277 dev->devno = dev - link->device;
5278 ata_dev_init(dev);
5283 * sata_link_init_spd - Initialize link->sata_spd_limit
5284 * @link: Link to configure sata_spd_limit for
5286 * Initialize @link->[hw_]sata_spd_limit to the currently
5287 * configured value.
5289 * LOCKING:
5290 * Kernel thread context (may sleep).
5292 * RETURNS:
5293 * 0 on success, -errno on failure.
5295 int sata_link_init_spd(struct ata_link *link)
5297 u8 spd;
5298 int rc;
5300 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5301 if (rc)
5302 return rc;
5304 spd = (link->saved_scontrol >> 4) & 0xf;
5305 if (spd)
5306 link->hw_sata_spd_limit &= (1 << spd) - 1;
5308 ata_force_link_limits(link);
5310 link->sata_spd_limit = link->hw_sata_spd_limit;
5312 return 0;
5316 * ata_port_alloc - allocate and initialize basic ATA port resources
5317 * @host: ATA host this allocated port belongs to
5319 * Allocate and initialize basic ATA port resources.
5321 * RETURNS:
5322 * Allocate ATA port on success, NULL on failure.
5324 * LOCKING:
5325 * Inherited from calling layer (may sleep).
5327 struct ata_port *ata_port_alloc(struct ata_host *host)
5329 struct ata_port *ap;
5331 DPRINTK("ENTER\n");
5333 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5334 if (!ap)
5335 return NULL;
5337 ap->pflags |= ATA_PFLAG_INITIALIZING;
5338 ap->lock = &host->lock;
5339 ap->flags = ATA_FLAG_DISABLED;
5340 ap->print_id = -1;
5341 ap->ctl = ATA_DEVCTL_OBS;
5342 ap->host = host;
5343 ap->dev = host->dev;
5344 ap->last_ctl = 0xFF;
5346 #if defined(ATA_VERBOSE_DEBUG)
5347 /* turn on all debugging levels */
5348 ap->msg_enable = 0x00FF;
5349 #elif defined(ATA_DEBUG)
5350 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5351 #else
5352 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5353 #endif
5355 #ifdef CONFIG_ATA_SFF
5356 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5357 #else
5358 INIT_DELAYED_WORK(&ap->port_task, NULL);
5359 #endif
5360 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5361 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5362 INIT_LIST_HEAD(&ap->eh_done_q);
5363 init_waitqueue_head(&ap->eh_wait_q);
5364 init_timer_deferrable(&ap->fastdrain_timer);
5365 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5366 ap->fastdrain_timer.data = (unsigned long)ap;
5368 ap->cbl = ATA_CBL_NONE;
5370 ata_link_init(ap, &ap->link, 0);
5372 #ifdef ATA_IRQ_TRAP
5373 ap->stats.unhandled_irq = 1;
5374 ap->stats.idle_irq = 1;
5375 #endif
5376 return ap;
5379 static void ata_host_release(struct device *gendev, void *res)
5381 struct ata_host *host = dev_get_drvdata(gendev);
5382 int i;
5384 for (i = 0; i < host->n_ports; i++) {
5385 struct ata_port *ap = host->ports[i];
5387 if (!ap)
5388 continue;
5390 if (ap->scsi_host)
5391 scsi_host_put(ap->scsi_host);
5393 kfree(ap->pmp_link);
5394 kfree(ap);
5395 host->ports[i] = NULL;
5398 dev_set_drvdata(gendev, NULL);
5402 * ata_host_alloc - allocate and init basic ATA host resources
5403 * @dev: generic device this host is associated with
5404 * @max_ports: maximum number of ATA ports associated with this host
5406 * Allocate and initialize basic ATA host resources. LLD calls
5407 * this function to allocate a host, initializes it fully and
5408 * attaches it using ata_host_register().
5410 * @max_ports ports are allocated and host->n_ports is
5411 * initialized to @max_ports. The caller is allowed to decrease
5412 * host->n_ports before calling ata_host_register(). The unused
5413 * ports will be automatically freed on registration.
5415 * RETURNS:
5416 * Allocate ATA host on success, NULL on failure.
