2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_host.h>
62 #include <linux/libata.h>
63 #include <asm/byteorder.h>
64 #include <linux/cdrom.h>
69 /* debounce timing parameters in msecs { interval, duration, timeout } */
70 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
71 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
72 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
74 const struct ata_port_operations ata_base_port_ops
= {
75 .prereset
= ata_std_prereset
,
76 .postreset
= ata_std_postreset
,
77 .error_handler
= ata_std_error_handler
,
80 const struct ata_port_operations sata_port_ops
= {
81 .inherits
= &ata_base_port_ops
,
83 .qc_defer
= ata_std_qc_defer
,
84 .hardreset
= sata_std_hardreset
,
87 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
88 u16 heads
, u16 sectors
);
89 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
90 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
91 u8 enable
, u8 feature
);
92 static void ata_dev_xfermask(struct ata_device
*dev
);
93 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
95 unsigned int ata_print_id
= 1;
96 static struct workqueue_struct
*ata_wq
;
98 struct workqueue_struct
*ata_aux_wq
;
100 struct ata_force_param
{
104 unsigned long xfer_mask
;
105 unsigned int horkage_on
;
106 unsigned int horkage_off
;
110 struct ata_force_ent
{
113 struct ata_force_param param
;
116 static struct ata_force_ent
*ata_force_tbl
;
117 static int ata_force_tbl_size
;
119 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
122 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124 static int atapi_enabled
= 1;
125 module_param(atapi_enabled
, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
128 static int atapi_dmadir
= 0;
129 module_param(atapi_dmadir
, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
132 int atapi_passthru16
= 1;
133 module_param(atapi_passthru16
, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
137 module_param_named(fua
, libata_fua
, int, 0444);
138 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
140 static int ata_ignore_hpa
;
141 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
145 module_param_named(dma
, libata_dma_mask
, int, 0444);
146 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148 static int ata_probe_timeout
;
149 module_param(ata_probe_timeout
, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
152 int libata_noacpi
= 0;
153 module_param_named(noacpi
, libata_noacpi
, int, 0444);
154 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in probe/suspend/resume when set");
156 int libata_allow_tpm
= 0;
157 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
158 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands");
161 module_param(atapi_an
, int, 0444);
162 MODULE_PARM_DESC(atapi_an
, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
164 MODULE_AUTHOR("Jeff Garzik");
165 MODULE_DESCRIPTION("Library module for ATA devices");
166 MODULE_LICENSE("GPL");
167 MODULE_VERSION(DRV_VERSION
);
171 * ata_force_cbl - force cable type according to libata.force
172 * @ap: ATA port of interest
174 * Force cable type according to libata.force and whine about it.
175 * The last entry which has matching port number is used, so it
176 * can be specified as part of device force parameters. For
177 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
183 void ata_force_cbl(struct ata_port
*ap
)
187 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
188 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
190 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
193 if (fe
->param
.cbl
== ATA_CBL_NONE
)
196 ap
->cbl
= fe
->param
.cbl
;
197 ata_port_printk(ap
, KERN_NOTICE
,
198 "FORCE: cable set to %s\n", fe
->param
.name
);
204 * ata_force_link_limits - force link limits according to libata.force
205 * @link: ATA link of interest
207 * Force link flags and SATA spd limit according to libata.force
208 * and whine about it. When only the port part is specified
209 * (e.g. 1:), the limit applies to all links connected to both
210 * the host link and all fan-out ports connected via PMP. If the
211 * device part is specified as 0 (e.g. 1.00:), it specifies the
212 * first fan-out link not the host link. Device number 15 always
213 * points to the host link whether PMP is attached or not.
218 static void ata_force_link_limits(struct ata_link
*link
)
220 bool did_spd
= false;
223 if (ata_is_host_link(link
))
228 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
229 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
231 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
234 if (fe
->device
!= -1 && fe
->device
!= linkno
)
237 /* only honor the first spd limit */
238 if (!did_spd
&& fe
->param
.spd_limit
) {
239 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
240 ata_link_printk(link
, KERN_NOTICE
,
241 "FORCE: PHY spd limit set to %s\n",
246 /* let lflags stack */
247 if (fe
->param
.lflags
) {
248 link
->flags
|= fe
->param
.lflags
;
249 ata_link_printk(link
, KERN_NOTICE
,
250 "FORCE: link flag 0x%x forced -> 0x%x\n",
251 fe
->param
.lflags
, link
->flags
);
257 * ata_force_xfermask - force xfermask according to libata.force
258 * @dev: ATA device of interest
260 * Force xfer_mask according to libata.force and whine about it.
261 * For consistency with link selection, device number 15 selects
262 * the first device connected to the host link.
267 static void ata_force_xfermask(struct ata_device
*dev
)
269 int devno
= dev
->link
->pmp
+ dev
->devno
;
270 int alt_devno
= devno
;
273 /* allow n.15 for the first device attached to host port */
274 if (ata_is_host_link(dev
->link
) && devno
== 0)
277 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
278 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
279 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
281 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
284 if (fe
->device
!= -1 && fe
->device
!= devno
&&
285 fe
->device
!= alt_devno
)
288 if (!fe
->param
.xfer_mask
)
291 ata_unpack_xfermask(fe
->param
.xfer_mask
,
292 &pio_mask
, &mwdma_mask
, &udma_mask
);
294 dev
->udma_mask
= udma_mask
;
295 else if (mwdma_mask
) {
297 dev
->mwdma_mask
= mwdma_mask
;
301 dev
->pio_mask
= pio_mask
;
304 ata_dev_printk(dev
, KERN_NOTICE
,
305 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
311 * ata_force_horkage - force horkage according to libata.force
312 * @dev: ATA device of interest
314 * Force horkage according to libata.force and whine about it.
315 * For consistency with link selection, device number 15 selects
316 * the first device connected to the host link.
321 static void ata_force_horkage(struct ata_device
*dev
)
323 int devno
= dev
->link
->pmp
+ dev
->devno
;
324 int alt_devno
= devno
;
327 /* allow n.15 for the first device attached to host port */
328 if (ata_is_host_link(dev
->link
) && devno
== 0)
331 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
332 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
334 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
337 if (fe
->device
!= -1 && fe
->device
!= devno
&&
338 fe
->device
!= alt_devno
)
341 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
342 !(dev
->horkage
& fe
->param
.horkage_off
))
345 dev
->horkage
|= fe
->param
.horkage_on
;
346 dev
->horkage
&= ~fe
->param
.horkage_off
;
348 ata_dev_printk(dev
, KERN_NOTICE
,
349 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
354 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
355 * @opcode: SCSI opcode
357 * Determine ATAPI command type from @opcode.
363 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
365 int atapi_cmd_type(u8 opcode
)
374 case GPCMD_WRITE_AND_VERIFY_10
:
378 case GPCMD_READ_CD_MSF
:
379 return ATAPI_READ_CD
;
383 if (atapi_passthru16
)
384 return ATAPI_PASS_THRU
;
392 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
393 * @tf: Taskfile to convert
394 * @pmp: Port multiplier port
395 * @is_cmd: This FIS is for command
396 * @fis: Buffer into which data will output
398 * Converts a standard ATA taskfile to a Serial ATA
399 * FIS structure (Register - Host to Device).
402 * Inherited from caller.
404 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
406 fis
[0] = 0x27; /* Register - Host to Device FIS */
407 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
409 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
411 fis
[2] = tf
->command
;
412 fis
[3] = tf
->feature
;
419 fis
[8] = tf
->hob_lbal
;
420 fis
[9] = tf
->hob_lbam
;
421 fis
[10] = tf
->hob_lbah
;
422 fis
[11] = tf
->hob_feature
;
425 fis
[13] = tf
->hob_nsect
;
436 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
437 * @fis: Buffer from which data will be input
438 * @tf: Taskfile to output
440 * Converts a serial ATA FIS structure to a standard ATA taskfile.
443 * Inherited from caller.
446 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
448 tf
->command
= fis
[2]; /* status */
449 tf
->feature
= fis
[3]; /* error */
456 tf
->hob_lbal
= fis
[8];
457 tf
->hob_lbam
= fis
[9];
458 tf
->hob_lbah
= fis
[10];
461 tf
->hob_nsect
= fis
[13];
464 static const u8 ata_rw_cmds
[] = {
468 ATA_CMD_READ_MULTI_EXT
,
469 ATA_CMD_WRITE_MULTI_EXT
,
473 ATA_CMD_WRITE_MULTI_FUA_EXT
,
477 ATA_CMD_PIO_READ_EXT
,
478 ATA_CMD_PIO_WRITE_EXT
,
491 ATA_CMD_WRITE_FUA_EXT
495 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
496 * @tf: command to examine and configure
497 * @dev: device tf belongs to
499 * Examine the device configuration and tf->flags to calculate
500 * the proper read/write commands and protocol to use.
505 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
509 int index
, fua
, lba48
, write
;
511 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
512 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
513 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
515 if (dev
->flags
& ATA_DFLAG_PIO
) {
516 tf
->protocol
= ATA_PROT_PIO
;
517 index
= dev
->multi_count
? 0 : 8;
518 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
519 /* Unable to use DMA due to host limitation */
520 tf
->protocol
= ATA_PROT_PIO
;
521 index
= dev
->multi_count
? 0 : 8;
523 tf
->protocol
= ATA_PROT_DMA
;
527 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
536 * ata_tf_read_block - Read block address from ATA taskfile
537 * @tf: ATA taskfile of interest
538 * @dev: ATA device @tf belongs to
543 * Read block address from @tf. This function can handle all
544 * three address formats - LBA, LBA48 and CHS. tf->protocol and
545 * flags select the address format to use.
548 * Block address read from @tf.
550 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
554 if (tf
->flags
& ATA_TFLAG_LBA
) {
555 if (tf
->flags
& ATA_TFLAG_LBA48
) {
556 block
|= (u64
)tf
->hob_lbah
<< 40;
557 block
|= (u64
)tf
->hob_lbam
<< 32;
558 block
|= (u64
)tf
->hob_lbal
<< 24;
560 block
|= (tf
->device
& 0xf) << 24;
562 block
|= tf
->lbah
<< 16;
563 block
|= tf
->lbam
<< 8;
568 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
569 head
= tf
->device
& 0xf;
573 ata_dev_printk(dev
, KERN_WARNING
, "device reported "
574 "invalid CHS sector 0\n");
575 sect
= 1; /* oh well */
578 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
- 1;
585 * ata_build_rw_tf - Build ATA taskfile for given read/write request
586 * @tf: Target ATA taskfile
587 * @dev: ATA device @tf belongs to
588 * @block: Block address
589 * @n_block: Number of blocks
590 * @tf_flags: RW/FUA etc...
596 * Build ATA taskfile @tf for read/write request described by
597 * @block, @n_block, @tf_flags and @tag on @dev.
601 * 0 on success, -ERANGE if the request is too large for @dev,
602 * -EINVAL if the request is invalid.
604 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
605 u64 block
, u32 n_block
, unsigned int tf_flags
,
608 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
609 tf
->flags
|= tf_flags
;
611 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
613 if (!lba_48_ok(block
, n_block
))
616 tf
->protocol
= ATA_PROT_NCQ
;
617 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
619 if (tf
->flags
& ATA_TFLAG_WRITE
)
620 tf
->command
= ATA_CMD_FPDMA_WRITE
;
622 tf
->command
= ATA_CMD_FPDMA_READ
;
624 tf
->nsect
= tag
<< 3;
625 tf
->hob_feature
= (n_block
>> 8) & 0xff;
626 tf
->feature
= n_block
& 0xff;
628 tf
->hob_lbah
= (block
>> 40) & 0xff;
629 tf
->hob_lbam
= (block
>> 32) & 0xff;
630 tf
->hob_lbal
= (block
>> 24) & 0xff;
631 tf
->lbah
= (block
>> 16) & 0xff;
632 tf
->lbam
= (block
>> 8) & 0xff;
633 tf
->lbal
= block
& 0xff;
636 if (tf
->flags
& ATA_TFLAG_FUA
)
637 tf
->device
|= 1 << 7;
638 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
639 tf
->flags
|= ATA_TFLAG_LBA
;
641 if (lba_28_ok(block
, n_block
)) {
643 tf
->device
|= (block
>> 24) & 0xf;
644 } else if (lba_48_ok(block
, n_block
)) {
645 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
649 tf
->flags
|= ATA_TFLAG_LBA48
;
651 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
653 tf
->hob_lbah
= (block
>> 40) & 0xff;
654 tf
->hob_lbam
= (block
>> 32) & 0xff;
655 tf
->hob_lbal
= (block
>> 24) & 0xff;
657 /* request too large even for LBA48 */
660 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
663 tf
->nsect
= n_block
& 0xff;
665 tf
->lbah
= (block
>> 16) & 0xff;
666 tf
->lbam
= (block
>> 8) & 0xff;
667 tf
->lbal
= block
& 0xff;
669 tf
->device
|= ATA_LBA
;
672 u32 sect
, head
, cyl
, track
;
674 /* The request -may- be too large for CHS addressing. */
675 if (!lba_28_ok(block
, n_block
))
678 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
681 /* Convert LBA to CHS */
682 track
= (u32
)block
/ dev
->sectors
;
683 cyl
= track
/ dev
->heads
;
684 head
= track
% dev
->heads
;
685 sect
= (u32
)block
% dev
->sectors
+ 1;
687 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
688 (u32
)block
, track
, cyl
, head
, sect
);
690 /* Check whether the converted CHS can fit.
694 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
697 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
708 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
709 * @pio_mask: pio_mask
710 * @mwdma_mask: mwdma_mask
711 * @udma_mask: udma_mask
713 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
714 * unsigned int xfer_mask.
722 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
723 unsigned long mwdma_mask
,
724 unsigned long udma_mask
)
726 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
727 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
728 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
732 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
733 * @xfer_mask: xfer_mask to unpack
734 * @pio_mask: resulting pio_mask
735 * @mwdma_mask: resulting mwdma_mask
736 * @udma_mask: resulting udma_mask
738 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
739 * Any NULL distination masks will be ignored.
741 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
742 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
745 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
747 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
749 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
752 static const struct ata_xfer_ent
{
756 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
757 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
758 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
763 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
764 * @xfer_mask: xfer_mask of interest
766 * Return matching XFER_* value for @xfer_mask. Only the highest
767 * bit of @xfer_mask is considered.
773 * Matching XFER_* value, 0xff if no match found.
775 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
777 int highbit
= fls(xfer_mask
) - 1;
778 const struct ata_xfer_ent
*ent
;
780 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
781 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
782 return ent
->base
+ highbit
- ent
->shift
;
787 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
788 * @xfer_mode: XFER_* of interest
790 * Return matching xfer_mask for @xfer_mode.
796 * Matching xfer_mask, 0 if no match found.
798 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
800 const struct ata_xfer_ent
*ent
;
802 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
803 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
804 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
805 & ~((1 << ent
->shift
) - 1);
810 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
811 * @xfer_mode: XFER_* of interest
813 * Return matching xfer_shift for @xfer_mode.
819 * Matching xfer_shift, -1 if no match found.
821 int ata_xfer_mode2shift(unsigned long xfer_mode
)
823 const struct ata_xfer_ent
*ent
;
825 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
826 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
832 * ata_mode_string - convert xfer_mask to string
833 * @xfer_mask: mask of bits supported; only highest bit counts.
835 * Determine string which represents the highest speed
836 * (highest bit in @modemask).
842 * Constant C string representing highest speed listed in
843 * @mode_mask, or the constant C string "<n/a>".
845 const char *ata_mode_string(unsigned long xfer_mask
)
847 static const char * const xfer_mode_str
[] = {
871 highbit
= fls(xfer_mask
) - 1;
872 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
873 return xfer_mode_str
[highbit
];
877 static const char *sata_spd_string(unsigned int spd
)
879 static const char * const spd_str
[] = {
884 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
886 return spd_str
[spd
- 1];
889 void ata_dev_disable(struct ata_device
*dev
)
891 if (ata_dev_enabled(dev
)) {
892 if (ata_msg_drv(dev
->link
->ap
))
893 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
894 ata_acpi_on_disable(dev
);
895 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
901 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
903 struct ata_link
*link
= dev
->link
;
904 struct ata_port
*ap
= link
->ap
;
906 unsigned int err_mask
;
910 * disallow DIPM for drivers which haven't set
911 * ATA_FLAG_IPM. This is because when DIPM is enabled,
912 * phy ready will be set in the interrupt status on
913 * state changes, which will cause some drivers to
914 * think there are errors - additionally drivers will
915 * need to disable hot plug.
917 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
918 ap
->pm_policy
= NOT_AVAILABLE
;
923 * For DIPM, we will only enable it for the
926 * Why? Because Disks are too stupid to know that
927 * If the host rejects a request to go to SLUMBER
928 * they should retry at PARTIAL, and instead it
929 * just would give up. So, for medium_power to
930 * work at all, we need to only allow HIPM.
932 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
938 /* no restrictions on IPM transitions */
939 scontrol
&= ~(0x3 << 8);
940 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
945 if (dev
->flags
& ATA_DFLAG_DIPM
)
946 err_mask
= ata_dev_set_feature(dev
,
947 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
950 /* allow IPM to PARTIAL */
951 scontrol
&= ~(0x1 << 8);
952 scontrol
|= (0x2 << 8);
953 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
958 * we don't have to disable DIPM since IPM flags
959 * disallow transitions to SLUMBER, which effectively
960 * disable DIPM if it does not support PARTIAL
964 case MAX_PERFORMANCE
:
965 /* disable all IPM transitions */
966 scontrol
|= (0x3 << 8);
967 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
972 * we don't have to disable DIPM since IPM flags
973 * disallow all transitions which effectively
974 * disable DIPM anyway.
