1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Copyright 1995, Russell King.
4 * Various bits and pieces copyrights include:
5 * Linus Torvalds (test_bit).
6 * Big endian support: Copyright 2001, Nicolas Pitre
9 * bit 0 is the LSB of an "unsigned long" quantity.
11 * Please note that the code in this file should never be included
12 * from user space. Many of these are not implemented in assembler
13 * since they would be too costly. Also, they require privileged
14 * instructions (which are not available from user mode) to ensure
15 * that they are atomic.
18 #ifndef __ASM_ARM_BITOPS_H
19 #define __ASM_ARM_BITOPS_H
23 #ifndef _LINUX_BITOPS_H
24 #error only <linux/bitops.h> can be included directly
27 #include <linux/compiler.h>
28 #include <linux/irqflags.h>
29 #include <asm/barrier.h>
32 * These functions are the basis of our bit ops.
34 * First, the atomic bitops. These use native endian.
36 static inline void ____atomic_set_bit(unsigned int bit
, volatile unsigned long *p
)
39 unsigned long mask
= BIT_MASK(bit
);
43 raw_local_irq_save(flags
);
45 raw_local_irq_restore(flags
);
48 static inline void ____atomic_clear_bit(unsigned int bit
, volatile unsigned long *p
)
51 unsigned long mask
= BIT_MASK(bit
);
55 raw_local_irq_save(flags
);
57 raw_local_irq_restore(flags
);
60 static inline void ____atomic_change_bit(unsigned int bit
, volatile unsigned long *p
)
63 unsigned long mask
= BIT_MASK(bit
);
67 raw_local_irq_save(flags
);
69 raw_local_irq_restore(flags
);
73 ____atomic_test_and_set_bit(unsigned int bit
, volatile unsigned long *p
)
77 unsigned long mask
= BIT_MASK(bit
);
81 raw_local_irq_save(flags
);
84 raw_local_irq_restore(flags
);
86 return (res
& mask
) != 0;
90 ____atomic_test_and_clear_bit(unsigned int bit
, volatile unsigned long *p
)
94 unsigned long mask
= BIT_MASK(bit
);
98 raw_local_irq_save(flags
);
101 raw_local_irq_restore(flags
);
103 return (res
& mask
) != 0;
107 ____atomic_test_and_change_bit(unsigned int bit
, volatile unsigned long *p
)
111 unsigned long mask
= BIT_MASK(bit
);
115 raw_local_irq_save(flags
);
118 raw_local_irq_restore(flags
);
120 return (res
& mask
) != 0;
123 #include <asm-generic/bitops/non-atomic.h>
126 * A note about Endian-ness.
127 * -------------------------
129 * When the ARM is put into big endian mode via CR15, the processor
130 * merely swaps the order of bytes within words, thus:
132 * ------------ physical data bus bits -----------
133 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
134 * little byte 3 byte 2 byte 1 byte 0
135 * big byte 0 byte 1 byte 2 byte 3
137 * This means that reading a 32-bit word at address 0 returns the same
138 * value irrespective of the endian mode bit.
140 * Peripheral devices should be connected with the data bus reversed in
141 * "Big Endian" mode. ARM Application Note 61 is applicable, and is
142 * available from http://www.arm.com/.
144 * The following assumes that the data bus connectivity for big endian
145 * mode has been followed.
147 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
151 * Native endian assembly bitops. nr = 0 -> word 0 bit 0.
153 extern void _set_bit(int nr
, volatile unsigned long * p
);
154 extern void _clear_bit(int nr
, volatile unsigned long * p
);
155 extern void _change_bit(int nr
, volatile unsigned long * p
);
156 extern int _test_and_set_bit(int nr
, volatile unsigned long * p
);
157 extern int _test_and_clear_bit(int nr
, volatile unsigned long * p
);
158 extern int _test_and_change_bit(int nr
, volatile unsigned long * p
);
161 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
163 extern int _find_first_zero_bit_le(const unsigned long *p
, unsigned size
);
164 extern int _find_next_zero_bit_le(const unsigned long *p
, int size
, int offset
);
165 extern int _find_first_bit_le(const unsigned long *p
, unsigned size
);
166 extern int _find_next_bit_le(const unsigned long *p
, int size
, int offset
);
169 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
171 extern int _find_first_zero_bit_be(const unsigned long *p
, unsigned size
);
172 extern int _find_next_zero_bit_be(const unsigned long *p
, int size
, int offset
);
173 extern int _find_first_bit_be(const unsigned long *p
, unsigned size
);
174 extern int _find_next_bit_be(const unsigned long *p
, int size
, int offset
);
178 * The __* form of bitops are non-atomic and may be reordered.