5418 * LOCKING:
5419 * Inherited from calling layer (may sleep).
5421 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5423 struct ata_host *host;
5424 size_t sz;
5425 int i;
5427 DPRINTK("ENTER\n");
5429 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5430 return NULL;
5432 /* alloc a container for our list of ATA ports (buses) */
5433 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5434 /* alloc a container for our list of ATA ports (buses) */
5435 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5436 if (!host)
5437 goto err_out;
5439 devres_add(dev, host);
5440 dev_set_drvdata(dev, host);
5442 spin_lock_init(&host->lock);
5443 host->dev = dev;
5444 host->n_ports = max_ports;
5446 /* allocate ports bound to this host */
5447 for (i = 0; i < max_ports; i++) {
5448 struct ata_port *ap;
5450 ap = ata_port_alloc(host);
5451 if (!ap)
5452 goto err_out;
5454 ap->port_no = i;
5455 host->ports[i] = ap;
5458 devres_remove_group(dev, NULL);
5459 return host;
5461 err_out:
5462 devres_release_group(dev, NULL);
5463 return NULL;
5467 * ata_host_alloc_pinfo - alloc host and init with port_info array
5468 * @dev: generic device this host is associated with
5469 * @ppi: array of ATA port_info to initialize host with
5470 * @n_ports: number of ATA ports attached to this host
5472 * Allocate ATA host and initialize with info from @ppi. If NULL
5473 * terminated, @ppi may contain fewer entries than @n_ports. The
5474 * last entry will be used for the remaining ports.
5476 * RETURNS:
5477 * Allocate ATA host on success, NULL on failure.
5479 * LOCKING:
5480 * Inherited from calling layer (may sleep).
5482 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5483 const struct ata_port_info * const * ppi,
5484 int n_ports)
5486 const struct ata_port_info *pi;
5487 struct ata_host *host;
5488 int i, j;
5490 host = ata_host_alloc(dev, n_ports);
5491 if (!host)
5492 return NULL;
5494 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5495 struct ata_port *ap = host->ports[i];
5497 if (ppi[j])
5498 pi = ppi[j++];
5500 ap->pio_mask = pi->pio_mask;
5501 ap->mwdma_mask = pi->mwdma_mask;
5502 ap->udma_mask = pi->udma_mask;
5503 ap->flags |= pi->flags;
5504 ap->link.flags |= pi->link_flags;
5505 ap->ops = pi->port_ops;
5507 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5508 host->ops = pi->port_ops;
5511 return host;
5514 static void ata_host_stop(struct device *gendev, void *res)
5516 struct ata_host *host = dev_get_drvdata(gendev);
5517 int i;
5519 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5521 for (i = 0; i < host->n_ports; i++) {
5522 struct ata_port *ap = host->ports[i];
5524 if (ap->ops->port_stop)
5525 ap->ops->port_stop(ap);
5528 if (host->ops->host_stop)
5529 host->ops->host_stop(host);
5533 * ata_finalize_port_ops - finalize ata_port_operations
5534 * @ops: ata_port_operations to finalize
5536 * An ata_port_operations can inherit from another ops and that
5537 * ops can again inherit from another. This can go on as many
5538 * times as necessary as long as there is no loop in the
5539 * inheritance chain.
5541 * Ops tables are finalized when the host is started. NULL or
5542 * unspecified entries are inherited from the closet ancestor
5543 * which has the method and the entry is populated with it.
5544 * After finalization, the ops table directly points to all the
5545 * methods and ->inherits is no longer necessary and cleared.
5547 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5549 * LOCKING:
5550 * None.