979 /* FIXME: handle SET FEATURES failure */
986 * ata_dev_enable_pm - enable SATA interface power management
987 * @dev: device to enable power management
988 * @policy: the link power management policy
990 * Enable SATA Interface power management. This will enable
991 * Device Interface Power Management (DIPM) for min_power
992 * policy, and then call driver specific callbacks for
993 * enabling Host Initiated Power management.
996 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
998 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
1001 struct ata_port
*ap
= dev
->link
->ap
;
1003 /* set HIPM first, then DIPM */
1004 if (ap
->ops
->enable_pm
)
1005 rc
= ap
->ops
->enable_pm(ap
, policy
);
1008 rc
= ata_dev_set_dipm(dev
, policy
);
1012 ap
->pm_policy
= MAX_PERFORMANCE
;
1014 ap
->pm_policy
= policy
;
1015 return /* rc */; /* hopefully we can use 'rc' eventually */
1020 * ata_dev_disable_pm - disable SATA interface power management
1021 * @dev: device to disable power management
1023 * Disable SATA Interface power management. This will disable
1024 * Device Interface Power Management (DIPM) without changing
1025 * policy, call driver specific callbacks for disabling Host
1026 * Initiated Power management.
1031 static void ata_dev_disable_pm(struct ata_device
*dev
)
1033 struct ata_port
*ap
= dev
->link
->ap
;
1035 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
1036 if (ap
->ops
->disable_pm
)
1037 ap
->ops
->disable_pm(ap
);
1039 #endif /* CONFIG_PM */
1041 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
1043 ap
->pm_policy
= policy
;
1044 ap
->link
.eh_info
.action
|= ATA_EH_LPM
;
1045 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
1046 ata_port_schedule_eh(ap
);
1050 static void ata_lpm_enable(struct ata_host
*host
)
1052 struct ata_link
*link
;
1053 struct ata_port
*ap
;
1054 struct ata_device
*dev
;
1057 for (i
= 0; i
< host
->n_ports
; i
++) {
1058 ap
= host
->ports
[i
];
1059 ata_port_for_each_link(link
, ap
) {
1060 ata_link_for_each_dev(dev
, link
)
1061 ata_dev_disable_pm(dev
);
1066 static void ata_lpm_disable(struct ata_host
*host
)
1070 for (i
= 0; i
< host
->n_ports
; i
++) {
1071 struct ata_port
*ap
= host
->ports
[i
];
1072 ata_lpm_schedule(ap
, ap
->pm_policy
);
1075 #endif /* CONFIG_PM */
1078 * ata_dev_classify - determine device type based on ATA-spec signature
1079 * @tf: ATA taskfile register set for device to be identified
1081 * Determine from taskfile register contents whether a device is
1082 * ATA or ATAPI, as per "Signature and persistence" section
1083 * of ATA/PI spec (volume 1, sect 5.14).
1089 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1090 * %ATA_DEV_UNKNOWN the event of failure.
1092 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1094 /* Apple's open source Darwin code hints that some devices only
1095 * put a proper signature into the LBA mid/high registers,
1096 * So, we only check those. It's sufficient for uniqueness.
1098 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1099 * signatures for ATA and ATAPI devices attached on SerialATA,
1100 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1101 * spec has never mentioned about using different signatures
1102 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1103 * Multiplier specification began to use 0x69/0x96 to identify
1104 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1105 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1106 * 0x69/0x96 shortly and described them as reserved for
1109 * We follow the current spec and consider that 0x69/0x96
1110 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1112 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1113 DPRINTK("found ATA device by sig\n");
1117 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1118 DPRINTK("found ATAPI device by sig\n");
1119 return ATA_DEV_ATAPI
;
1122 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1123 DPRINTK("found PMP device by sig\n");
1127 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1128 printk(KERN_INFO
"ata: SEMB device ignored\n");
1129 return ATA_DEV_SEMB_UNSUP
; /* not yet */
1132 DPRINTK("unknown device\n");
1133 return ATA_DEV_UNKNOWN
;
1137 * ata_id_string - Convert IDENTIFY DEVICE page into string
1138 * @id: IDENTIFY DEVICE results we will examine
1139 * @s: string into which data is output
1140 * @ofs: offset into identify device page
1141 * @len: length of string to return. must be an even number.
1143 * The strings in the IDENTIFY DEVICE page are broken up into
1144 * 16-bit chunks. Run through the string, and output each
1145 * 8-bit chunk linearly, regardless of platform.
1151 void ata_id_string(const u16
*id
, unsigned char *s
,
1152 unsigned int ofs
, unsigned int len
)
1173 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1174 * @id: IDENTIFY DEVICE results we will examine
1175 * @s: string into which data is output
1176 * @ofs: offset into identify device page
1177 * @len: length of string to return. must be an odd number.
1179 * This function is identical to ata_id_string except that it
1180 * trims trailing spaces and terminates the resulting string with
1181 * null. @len must be actual maximum length (even number) + 1.
1186 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1187 unsigned int ofs
, unsigned int len
)
1191 ata_id_string(id
, s
, ofs
, len
- 1);
1193 p
= s
+ strnlen(s
, len
- 1);
1194 while (p
> s
&& p
[-1] == ' ')
1199 static u64
ata_id_n_sectors(const u16
*id
)
1201 if (ata_id_has_lba(id
)) {
1202 if (ata_id_has_lba48(id
))
1203 return ata_id_u64(id
, ATA_ID_LBA_CAPACITY_2
);
1205 return ata_id_u32(id
, ATA_ID_LBA_CAPACITY
);
1207 if (ata_id_current_chs_valid(id
))
1208 return id
[ATA_ID_CUR_CYLS
] * id
[ATA_ID_CUR_HEADS
] *
1209 id
[ATA_ID_CUR_SECTORS
];
1211 return id
[ATA_ID_CYLS
] * id
[ATA_ID_HEADS
] *
1216 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1220 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1221 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1222 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1223 sectors
|= (tf
->lbah
& 0xff) << 16;
1224 sectors
|= (tf
->lbam
& 0xff) << 8;
1225 sectors
|= (tf
->lbal
& 0xff);
1230 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1234 sectors
|= (tf
->device
& 0x0f) << 24;
1235 sectors
|= (tf
->lbah
& 0xff) << 16;
1236 sectors
|= (tf
->lbam
& 0xff) << 8;
1237 sectors
|= (tf
->lbal
& 0xff);
1243 * ata_read_native_max_address - Read native max address
1244 * @dev: target device
1245 * @max_sectors: out parameter for the result native max address
1247 * Perform an LBA48 or LBA28 native size query upon the device in
1251 * 0 on success, -EACCES if command is aborted by the drive.
1252 * -EIO on other errors.
1254 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1256 unsigned int err_mask
;
1257 struct ata_taskfile tf
;
1258 int lba48
= ata_id_has_lba48(dev
->id
);
1260 ata_tf_init(dev
, &tf
);
1262 /* always clear all address registers */
1263 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1266 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1267 tf
.flags
|= ATA_TFLAG_LBA48
;
1269 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1271 tf
.protocol
|= ATA_PROT_NODATA
;
1272 tf
.device
|= ATA_LBA
;
1274 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1276 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1277 "max address (err_mask=0x%x)\n", err_mask
);
1278 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1284 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1286 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1287 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1293 * ata_set_max_sectors - Set max sectors
1294 * @dev: target device
1295 * @new_sectors: new max sectors value to set for the device
1297 * Set max sectors of @dev to @new_sectors.
1300 * 0 on success, -EACCES if command is aborted or denied (due to
1301 * previous non-volatile SET_MAX) by the drive. -EIO on other
1304 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1306 unsigned int err_mask
;
1307 struct ata_taskfile tf
;
1308 int lba48
= ata_id_has_lba48(dev
->id
);
1312 ata_tf_init(dev
, &tf
);
1314 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1317 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1318 tf
.flags
|= ATA_TFLAG_LBA48
;
1320 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1321 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1322 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1324 tf
.command
= ATA_CMD_SET_MAX
;
1326 tf
.device
|= (new_sectors
>> 24) & 0xf;
1329 tf
.protocol
|= ATA_PROT_NODATA
;
1330 tf
.device
|= ATA_LBA
;
1332 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1333 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1334 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1336 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1338 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1339 "max address (err_mask=0x%x)\n", err_mask
);
1340 if (err_mask
== AC_ERR_DEV
&&
1341 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1350 * ata_hpa_resize - Resize a device with an HPA set
1351 * @dev: Device to resize
1353 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1354 * it if required to the full size of the media. The caller must check
1355 * the drive has the HPA feature set enabled.
1358 * 0 on success, -errno on failure.
1360 static int ata_hpa_resize(struct ata_device
*dev
)
1362 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1363 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1364 u64 sectors
= ata_id_n_sectors(dev
->id
);
1368 /* do we need to do it? */
1369 if (dev
->class != ATA_DEV_ATA
||
1370 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1371 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1374 /* read native max address */
1375 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1377 /* If device aborted the command or HPA isn't going to
1378 * be unlocked, skip HPA resizing.
1380 if (rc
== -EACCES
|| !ata_ignore_hpa
) {
1381 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1382 "broken, skipping HPA handling\n");
1383 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1385 /* we can continue if device aborted the command */
1393 /* nothing to do? */
1394 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1395 if (!print_info
|| native_sectors
== sectors
)
1398 if (native_sectors
> sectors
)
1399 ata_dev_printk(dev
, KERN_INFO
,
1400 "HPA detected: current %llu, native %llu\n",
1401 (unsigned long long)sectors
,
1402 (unsigned long long)native_sectors
);
1403 else if (native_sectors
< sectors
)
1404 ata_dev_printk(dev
, KERN_WARNING
,
1405 "native sectors (%llu) is smaller than "
1407 (unsigned long long)native_sectors
,
1408 (unsigned long long)sectors
);
1412 /* let's unlock HPA */
1413 rc
= ata_set_max_sectors(dev
, native_sectors
);
1414 if (rc
== -EACCES
) {
1415 /* if device aborted the command, skip HPA resizing */
1416 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1417 "(%llu -> %llu), skipping HPA handling\n",
1418 (unsigned long long)sectors
,
1419 (unsigned long long)native_sectors
);
1420 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1425 /* re-read IDENTIFY data */
1426 rc
= ata_dev_reread_id(dev
, 0);
1428 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1429 "data after HPA resizing\n");
1434 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1435 ata_dev_printk(dev
, KERN_INFO
,
1436 "HPA unlocked: %llu -> %llu, native %llu\n",
1437 (unsigned long long)sectors
,
1438 (unsigned long long)new_sectors
,
1439 (unsigned long long)native_sectors
);
1446 * ata_dump_id - IDENTIFY DEVICE info debugging output
1447 * @id: IDENTIFY DEVICE page to dump
1449 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1456 static inline void ata_dump_id(const u16
*id
)
1458 DPRINTK("49==0x%04x "
1468 DPRINTK("80==0x%04x "
1478 DPRINTK("88==0x%04x "
1485 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1486 * @id: IDENTIFY data to compute xfer mask from
1488 * Compute the xfermask for this device. This is not as trivial
1489 * as it seems if we must consider early devices correctly.
1491 * FIXME: pre IDE drive timing (do we care ?).
1499 unsigned long ata_id_xfermask(const u16
*id
)
1501 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1503 /* Usual case. Word 53 indicates word 64 is valid */
1504 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1505 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1509 /* If word 64 isn't valid then Word 51 high byte holds
1510 * the PIO timing number for the maximum. Turn it into
1513 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1514 if (mode
< 5) /* Valid PIO range */
1515 pio_mask
= (2 << mode
) - 1;
1519 /* But wait.. there's more. Design your standards by
1520 * committee and you too can get a free iordy field to
1521 * process. However its the speeds not the modes that
1522 * are supported... Note drivers using the timing API
1523 * will get this right anyway
1527 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1529 if (ata_id_is_cfa(id
)) {
1531 * Process compact flash extended modes
1533 int pio
= id
[163] & 0x7;
1534 int dma
= (id
[163] >> 3) & 7;
1537 pio_mask
|= (1 << 5);
1539 pio_mask
|= (1 << 6);
1541 mwdma_mask
|= (1 << 3);
1543 mwdma_mask
|= (1 << 4);
1547 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1548 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1550 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1554 * ata_pio_queue_task - Queue port_task
1555 * @ap: The ata_port to queue port_task for
1556 * @fn: workqueue function to be scheduled
1557 * @data: data for @fn to use
1558 * @delay: delay time in msecs for workqueue function
1560 * Schedule @fn(@data) for execution after @delay jiffies using
1561 * port_task. There is one port_task per port and it's the
1562 * user(low level driver)'s responsibility to make sure that only
1563 * one task is active at any given time.
1565 * libata core layer takes care of synchronization between
1566 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1570 * Inherited from caller.
1572 void ata_pio_queue_task(struct ata_port
*ap
, void *data
, unsigned long delay
)
1574 ap
->port_task_data
= data
;
1576 /* may fail if ata_port_flush_task() in progress */
1577 queue_delayed_work(ata_wq
, &ap
->port_task
, msecs_to_jiffies(delay
));
1581 * ata_port_flush_task - Flush port_task
1582 * @ap: The ata_port to flush port_task for
1584 * After this function completes, port_task is guranteed not to
1585 * be running or scheduled.
1588 * Kernel thread context (may sleep)
1590 void ata_port_flush_task(struct ata_port
*ap
)
1594 cancel_rearming_delayed_work(&ap
->port_task
);
1596 if (ata_msg_ctl(ap
))
1597 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1600 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1602 struct completion
*waiting
= qc
->private_data
;
1608 * ata_exec_internal_sg - execute libata internal command
1609 * @dev: Device to which the command is sent
1610 * @tf: Taskfile registers for the command and the result
1611 * @cdb: CDB for packet command
1612 * @dma_dir: Data tranfer direction of the command
1613 * @sgl: sg list for the data buffer of the command
1614 * @n_elem: Number of sg entries
1615 * @timeout: Timeout in msecs (0 for default)
1617 * Executes libata internal command with timeout. @tf contains
1618 * command on entry and result on return. Timeout and error
1619 * conditions are reported via return value. No recovery action
1620 * is taken after a command times out. It's caller's duty to
1621 * clean up after timeout.
1624 * None. Should be called with kernel context, might sleep.
1627 * Zero on success, AC_ERR_* mask on failure
1629 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1630 struct ata_taskfile
*tf
, const u8
*cdb
,
1631 int dma_dir
, struct scatterlist
*sgl
,
1632 unsigned int n_elem
, unsigned long timeout
)
1634 struct ata_link
*link
= dev
->link
;
1635 struct ata_port
*ap
= link
->ap
;
1636 u8 command
= tf
->command
;
1637 int auto_timeout
= 0;
1638 struct ata_queued_cmd
*qc
;
1639 unsigned int tag
, preempted_tag
;
1640 u32 preempted_sactive
, preempted_qc_active
;
1641 int preempted_nr_active_links
;
1642 DECLARE_COMPLETION_ONSTACK(wait
);
1643 unsigned long flags
;
1644 unsigned int err_mask
;
1647 spin_lock_irqsave(ap
->lock
, flags
);
1649 /* no internal command while frozen */
1650 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1651 spin_unlock_irqrestore(ap
->lock
, flags
);
1652 return AC_ERR_SYSTEM
;
1655 /* initialize internal qc */
1657 /* XXX: Tag 0 is used for drivers with legacy EH as some
1658 * drivers choke if any other tag is given. This breaks
1659 * ata_tag_internal() test for those drivers. Don't use new
1660 * EH stuff without converting to it.
1662 if (ap
->ops
->error_handler
)
1663 tag
= ATA_TAG_INTERNAL
;
1667 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1669 qc
= __ata_qc_from_tag(ap
, tag
);
1677 preempted_tag
= link
->active_tag
;
1678 preempted_sactive
= link
->sactive
;
1679 preempted_qc_active
= ap
->qc_active
;
1680 preempted_nr_active_links
= ap
->nr_active_links
;
1681 link
->active_tag
= ATA_TAG_POISON
;
1684 ap
->nr_active_links
= 0;
1686 /* prepare & issue qc */
1689 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1690 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1691 qc
->dma_dir
= dma_dir
;
1692 if (dma_dir
!= DMA_NONE
) {
1693 unsigned int i
, buflen
= 0;
1694 struct scatterlist
*sg
;
1696 for_each_sg(sgl
, sg
, n_elem
, i
)
1697 buflen
+= sg
->length
;
1699 ata_sg_init(qc
, sgl
, n_elem
);
1700 qc
->nbytes
= buflen
;
1703 qc
->private_data
= &wait
;
1704 qc
->complete_fn
= ata_qc_complete_internal
;
1708 spin_unlock_irqrestore(ap
->lock
, flags
);
1711 if (ata_probe_timeout
)
1712 timeout
= ata_probe_timeout
* 1000;
1714 timeout
= ata_internal_cmd_timeout(dev
, command
);
1719 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1721 ata_port_flush_task(ap
);
1724 spin_lock_irqsave(ap
->lock
, flags
);
1726 /* We're racing with irq here. If we lose, the
1727 * following test prevents us from completing the qc
1728 * twice. If we win, the port is frozen and will be
1729 * cleaned up by ->post_internal_cmd().