180 #define ATOMIC_BITOP(name,nr,p) \
181 (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
183 #define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
187 * Native endian atomic definitions.
189 #define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
190 #define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
191 #define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
192 #define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
193 #define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
194 #define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
198 * These are the little endian, atomic definitions.
200 #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
201 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
202 #define find_first_bit(p,sz) _find_first_bit_le(p,sz)
203 #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
207 * These are the big endian, atomic definitions.
209 #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
210 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
211 #define find_first_bit(p,sz) _find_first_bit_be(p,sz)
212 #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
216 #if __LINUX_ARM_ARCH__ < 5
218 #include <asm-generic/bitops/ffz.h>
219 #include <asm-generic/bitops/__fls.h>
220 #include <asm-generic/bitops/__ffs.h>
221 #include <asm-generic/bitops/fls.h>
222 #include <asm-generic/bitops/ffs.h>
226 static inline int constant_fls(int x
)
232 if (!(x
& 0xffff0000u
)) {
236 if (!(x
& 0xff000000u
)) {
240 if (!(x
& 0xf0000000u
)) {
244 if (!(x
& 0xc0000000u
)) {
248 if (!(x
& 0x80000000u
)) {
256 * On ARMv5 and above those functions can be implemented around the
257 * clz instruction for much better code efficiency. __clz returns
258 * the number of leading zeros, zero input will return 32, and
259 * 0x80000000 will return 0.
261 static inline unsigned int __clz(unsigned int x
)
265 asm("clz\t%0, %1" : "=r" (ret
) : "r" (x
));
271 * fls() returns zero if the input is zero, otherwise returns the bit
272 * position of the last set bit, where the LSB is 1 and MSB is 32.
274 static inline int fls(int x
)
276 if (__builtin_constant_p(x
))
277 return constant_fls(x
);
279 return 32 - __clz(x
);
283 * __fls() returns the bit position of the last bit set, where the
284 * LSB is 0 and MSB is 31. Zero input is undefined.
286 static inline unsigned long __fls(unsigned long x
)
292 * ffs() returns zero if the input was zero, otherwise returns the bit
293 * position of the first set bit, where the LSB is 1 and MSB is 32.
295 static inline int ffs(int x
)
301 * __ffs() returns the bit position of the first bit set, where the
302 * LSB is 0 and MSB is 31. Zero input is undefined.
304 static inline unsigned long __ffs(unsigned long x
)
309 #define ffz(x) __ffs( ~(x) )
313 #include <asm-generic/bitops/fls64.h>
315 #include <asm-generic/bitops/sched.h>
316 #include <asm-generic/bitops/hweight.h>
317 #include <asm-generic/bitops/lock.h>
321 static inline int find_first_zero_bit_le(const void *p
, unsigned size
)
323 return _find_first_zero_bit_le(p
, size
);
325 #define find_first_zero_bit_le find_first_zero_bit_le
327 static inline int find_next_zero_bit_le(const void *p
, int size
, int offset
)
329 return _find_next_zero_bit_le(p
, size
, offset
);
331 #define find_next_zero_bit_le find_next_zero_bit_le
333 static inline int find_next_bit_le(const void *p
, int size
, int offset
)
335 return _find_next_bit_le(p
, size
, offset
);
337 #define find_next_bit_le find_next_bit_le
341 #include <asm-generic/bitops/le.h>
344 * Ext2 is defined to use little-endian byte ordering.
346 #include <asm-generic/bitops/ext2-atomic-setbit.h>
348 #endif /* __KERNEL__ */
350 #endif /* _ARM_BITOPS_H */