5552 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5554 static DEFINE_SPINLOCK(lock);
5555 const struct ata_port_operations *cur;
5556 void **begin = (void **)ops;
5557 void **end = (void **)&ops->inherits;
5558 void **pp;
5560 if (!ops || !ops->inherits)
5561 return;
5563 spin_lock(&lock);
5565 for (cur = ops->inherits; cur; cur = cur->inherits) {
5566 void **inherit = (void **)cur;
5568 for (pp = begin; pp < end; pp++, inherit++)
5569 if (!*pp)
5570 *pp = *inherit;
5573 for (pp = begin; pp < end; pp++)
5574 if (IS_ERR(*pp))
5575 *pp = NULL;
5577 ops->inherits = NULL;
5579 spin_unlock(&lock);
5583 * ata_host_start - start and freeze ports of an ATA host
5584 * @host: ATA host to start ports for
5586 * Start and then freeze ports of @host. Started status is
5587 * recorded in host->flags, so this function can be called
5588 * multiple times. Ports are guaranteed to get started only
5589 * once. If host->ops isn't initialized yet, its set to the
5590 * first non-dummy port ops.
5592 * LOCKING:
5593 * Inherited from calling layer (may sleep).
5595 * RETURNS:
5596 * 0 if all ports are started successfully, -errno otherwise.
5598 int ata_host_start(struct ata_host *host)
5600 int have_stop = 0;
5601 void *start_dr = NULL;
5602 int i, rc;
5604 if (host->flags & ATA_HOST_STARTED)
5605 return 0;
5607 ata_finalize_port_ops(host->ops);
5609 for (i = 0; i < host->n_ports; i++) {
5610 struct ata_port *ap = host->ports[i];
5612 ata_finalize_port_ops(ap->ops);
5614 if (!host->ops && !ata_port_is_dummy(ap))
5615 host->ops = ap->ops;
5617 if (ap->ops->port_stop)
5618 have_stop = 1;
5621 if (host->ops->host_stop)
5622 have_stop = 1;
5624 if (have_stop) {
5625 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5626 if (!start_dr)
5627 return -ENOMEM;
5630 for (i = 0; i < host->n_ports; i++) {
5631 struct ata_port *ap = host->ports[i];
5633 if (ap->ops->port_start) {
5634 rc = ap->ops->port_start(ap);
5635 if (rc) {
5636 if (rc != -ENODEV)
5637 dev_printk(KERN_ERR, host->dev,
5638 "failed to start port %d "
5639 "(errno=%d)\n", i, rc);
5640 goto err_out;
5643 ata_eh_freeze_port(ap);
5646 if (start_dr)
5647 devres_add(host->dev, start_dr);
5648 host->flags |= ATA_HOST_STARTED;
5649 return 0;
5651 err_out:
5652 while (--i >= 0) {
5653 struct ata_port *ap = host->ports[i];
5655 if (ap->ops->port_stop)
5656 ap->ops->port_stop(ap);
5658 devres_free(start_dr);
5659 return rc;
5663 * ata_sas_host_init - Initialize a host struct
5664 * @host: host to initialize
5665 * @dev: device host is attached to
5666 * @flags: host flags
5667 * @ops: port_ops
5669 * LOCKING:
5670 * PCI/etc. bus probe sem.
5673 /* KILLME - the only user left is ipr */
5674 void ata_host_init(struct ata_host *host, struct device *dev,
5675 unsigned long flags, struct ata_port_operations *ops)
5677 spin_lock_init(&host->lock);
5678 host->dev = dev;
5679 host->flags = flags;
5680 host->ops = ops;
5684 * ata_host_register - register initialized ATA host
5685 * @host: ATA host to register
5686 * @sht: template for SCSI host
5688 * Register initialized ATA host. @host is allocated using
5689 * ata_host_alloc() and fully initialized by LLD. This function
5690 * starts ports, registers @host with ATA and SCSI layers and
5691 * probe registered devices.
5693 * LOCKING:
5694 * Inherited from calling layer (may sleep).
5696 * RETURNS:
5697 * 0 on success, -errno otherwise.
5699 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5701 int i, rc;
5703 /* host must have been started */
5704 if (!(host->flags & ATA_HOST_STARTED)) {
5705 dev_printk(KERN_ERR, host->dev,
5706 "BUG: trying to register unstarted host\n");
5707 WARN_ON(1);
5708 return -EINVAL;
5711 /* Blow away unused ports. This happens when LLD can't
5712 * determine the exact number of ports to allocate at
5713 * allocation time.