1731 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1732 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1734 if (ap
->ops
->error_handler
)
1735 ata_port_freeze(ap
);
1737 ata_qc_complete(qc
);
1739 if (ata_msg_warn(ap
))
1740 ata_dev_printk(dev
, KERN_WARNING
,
1741 "qc timeout (cmd 0x%x)\n", command
);
1744 spin_unlock_irqrestore(ap
->lock
, flags
);
1747 /* do post_internal_cmd */
1748 if (ap
->ops
->post_internal_cmd
)
1749 ap
->ops
->post_internal_cmd(qc
);
1751 /* perform minimal error analysis */
1752 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1753 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1754 qc
->err_mask
|= AC_ERR_DEV
;
1757 qc
->err_mask
|= AC_ERR_OTHER
;
1759 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1760 qc
->err_mask
&= ~AC_ERR_OTHER
;
1764 spin_lock_irqsave(ap
->lock
, flags
);
1766 *tf
= qc
->result_tf
;
1767 err_mask
= qc
->err_mask
;
1770 link
->active_tag
= preempted_tag
;
1771 link
->sactive
= preempted_sactive
;
1772 ap
->qc_active
= preempted_qc_active
;
1773 ap
->nr_active_links
= preempted_nr_active_links
;
1775 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1776 * Until those drivers are fixed, we detect the condition
1777 * here, fail the command with AC_ERR_SYSTEM and reenable the
1780 * Note that this doesn't change any behavior as internal
1781 * command failure results in disabling the device in the
1782 * higher layer for LLDDs without new reset/EH callbacks.
1784 * Kill the following code as soon as those drivers are fixed.
1786 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1787 err_mask
|= AC_ERR_SYSTEM
;
1791 spin_unlock_irqrestore(ap
->lock
, flags
);
1793 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1794 ata_internal_cmd_timed_out(dev
, command
);
1800 * ata_exec_internal - execute libata internal command
1801 * @dev: Device to which the command is sent
1802 * @tf: Taskfile registers for the command and the result
1803 * @cdb: CDB for packet command
1804 * @dma_dir: Data tranfer direction of the command
1805 * @buf: Data buffer of the command
1806 * @buflen: Length of data buffer
1807 * @timeout: Timeout in msecs (0 for default)
1809 * Wrapper around ata_exec_internal_sg() which takes simple
1810 * buffer instead of sg list.
1813 * None. Should be called with kernel context, might sleep.
1816 * Zero on success, AC_ERR_* mask on failure
1818 unsigned ata_exec_internal(struct ata_device
*dev
,
1819 struct ata_taskfile
*tf
, const u8
*cdb
,
1820 int dma_dir
, void *buf
, unsigned int buflen
,
1821 unsigned long timeout
)
1823 struct scatterlist
*psg
= NULL
, sg
;
1824 unsigned int n_elem
= 0;
1826 if (dma_dir
!= DMA_NONE
) {
1828 sg_init_one(&sg
, buf
, buflen
);
1833 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1838 * ata_do_simple_cmd - execute simple internal command
1839 * @dev: Device to which the command is sent
1840 * @cmd: Opcode to execute
1842 * Execute a 'simple' command, that only consists of the opcode
1843 * 'cmd' itself, without filling any other registers
1846 * Kernel thread context (may sleep).
1849 * Zero on success, AC_ERR_* mask on failure
1851 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1853 struct ata_taskfile tf
;
1855 ata_tf_init(dev
, &tf
);
1858 tf
.flags
|= ATA_TFLAG_DEVICE
;
1859 tf
.protocol
= ATA_PROT_NODATA
;
1861 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1865 * ata_pio_need_iordy - check if iordy needed
1868 * Check if the current speed of the device requires IORDY. Used
1869 * by various controllers for chip configuration.
1872 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1874 /* Controller doesn't support IORDY. Probably a pointless check
1875 as the caller should know this */
1876 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1878 /* PIO3 and higher it is mandatory */
1879 if (adev
->pio_mode
> XFER_PIO_2
)
1881 /* We turn it on when possible */
1882 if (ata_id_has_iordy(adev
->id
))
1888 * ata_pio_mask_no_iordy - Return the non IORDY mask
1891 * Compute the highest mode possible if we are not using iordy. Return
1892 * -1 if no iordy mode is available.
1895 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1897 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1898 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1899 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1900 /* Is the speed faster than the drive allows non IORDY ? */
1902 /* This is cycle times not frequency - watch the logic! */
1903 if (pio
> 240) /* PIO2 is 240nS per cycle */
1904 return 3 << ATA_SHIFT_PIO
;
1905 return 7 << ATA_SHIFT_PIO
;
1908 return 3 << ATA_SHIFT_PIO
;
1912 * ata_do_dev_read_id - default ID read method
1914 * @tf: proposed taskfile
1917 * Issue the identify taskfile and hand back the buffer containing
1918 * identify data. For some RAID controllers and for pre ATA devices
1919 * this function is wrapped or replaced by the driver
1921 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
1922 struct ata_taskfile
*tf
, u16
*id
)
1924 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
1925 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
1929 * ata_dev_read_id - Read ID data from the specified device
1930 * @dev: target device
1931 * @p_class: pointer to class of the target device (may be changed)
1932 * @flags: ATA_READID_* flags
1933 * @id: buffer to read IDENTIFY data into
1935 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1936 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1937 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1938 * for pre-ATA4 drives.
1940 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1941 * now we abort if we hit that case.
1944 * Kernel thread context (may sleep)
1947 * 0 on success, -errno otherwise.
1949 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1950 unsigned int flags
, u16
*id
)
1952 struct ata_port
*ap
= dev
->link
->ap
;
1953 unsigned int class = *p_class
;
1954 struct ata_taskfile tf
;
1955 unsigned int err_mask
= 0;
1957 int may_fallback
= 1, tried_spinup
= 0;
1960 if (ata_msg_ctl(ap
))
1961 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
1964 ata_tf_init(dev
, &tf
);
1968 tf
.command
= ATA_CMD_ID_ATA
;
1971 tf
.command
= ATA_CMD_ID_ATAPI
;
1975 reason
= "unsupported class";
1979 tf
.protocol
= ATA_PROT_PIO
;
1981 /* Some devices choke if TF registers contain garbage. Make
1982 * sure those are properly initialized.
1984 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1986 /* Device presence detection is unreliable on some
1987 * controllers. Always poll IDENTIFY if available.
1989 tf
.flags
|= ATA_TFLAG_POLLING
;
1991 if (ap
->ops
->read_id
)
1992 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
1994 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
1997 if (err_mask
& AC_ERR_NODEV_HINT
) {
1998 ata_dev_printk(dev
, KERN_DEBUG
,
1999 "NODEV after polling detection\n");
2003 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
2004 /* Device or controller might have reported
2005 * the wrong device class. Give a shot at the
2006 * other IDENTIFY if the current one is
2007 * aborted by the device.
2012 if (class == ATA_DEV_ATA
)
2013 class = ATA_DEV_ATAPI
;
2015 class = ATA_DEV_ATA
;
2019 /* Control reaches here iff the device aborted
2020 * both flavors of IDENTIFYs which happens
2021 * sometimes with phantom devices.
2023 ata_dev_printk(dev
, KERN_DEBUG
,
2024 "both IDENTIFYs aborted, assuming NODEV\n");
2029 reason
= "I/O error";
2033 /* Falling back doesn't make sense if ID data was read
2034 * successfully at least once.
2038 swap_buf_le16(id
, ATA_ID_WORDS
);
2042 reason
= "device reports invalid type";
2044 if (class == ATA_DEV_ATA
) {
2045 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
2048 if (ata_id_is_ata(id
))
2052 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2055 * Drive powered-up in standby mode, and requires a specific
2056 * SET_FEATURES spin-up subcommand before it will accept
2057 * anything other than the original IDENTIFY command.
2059 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2060 if (err_mask
&& id
[2] != 0x738c) {
2062 reason
= "SPINUP failed";
2066 * If the drive initially returned incomplete IDENTIFY info,
2067 * we now must reissue the IDENTIFY command.
2069 if (id
[2] == 0x37c8)
2073 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2075 * The exact sequence expected by certain pre-ATA4 drives is:
2077 * IDENTIFY (optional in early ATA)
2078 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2080 * Some drives were very specific about that exact sequence.
2082 * Note that ATA4 says lba is mandatory so the second check
2083 * shoud never trigger.
2085 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2086 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2089 reason
= "INIT_DEV_PARAMS failed";
2093 /* current CHS translation info (id[53-58]) might be
2094 * changed. reread the identify device info.
2096 flags
&= ~ATA_READID_POSTRESET
;
2106 if (ata_msg_warn(ap
))
2107 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2108 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2112 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2114 struct ata_port
*ap
= dev
->link
->ap
;
2115 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2118 static void ata_dev_config_ncq(struct ata_device
*dev
,
2119 char *desc
, size_t desc_sz
)
2121 struct ata_port
*ap
= dev
->link
->ap
;
2122 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2124 if (!ata_id_has_ncq(dev
->id
)) {
2128 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2129 snprintf(desc
, desc_sz
, "NCQ (not used)");
2132 if (ap
->flags
& ATA_FLAG_NCQ
) {
2133 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2134 dev
->flags
|= ATA_DFLAG_NCQ
;
2137 if (hdepth
>= ddepth
)
2138 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
2140 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
2144 * ata_dev_configure - Configure the specified ATA/ATAPI device
2145 * @dev: Target device to configure
2147 * Configure @dev according to @dev->id. Generic and low-level
2148 * driver specific fixups are also applied.
2151 * Kernel thread context (may sleep)
2154 * 0 on success, -errno otherwise
2156 int ata_dev_configure(struct ata_device
*dev
)
2158 struct ata_port
*ap
= dev
->link
->ap
;
2159 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2160 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2161 const u16
*id
= dev
->id
;
2162 unsigned long xfer_mask
;
2163 char revbuf
[7]; /* XYZ-99\0 */
2164 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2165 char modelbuf
[ATA_ID_PROD_LEN
+1];
2168 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2169 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2174 if (ata_msg_probe(ap
))
2175 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2178 dev
->horkage
|= ata_dev_blacklisted(dev
);
2179 ata_force_horkage(dev
);
2181 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2182 ata_dev_printk(dev
, KERN_INFO
,
2183 "unsupported device, disabling\n");
2184 ata_dev_disable(dev
);
2188 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2189 dev
->class == ATA_DEV_ATAPI
) {
2190 ata_dev_printk(dev
, KERN_WARNING
,
2191 "WARNING: ATAPI is %s, device ignored.\n",
2192 atapi_enabled
? "not supported with this driver"
2194 ata_dev_disable(dev
);
2198 /* let ACPI work its magic */
2199 rc
= ata_acpi_on_devcfg(dev
);
2203 /* massage HPA, do it early as it might change IDENTIFY data */
2204 rc
= ata_hpa_resize(dev
);
2208 /* print device capabilities */
2209 if (ata_msg_probe(ap
))
2210 ata_dev_printk(dev
, KERN_DEBUG
,
2211 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2212 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2214 id
[49], id
[82], id
[83], id
[84],
2215 id
[85], id
[86], id
[87], id
[88]);
2217 /* initialize to-be-configured parameters */
2218 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2219 dev
->max_sectors
= 0;
2227 * common ATA, ATAPI feature tests
2230 /* find max transfer mode; for printk only */
2231 xfer_mask
= ata_id_xfermask(id
);
2233 if (ata_msg_probe(ap
))
2236 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2237 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2240 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2243 /* ATA-specific feature tests */
2244 if (dev
->class == ATA_DEV_ATA
) {
2245 if (ata_id_is_cfa(id
)) {
2246 if (id
[162] & 1) /* CPRM may make this media unusable */
2247 ata_dev_printk(dev
, KERN_WARNING
,
2248 "supports DRM functions and may "
2249 "not be fully accessable.\n");
2250 snprintf(revbuf
, 7, "CFA");
2252 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2253 /* Warn the user if the device has TPM extensions */
2254 if (ata_id_has_tpm(id
))
2255 ata_dev_printk(dev
, KERN_WARNING
,
2256 "supports DRM functions and may "
2257 "not be fully accessable.\n");
2260 dev
->n_sectors
= ata_id_n_sectors(id
);
2262 if (dev
->id
[59] & 0x100)
2263 dev
->multi_count
= dev
->id
[59] & 0xff;
2265 if (ata_id_has_lba(id
)) {
2266 const char *lba_desc
;
2270 dev
->flags
|= ATA_DFLAG_LBA
;
2271 if (ata_id_has_lba48(id
)) {
2272 dev
->flags
|= ATA_DFLAG_LBA48
;
2275 if (dev
->n_sectors
>= (1UL << 28) &&
2276 ata_id_has_flush_ext(id
))
2277 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2281 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2283 /* print device info to dmesg */
2284 if (ata_msg_drv(ap
) && print_info
) {
2285 ata_dev_printk(dev
, KERN_INFO
,
2286 "%s: %s, %s, max %s\n",
2287 revbuf
, modelbuf
, fwrevbuf
,
2288 ata_mode_string(xfer_mask
));
2289 ata_dev_printk(dev
, KERN_INFO
,
2290 "%Lu sectors, multi %u: %s %s\n",
2291 (unsigned long long)dev
->n_sectors
,
2292 dev
->multi_count
, lba_desc
, ncq_desc
);
2297 /* Default translation */
2298 dev
->cylinders
= id
[1];
2300 dev
->sectors
= id
[6];
2302 if (ata_id_current_chs_valid(id
)) {
2303 /* Current CHS translation is valid. */
2304 dev
->cylinders
= id
[54];
2305 dev
->heads
= id
[55];
2306 dev
->sectors
= id
[56];
2309 /* print device info to dmesg */
2310 if (ata_msg_drv(ap
) && print_info
) {
2311 ata_dev_printk(dev
, KERN_INFO
,
2312 "%s: %s, %s, max %s\n",
2313 revbuf
, modelbuf
, fwrevbuf
,
2314 ata_mode_string(xfer_mask
));
2315 ata_dev_printk(dev
, KERN_INFO
,
2316 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2317 (unsigned long long)dev
->n_sectors
,
2318 dev
->multi_count
, dev
->cylinders
,
2319 dev
->heads
, dev
->sectors
);
2326 /* ATAPI-specific feature tests */
2327 else if (dev
->class == ATA_DEV_ATAPI
) {
2328 const char *cdb_intr_string
= "";
2329 const char *atapi_an_string
= "";
2330 const char *dma_dir_string
= "";
2333 rc
= atapi_cdb_len(id
);
2334 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2335 if (ata_msg_warn(ap
))
2336 ata_dev_printk(dev
, KERN_WARNING
,
2337 "unsupported CDB len\n");
2341 dev
->cdb_len
= (unsigned int) rc
;
2343 /* Enable ATAPI AN if both the host and device have
2344 * the support. If PMP is attached, SNTF is required
2345 * to enable ATAPI AN to discern between PHY status
2346 * changed notifications and ATAPI ANs.
2349 (ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2350 (!sata_pmp_attached(ap
) ||
2351 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2352 unsigned int err_mask
;
2354 /* issue SET feature command to turn this on */
2355 err_mask
= ata_dev_set_feature(dev
,
2356 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2358 ata_dev_printk(dev
, KERN_ERR
,
2359 "failed to enable ATAPI AN "
2360 "(err_mask=0x%x)\n", err_mask
);
2362 dev
->flags
|= ATA_DFLAG_AN
;
2363 atapi_an_string
= ", ATAPI AN";
2367 if (ata_id_cdb_intr(dev
->id
)) {
2368 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2369 cdb_intr_string
= ", CDB intr";
2372 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2373 dev
->flags
|= ATA_DFLAG_DMADIR
;
2374 dma_dir_string
= ", DMADIR";
2377 /* print device info to dmesg */
2378 if (ata_msg_drv(ap
) && print_info
)
2379 ata_dev_printk(dev
, KERN_INFO
,
2380 "ATAPI: %s, %s, max %s%s%s%s\n",
2382 ata_mode_string(xfer_mask
),
2383 cdb_intr_string
, atapi_an_string
,
2387 /* determine max_sectors */
2388 dev
->max_sectors
= ATA_MAX_SECTORS
;
2389 if (dev
->flags
& ATA_DFLAG_LBA48
)
2390 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2392 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2393 if (ata_id_has_hipm(dev
->id
))
2394 dev
->flags
|= ATA_DFLAG_HIPM
;
2395 if (ata_id_has_dipm(dev
->id
))
2396 dev
->flags
|= ATA_DFLAG_DIPM
;
2399 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2401 if (ata_dev_knobble(dev
)) {
2402 if (ata_msg_drv(ap
) && print_info
)
2403 ata_dev_printk(dev
, KERN_INFO
,
2404 "applying bridge limits\n");
2405 dev
->udma_mask
&= ATA_UDMA5
;
2406 dev
->max_sectors
= ATA_MAX_SECTORS
;
2409 if ((dev
->class == ATA_DEV_ATAPI
) &&
2410 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2411 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2412 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2415 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2416 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2419 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2420 dev
->horkage
|= ATA_HORKAGE_IPM
;
2422 /* reset link pm_policy for this port to no pm */
2423 ap
->pm_policy
= MAX_PERFORMANCE
;
2426 if (ap
->ops
->dev_config
)
2427 ap
->ops
->dev_config(dev
);
2429 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2430 /* Let the user know. We don't want to disallow opens for
2431 rescue purposes, or in case the vendor is just a blithering
2432 idiot. Do this after the dev_config call as some controllers
2433 with buggy firmware may want to avoid reporting false device
2437 ata_dev_printk(dev
, KERN_WARNING
,
2438 "Drive reports diagnostics failure. This may indicate a drive\n");
2439 ata_dev_printk(dev
, KERN_WARNING
,
2440 "fault or invalid emulation. Contact drive vendor for information.\n");
2444 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2445 ata_dev_printk(dev
, KERN_WARNING
, "WARNING: device requires "
2446 "firmware update to be fully functional.\n");
2447 ata_dev_printk(dev
, KERN_WARNING
, " contact the vendor "
2448 "or visit http://ata.wiki.kernel.org.\n");
2454 if (ata_msg_probe(ap
))
2455 ata_dev_printk(dev
, KERN_DEBUG
,
2456 "%s: EXIT, err\n", __func__
);
2461 * ata_cable_40wire - return 40 wire cable type
2464 * Helper method for drivers which want to hardwire 40 wire cable
2468 int ata_cable_40wire(struct ata_port
*ap
)
2470 return ATA_CBL_PATA40
;
2474 * ata_cable_80wire - return 80 wire cable type
2477 * Helper method for drivers which want to hardwire 80 wire cable
2481 int ata_cable_80wire(struct ata_port
*ap
)
2483 return ATA_CBL_PATA80
;
2487 * ata_cable_unknown - return unknown PATA cable.