5715 for (i = host->n_ports; host->ports[i]; i++)
5716 kfree(host->ports[i]);
5718 /* give ports names and add SCSI hosts */
5719 for (i = 0; i < host->n_ports; i++)
5720 host->ports[i]->print_id = ata_print_id++;
5722 rc = ata_scsi_add_hosts(host, sht);
5723 if (rc)
5724 return rc;
5726 /* associate with ACPI nodes */
5727 ata_acpi_associate(host);
5729 /* set cable, sata_spd_limit and report */
5730 for (i = 0; i < host->n_ports; i++) {
5731 struct ata_port *ap = host->ports[i];
5732 unsigned long xfer_mask;
5734 /* set SATA cable type if still unset */
5735 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5736 ap->cbl = ATA_CBL_SATA;
5738 /* init sata_spd_limit to the current value */
5739 sata_link_init_spd(&ap->link);
5741 /* print per-port info to dmesg */
5742 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5743 ap->udma_mask);
5745 if (!ata_port_is_dummy(ap)) {
5746 ata_port_printk(ap, KERN_INFO,
5747 "%cATA max %s %s\n",
5748 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5749 ata_mode_string(xfer_mask),
5750 ap->link.eh_info.desc);
5751 ata_ehi_clear_desc(&ap->link.eh_info);
5752 } else
5753 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5756 /* perform each probe synchronously */
5757 DPRINTK("probe begin\n");
5758 for (i = 0; i < host->n_ports; i++) {
5759 struct ata_port *ap = host->ports[i];
5761 /* probe */
5762 if (ap->ops->error_handler) {
5763 struct ata_eh_info *ehi = &ap->link.eh_info;
5764 unsigned long flags;
5766 ata_port_probe(ap);
5768 /* kick EH for boot probing */
5769 spin_lock_irqsave(ap->lock, flags);
5771 ehi->probe_mask |= ATA_ALL_DEVICES;
5772 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5773 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5775 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5776 ap->pflags |= ATA_PFLAG_LOADING;
5777 ata_port_schedule_eh(ap);
5779 spin_unlock_irqrestore(ap->lock, flags);
5781 /* wait for EH to finish */
5782 ata_port_wait_eh(ap);
5783 } else {
5784 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5785 rc = ata_bus_probe(ap);
5786 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5788 if (rc) {
5789 /* FIXME: do something useful here?
5790 * Current libata behavior will
5791 * tear down everything when
5792 * the module is removed
5793 * or the h/w is unplugged.
5799 /* probes are done, now scan each port's disk(s) */
5800 DPRINTK("host probe begin\n");
5801 for (i = 0; i < host->n_ports; i++) {
5802 struct ata_port *ap = host->ports[i];
5804 ata_scsi_scan_host(ap, 1);
5807 return 0;
5811 * ata_host_activate - start host, request IRQ and register it
5812 * @host: target ATA host
5813 * @irq: IRQ to request
5814 * @irq_handler: irq_handler used when requesting IRQ
5815 * @irq_flags: irq_flags used when requesting IRQ
5816 * @sht: scsi_host_template to use when registering the host
5818 * After allocating an ATA host and initializing it, most libata
5819 * LLDs perform three steps to activate the host - start host,
5820 * request IRQ and register it. This helper takes necessasry
5821 * arguments and performs the three steps in one go.
5823 * An invalid IRQ skips the IRQ registration and expects the host to
5824 * have set polling mode on the port. In this case, @irq_handler
5825 * should be NULL.
5827 * LOCKING:
5828 * Inherited from calling layer (may sleep).
5830 * RETURNS:
5831 * 0 on success, -errno otherwise.
5833 int ata_host_activate(struct ata_host *host, int irq,
5834 irq_handler_t irq_handler, unsigned long irq_flags,
5835 struct scsi_host_template *sht)
5837 int i, rc;
5839 rc = ata_host_start(host);
5840 if (rc)
5841 return rc;
5843 /* Special case for polling mode */
5844 if (!irq) {
5845 WARN_ON(irq_handler);
5846 return ata_host_register(host, sht);
5849 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5850 dev_driver_string(host->dev), host);
5851 if (rc)
5852 return rc;
5854 for (i = 0; i < host->n_ports; i++)
5855 ata_port_desc(host->ports[i], "irq %d", irq);
5857 rc = ata_host_register(host, sht);
5858 /* if failed, just free the IRQ and leave ports alone */
5859 if (rc)
5860 devm_free_irq(host->dev, irq, host);
5862 return rc;
5866 * ata_port_detach - Detach ATA port in prepration of device removal
5867 * @ap: ATA port to be detached
5869 * Detach all ATA devices and the associated SCSI devices of @ap;
5870 * then, remove the associated SCSI host. @ap is guaranteed to
5871 * be quiescent on return from this function.
5873 * LOCKING:
5874 * Kernel thread context (may sleep).
5876 static void ata_port_detach(struct ata_port *ap)
5878 unsigned long flags;
5879 struct ata_link *link;
5880 struct ata_device *dev;
5882 if (!ap->ops->error_handler)
5883 goto skip_eh;
5885 /* tell EH we're leaving & flush EH */
5886 spin_lock_irqsave(ap->lock, flags);
5887 ap->pflags |= ATA_PFLAG_UNLOADING;
5888 spin_unlock_irqrestore(ap->lock, flags);
5890 ata_port_wait_eh(ap);
5892 /* EH is now guaranteed to see UNLOADING - EH context belongs
5893 * to us. Restore SControl and disable all existing devices.
5895 __ata_port_for_each_link(link, ap) {
5896 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol);
5897 ata_link_for_each_dev(dev, link)
5898 ata_dev_disable(dev);
5901 /* Final freeze & EH. All in-flight commands are aborted. EH
5902 * will be skipped and retrials will be terminated with bad
5903 * target.
5905 spin_lock_irqsave(ap->lock, flags);
5906 ata_port_freeze(ap); /* won't be thawed */
5907 spin_unlock_irqrestore(ap->lock, flags);
5909 ata_port_wait_eh(ap);
5910 cancel_rearming_delayed_work(&ap->hotplug_task);
5912 skip_eh:
5913 /* remove the associated SCSI host */
5914 scsi_remove_host(ap->scsi_host);
5918 * ata_host_detach - Detach all ports of an ATA host
5919 * @host: Host to detach
5921 * Detach all ports of @host.
5923 * LOCKING:
5924 * Kernel thread context (may sleep).
5926 void ata_host_detach(struct ata_host *host)
5928 int i;
5930 for (i = 0; i < host->n_ports; i++)
5931 ata_port_detach(host->ports[i]);
5933 /* the host is dead now, dissociate ACPI */
5934 ata_acpi_dissociate(host);
5937 #ifdef CONFIG_PCI
5940 * ata_pci_remove_one - PCI layer callback for device removal
5941 * @pdev: PCI device that was removed
5943 * PCI layer indicates to libata via this hook that hot-unplug or
5944 * module unload event has occurred. Detach all ports. Resource
5945 * release is handled via devres.
5947 * LOCKING:
5948 * Inherited from PCI layer (may sleep).
5950 void ata_pci_remove_one(struct pci_dev *pdev)
5952 struct device *dev = &pdev->dev;
5953 struct ata_host *host = dev_get_drvdata(dev);
5955 ata_host_detach(host);
5958 /* move to PCI subsystem */
5959 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5961 unsigned long tmp = 0;
5963 switch (bits->width) {
5964 case 1: {
5965 u8 tmp8 = 0;
5966 pci_read_config_byte(pdev, bits->reg, &tmp8);
5967 tmp = tmp8;
5968 break;
5970 case 2: {
5971 u16 tmp16 = 0;
5972 pci_read_config_word(pdev, bits->reg, &tmp16);
5973 tmp = tmp16;
5974 break;
5976 case 4: {
5977 u32 tmp32 = 0;
5978 pci_read_config_dword(pdev, bits->reg, &tmp32);
5979 tmp = tmp32;
5980 break;
5983 default:
5984 return -EINVAL;
5987 tmp &= bits->mask;
5989 return (tmp == bits->val) ? 1 : 0;
5992 #ifdef CONFIG_PM
5993 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5995 pci_save_state(pdev);
5996 pci_disable_device(pdev);
5998 if (mesg.event & PM_EVENT_SLEEP)
5999 pci_set_power_state(pdev, PCI_D3hot);
6002 int ata_pci_device_do_resume(struct pci_dev *pdev)
6004 int rc;
6006 pci_set_power_state(pdev, PCI_D0);
6007 pci_restore_state(pdev);
6009 rc = pcim_enable_device(pdev);
6010 if (rc) {
6011 dev_printk(KERN_ERR, &pdev->dev,
6012 "failed to enable device after resume (%d)\n", rc);
6013 return rc;
6016 pci_set_master(pdev);
6017 return 0;
6020 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6022 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6023 int rc = 0;
6025 rc = ata_host_suspend(host, mesg);
6026 if (rc)
6027 return rc;
6029 ata_pci_device_do_suspend(pdev, mesg);
6031 return 0;
6034 int ata_pci_device_resume(struct pci_dev *pdev)
6036 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6037 int rc;
6039 rc = ata_pci_device_do_resume(pdev);
6040 if (rc == 0)
6041 ata_host_resume(host);
6042 return rc;
6044 #endif /* CONFIG_PM */
6046 #endif /* CONFIG_PCI */
6048 static int __init ata_parse_force_one(char **cur,
6049 struct ata_force_ent *force_ent,
6050 const char **reason)
6052 /* FIXME: Currently, there's no way to tag init const data and
6053 * using __initdata causes build failure on some versions of