2490 * Helper method for drivers which have no PATA cable detection.
2493 int ata_cable_unknown(struct ata_port
*ap
)
2495 return ATA_CBL_PATA_UNK
;
2499 * ata_cable_ignore - return ignored PATA cable.
2502 * Helper method for drivers which don't use cable type to limit
2505 int ata_cable_ignore(struct ata_port
*ap
)
2507 return ATA_CBL_PATA_IGN
;
2511 * ata_cable_sata - return SATA cable type
2514 * Helper method for drivers which have SATA cables
2517 int ata_cable_sata(struct ata_port
*ap
)
2519 return ATA_CBL_SATA
;
2523 * ata_bus_probe - Reset and probe ATA bus
2526 * Master ATA bus probing function. Initiates a hardware-dependent
2527 * bus reset, then attempts to identify any devices found on
2531 * PCI/etc. bus probe sem.
2534 * Zero on success, negative errno otherwise.
2537 int ata_bus_probe(struct ata_port
*ap
)
2539 unsigned int classes
[ATA_MAX_DEVICES
];
2540 int tries
[ATA_MAX_DEVICES
];
2542 struct ata_device
*dev
;
2546 ata_link_for_each_dev(dev
, &ap
->link
)
2547 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2550 ata_link_for_each_dev(dev
, &ap
->link
) {
2551 /* If we issue an SRST then an ATA drive (not ATAPI)
2552 * may change configuration and be in PIO0 timing. If
2553 * we do a hard reset (or are coming from power on)
2554 * this is true for ATA or ATAPI. Until we've set a
2555 * suitable controller mode we should not touch the
2556 * bus as we may be talking too fast.
2558 dev
->pio_mode
= XFER_PIO_0
;
2560 /* If the controller has a pio mode setup function
2561 * then use it to set the chipset to rights. Don't
2562 * touch the DMA setup as that will be dealt with when
2563 * configuring devices.
2565 if (ap
->ops
->set_piomode
)
2566 ap
->ops
->set_piomode(ap
, dev
);
2569 /* reset and determine device classes */
2570 ap
->ops
->phy_reset(ap
);
2572 ata_link_for_each_dev(dev
, &ap
->link
) {
2573 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2574 dev
->class != ATA_DEV_UNKNOWN
)
2575 classes
[dev
->devno
] = dev
->class;
2577 classes
[dev
->devno
] = ATA_DEV_NONE
;
2579 dev
->class = ATA_DEV_UNKNOWN
;
2584 /* read IDENTIFY page and configure devices. We have to do the identify
2585 specific sequence bass-ackwards so that PDIAG- is released by
2588 ata_link_for_each_dev_reverse(dev
, &ap
->link
) {
2589 if (tries
[dev
->devno
])
2590 dev
->class = classes
[dev
->devno
];
2592 if (!ata_dev_enabled(dev
))
2595 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2601 /* Now ask for the cable type as PDIAG- should have been released */
2602 if (ap
->ops
->cable_detect
)
2603 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2605 /* We may have SATA bridge glue hiding here irrespective of the
2606 reported cable types and sensed types */
2607 ata_link_for_each_dev(dev
, &ap
->link
) {
2608 if (!ata_dev_enabled(dev
))
2610 /* SATA drives indicate we have a bridge. We don't know which
2611 end of the link the bridge is which is a problem */
2612 if (ata_id_is_sata(dev
->id
))
2613 ap
->cbl
= ATA_CBL_SATA
;
2616 /* After the identify sequence we can now set up the devices. We do
2617 this in the normal order so that the user doesn't get confused */
2619 ata_link_for_each_dev(dev
, &ap
->link
) {
2620 if (!ata_dev_enabled(dev
))
2623 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2624 rc
= ata_dev_configure(dev
);
2625 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2630 /* configure transfer mode */
2631 rc
= ata_set_mode(&ap
->link
, &dev
);
2635 ata_link_for_each_dev(dev
, &ap
->link
)
2636 if (ata_dev_enabled(dev
))
2639 /* no device present, disable port */
2640 ata_port_disable(ap
);
2644 tries
[dev
->devno
]--;
2648 /* eeek, something went very wrong, give up */
2649 tries
[dev
->devno
] = 0;
2653 /* give it just one more chance */
2654 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2656 if (tries
[dev
->devno
] == 1) {
2657 /* This is the last chance, better to slow
2658 * down than lose it.
2660 sata_down_spd_limit(&ap
->link
);
2661 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2665 if (!tries
[dev
->devno
])
2666 ata_dev_disable(dev
);
2672 * ata_port_probe - Mark port as enabled
2673 * @ap: Port for which we indicate enablement
2675 * Modify @ap data structure such that the system
2676 * thinks that the entire port is enabled.
2678 * LOCKING: host lock, or some other form of
2682 void ata_port_probe(struct ata_port
*ap
)
2684 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2688 * sata_print_link_status - Print SATA link status
2689 * @link: SATA link to printk link status about
2691 * This function prints link speed and status of a SATA link.
2696 static void sata_print_link_status(struct ata_link
*link
)
2698 u32 sstatus
, scontrol
, tmp
;
2700 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2702 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2704 if (ata_link_online(link
)) {
2705 tmp
= (sstatus
>> 4) & 0xf;
2706 ata_link_printk(link
, KERN_INFO
,
2707 "SATA link up %s (SStatus %X SControl %X)\n",
2708 sata_spd_string(tmp
), sstatus
, scontrol
);
2710 ata_link_printk(link
, KERN_INFO
,
2711 "SATA link down (SStatus %X SControl %X)\n",
2717 * ata_dev_pair - return other device on cable
2720 * Obtain the other device on the same cable, or if none is
2721 * present NULL is returned
2724 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2726 struct ata_link
*link
= adev
->link
;
2727 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2728 if (!ata_dev_enabled(pair
))
2734 * ata_port_disable - Disable port.
2735 * @ap: Port to be disabled.
2737 * Modify @ap data structure such that the system
2738 * thinks that the entire port is disabled, and should
2739 * never attempt to probe or communicate with devices
2742 * LOCKING: host lock, or some other form of
2746 void ata_port_disable(struct ata_port
*ap
)
2748 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2749 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2750 ap
->flags
|= ATA_FLAG_DISABLED
;
2754 * sata_down_spd_limit - adjust SATA spd limit downward
2755 * @link: Link to adjust SATA spd limit for
2757 * Adjust SATA spd limit of @link downward. Note that this
2758 * function only adjusts the limit. The change must be applied
2759 * using sata_set_spd().
2762 * Inherited from caller.
2765 * 0 on success, negative errno on failure
2767 int sata_down_spd_limit(struct ata_link
*link
)
2769 u32 sstatus
, spd
, mask
;
2772 if (!sata_scr_valid(link
))
2775 /* If SCR can be read, use it to determine the current SPD.
2776 * If not, use cached value in link->sata_spd.
2778 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2780 spd
= (sstatus
>> 4) & 0xf;
2782 spd
= link
->sata_spd
;
2784 mask
= link
->sata_spd_limit
;
2788 /* unconditionally mask off the highest bit */
2789 highbit
= fls(mask
) - 1;
2790 mask
&= ~(1 << highbit
);
2792 /* Mask off all speeds higher than or equal to the current
2793 * one. Force 1.5Gbps if current SPD is not available.
2796 mask
&= (1 << (spd
- 1)) - 1;
2800 /* were we already at the bottom? */
2804 link
->sata_spd_limit
= mask
;
2806 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2807 sata_spd_string(fls(mask
)));
2812 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2814 struct ata_link
*host_link
= &link
->ap
->link
;
2815 u32 limit
, target
, spd
;
2817 limit
= link
->sata_spd_limit
;
2819 /* Don't configure downstream link faster than upstream link.
2820 * It doesn't speed up anything and some PMPs choke on such
2823 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2824 limit
&= (1 << host_link
->sata_spd
) - 1;
2826 if (limit
== UINT_MAX
)
2829 target
= fls(limit
);
2831 spd
= (*scontrol
>> 4) & 0xf;
2832 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2834 return spd
!= target
;
2838 * sata_set_spd_needed - is SATA spd configuration needed
2839 * @link: Link in question
2841 * Test whether the spd limit in SControl matches
2842 * @link->sata_spd_limit. This function is used to determine
2843 * whether hardreset is necessary to apply SATA spd
2847 * Inherited from caller.
2850 * 1 if SATA spd configuration is needed, 0 otherwise.
2852 static int sata_set_spd_needed(struct ata_link
*link
)
2856 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2859 return __sata_set_spd_needed(link
, &scontrol
);
2863 * sata_set_spd - set SATA spd according to spd limit
2864 * @link: Link to set SATA spd for
2866 * Set SATA spd of @link according to sata_spd_limit.
2869 * Inherited from caller.
2872 * 0 if spd doesn't need to be changed, 1 if spd has been
2873 * changed. Negative errno if SCR registers are inaccessible.
2875 int sata_set_spd(struct ata_link
*link
)
2880 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
2883 if (!__sata_set_spd_needed(link
, &scontrol
))
2886 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
2893 * This mode timing computation functionality is ported over from
2894 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2897 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2898 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2899 * for UDMA6, which is currently supported only by Maxtor drives.
2901 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2904 static const struct ata_timing ata_timing
[] = {
2905 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2906 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2907 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2908 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2909 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2910 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2911 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2912 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2914 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2915 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2916 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2918 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2919 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2920 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2921 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2922 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2924 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2925 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2926 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2927 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2928 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2929 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2930 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2931 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
2936 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2937 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2939 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2941 q
->setup
= EZ(t
->setup
* 1000, T
);
2942 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2943 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2944 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2945 q
->active
= EZ(t
->active
* 1000, T
);
2946 q
->recover
= EZ(t
->recover
* 1000, T
);
2947 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2948 q
->udma
= EZ(t
->udma
* 1000, UT
);
2951 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2952 struct ata_timing
*m
, unsigned int what
)
2954 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2955 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2956 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2957 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2958 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2959 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2960 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2961 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2964 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
2966 const struct ata_timing
*t
= ata_timing
;
2968 while (xfer_mode
> t
->mode
)
2971 if (xfer_mode
== t
->mode
)
2976 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2977 struct ata_timing
*t
, int T
, int UT
)
2979 const struct ata_timing
*s
;
2980 struct ata_timing p
;
2986 if (!(s
= ata_timing_find_mode(speed
)))
2989 memcpy(t
, s
, sizeof(*s
));
2992 * If the drive is an EIDE drive, it can tell us it needs extended
2993 * PIO/MW_DMA cycle timing.
2996 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2997 memset(&p
, 0, sizeof(p
));
2998 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2999 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
3000 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
3001 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
3002 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
3004 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3008 * Convert the timing to bus clock counts.
3011 ata_timing_quantize(t
, t
, T
, UT
);
3014 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3015 * S.M.A.R.T * and some other commands. We have to ensure that the
3016 * DMA cycle timing is slower/equal than the fastest PIO timing.
3019 if (speed
> XFER_PIO_6
) {
3020 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3021 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3025 * Lengthen active & recovery time so that cycle time is correct.
3028 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3029 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3030 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3033 if (t
->active
+ t
->recover
< t
->cycle
) {
3034 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3035 t
->recover
= t
->cycle
- t
->active
;
3038 /* In a few cases quantisation may produce enough errors to
3039 leave t->cycle too low for the sum of active and recovery
3040 if so we must correct this */
3041 if (t
->active
+ t
->recover
> t
->cycle
)
3042 t
->cycle
= t
->active
+ t
->recover
;
3048 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3049 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3050 * @cycle: cycle duration in ns
3052 * Return matching xfer mode for @cycle. The returned mode is of
3053 * the transfer type specified by @xfer_shift. If @cycle is too
3054 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3055 * than the fastest known mode, the fasted mode is returned.
3061 * Matching xfer_mode, 0xff if no match found.
3063 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3065 u8 base_mode
= 0xff, last_mode
= 0xff;
3066 const struct ata_xfer_ent
*ent
;
3067 const struct ata_timing
*t
;
3069 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3070 if (ent
->shift
== xfer_shift
)
3071 base_mode
= ent
->base
;
3073 for (t
= ata_timing_find_mode(base_mode
);
3074 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3075 unsigned short this_cycle
;
3077 switch (xfer_shift
) {
3079 case ATA_SHIFT_MWDMA
:
3080 this_cycle
= t
->cycle
;
3082 case ATA_SHIFT_UDMA
:
3083 this_cycle
= t
->udma
;
3089 if (cycle
> this_cycle
)
3092 last_mode
= t
->mode
;
3099 * ata_down_xfermask_limit - adjust dev xfer masks downward
3100 * @dev: Device to adjust xfer masks
3101 * @sel: ATA_DNXFER_* selector
3103 * Adjust xfer masks of @dev downward. Note that this function
3104 * does not apply the change. Invoking ata_set_mode() afterwards
3105 * will apply the limit.
3108 * Inherited from caller.
3111 * 0 on success, negative errno on failure
3113 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3116 unsigned long orig_mask
, xfer_mask
;
3117 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3120 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3121 sel
&= ~ATA_DNXFER_QUIET
;
3123 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3126 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3129 case ATA_DNXFER_PIO
:
3130 highbit
= fls(pio_mask
) - 1;
3131 pio_mask
&= ~(1 << highbit
);
3134 case ATA_DNXFER_DMA
:
3136 highbit
= fls(udma_mask
) - 1;
3137 udma_mask
&= ~(1 << highbit
);
3140 } else if (mwdma_mask
) {
3141 highbit
= fls(mwdma_mask
) - 1;
3142 mwdma_mask
&= ~(1 << highbit
);
3148 case ATA_DNXFER_40C
:
3149 udma_mask
&= ATA_UDMA_MASK_40C
;
3152 case ATA_DNXFER_FORCE_PIO0
:
3154 case ATA_DNXFER_FORCE_PIO
:
3163 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3165 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3169 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3170 snprintf(buf
, sizeof(buf
), "%s:%s",
3171 ata_mode_string(xfer_mask
),
3172 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3174 snprintf(buf
, sizeof(buf
), "%s",
3175 ata_mode_string(xfer_mask
));
3177 ata_dev_printk(dev
, KERN_WARNING
,
3178 "limiting speed to %s\n", buf
);
3181 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3187 static int ata_dev_set_mode(struct ata_device
*dev
)
3189 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3190 const char *dev_err_whine
= "";
3191 int ign_dev_err
= 0;
3192 unsigned int err_mask
;
3195 dev
->flags
&= ~ATA_DFLAG_PIO
;
3196 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3197 dev
->flags
|= ATA_DFLAG_PIO
;
3199 err_mask
= ata_dev_set_xfermode(dev
);
3201 if (err_mask
& ~AC_ERR_DEV
)
3205 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3206 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3207 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3211 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3212 /* Old CFA may refuse this command, which is just fine */
3213 if (ata_id_is_cfa(dev
->id
))
3215 /* Catch several broken garbage emulations plus some pre
3217 if (ata_id_major_version(dev
->id
) == 0 &&
3218 dev
->pio_mode
<= XFER_PIO_2
)
3220 /* Some very old devices and some bad newer ones fail
3221 any kind of SET_XFERMODE request but support PIO0-2
3222 timings and no IORDY */
3223 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3226 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3227 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3228 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3229 dev
->dma_mode
== XFER_MW_DMA_0
&&
3230 (dev
->id
[63] >> 8) & 1)
3233 /* if the device is actually configured correctly, ignore dev err */
3234 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3237 if (err_mask
& AC_ERR_DEV
) {
3241 dev_err_whine
= " (device error ignored)";
3244 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3245 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3247 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3248 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3254 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3255 "(err_mask=0x%x)\n", err_mask
);
3260 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3261 * @link: link on which timings will be programmed
3262 * @r_failed_dev: out parameter for failed device
3264 * Standard implementation of the function used to tune and set
3265 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3266 * ata_dev_set_mode() fails, pointer to the failing device is
3267 * returned in @r_failed_dev.