6054 * gcc. Once __initdataconst is implemented, add const to the
6055 * following structure.
6057 static struct ata_force_param force_tbl[] __initdata = {
6058 { "40c", .cbl = ATA_CBL_PATA40 },
6059 { "80c", .cbl = ATA_CBL_PATA80 },
6060 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6061 { "unk", .cbl = ATA_CBL_PATA_UNK },
6062 { "ign", .cbl = ATA_CBL_PATA_IGN },
6063 { "sata", .cbl = ATA_CBL_SATA },
6064 { "1.5Gbps", .spd_limit = 1 },
6065 { "3.0Gbps", .spd_limit = 2 },
6066 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6067 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6068 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6069 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6070 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6071 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6072 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6073 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6074 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6075 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6076 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6077 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6078 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6079 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6080 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6081 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6082 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6083 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6084 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6085 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6086 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6087 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6088 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6089 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6090 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6091 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6092 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6093 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6094 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6095 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6096 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6097 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6098 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6099 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6100 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6101 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6102 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6103 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6104 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6106 char *start = *cur, *p = *cur;
6107 char *id, *val, *endp;
6108 const struct ata_force_param *match_fp = NULL;
6109 int nr_matches = 0, i;
6111 /* find where this param ends and update *cur */
6112 while (*p != '\0' && *p != ',')
6113 p++;
6115 if (*p == '\0')
6116 *cur = p;
6117 else
6118 *cur = p + 1;
6120 *p = '\0';
6122 /* parse */
6123 p = strchr(start, ':');
6124 if (!p) {
6125 val = strstrip(start);
6126 goto parse_val;
6128 *p = '\0';
6130 id = strstrip(start);
6131 val = strstrip(p + 1);
6133 /* parse id */
6134 p = strchr(id, '.');
6135 if (p) {
6136 *p++ = '\0';
6137 force_ent->device = simple_strtoul(p, &endp, 10);
6138 if (p == endp || *endp != '\0') {
6139 *reason = "invalid device";
6140 return -EINVAL;
6144 force_ent->port = simple_strtoul(id, &endp, 10);
6145 if (p == endp || *endp != '\0') {
6146 *reason = "invalid port/link";
6147 return -EINVAL;
6150 parse_val:
6151 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6152 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6153 const struct ata_force_param *fp = &force_tbl[i];
6155 if (strncasecmp(val, fp->name, strlen(val)))
6156 continue;
6158 nr_matches++;
6159 match_fp = fp;
6161 if (strcasecmp(val, fp->name) == 0) {
6162 nr_matches = 1;
6163 break;
6167 if (!nr_matches) {
6168 *reason = "unknown value";
6169 return -EINVAL;
6171 if (nr_matches > 1) {
6172 *reason = "ambigious value";
6173 return -EINVAL;
6176 force_ent->param = *match_fp;
6178 return 0;
6181 static void __init ata_parse_force_param(void)
6183 int idx = 0, size = 1;
6184 int last_port = -1, last_device = -1;
6185 char *p, *cur, *next;
6187 /* calculate maximum number of params and allocate force_tbl */
6188 for (p = ata_force_param_buf; *p; p++)
6189 if (*p == ',')
6190 size++;
6192 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6193 if (!ata_force_tbl) {
6194 printk(KERN_WARNING "ata: failed to extend force table, "
6195 "libata.force ignored\n");
6196 return;
6199 /* parse and populate the table */
6200 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6201 const char *reason = "";
6202 struct ata_force_ent te = { .port = -1, .device = -1 };
6204 next = cur;
6205 if (ata_parse_force_one(&next, &te, &reason)) {
6206 printk(KERN_WARNING "ata: failed to parse force "
6207 "parameter \"%s\" (%s)\n",
6208 cur, reason);
6209 continue;
6212 if (te.port == -1) {
6213 te.port = last_port;
6214 te.device = last_device;
6217 ata_force_tbl[idx++] = te;
6219 last_port = te.port;
6220 last_device = te.device;
6223 ata_force_tbl_size = idx;
6226 static int __init ata_init(void)
6228 ata_parse_force_param();
6230 ata_wq = create_workqueue("ata");
6231 if (!ata_wq)
6232 goto free_force_tbl;
6234 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6235 if (!ata_aux_wq)
6236 goto free_wq;
6238 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6239 return 0;
6241 free_wq:
6242 destroy_workqueue(ata_wq);
6243 free_force_tbl:
6244 kfree(ata_force_tbl);
6245 return -ENOMEM;
6248 static void __exit ata_exit(void)
6250 kfree(ata_force_tbl);
6251 destroy_workqueue(ata_wq);
6252 destroy_workqueue(ata_aux_wq);
6255 subsys_initcall(ata_init);
6256 module_exit(ata_exit);
6258 static unsigned long ratelimit_time;
6259 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6261 int ata_ratelimit(void)
6263 int rc;
6264 unsigned long flags;
6266 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6268 if (time_after(jiffies, ratelimit_time)) {
6269 rc = 1;
6270 ratelimit_time = jiffies + (HZ/5);
6271 } else
6272 rc = 0;
6274 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6276 return rc;
6280 * ata_wait_register - wait until register value changes
6281 * @reg: IO-mapped register
6282 * @mask: Mask to apply to read register value
6283 * @val: Wait condition
6284 * @interval: polling interval in milliseconds
6285 * @timeout: timeout in milliseconds
6287 * Waiting for some bits of register to change is a common
6288 * operation for ATA controllers. This function reads 32bit LE
6289 * IO-mapped register @reg and tests for the following condition.
6291 * (*@reg & mask) != val
6293 * If the condition is met, it returns; otherwise, the process is
6294 * repeated after @interval_msec until timeout.
6296 * LOCKING:
6297 * Kernel thread context (may sleep)
6299 * RETURNS:
6300 * The final register value.
6302 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6303 unsigned long interval, unsigned long timeout)
6305 unsigned long deadline;
6306 u32 tmp;
6308 tmp = ioread32(reg);
6310 /* Calculate timeout _after_ the first read to make sure
6311 * preceding writes reach the controller before starting to
6312 * eat away the timeout.
6314 deadline = ata_deadline(jiffies, timeout);
6316 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6317 msleep(interval);
6318 tmp = ioread32(reg);
6321 return tmp;
6325 * Dummy port_ops
6327 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6329 return AC_ERR_SYSTEM;
6332 static void ata_dummy_error_handler(struct ata_port *ap)
6334 /* truly dummy */
6337 struct ata_port_operations ata_dummy_port_ops = {
6338 .qc_prep = ata_noop_qc_prep,
6339 .qc_issue = ata_dummy_qc_issue,
6340 .error_handler = ata_dummy_error_handler,
6343 const struct ata_port_info ata_dummy_port_info = {
6344 .port_ops = &ata_dummy_port_ops,
6348 * libata is essentially a library of internal helper functions for
6349 * low-level ATA host controller drivers. As such, the API/ABI is
6350 * likely to change as new drivers are added and updated.