3270 * PCI/etc. bus probe sem.
3273 * 0 on success, negative errno otherwise
3276 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3278 struct ata_port
*ap
= link
->ap
;
3279 struct ata_device
*dev
;
3280 int rc
= 0, used_dma
= 0, found
= 0;
3282 /* step 1: calculate xfer_mask */
3283 ata_link_for_each_dev(dev
, link
) {
3284 unsigned long pio_mask
, dma_mask
;
3285 unsigned int mode_mask
;
3287 if (!ata_dev_enabled(dev
))
3290 mode_mask
= ATA_DMA_MASK_ATA
;
3291 if (dev
->class == ATA_DEV_ATAPI
)
3292 mode_mask
= ATA_DMA_MASK_ATAPI
;
3293 else if (ata_id_is_cfa(dev
->id
))
3294 mode_mask
= ATA_DMA_MASK_CFA
;
3296 ata_dev_xfermask(dev
);
3297 ata_force_xfermask(dev
);
3299 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3300 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3302 if (libata_dma_mask
& mode_mask
)
3303 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3307 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3308 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3311 if (ata_dma_enabled(dev
))
3317 /* step 2: always set host PIO timings */
3318 ata_link_for_each_dev(dev
, link
) {
3319 if (!ata_dev_enabled(dev
))
3322 if (dev
->pio_mode
== 0xff) {
3323 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3328 dev
->xfer_mode
= dev
->pio_mode
;
3329 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3330 if (ap
->ops
->set_piomode
)
3331 ap
->ops
->set_piomode(ap
, dev
);
3334 /* step 3: set host DMA timings */
3335 ata_link_for_each_dev(dev
, link
) {
3336 if (!ata_dev_enabled(dev
) || !ata_dma_enabled(dev
))
3339 dev
->xfer_mode
= dev
->dma_mode
;
3340 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3341 if (ap
->ops
->set_dmamode
)
3342 ap
->ops
->set_dmamode(ap
, dev
);
3345 /* step 4: update devices' xfer mode */
3346 ata_link_for_each_dev(dev
, link
) {
3347 /* don't update suspended devices' xfer mode */
3348 if (!ata_dev_enabled(dev
))
3351 rc
= ata_dev_set_mode(dev
);
3356 /* Record simplex status. If we selected DMA then the other
3357 * host channels are not permitted to do so.
3359 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3360 ap
->host
->simplex_claimed
= ap
;
3364 *r_failed_dev
= dev
;
3369 * ata_wait_ready - wait for link to become ready
3370 * @link: link to be waited on
3371 * @deadline: deadline jiffies for the operation
3372 * @check_ready: callback to check link readiness
3374 * Wait for @link to become ready. @check_ready should return
3375 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3376 * link doesn't seem to be occupied, other errno for other error
3379 * Transient -ENODEV conditions are allowed for
3380 * ATA_TMOUT_FF_WAIT.
3386 * 0 if @linke is ready before @deadline; otherwise, -errno.
3388 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3389 int (*check_ready
)(struct ata_link
*link
))
3391 unsigned long start
= jiffies
;
3392 unsigned long nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3395 if (time_after(nodev_deadline
, deadline
))
3396 nodev_deadline
= deadline
;
3399 unsigned long now
= jiffies
;
3402 ready
= tmp
= check_ready(link
);
3406 /* -ENODEV could be transient. Ignore -ENODEV if link
3407 * is online. Also, some SATA devices take a long
3408 * time to clear 0xff after reset. For example,
3409 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3410 * GoVault needs even more than that. Wait for
3411 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3413 * Note that some PATA controllers (pata_ali) explode
3414 * if status register is read more than once when
3415 * there's no device attached.
3417 if (ready
== -ENODEV
) {
3418 if (ata_link_online(link
))
3420 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3421 !ata_link_offline(link
) &&
3422 time_before(now
, nodev_deadline
))
3428 if (time_after(now
, deadline
))
3431 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3432 (deadline
- now
> 3 * HZ
)) {
3433 ata_link_printk(link
, KERN_WARNING
,
3434 "link is slow to respond, please be patient "
3435 "(ready=%d)\n", tmp
);
3444 * ata_wait_after_reset - wait for link to become ready after reset
3445 * @link: link to be waited on
3446 * @deadline: deadline jiffies for the operation
3447 * @check_ready: callback to check link readiness
3449 * Wait for @link to become ready after reset.
3455 * 0 if @linke is ready before @deadline; otherwise, -errno.
3457 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3458 int (*check_ready
)(struct ata_link
*link
))
3460 msleep(ATA_WAIT_AFTER_RESET
);
3462 return ata_wait_ready(link
, deadline
, check_ready
);
3466 * sata_link_debounce - debounce SATA phy status
3467 * @link: ATA link to debounce SATA phy status for
3468 * @params: timing parameters { interval, duratinon, timeout } in msec
3469 * @deadline: deadline jiffies for the operation
3471 * Make sure SStatus of @link reaches stable state, determined by
3472 * holding the same value where DET is not 1 for @duration polled
3473 * every @interval, before @timeout. Timeout constraints the
3474 * beginning of the stable state. Because DET gets stuck at 1 on
3475 * some controllers after hot unplugging, this functions waits
3476 * until timeout then returns 0 if DET is stable at 1.
3478 * @timeout is further limited by @deadline. The sooner of the
3482 * Kernel thread context (may sleep)
3485 * 0 on success, -errno on failure.
3487 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3488 unsigned long deadline
)
3490 unsigned long interval
= params
[0];
3491 unsigned long duration
= params
[1];
3492 unsigned long last_jiffies
, t
;
3496 t
= ata_deadline(jiffies
, params
[2]);
3497 if (time_before(t
, deadline
))
3500 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3505 last_jiffies
= jiffies
;
3509 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3515 if (cur
== 1 && time_before(jiffies
, deadline
))
3517 if (time_after(jiffies
,
3518 ata_deadline(last_jiffies
, duration
)))
3523 /* unstable, start over */
3525 last_jiffies
= jiffies
;
3527 /* Check deadline. If debouncing failed, return
3528 * -EPIPE to tell upper layer to lower link speed.
3530 if (time_after(jiffies
, deadline
))
3536 * sata_link_resume - resume SATA link
3537 * @link: ATA link to resume SATA
3538 * @params: timing parameters { interval, duratinon, timeout } in msec
3539 * @deadline: deadline jiffies for the operation
3541 * Resume SATA phy @link and debounce it.
3544 * Kernel thread context (may sleep)
3547 * 0 on success, -errno on failure.
3549 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3550 unsigned long deadline
)
3552 u32 scontrol
, serror
;
3555 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3558 scontrol
= (scontrol
& 0x0f0) | 0x300;
3560 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3563 /* Some PHYs react badly if SStatus is pounded immediately
3564 * after resuming. Delay 200ms before debouncing.
3568 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3571 /* clear SError, some PHYs require this even for SRST to work */
3572 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3573 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3575 return rc
!= -EINVAL
? rc
: 0;
3579 * ata_std_prereset - prepare for reset
3580 * @link: ATA link to be reset
3581 * @deadline: deadline jiffies for the operation
3583 * @link is about to be reset. Initialize it. Failure from
3584 * prereset makes libata abort whole reset sequence and give up
3585 * that port, so prereset should be best-effort. It does its
3586 * best to prepare for reset sequence but if things go wrong, it
3587 * should just whine, not fail.
3590 * Kernel thread context (may sleep)
3593 * 0 on success, -errno otherwise.
3595 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3597 struct ata_port
*ap
= link
->ap
;
3598 struct ata_eh_context
*ehc
= &link
->eh_context
;
3599 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3602 /* if we're about to do hardreset, nothing more to do */
3603 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3606 /* if SATA, resume link */
3607 if (ap
->flags
& ATA_FLAG_SATA
) {
3608 rc
= sata_link_resume(link
, timing
, deadline
);
3609 /* whine about phy resume failure but proceed */
3610 if (rc
&& rc
!= -EOPNOTSUPP
)
3611 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3612 "link for reset (errno=%d)\n", rc
);
3615 /* no point in trying softreset on offline link */
3616 if (ata_link_offline(link
))
3617 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3623 * sata_link_hardreset - reset link via SATA phy reset
3624 * @link: link to reset
3625 * @timing: timing parameters { interval, duratinon, timeout } in msec
3626 * @deadline: deadline jiffies for the operation
3627 * @online: optional out parameter indicating link onlineness
3628 * @check_ready: optional callback to check link readiness
3630 * SATA phy-reset @link using DET bits of SControl register.
3631 * After hardreset, link readiness is waited upon using
3632 * ata_wait_ready() if @check_ready is specified. LLDs are
3633 * allowed to not specify @check_ready and wait itself after this
3634 * function returns. Device classification is LLD's
3637 * *@online is set to one iff reset succeeded and @link is online
3641 * Kernel thread context (may sleep)
3644 * 0 on success, -errno otherwise.
3646 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3647 unsigned long deadline
,
3648 bool *online
, int (*check_ready
)(struct ata_link
*))
3658 if (sata_set_spd_needed(link
)) {
3659 /* SATA spec says nothing about how to reconfigure
3660 * spd. To be on the safe side, turn off phy during
3661 * reconfiguration. This works for at least ICH7 AHCI
3664 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3667 scontrol
= (scontrol
& 0x0f0) | 0x304;
3669 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3675 /* issue phy wake/reset */
3676 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3679 scontrol
= (scontrol
& 0x0f0) | 0x301;
3681 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3684 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3685 * 10.4.2 says at least 1 ms.
3689 /* bring link back */
3690 rc
= sata_link_resume(link
, timing
, deadline
);
3693 /* if link is offline nothing more to do */
3694 if (ata_link_offline(link
))
3697 /* Link is online. From this point, -ENODEV too is an error. */
3701 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3702 /* If PMP is supported, we have to do follow-up SRST.
3703 * Some PMPs don't send D2H Reg FIS after hardreset if
3704 * the first port is empty. Wait only for
3705 * ATA_TMOUT_PMP_SRST_WAIT.
3708 unsigned long pmp_deadline
;
3710 pmp_deadline
= ata_deadline(jiffies
,
3711 ATA_TMOUT_PMP_SRST_WAIT
);
3712 if (time_after(pmp_deadline
, deadline
))
3713 pmp_deadline
= deadline
;
3714 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3722 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3724 if (rc
&& rc
!= -EAGAIN
) {
3725 /* online is set iff link is online && reset succeeded */
3728 ata_link_printk(link
, KERN_ERR
,
3729 "COMRESET failed (errno=%d)\n", rc
);
3731 DPRINTK("EXIT, rc=%d\n", rc
);
3736 * sata_std_hardreset - COMRESET w/o waiting or classification
3737 * @link: link to reset
3738 * @class: resulting class of attached device
3739 * @deadline: deadline jiffies for the operation
3741 * Standard SATA COMRESET w/o waiting or classification.
3744 * Kernel thread context (may sleep)
3747 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3749 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3750 unsigned long deadline
)
3752 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3757 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3758 return online
? -EAGAIN
: rc
;
3762 * ata_std_postreset - standard postreset callback
3763 * @link: the target ata_link
3764 * @classes: classes of attached devices
3766 * This function is invoked after a successful reset. Note that
3767 * the device might have been reset more than once using
3768 * different reset methods before postreset is invoked.
3771 * Kernel thread context (may sleep)
3773 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3779 /* reset complete, clear SError */
3780 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
3781 sata_scr_write(link
, SCR_ERROR
, serror
);
3783 /* print link status */
3784 sata_print_link_status(link
);
3790 * ata_dev_same_device - Determine whether new ID matches configured device
3791 * @dev: device to compare against
3792 * @new_class: class of the new device
3793 * @new_id: IDENTIFY page of the new device
3795 * Compare @new_class and @new_id against @dev and determine
3796 * whether @dev is the device indicated by @new_class and
3803 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3805 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3808 const u16
*old_id
= dev
->id
;
3809 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3810 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3812 if (dev
->class != new_class
) {
3813 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3814 dev
->class, new_class
);
3818 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3819 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3820 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3821 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3823 if (strcmp(model
[0], model
[1])) {
3824 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3825 "'%s' != '%s'\n", model
[0], model
[1]);
3829 if (strcmp(serial
[0], serial
[1])) {
3830 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3831 "'%s' != '%s'\n", serial
[0], serial
[1]);
3839 * ata_dev_reread_id - Re-read IDENTIFY data
3840 * @dev: target ATA device
3841 * @readid_flags: read ID flags
3843 * Re-read IDENTIFY page and make sure @dev is still attached to
3847 * Kernel thread context (may sleep)
3850 * 0 on success, negative errno otherwise
3852 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
3854 unsigned int class = dev
->class;
3855 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
3859 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3863 /* is the device still there? */
3864 if (!ata_dev_same_device(dev
, class, id
))
3867 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3872 * ata_dev_revalidate - Revalidate ATA device
3873 * @dev: device to revalidate
3874 * @new_class: new class code
3875 * @readid_flags: read ID flags
3877 * Re-read IDENTIFY page, make sure @dev is still attached to the
3878 * port and reconfigure it according to the new IDENTIFY page.
3881 * Kernel thread context (may sleep)
3884 * 0 on success, negative errno otherwise
3886 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
3887 unsigned int readid_flags
)
3889 u64 n_sectors
= dev
->n_sectors
;
3892 if (!ata_dev_enabled(dev
))
3895 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3896 if (ata_class_enabled(new_class
) &&
3897 new_class
!= ATA_DEV_ATA
&& new_class
!= ATA_DEV_ATAPI
) {
3898 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
3899 dev
->class, new_class
);
3905 rc
= ata_dev_reread_id(dev
, readid_flags
);
3909 /* configure device according to the new ID */
3910 rc
= ata_dev_configure(dev
);
3914 /* verify n_sectors hasn't changed */
3915 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
3916 dev
->n_sectors
!= n_sectors
) {
3917 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
3919 (unsigned long long)n_sectors
,
3920 (unsigned long long)dev
->n_sectors
);
3922 /* restore original n_sectors */
3923 dev
->n_sectors
= n_sectors
;
3932 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
3936 struct ata_blacklist_entry
{
3937 const char *model_num
;
3938 const char *model_rev
;
3939 unsigned long horkage
;
3942 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
3943 /* Devices with DMA related problems under Linux */
3944 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
3945 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
3946 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
3947 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
3948 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
3949 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
3950 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
3951 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
3952 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
3953 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
3954 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
3955 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
3956 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
3957 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
3958 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
3959 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
3960 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
3961 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
3962 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
3963 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
3964 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
3965 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
3966 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
3967 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
3968 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
3969 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
3970 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
3971 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
3972 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
3973 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
3974 /* Odd clown on sil3726/4726 PMPs */
3975 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
3977 /* Weird ATAPI devices */
3978 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
3980 /* Devices we expect to fail diagnostics */
3982 /* Devices where NCQ should be avoided */
3984 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
3985 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
3986 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3987 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
3989 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
3990 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
3991 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
3992 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
3994 /* Seagate NCQ + FLUSH CACHE firmware bug */
3995 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ
|
3996 ATA_HORKAGE_FIRMWARE_WARN
},
3997 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ
|
3998 ATA_HORKAGE_FIRMWARE_WARN
},
3999 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ
|
4000 ATA_HORKAGE_FIRMWARE_WARN
},
4001 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ
|
4002 ATA_HORKAGE_FIRMWARE_WARN
},
4003 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ
|
4004 ATA_HORKAGE_FIRMWARE_WARN
},
4006 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ
|
4007 ATA_HORKAGE_FIRMWARE_WARN
},
4008 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ
|
4009 ATA_HORKAGE_FIRMWARE_WARN
},
4010 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ
|
4011 ATA_HORKAGE_FIRMWARE_WARN
},
4012 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ
|
4013 ATA_HORKAGE_FIRMWARE_WARN
},
4014 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ
|
4015 ATA_HORKAGE_FIRMWARE_WARN
},
4017 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ
|
4018 ATA_HORKAGE_FIRMWARE_WARN
},
4019 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ
|
4020 ATA_HORKAGE_FIRMWARE_WARN
},
4021 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ
|
4022 ATA_HORKAGE_FIRMWARE_WARN
},
4023 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ
|
4024 ATA_HORKAGE_FIRMWARE_WARN
},
4025 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ
|
4026 ATA_HORKAGE_FIRMWARE_WARN
},
4028 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ
|
4029 ATA_HORKAGE_FIRMWARE_WARN
},
4030 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ
|
4031 ATA_HORKAGE_FIRMWARE_WARN
},
4032 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ
|
4033 ATA_HORKAGE_FIRMWARE_WARN
},
4034 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ
|
4035 ATA_HORKAGE_FIRMWARE_WARN
},
4036 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ
|
4037 ATA_HORKAGE_FIRMWARE_WARN
},
4039 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ
|
4040 ATA_HORKAGE_FIRMWARE_WARN
},
4041 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ
|
4042 ATA_HORKAGE_FIRMWARE_WARN
},
4043 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ
|
4044 ATA_HORKAGE_FIRMWARE_WARN
},
4045 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ
|
4046 ATA_HORKAGE_FIRMWARE_WARN
},
4047 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ
|
4048 ATA_HORKAGE_FIRMWARE_WARN
},
4050 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ
|
4051 ATA_HORKAGE_FIRMWARE_WARN
},
4052 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ
|
4053 ATA_HORKAGE_FIRMWARE_WARN
},
4054 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ
|
4055 ATA_HORKAGE_FIRMWARE_WARN
},
4056 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ
|
4057 ATA_HORKAGE_FIRMWARE_WARN
},
4058 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ
|
4059 ATA_HORKAGE_FIRMWARE_WARN
},
4061 /* Blacklist entries taken from Silicon Image 3124/3132
4062 Windows driver .inf file - also several Linux problem reports */
4063 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4064 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4065 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4067 /* devices which puke on READ_NATIVE_MAX */
4068 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4069 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4070 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4071 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4073 /* Devices which report 1 sector over size HPA */
4074 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4075 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4076 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4078 /* Devices which get the IVB wrong */
4079 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4080 /* Maybe we should just blacklist TSSTcorp... */
4081 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB
, },
4082 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB
, },
4083 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4084 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4085 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4086 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4092 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4098 * check for trailing wildcard: *\0
4100 p
= strchr(patt
, wildchar
);
4101 if (p
&& ((*(p
+ 1)) == 0))
4112 return strncmp(patt
, name
, len
);
4115 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4117 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4118 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4119 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4121 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4122 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4124 while (ad
->model_num
) {
4125 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4126 if (ad
->model_rev
== NULL
)
4128 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4136 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4138 /* We don't support polling DMA.
4139 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4140 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4142 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4143 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4145 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4149 * ata_is_40wire - check drive side detection
4152 * Perform drive side detection decoding, allowing for device vendors
4153 * who can't follow the documentation.
4156 static int ata_is_40wire(struct ata_device
*dev
)
4158 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4159 return ata_drive_40wire_relaxed(dev
->id
);
4160 return ata_drive_40wire(dev
->id
);
4164 * cable_is_40wire - 40/80/SATA decider
4165 * @ap: port to consider
4167 * This function encapsulates the policy for speed management
4168 * in one place. At the moment we don't cache the result but
4169 * there is a good case for setting ap->cbl to the result when
4170 * we are called with unknown cables (and figuring out if it
4171 * impacts hotplug at all).
4173 * Return 1 if the cable appears to be 40 wire.
4176 static int cable_is_40wire(struct ata_port
*ap
)
4178 struct ata_link
*link
;
4179 struct ata_device
*dev
;
4181 /* If the controller thinks we are 40 wire, we are */
4182 if (ap
->cbl
== ATA_CBL_PATA40
)
4184 /* If the controller thinks we are 80 wire, we are */
4185 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4187 /* If the system is known to be 40 wire short cable (eg laptop),
4188 then we allow 80 wire modes even if the drive isn't sure */
4189 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4191 /* If the controller doesn't know we scan
4193 - Note: We look for all 40 wire detects at this point.
4194 Any 80 wire detect is taken to be 80 wire cable
4196 - In many setups only the one drive (slave if present)
4197 will give a valid detect
4198 - If you have a non detect capable drive you don't
4199 want it to colour the choice
4201 ata_port_for_each_link(link
, ap
) {
4202 ata_link_for_each_dev(dev
, link
) {
4203 if (!ata_is_40wire(dev
))
4211 * ata_dev_xfermask - Compute supported xfermask of the given device
4212 * @dev: Device to compute xfermask for
4214 * Compute supported xfermask of @dev and store it in
4215 * dev->*_mask. This function is responsible for applying all
4216 * known limits including host controller limits, device
4222 static void ata_dev_xfermask(struct ata_device
*dev
)
4224 struct ata_link
*link
= dev
->link
;
4225 struct ata_port
*ap
= link
->ap
;
4226 struct ata_host
*host
= ap
->host
;
4227 unsigned long xfer_mask
;
4229 /* controller modes available */
4230 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4231 ap
->mwdma_mask
, ap
->udma_mask
);
4233 /* drive modes available */
4234 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4235 dev
->mwdma_mask
, dev
->udma_mask
);
4236 xfer_mask
&= ata_id_xfermask(dev
->id
);
4239 * CFA Advanced TrueIDE timings are not allowed on a shared
4242 if (ata_dev_pair(dev
)) {
4243 /* No PIO5 or PIO6 */
4244 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4245 /* No MWDMA3 or MWDMA 4 */
4246 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4249 if (ata_dma_blacklisted(dev
)) {
4250 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4251 ata_dev_printk(dev
, KERN_WARNING
,
4252 "device is on DMA blacklist, disabling DMA\n");
4255 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4256 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4257 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4258 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4259 "other device, disabling DMA\n");
4262 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4263 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4265 if (ap
->ops
->mode_filter
)
4266 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4268 /* Apply cable rule here. Don't apply it early because when
4269 * we handle hot plug the cable type can itself change.
4270 * Check this last so that we know if the transfer rate was
4271 * solely limited by the cable.
4272 * Unknown or 80 wire cables reported host side are checked
4273 * drive side as well. Cases where we know a 40wire cable
4274 * is used safely for 80 are not checked here.
4276 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4277 /* UDMA/44 or higher would be available */
4278 if (cable_is_40wire(ap
)) {
4279 ata_dev_printk(dev
, KERN_WARNING
,
4280 "limited to UDMA/33 due to 40-wire cable\n");
4281 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4284 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4285 &dev
->mwdma_mask
, &dev
->udma_mask
);
4289 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4290 * @dev: Device to which command will be sent
4292 * Issue SET FEATURES - XFER MODE command to device @dev
4296 * PCI/etc. bus probe sem.
4299 * 0 on success, AC_ERR_* mask otherwise.
4302 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4304 struct ata_taskfile tf
;
4305 unsigned int err_mask
;
4307 /* set up set-features taskfile */
4308 DPRINTK("set features - xfer mode\n");
4310 /* Some controllers and ATAPI devices show flaky interrupt
4311 * behavior after setting xfer mode. Use polling instead.
4313 ata_tf_init(dev
, &tf
);
4314 tf
.command
= ATA_CMD_SET_FEATURES
;
4315 tf
.feature
= SETFEATURES_XFER
;
4316 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4317 tf
.protocol
= ATA_PROT_NODATA
;
4318 /* If we are using IORDY we must send the mode setting command */
4319 if (ata_pio_need_iordy(dev
))
4320 tf
.nsect
= dev
->xfer_mode
;
4321 /* If the device has IORDY and the controller does not - turn it off */
4322 else if (ata_id_has_iordy(dev
->id
))
4324 else /* In the ancient relic department - skip all of this */
4327 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4329 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4333 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4334 * @dev: Device to which command will be sent
4335 * @enable: Whether to enable or disable the feature
4336 * @feature: The sector count represents the feature to set
4338 * Issue SET FEATURES - SATA FEATURES command to device @dev
4339 * on port @ap with sector count
4342 * PCI/etc. bus probe sem.
4345 * 0 on success, AC_ERR_* mask otherwise.
4347 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4350 struct ata_taskfile tf
;
4351 unsigned int err_mask
;
4353 /* set up set-features taskfile */
4354 DPRINTK("set features - SATA features\n");
4356 ata_tf_init(dev
, &tf
);
4357 tf
.command
= ATA_CMD_SET_FEATURES
;
4358 tf
.feature
= enable
;
4359 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4360 tf
.protocol
= ATA_PROT_NODATA
;
4363 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4365 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4370 * ata_dev_init_params - Issue INIT DEV PARAMS command
4371 * @dev: Device to which command will be sent
4372 * @heads: Number of heads (taskfile parameter)
4373 * @sectors: Number of sectors (taskfile parameter)
4376 * Kernel thread context (may sleep)
4379 * 0 on success, AC_ERR_* mask otherwise.
4381 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4382 u16 heads
, u16 sectors
)
4384 struct ata_taskfile tf
;
4385 unsigned int err_mask
;
4387 /* Number of sectors per track 1-255. Number of heads 1-16 */
4388 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4389 return AC_ERR_INVALID
;
4391 /* set up init dev params taskfile */
4392 DPRINTK("init dev params \n");
4394 ata_tf_init(dev
, &tf
);
4395 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4396 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4397 tf
.protocol
= ATA_PROT_NODATA
;
4399 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4401 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4402 /* A clean abort indicates an original or just out of spec drive
4403 and we should continue as we issue the setup based on the
4404 drive reported working geometry */
4405 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4408 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4413 * ata_sg_clean - Unmap DMA memory associated with command
4414 * @qc: Command containing DMA memory to be released
4416 * Unmap all mapped DMA memory associated with this command.
4419 * spin_lock_irqsave(host lock)
4421 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4423 struct ata_port
*ap
= qc
->ap
;
4424 struct scatterlist
*sg
= qc
->sg
;
4425 int dir
= qc
->dma_dir
;
4427 WARN_ON(sg
== NULL
);
4429 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4432 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
4434 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4439 * atapi_check_dma - Check whether ATAPI DMA can be supported
4440 * @qc: Metadata associated with taskfile to check
4442 * Allow low-level driver to filter ATA PACKET commands, returning
4443 * a status indicating whether or not it is OK to use DMA for the
4444 * supplied PACKET command.
4447 * spin_lock_irqsave(host lock)
4449 * RETURNS: 0 when ATAPI DMA can be used
4452 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4454 struct ata_port
*ap
= qc
->ap
;
4456 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4457 * few ATAPI devices choke on such DMA requests.
4459 if (unlikely(qc
->nbytes
& 15))
4462 if (ap
->ops
->check_atapi_dma
)
4463 return ap
->ops
->check_atapi_dma(qc
);
4469 * ata_std_qc_defer - Check whether a qc needs to be deferred
4470 * @qc: ATA command in question
4472 * Non-NCQ commands cannot run with any other command, NCQ or
4473 * not. As upper layer only knows the queue depth, we are
4474 * responsible for maintaining exclusion. This function checks
4475 * whether a new command @qc can be issued.
4478 * spin_lock_irqsave(host lock)
4481 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4483 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4485 struct ata_link
*link
= qc
->dev
->link
;
4487 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4488 if (!ata_tag_valid(link
->active_tag
))
4491 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4495 return ATA_DEFER_LINK
;
4498 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4501 * ata_sg_init - Associate command with scatter-gather table.
4502 * @qc: Command to be associated
4503 * @sg: Scatter-gather table.
4504 * @n_elem: Number of elements in s/g table.
4506 * Initialize the data-related elements of queued_cmd @qc
4507 * to point to a scatter-gather table @sg, containing @n_elem
4511 * spin_lock_irqsave(host lock)
4513 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4514 unsigned int n_elem
)
4517 qc
->n_elem
= n_elem
;
4522 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4523 * @qc: Command with scatter-gather table to be mapped.
4525 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4528 * spin_lock_irqsave(host lock)
4531 * Zero on success, negative on error.
4534 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4536 struct ata_port
*ap
= qc
->ap
;
4537 unsigned int n_elem
;
4539 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4541 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4545 DPRINTK("%d sg elements mapped\n", n_elem
);
4547 qc
->n_elem
= n_elem
;
4548 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4554 * swap_buf_le16 - swap halves of 16-bit words in place
4555 * @buf: Buffer to swap
4556 * @buf_words: Number of 16-bit words in buffer.
4558 * Swap halves of 16-bit words if needed to convert from
4559 * little-endian byte order to native cpu byte order, or
4563 * Inherited from caller.
4565 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4570 for (i
= 0; i
< buf_words
; i
++)
4571 buf
[i
] = le16_to_cpu(buf
[i
]);
4572 #endif /* __BIG_ENDIAN */
4576 * ata_qc_new - Request an available ATA command, for queueing
4577 * @ap: Port associated with device @dev
4578 * @dev: Device from whom we request an available command structure
4584 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4586 struct ata_queued_cmd
*qc
= NULL
;
4589 /* no command while frozen */
4590 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4593 /* the last tag is reserved for internal command. */
4594 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4595 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4596 qc
= __ata_qc_from_tag(ap
, i
);
4607 * ata_qc_new_init - Request an available ATA command, and initialize it
4608 * @dev: Device from whom we request an available command structure
4614 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4616 struct ata_port
*ap
= dev
->link
->ap
;
4617 struct ata_queued_cmd
*qc
;
4619 qc
= ata_qc_new(ap
);
4632 * ata_qc_free - free unused ata_queued_cmd
4633 * @qc: Command to complete
4635 * Designed to free unused ata_queued_cmd object
4636 * in case something prevents using it.
4639 * spin_lock_irqsave(host lock)
4641 void ata_qc_free(struct ata_queued_cmd
*qc
)
4643 struct ata_port
*ap
= qc
->ap
;
4646 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4650 if (likely(ata_tag_valid(tag
))) {
4651 qc
->tag
= ATA_TAG_POISON
;
4652 clear_bit(tag
, &ap
->qc_allocated
);
4656 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4658 struct ata_port
*ap
= qc
->ap
;
4659 struct ata_link
*link
= qc
->dev
->link
;
4661 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4662 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4664 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4667 /* command should be marked inactive atomically with qc completion */
4668 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4669 link
->sactive
&= ~(1 << qc
->tag
);
4671 ap
->nr_active_links
--;
4673 link
->active_tag
= ATA_TAG_POISON
;
4674 ap
->nr_active_links
--;
4677 /* clear exclusive status */
4678 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4679 ap
->excl_link
== link
))
4680 ap
->excl_link
= NULL
;
4682 /* atapi: mark qc as inactive to prevent the interrupt handler
4683 * from completing the command twice later, before the error handler
4684 * is called. (when rc != 0 and atapi request sense is needed)
4686 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4687 ap
->qc_active
&= ~(1 << qc
->tag
);
4689 /* call completion callback */
4690 qc
->complete_fn(qc
);
4693 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4695 struct ata_port
*ap
= qc
->ap
;
4697 qc
->result_tf
.flags
= qc
->tf
.flags
;
4698 ap
->ops
->qc_fill_rtf(qc
);
4701 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4703 struct ata_device
*dev
= qc
->dev
;
4705 if (ata_is_nodata(qc
->tf
.protocol
))
4708 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4711 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4715 * ata_qc_complete - Complete an active ATA command
4716 * @qc: Command to complete
4717 * @err_mask: ATA Status register contents
4719 * Indicate to the mid and upper layers that an ATA
4720 * command has completed, with either an ok or not-ok status.
4723 * spin_lock_irqsave(host lock)
4725 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4727 struct ata_port
*ap
= qc
->ap
;
4729 /* XXX: New EH and old EH use different mechanisms to
4730 * synchronize EH with regular execution path.
4732 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4733 * Normal execution path is responsible for not accessing a
4734 * failed qc. libata core enforces the rule by returning NULL
4735 * from ata_qc_from_tag() for failed qcs.
4737 * Old EH depends on ata_qc_complete() nullifying completion
4738 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4739 * not synchronize with interrupt handler. Only PIO task is
4742 if (ap
->ops
->error_handler
) {
4743 struct ata_device
*dev
= qc
->dev
;
4744 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
4746 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
4748 if (unlikely(qc
->err_mask
))
4749 qc
->flags
|= ATA_QCFLAG_FAILED
;
4752 * Finish internal commands without any further processing
4753 * and always with the result TF filled.
4755 if (unlikely(ata_tag_internal(qc
->tag
))) {
4757 __ata_qc_complete(qc
);
4762 * Non-internal qc has failed. Fill the result TF and
4765 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4767 ata_qc_schedule_eh(qc
);
4771 /* read result TF if requested */
4772 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4775 /* Some commands need post-processing after successful
4778 switch (qc
->tf
.command
) {
4779 case ATA_CMD_SET_FEATURES
:
4780 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
4781 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
4784 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
4785 case ATA_CMD_SET_MULTI
: /* multi_count changed */
4786 /* revalidate device */
4787 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
4788 ata_port_schedule_eh(ap
);
4792 dev
->flags
|= ATA_DFLAG_SLEEPING
;
4796 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
4797 ata_verify_xfer(qc
);
4799 __ata_qc_complete(qc
);
4801 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4804 /* read result TF if failed or requested */
4805 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4808 __ata_qc_complete(qc
);
4813 * ata_qc_complete_multiple - Complete multiple qcs successfully
4814 * @ap: port in question
4815 * @qc_active: new qc_active mask
4817 * Complete in-flight commands. This functions is meant to be
4818 * called from low-level driver's interrupt routine to complete
4819 * requests normally. ap->qc_active and @qc_active is compared
4820 * and commands are completed accordingly.
4823 * spin_lock_irqsave(host lock)
4826 * Number of completed commands on success, -errno otherwise.
4828 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
4834 done_mask
= ap
->qc_active
^ qc_active
;
4836 if (unlikely(done_mask
& qc_active
)) {
4837 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
4838 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
4842 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
4843 struct ata_queued_cmd
*qc
;
4845 if (!(done_mask
& (1 << i
)))
4848 if ((qc
= ata_qc_from_tag(ap
, i
))) {
4849 ata_qc_complete(qc
);
4858 * ata_qc_issue - issue taskfile to device
4859 * @qc: command to issue to device
4861 * Prepare an ATA command to submission to device.
4862 * This includes mapping the data into a DMA-able
4863 * area, filling in the S/G table, and finally
4864 * writing the taskfile to hardware, starting the command.
4867 * spin_lock_irqsave(host lock)
4869 void ata_qc_issue(struct ata_queued_cmd
*qc
)
4871 struct ata_port
*ap
= qc
->ap
;
4872 struct ata_link
*link
= qc
->dev
->link
;
4873 u8 prot
= qc
->tf
.protocol
;
4875 /* Make sure only one non-NCQ command is outstanding. The
4876 * check is skipped for old EH because it reuses active qc to
4877 * request ATAPI sense.