6351 * Do not depend on ABI/API stability.
6353 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6354 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6355 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6356 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6357 EXPORT_SYMBOL_GPL(sata_port_ops);
6358 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6359 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6360 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6361 EXPORT_SYMBOL_GPL(ata_host_init);
6362 EXPORT_SYMBOL_GPL(ata_host_alloc);
6363 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6364 EXPORT_SYMBOL_GPL(ata_host_start);
6365 EXPORT_SYMBOL_GPL(ata_host_register);
6366 EXPORT_SYMBOL_GPL(ata_host_activate);
6367 EXPORT_SYMBOL_GPL(ata_host_detach);
6368 EXPORT_SYMBOL_GPL(ata_sg_init);
6369 EXPORT_SYMBOL_GPL(ata_qc_complete);
6370 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6371 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6372 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6373 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6374 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6375 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6376 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6377 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6378 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6379 EXPORT_SYMBOL_GPL(ata_mode_string);
6380 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6381 EXPORT_SYMBOL_GPL(ata_port_start);
6382 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6383 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6384 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6385 EXPORT_SYMBOL_GPL(ata_port_probe);
6386 EXPORT_SYMBOL_GPL(ata_dev_disable);
6387 EXPORT_SYMBOL_GPL(sata_set_spd);
6388 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6389 EXPORT_SYMBOL_GPL(sata_link_debounce);
6390 EXPORT_SYMBOL_GPL(sata_link_resume);
6391 EXPORT_SYMBOL_GPL(ata_std_prereset);
6392 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6393 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6394 EXPORT_SYMBOL_GPL(ata_std_postreset);
6395 EXPORT_SYMBOL_GPL(ata_dev_classify);
6396 EXPORT_SYMBOL_GPL(ata_dev_pair);
6397 EXPORT_SYMBOL_GPL(ata_port_disable);
6398 EXPORT_SYMBOL_GPL(ata_ratelimit);
6399 EXPORT_SYMBOL_GPL(ata_wait_register);
6400 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6401 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6402 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6403 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6404 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6405 EXPORT_SYMBOL_GPL(sata_scr_valid);
6406 EXPORT_SYMBOL_GPL(sata_scr_read);
6407 EXPORT_SYMBOL_GPL(sata_scr_write);
6408 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6409 EXPORT_SYMBOL_GPL(ata_link_online);
6410 EXPORT_SYMBOL_GPL(ata_link_offline);
6411 #ifdef CONFIG_PM
6412 EXPORT_SYMBOL_GPL(ata_host_suspend);
6413 EXPORT_SYMBOL_GPL(ata_host_resume);
6414 #endif /* CONFIG_PM */
6415 EXPORT_SYMBOL_GPL(ata_id_string);
6416 EXPORT_SYMBOL_GPL(ata_id_c_string);
6417 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6418 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6420 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6421 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6422 EXPORT_SYMBOL_GPL(ata_timing_compute);
6423 EXPORT_SYMBOL_GPL(ata_timing_merge);
6424 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6426 #ifdef CONFIG_PCI
6427 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6428 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6429 #ifdef CONFIG_PM
6430 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6431 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6432 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6433 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6434 #endif /* CONFIG_PM */
6435 #endif /* CONFIG_PCI */
6437 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6438 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6439 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6440 EXPORT_SYMBOL_GPL(ata_port_desc);
6441 #ifdef CONFIG_PCI
6442 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6443 #endif /* CONFIG_PCI */
6444 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6445 EXPORT_SYMBOL_GPL(ata_link_abort);
6446 EXPORT_SYMBOL_GPL(ata_port_abort);
6447 EXPORT_SYMBOL_GPL(ata_port_freeze);
6448 EXPORT_SYMBOL_GPL(sata_async_notification);
6449 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6450 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6451 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6452 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6453 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6454 EXPORT_SYMBOL_GPL(ata_do_eh);
6455 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6457 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6458 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6459 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6460 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6461 EXPORT_SYMBOL_GPL(ata_cable_sata);