4879 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
4881 if (ata_is_ncq(prot
)) {
4882 WARN_ON(link
->sactive
& (1 << qc
->tag
));
4885 ap
->nr_active_links
++;
4886 link
->sactive
|= 1 << qc
->tag
;
4888 WARN_ON(link
->sactive
);
4890 ap
->nr_active_links
++;
4891 link
->active_tag
= qc
->tag
;
4894 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
4895 ap
->qc_active
|= 1 << qc
->tag
;
4897 /* We guarantee to LLDs that they will have at least one
4898 * non-zero sg if the command is a data command.
4900 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
4902 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
4903 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
4904 if (ata_sg_setup(qc
))
4907 /* if device is sleeping, schedule reset and abort the link */
4908 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
4909 link
->eh_info
.action
|= ATA_EH_RESET
;
4910 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
4911 ata_link_abort(link
);
4915 ap
->ops
->qc_prep(qc
);
4917 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
4918 if (unlikely(qc
->err_mask
))
4923 qc
->err_mask
|= AC_ERR_SYSTEM
;
4925 ata_qc_complete(qc
);
4929 * sata_scr_valid - test whether SCRs are accessible
4930 * @link: ATA link to test SCR accessibility for
4932 * Test whether SCRs are accessible for @link.
4938 * 1 if SCRs are accessible, 0 otherwise.
4940 int sata_scr_valid(struct ata_link
*link
)
4942 struct ata_port
*ap
= link
->ap
;
4944 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
4948 * sata_scr_read - read SCR register of the specified port
4949 * @link: ATA link to read SCR for
4951 * @val: Place to store read value
4953 * Read SCR register @reg of @link into *@val. This function is
4954 * guaranteed to succeed if @link is ap->link, the cable type of
4955 * the port is SATA and the port implements ->scr_read.
4958 * None if @link is ap->link. Kernel thread context otherwise.
4961 * 0 on success, negative errno on failure.
4963 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
4965 if (ata_is_host_link(link
)) {
4966 struct ata_port
*ap
= link
->ap
;
4968 if (sata_scr_valid(link
))
4969 return ap
->ops
->scr_read(ap
, reg
, val
);
4973 return sata_pmp_scr_read(link
, reg
, val
);
4977 * sata_scr_write - write SCR register of the specified port
4978 * @link: ATA link to write SCR for
4979 * @reg: SCR to write
4980 * @val: value to write
4982 * Write @val to SCR register @reg of @link. This function is
4983 * guaranteed to succeed if @link is ap->link, the cable type of
4984 * the port is SATA and the port implements ->scr_read.
4987 * None if @link is ap->link. Kernel thread context otherwise.
4990 * 0 on success, negative errno on failure.
4992 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
4994 if (ata_is_host_link(link
)) {
4995 struct ata_port
*ap
= link
->ap
;
4997 if (sata_scr_valid(link
))
4998 return ap
->ops
->scr_write(ap
, reg
, val
);
5002 return sata_pmp_scr_write(link
, reg
, val
);
5006 * sata_scr_write_flush - write SCR register of the specified port and flush
5007 * @link: ATA link to write SCR for
5008 * @reg: SCR to write
5009 * @val: value to write
5011 * This function is identical to sata_scr_write() except that this
5012 * function performs flush after writing to the register.
5015 * None if @link is ap->link. Kernel thread context otherwise.
5018 * 0 on success, negative errno on failure.
5020 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5022 if (ata_is_host_link(link
)) {
5023 struct ata_port
*ap
= link
->ap
;
5026 if (sata_scr_valid(link
)) {
5027 rc
= ap
->ops
->scr_write(ap
, reg
, val
);
5029 rc
= ap
->ops
->scr_read(ap
, reg
, &val
);
5035 return sata_pmp_scr_write(link
, reg
, val
);
5039 * ata_link_online - test whether the given link is online
5040 * @link: ATA link to test
5042 * Test whether @link is online. Note that this function returns
5043 * 0 if online status of @link cannot be obtained, so
5044 * ata_link_online(link) != !ata_link_offline(link).
5050 * 1 if the port online status is available and online.
5052 int ata_link_online(struct ata_link
*link
)
5056 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5057 (sstatus
& 0xf) == 0x3)
5063 * ata_link_offline - test whether the given link is offline
5064 * @link: ATA link to test
5066 * Test whether @link is offline. Note that this function
5067 * returns 0 if offline status of @link cannot be obtained, so
5068 * ata_link_online(link) != !ata_link_offline(link).
5074 * 1 if the port offline status is available and offline.
5076 int ata_link_offline(struct ata_link
*link
)
5080 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5081 (sstatus
& 0xf) != 0x3)
5087 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5088 unsigned int action
, unsigned int ehi_flags
,
5091 unsigned long flags
;
5094 for (i
= 0; i
< host
->n_ports
; i
++) {
5095 struct ata_port
*ap
= host
->ports
[i
];
5096 struct ata_link
*link
;
5098 /* Previous resume operation might still be in
5099 * progress. Wait for PM_PENDING to clear.
5101 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5102 ata_port_wait_eh(ap
);
5103 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5106 /* request PM ops to EH */
5107 spin_lock_irqsave(ap
->lock
, flags
);
5112 ap
->pm_result
= &rc
;
5115 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5116 __ata_port_for_each_link(link
, ap
) {
5117 link
->eh_info
.action
|= action
;
5118 link
->eh_info
.flags
|= ehi_flags
;
5121 ata_port_schedule_eh(ap
);
5123 spin_unlock_irqrestore(ap
->lock
, flags
);
5125 /* wait and check result */
5127 ata_port_wait_eh(ap
);
5128 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5138 * ata_host_suspend - suspend host
5139 * @host: host to suspend
5142 * Suspend @host. Actual operation is performed by EH. This
5143 * function requests EH to perform PM operations and waits for EH
5147 * Kernel thread context (may sleep).
5150 * 0 on success, -errno on failure.
5152 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5157 * disable link pm on all ports before requesting
5160 ata_lpm_enable(host
);
5162 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5164 host
->dev
->power
.power_state
= mesg
;
5169 * ata_host_resume - resume host
5170 * @host: host to resume
5172 * Resume @host. Actual operation is performed by EH. This
5173 * function requests EH to perform PM operations and returns.
5174 * Note that all resume operations are performed parallely.
5177 * Kernel thread context (may sleep).
5179 void ata_host_resume(struct ata_host
*host
)
5181 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_RESET
,
5182 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5183 host
->dev
->power
.power_state
= PMSG_ON
;
5185 /* reenable link pm */
5186 ata_lpm_disable(host
);
5191 * ata_port_start - Set port up for dma.
5192 * @ap: Port to initialize
5194 * Called just after data structures for each port are
5195 * initialized. Allocates space for PRD table.
5197 * May be used as the port_start() entry in ata_port_operations.
5200 * Inherited from caller.
5202 int ata_port_start(struct ata_port
*ap
)
5204 struct device
*dev
= ap
->dev
;
5206 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5215 * ata_dev_init - Initialize an ata_device structure
5216 * @dev: Device structure to initialize
5218 * Initialize @dev in preparation for probing.
5221 * Inherited from caller.
5223 void ata_dev_init(struct ata_device
*dev
)
5225 struct ata_link
*link
= dev
->link
;
5226 struct ata_port
*ap
= link
->ap
;
5227 unsigned long flags
;
5229 /* SATA spd limit is bound to the first device */
5230 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5233 /* High bits of dev->flags are used to record warm plug
5234 * requests which occur asynchronously. Synchronize using
5237 spin_lock_irqsave(ap
->lock
, flags
);
5238 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5240 spin_unlock_irqrestore(ap
->lock
, flags
);
5242 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5243 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5244 dev
->pio_mask
= UINT_MAX
;
5245 dev
->mwdma_mask
= UINT_MAX
;
5246 dev
->udma_mask
= UINT_MAX
;
5250 * ata_link_init - Initialize an ata_link structure
5251 * @ap: ATA port link is attached to
5252 * @link: Link structure to initialize
5253 * @pmp: Port multiplier port number
5258 * Kernel thread context (may sleep)
5260 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5264 /* clear everything except for devices */
5265 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
5269 link
->active_tag
= ATA_TAG_POISON
;
5270 link
->hw_sata_spd_limit
= UINT_MAX
;
5272 /* can't use iterator, ap isn't initialized yet */
5273 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5274 struct ata_device
*dev
= &link
->device
[i
];
5277 dev
->devno
= dev
- link
->device
;
5283 * sata_link_init_spd - Initialize link->sata_spd_limit
5284 * @link: Link to configure sata_spd_limit for
5286 * Initialize @link->[hw_]sata_spd_limit to the currently
5290 * Kernel thread context (may sleep).
5293 * 0 on success, -errno on failure.
5295 int sata_link_init_spd(struct ata_link
*link
)
5300 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5304 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5306 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5308 ata_force_link_limits(link
);
5310 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5316 * ata_port_alloc - allocate and initialize basic ATA port resources
5317 * @host: ATA host this allocated port belongs to
5319 * Allocate and initialize basic ATA port resources.
5322 * Allocate ATA port on success, NULL on failure.
5325 * Inherited from calling layer (may sleep).
5327 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5329 struct ata_port
*ap
;
5333 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5337 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
5338 ap
->lock
= &host
->lock
;
5339 ap
->flags
= ATA_FLAG_DISABLED
;
5341 ap
->ctl
= ATA_DEVCTL_OBS
;
5343 ap
->dev
= host
->dev
;
5344 ap
->last_ctl
= 0xFF;
5346 #if defined(ATA_VERBOSE_DEBUG)
5347 /* turn on all debugging levels */
5348 ap
->msg_enable
= 0x00FF;
5349 #elif defined(ATA_DEBUG)
5350 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5352 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5355 #ifdef CONFIG_ATA_SFF
5356 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
5358 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
5360 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5361 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5362 INIT_LIST_HEAD(&ap
->eh_done_q
);
5363 init_waitqueue_head(&ap
->eh_wait_q
);
5364 init_timer_deferrable(&ap
->fastdrain_timer
);
5365 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5366 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5368 ap
->cbl
= ATA_CBL_NONE
;
5370 ata_link_init(ap
, &ap
->link
, 0);
5373 ap
->stats
.unhandled_irq
= 1;
5374 ap
->stats
.idle_irq
= 1;
5379 static void ata_host_release(struct device
*gendev
, void *res
)
5381 struct ata_host
*host
= dev_get_drvdata(gendev
);
5384 for (i
= 0; i
< host
->n_ports
; i
++) {
5385 struct ata_port
*ap
= host
->ports
[i
];
5391 scsi_host_put(ap
->scsi_host
);
5393 kfree(ap
->pmp_link
);
5395 host
->ports
[i
] = NULL
;
5398 dev_set_drvdata(gendev
, NULL
);
5402 * ata_host_alloc - allocate and init basic ATA host resources
5403 * @dev: generic device this host is associated with
5404 * @max_ports: maximum number of ATA ports associated with this host
5406 * Allocate and initialize basic ATA host resources. LLD calls
5407 * this function to allocate a host, initializes it fully and
5408 * attaches it using ata_host_register().
5410 * @max_ports ports are allocated and host->n_ports is
5411 * initialized to @max_ports. The caller is allowed to decrease
5412 * host->n_ports before calling ata_host_register(). The unused
5413 * ports will be automatically freed on registration.
5416 * Allocate ATA host on success, NULL on failure.
5419 * Inherited from calling layer (may sleep).
5421 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5423 struct ata_host
*host
;
5429 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5432 /* alloc a container for our list of ATA ports (buses) */
5433 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5434 /* alloc a container for our list of ATA ports (buses) */
5435 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5439 devres_add(dev
, host
);
5440 dev_set_drvdata(dev
, host
);
5442 spin_lock_init(&host
->lock
);
5444 host
->n_ports
= max_ports
;
5446 /* allocate ports bound to this host */
5447 for (i
= 0; i
< max_ports
; i
++) {
5448 struct ata_port
*ap
;
5450 ap
= ata_port_alloc(host
);
5455 host
->ports
[i
] = ap
;
5458 devres_remove_group(dev
, NULL
);
5462 devres_release_group(dev
, NULL
);
5467 * ata_host_alloc_pinfo - alloc host and init with port_info array
5468 * @dev: generic device this host is associated with
5469 * @ppi: array of ATA port_info to initialize host with
5470 * @n_ports: number of ATA ports attached to this host
5472 * Allocate ATA host and initialize with info from @ppi. If NULL
5473 * terminated, @ppi may contain fewer entries than @n_ports. The
5474 * last entry will be used for the remaining ports.
5477 * Allocate ATA host on success, NULL on failure.
5480 * Inherited from calling layer (may sleep).
5482 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5483 const struct ata_port_info
* const * ppi
,
5486 const struct ata_port_info
*pi
;
5487 struct ata_host
*host
;
5490 host
= ata_host_alloc(dev
, n_ports
);
5494 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5495 struct ata_port
*ap
= host
->ports
[i
];
5500 ap
->pio_mask
= pi
->pio_mask
;
5501 ap
->mwdma_mask
= pi
->mwdma_mask
;
5502 ap
->udma_mask
= pi
->udma_mask
;
5503 ap
->flags
|= pi
->flags
;
5504 ap
->link
.flags
|= pi
->link_flags
;
5505 ap
->ops
= pi
->port_ops
;
5507 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5508 host
->ops
= pi
->port_ops
;
5514 static void ata_host_stop(struct device
*gendev
, void *res
)
5516 struct ata_host
*host
= dev_get_drvdata(gendev
);
5519 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5521 for (i
= 0; i
< host
->n_ports
; i
++) {
5522 struct ata_port
*ap
= host
->ports
[i
];
5524 if (ap
->ops
->port_stop
)
5525 ap
->ops
->port_stop(ap
);
5528 if (host
->ops
->host_stop
)
5529 host
->ops
->host_stop(host
);
5533 * ata_finalize_port_ops - finalize ata_port_operations
5534 * @ops: ata_port_operations to finalize
5536 * An ata_port_operations can inherit from another ops and that
5537 * ops can again inherit from another. This can go on as many
5538 * times as necessary as long as there is no loop in the
5539 * inheritance chain.
5541 * Ops tables are finalized when the host is started. NULL or
5542 * unspecified entries are inherited from the closet ancestor
5543 * which has the method and the entry is populated with it.
5544 * After finalization, the ops table directly points to all the
5545 * methods and ->inherits is no longer necessary and cleared.
5547 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5552 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5554 static DEFINE_SPINLOCK(lock
);
5555 const struct ata_port_operations
*cur
;
5556 void **begin
= (void **)ops
;
5557 void **end
= (void **)&ops
->inherits
;
5560 if (!ops
|| !ops
->inherits
)
5565 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5566 void **inherit
= (void **)cur
;
5568 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5573 for (pp
= begin
; pp
< end
; pp
++)
5577 ops
->inherits
= NULL
;
5583 * ata_host_start - start and freeze ports of an ATA host
5584 * @host: ATA host to start ports for
5586 * Start and then freeze ports of @host. Started status is
5587 * recorded in host->flags, so this function can be called
5588 * multiple times. Ports are guaranteed to get started only
5589 * once. If host->ops isn't initialized yet, its set to the
5590 * first non-dummy port ops.
5593 * Inherited from calling layer (may sleep).
5596 * 0 if all ports are started successfully, -errno otherwise.
5598 int ata_host_start(struct ata_host
*host
)
5601 void *start_dr
= NULL
;
5604 if (host
->flags
& ATA_HOST_STARTED
)
5607 ata_finalize_port_ops(host
->ops
);
5609 for (i
= 0; i
< host
->n_ports
; i
++) {
5610 struct ata_port
*ap
= host
->ports
[i
];
5612 ata_finalize_port_ops(ap
->ops
);
5614 if (!host
->ops
&& !ata_port_is_dummy(ap
))
5615 host
->ops
= ap
->ops
;
5617 if (ap
->ops
->port_stop
)
5621 if (host
->ops
->host_stop
)
5625 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
5630 for (i
= 0; i
< host
->n_ports
; i
++) {
5631 struct ata_port
*ap
= host
->ports
[i
];
5633 if (ap
->ops
->port_start
) {
5634 rc
= ap
->ops
->port_start(ap
);
5637 dev_printk(KERN_ERR
, host
->dev
,
5638 "failed to start port %d "
5639 "(errno=%d)\n", i
, rc
);
5643 ata_eh_freeze_port(ap
);
5647 devres_add(host
->dev
, start_dr
);
5648 host
->flags
|= ATA_HOST_STARTED
;
5653 struct ata_port
*ap
= host
->ports
[i
];
5655 if (ap
->ops
->port_stop
)
5656 ap
->ops
->port_stop(ap
);
5658 devres_free(start_dr
);
5663 * ata_sas_host_init - Initialize a host struct
5664 * @host: host to initialize
5665 * @dev: device host is attached to
5666 * @flags: host flags
5670 * PCI/etc. bus probe sem.
5673 /* KILLME - the only user left is ipr */
5674 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
5675 unsigned long flags
, struct ata_port_operations
*ops
)
5677 spin_lock_init(&host
->lock
);
5679 host
->flags
= flags
;
5684 * ata_host_register - register initialized ATA host
5685 * @host: ATA host to register
5686 * @sht: template for SCSI host
5688 * Register initialized ATA host. @host is allocated using
5689 * ata_host_alloc() and fully initialized by LLD. This function
5690 * starts ports, registers @host with ATA and SCSI layers and
5691 * probe registered devices.
5694 * Inherited from calling layer (may sleep).
5697 * 0 on success, -errno otherwise.
5699 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
5703 /* host must have been started */
5704 if (!(host
->flags
& ATA_HOST_STARTED
)) {
5705 dev_printk(KERN_ERR
, host
->dev
,
5706 "BUG: trying to register unstarted host\n");
5711 /* Blow away unused ports. This happens when LLD can't
5712 * determine the exact number of ports to allocate at
5715 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
5716 kfree(host
->ports
[i
]);
5718 /* give ports names and add SCSI hosts */
5719 for (i
= 0; i
< host
->n_ports
; i
++)
5720 host
->ports
[i
]->print_id
= ata_print_id
++;
5722 rc
= ata_scsi_add_hosts(host
, sht
);
5726 /* associate with ACPI nodes */
5727 ata_acpi_associate(host
);
5729 /* set cable, sata_spd_limit and report */
5730 for (i
= 0; i
< host
->n_ports
; i
++) {
5731 struct ata_port
*ap
= host
->ports
[i
];
5732 unsigned long xfer_mask
;
5734 /* set SATA cable type if still unset */
5735 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
5736 ap
->cbl
= ATA_CBL_SATA
;
5738 /* init sata_spd_limit to the current value */
5739 sata_link_init_spd(&ap
->link
);
5741 /* print per-port info to dmesg */
5742 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
5745 if (!ata_port_is_dummy(ap
)) {
5746 ata_port_printk(ap
, KERN_INFO
,
5747 "%cATA max %s %s\n",
5748 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
5749 ata_mode_string(xfer_mask
),
5750 ap
->link
.eh_info
.desc
);
5751 ata_ehi_clear_desc(&ap
->link
.eh_info
);
5753 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
5756 /* perform each probe synchronously */
5757 DPRINTK("probe begin\n");
5758 for (i
= 0; i
< host
->n_ports
; i
++) {
5759 struct ata_port
*ap
= host
->ports
[i
];
5762 if (ap
->ops
->error_handler
) {
5763 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
5764 unsigned long flags
;
5768 /* kick EH for boot probing */
5769 spin_lock_irqsave(ap
->lock
, flags
);
5771 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
5772 ehi
->action
|= ATA_EH_RESET
| ATA_EH_LPM
;
5773 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
5775 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
5776 ap
->pflags
|= ATA_PFLAG_LOADING
;
5777 ata_port_schedule_eh(ap
);
5779 spin_unlock_irqrestore(ap
->lock
, flags
);
5781 /* wait for EH to finish */
5782 ata_port_wait_eh(ap
);
5784 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
5785 rc
= ata_bus_probe(ap
);
5786 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
5789 /* FIXME: do something useful here?
5790 * Current libata behavior will
5791 * tear down everything when
5792 * the module is removed
5793 * or the h/w is unplugged.
5799 /* probes are done, now scan each port's disk(s) */
5800 DPRINTK("host probe begin\n");
5801 for (i
= 0; i
< host
->n_ports
; i
++) {
5802 struct ata_port
*ap
= host
->ports
[i
];
5804 ata_scsi_scan_host(ap
, 1);
5811 * ata_host_activate - start host, request IRQ and register it
5812 * @host: target ATA host
5813 * @irq: IRQ to request
5814 * @irq_handler: irq_handler used when requesting IRQ
5815 * @irq_flags: irq_flags used when requesting IRQ
5816 * @sht: scsi_host_template to use when registering the host
5818 * After allocating an ATA host and initializing it, most libata
5819 * LLDs perform three steps to activate the host - start host,
5820 * request IRQ and register it. This helper takes necessasry
5821 * arguments and performs the three steps in one go.
5823 * An invalid IRQ skips the IRQ registration and expects the host to
5824 * have set polling mode on the port. In this case, @irq_handler
5828 * Inherited from calling layer (may sleep).
5831 * 0 on success, -errno otherwise.
5833 int ata_host_activate(struct ata_host
*host
, int irq
,
5834 irq_handler_t irq_handler
, unsigned long irq_flags
,
5835 struct scsi_host_template
*sht
)
5839 rc
= ata_host_start(host
);
5843 /* Special case for polling mode */
5845 WARN_ON(irq_handler
);
5846 return ata_host_register(host
, sht
);
5849 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
5850 dev_driver_string(host
->dev
), host
);
5854 for (i
= 0; i
< host
->n_ports
; i
++)
5855 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
5857 rc
= ata_host_register(host
, sht
);
5858 /* if failed, just free the IRQ and leave ports alone */
5860 devm_free_irq(host
->dev
, irq
, host
);
5866 * ata_port_detach - Detach ATA port in prepration of device removal
5867 * @ap: ATA port to be detached
5869 * Detach all ATA devices and the associated SCSI devices of @ap;
5870 * then, remove the associated SCSI host. @ap is guaranteed to
5871 * be quiescent on return from this function.
5874 * Kernel thread context (may sleep).
5876 static void ata_port_detach(struct ata_port
*ap
)
5878 unsigned long flags
;
5879 struct ata_link
*link
;
5880 struct ata_device
*dev
;
5882 if (!ap
->ops
->error_handler
)
5885 /* tell EH we're leaving & flush EH */
5886 spin_lock_irqsave(ap
->lock
, flags
);
5887 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
5888 spin_unlock_irqrestore(ap
->lock
, flags
);
5890 ata_port_wait_eh(ap
);
5892 /* EH is now guaranteed to see UNLOADING - EH context belongs
5893 * to us. Restore SControl and disable all existing devices.
5895 __ata_port_for_each_link(link
, ap
) {
5896 sata_scr_write(link
, SCR_CONTROL
, link
->saved_scontrol
);
5897 ata_link_for_each_dev(dev
, link
)
5898 ata_dev_disable(dev
);
5901 /* Final freeze & EH. All in-flight commands are aborted. EH
5902 * will be skipped and retrials will be terminated with bad
5905 spin_lock_irqsave(ap
->lock
, flags
);
5906 ata_port_freeze(ap
); /* won't be thawed */
5907 spin_unlock_irqrestore(ap
->lock
, flags
);
5909 ata_port_wait_eh(ap
);
5910 cancel_rearming_delayed_work(&ap
->hotplug_task
);
5913 /* remove the associated SCSI host */
5914 scsi_remove_host(ap
->scsi_host
);
5918 * ata_host_detach - Detach all ports of an ATA host
5919 * @host: Host to detach
5921 * Detach all ports of @host.
5924 * Kernel thread context (may sleep).
5926 void ata_host_detach(struct ata_host
*host
)
5930 for (i
= 0; i
< host
->n_ports
; i
++)
5931 ata_port_detach(host
->ports
[i
]);
5933 /* the host is dead now, dissociate ACPI */
5934 ata_acpi_dissociate(host
);
5940 * ata_pci_remove_one - PCI layer callback for device removal
5941 * @pdev: PCI device that was removed
5943 * PCI layer indicates to libata via this hook that hot-unplug or
5944 * module unload event has occurred. Detach all ports. Resource
5945 * release is handled via devres.
5948 * Inherited from PCI layer (may sleep).
5950 void ata_pci_remove_one(struct pci_dev
*pdev
)
5952 struct device
*dev
= &pdev
->dev
;
5953 struct ata_host
*host
= dev_get_drvdata(dev
);
5955 ata_host_detach(host
);
5958 /* move to PCI subsystem */
5959 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
5961 unsigned long tmp
= 0;
5963 switch (bits
->width
) {
5966 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
5972 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
5978 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
5989 return (tmp
== bits
->val
) ? 1 : 0;
5993 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
5995 pci_save_state(pdev
);
5996 pci_disable_device(pdev
);
5998 if (mesg
.event
& PM_EVENT_SLEEP
)
5999 pci_set_power_state(pdev
, PCI_D3hot
);
6002 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6006 pci_set_power_state(pdev
, PCI_D0
);
6007 pci_restore_state(pdev
);
6009 rc
= pcim_enable_device(pdev
);
6011 dev_printk(KERN_ERR
, &pdev
->dev
,
6012 "failed to enable device after resume (%d)\n", rc
);
6016 pci_set_master(pdev
);
6020 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6022 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6025 rc
= ata_host_suspend(host
, mesg
);
6029 ata_pci_device_do_suspend(pdev
, mesg
);
6034 int ata_pci_device_resume(struct pci_dev
*pdev
)
6036 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6039 rc
= ata_pci_device_do_resume(pdev
);
6041 ata_host_resume(host
);
6044 #endif /* CONFIG_PM */
6046 #endif /* CONFIG_PCI */
6048 static int __init
ata_parse_force_one(char **cur
,
6049 struct ata_force_ent
*force_ent
,
6050 const char **reason
)
6052 /* FIXME: Currently, there's no way to tag init const data and
6053 * using __initdata causes build failure on some versions of
6054 * gcc. Once __initdataconst is implemented, add const to the
6055 * following structure.
6057 static struct ata_force_param force_tbl
[] __initdata
= {
6058 { "40c", .cbl
= ATA_CBL_PATA40
},
6059 { "80c", .cbl
= ATA_CBL_PATA80
},
6060 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6061 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6062 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6063 { "sata", .cbl
= ATA_CBL_SATA
},
6064 { "1.5Gbps", .spd_limit
= 1 },
6065 { "3.0Gbps", .spd_limit
= 2 },
6066 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6067 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6068 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6069 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6070 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6071 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6072 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6073 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6074 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6075 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6076 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6077 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6078 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6079 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6080 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6081 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6082 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6083 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6084 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6085 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6086 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6087 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6088 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6089 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6090 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6091 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6092 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6093 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6094 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6095 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6096 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6097 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6098 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6099 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6100 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6101 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6102 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6103 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6104 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6106 char *start
= *cur
, *p
= *cur
;
6107 char *id
, *val
, *endp
;
6108 const struct ata_force_param
*match_fp
= NULL
;
6109 int nr_matches
= 0, i
;
6111 /* find where this param ends and update *cur */
6112 while (*p
!= '\0' && *p
!= ',')
6123 p
= strchr(start
, ':');
6125 val
= strstrip(start
);
6130 id
= strstrip(start
);
6131 val
= strstrip(p
+ 1);
6134 p
= strchr(id
, '.');
6137 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6138 if (p
== endp
|| *endp
!= '\0') {
6139 *reason
= "invalid device";
6144 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6145 if (p
== endp
|| *endp
!= '\0') {
6146 *reason
= "invalid port/link";
6151 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6152 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6153 const struct ata_force_param
*fp
= &force_tbl
[i
];
6155 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6161 if (strcasecmp(val
, fp
->name
) == 0) {
6168 *reason
= "unknown value";
6171 if (nr_matches
> 1) {
6172 *reason
= "ambigious value";
6176 force_ent
->param
= *match_fp
;
6181 static void __init
ata_parse_force_param(void)
6183 int idx
= 0, size
= 1;
6184 int last_port
= -1, last_device
= -1;
6185 char *p
, *cur
, *next
;
6187 /* calculate maximum number of params and allocate force_tbl */
6188 for (p
= ata_force_param_buf
; *p
; p
++)
6192 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6193 if (!ata_force_tbl
) {
6194 printk(KERN_WARNING
"ata: failed to extend force table, "
6195 "libata.force ignored\n");
6199 /* parse and populate the table */
6200 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6201 const char *reason
= "";
6202 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6205 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6206 printk(KERN_WARNING
"ata: failed to parse force "
6207 "parameter \"%s\" (%s)\n",
6212 if (te
.port
== -1) {
6213 te
.port
= last_port
;
6214 te
.device
= last_device
;
6217 ata_force_tbl
[idx
++] = te
;
6219 last_port
= te
.port
;
6220 last_device
= te
.device
;
6223 ata_force_tbl_size
= idx
;
6226 static int __init
ata_init(void)
6228 ata_parse_force_param();
6230 ata_wq
= create_workqueue("ata");
6232 goto free_force_tbl
;
6234 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6238 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6242 destroy_workqueue(ata_wq
);
6244 kfree(ata_force_tbl
);
6248 static void __exit
ata_exit(void)
6250 kfree(ata_force_tbl
);
6251 destroy_workqueue(ata_wq
);
6252 destroy_workqueue(ata_aux_wq
);
6255 subsys_initcall(ata_init
);
6256 module_exit(ata_exit
);
6258 static unsigned long ratelimit_time
;
6259 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6261 int ata_ratelimit(void)
6264 unsigned long flags
;
6266 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6268 if (time_after(jiffies
, ratelimit_time
)) {
6270 ratelimit_time
= jiffies
+ (HZ
/5);
6274 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6280 * ata_wait_register - wait until register value changes
6281 * @reg: IO-mapped register
6282 * @mask: Mask to apply to read register value
6283 * @val: Wait condition
6284 * @interval: polling interval in milliseconds
6285 * @timeout: timeout in milliseconds
6287 * Waiting for some bits of register to change is a common
6288 * operation for ATA controllers. This function reads 32bit LE
6289 * IO-mapped register @reg and tests for the following condition.
6291 * (*@reg & mask) != val
6293 * If the condition is met, it returns; otherwise, the process is
6294 * repeated after @interval_msec until timeout.
6297 * Kernel thread context (may sleep)
6300 * The final register value.
6302 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6303 unsigned long interval
, unsigned long timeout
)
6305 unsigned long deadline
;
6308 tmp
= ioread32(reg
);
6310 /* Calculate timeout _after_ the first read to make sure
6311 * preceding writes reach the controller before starting to
6312 * eat away the timeout.
6314 deadline
= ata_deadline(jiffies
, timeout
);
6316 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
6318 tmp
= ioread32(reg
);
6327 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6329 return AC_ERR_SYSTEM
;
6332 static void ata_dummy_error_handler(struct ata_port
*ap
)
6337 struct ata_port_operations ata_dummy_port_ops
= {
6338 .qc_prep
= ata_noop_qc_prep
,
6339 .qc_issue
= ata_dummy_qc_issue
,
6340 .error_handler
= ata_dummy_error_handler
,
6343 const struct ata_port_info ata_dummy_port_info
= {
6344 .port_ops
= &ata_dummy_port_ops
,
6348 * libata is essentially a library of internal helper functions for
6349 * low-level ATA host controller drivers. As such, the API/ABI is
6350 * likely to change as new drivers are added and updated.
6351 * Do not depend on ABI/API stability.
6353 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6354 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6355 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6356 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6357 EXPORT_SYMBOL_GPL(sata_port_ops
);
6358 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6359 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6360 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6361 EXPORT_SYMBOL_GPL(ata_host_init
);
6362 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6363 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6364 EXPORT_SYMBOL_GPL(ata_host_start
);
6365 EXPORT_SYMBOL_GPL(ata_host_register
);
6366 EXPORT_SYMBOL_GPL(ata_host_activate
);
6367 EXPORT_SYMBOL_GPL(ata_host_detach
);
6368 EXPORT_SYMBOL_GPL(ata_sg_init
);
6369 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6370 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6371 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6372 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6373 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6374 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6375 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6376 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6377 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6378 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6379 EXPORT_SYMBOL_GPL(ata_mode_string
);
6380 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6381 EXPORT_SYMBOL_GPL(ata_port_start
);
6382 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6383 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6384 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6385 EXPORT_SYMBOL_GPL(ata_port_probe
);
6386 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6387 EXPORT_SYMBOL_GPL(sata_set_spd
);
6388 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6389 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6390 EXPORT_SYMBOL_GPL(sata_link_resume
);
6391 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6392 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6393 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6394 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6395 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6396 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6397 EXPORT_SYMBOL_GPL(ata_port_disable
);
6398 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6399 EXPORT_SYMBOL_GPL(ata_wait_register
);
6400 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6401 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6402 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6403 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6404 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6405 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6406 EXPORT_SYMBOL_GPL(sata_scr_read
);
6407 EXPORT_SYMBOL_GPL(sata_scr_write
);
6408 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6409 EXPORT_SYMBOL_GPL(ata_link_online
);
6410 EXPORT_SYMBOL_GPL(ata_link_offline
);
6412 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6413 EXPORT_SYMBOL_GPL(ata_host_resume
);
6414 #endif /* CONFIG_PM */
6415 EXPORT_SYMBOL_GPL(ata_id_string
);
6416 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6417 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
6418 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6420 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6421 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6422 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6423 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6424 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6427 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6428 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6430 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6431 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6432 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6433 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6434 #endif /* CONFIG_PM */
6435 #endif /* CONFIG_PCI */
6437 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
6438 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
6439 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
6440 EXPORT_SYMBOL_GPL(ata_port_desc
);
6442 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
6443 #endif /* CONFIG_PCI */
6444 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6445 EXPORT_SYMBOL_GPL(ata_link_abort
);
6446 EXPORT_SYMBOL_GPL(ata_port_abort
);
6447 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6448 EXPORT_SYMBOL_GPL(sata_async_notification
);
6449 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6450 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6451 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6452 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6453 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
6454 EXPORT_SYMBOL_GPL(ata_do_eh
);
6455 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
6457 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6458 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6459 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6460 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
6461 EXPORT_SYMBOL_GPL(ata_cable_sata
);