x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / arch / arm64 / crypto / sha512-armv8.pl
blobc55efb30854468c41f00cb99fdcbc804ab9eb728
1 #! /usr/bin/env perl
2 # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
4 # Licensed under the OpenSSL license (the "License"). You may not use
5 # this file except in compliance with the License. You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
9 # ====================================================================
10 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
11 # project. The module is, however, dual licensed under OpenSSL and
12 # CRYPTOGAMS licenses depending on where you obtain it. For further
13 # details see http://www.openssl.org/~appro/cryptogams/.
15 # Permission to use under GPLv2 terms is granted.
16 # ====================================================================
18 # SHA256/512 for ARMv8.
20 # Performance in cycles per processed byte and improvement coefficient
21 # over code generated with "default" compiler:
23 # SHA256-hw SHA256(*) SHA512
24 # Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
25 # Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
26 # Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
27 # Denver 2.01 10.5 (+26%) 6.70 (+8%)
28 # X-Gene 20.0 (+100%) 12.8 (+300%(***))
29 # Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
31 # (*) Software SHA256 results are of lesser relevance, presented
32 # mostly for informational purposes.
33 # (**) The result is a trade-off: it's possible to improve it by
34 # 10% (or by 1 cycle per round), but at the cost of 20% loss
35 # on Cortex-A53 (or by 4 cycles per round).
36 # (***) Super-impressive coefficients over gcc-generated code are
37 # indication of some compiler "pathology", most notably code
38 # generated with -mgeneral-regs-only is significanty faster
39 # and the gap is only 40-90%.
41 # October 2016.
43 # Originally it was reckoned that it makes no sense to implement NEON
44 # version of SHA256 for 64-bit processors. This is because performance
45 # improvement on most wide-spread Cortex-A5x processors was observed
46 # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
47 # observed that 32-bit NEON SHA256 performs significantly better than
48 # 64-bit scalar version on *some* of the more recent processors. As
49 # result 64-bit NEON version of SHA256 was added to provide best
50 # all-round performance. For example it executes ~30% faster on X-Gene
51 # and Mongoose. [For reference, NEON version of SHA512 is bound to
52 # deliver much less improvement, likely *negative* on Cortex-A5x.
53 # Which is why NEON support is limited to SHA256.]
55 $output=pop;
56 $flavour=pop;
58 if ($flavour && $flavour ne "void") {
59 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
60 ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
61 ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
62 die "can't locate arm-xlate.pl";
64 open OUT,"| \"$^X\" $xlate $flavour $output";
65 *STDOUT=*OUT;
66 } else {
67 open STDOUT,">$output";
70 if ($output =~ /512/) {
71 $BITS=512;
72 $SZ=8;
73 @Sigma0=(28,34,39);
74 @Sigma1=(14,18,41);
75 @sigma0=(1, 8, 7);
76 @sigma1=(19,61, 6);
77 $rounds=80;
78 $reg_t="x";
79 } else {
80 $BITS=256;
81 $SZ=4;
82 @Sigma0=( 2,13,22);
83 @Sigma1=( 6,11,25);
84 @sigma0=( 7,18, 3);
85 @sigma1=(17,19,10);
86 $rounds=64;
87 $reg_t="w";
90 $func="sha${BITS}_block_data_order";
92 ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
94 @X=map("$reg_t$_",(3..15,0..2));
95 @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
96 ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
98 sub BODY_00_xx {
99 my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
100 my $j=($i+1)&15;
101 my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
102 $T0=@X[$i+3] if ($i<11);
104 $code.=<<___ if ($i<16);
105 #ifndef __AARCH64EB__
106 rev @X[$i],@X[$i] // $i
107 #endif
109 $code.=<<___ if ($i<13 && ($i&1));
110 ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ
112 $code.=<<___ if ($i==13);
113 ldp @X[14],@X[15],[$inp]
115 $code.=<<___ if ($i>=14);
116 ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
118 $code.=<<___ if ($i>0 && $i<16);
119 add $a,$a,$t1 // h+=Sigma0(a)
121 $code.=<<___ if ($i>=11);
122 str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
124 # While ARMv8 specifies merged rotate-n-logical operation such as
125 # 'eor x,y,z,ror#n', it was found to negatively affect performance
126 # on Apple A7. The reason seems to be that it requires even 'y' to
127 # be available earlier. This means that such merged instruction is
128 # not necessarily best choice on critical path... On the other hand
129 # Cortex-A5x handles merged instructions much better than disjoint
130 # rotate and logical... See (**) footnote above.
131 $code.=<<___ if ($i<15);
132 ror $t0,$e,#$Sigma1[0]
133 add $h,$h,$t2 // h+=K[i]
134 eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
135 and $t1,$f,$e
136 bic $t2,$g,$e
137 add $h,$h,@X[$i&15] // h+=X[i]
138 orr $t1,$t1,$t2 // Ch(e,f,g)
139 eor $t2,$a,$b // a^b, b^c in next round
140 eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e)
141 ror $T0,$a,#$Sigma0[0]
142 add $h,$h,$t1 // h+=Ch(e,f,g)
143 eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
144 add $h,$h,$t0 // h+=Sigma1(e)
145 and $t3,$t3,$t2 // (b^c)&=(a^b)
146 add $d,$d,$h // d+=h
147 eor $t3,$t3,$b // Maj(a,b,c)
148 eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a)
149 add $h,$h,$t3 // h+=Maj(a,b,c)
150 ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
151 //add $h,$h,$t1 // h+=Sigma0(a)
153 $code.=<<___ if ($i>=15);
154 ror $t0,$e,#$Sigma1[0]
155 add $h,$h,$t2 // h+=K[i]
156 ror $T1,@X[($j+1)&15],#$sigma0[0]
157 and $t1,$f,$e
158 ror $T2,@X[($j+14)&15],#$sigma1[0]
159 bic $t2,$g,$e
160 ror $T0,$a,#$Sigma0[0]
161 add $h,$h,@X[$i&15] // h+=X[i]
162 eor $t0,$t0,$e,ror#$Sigma1[1]
163 eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
164 orr $t1,$t1,$t2 // Ch(e,f,g)
165 eor $t2,$a,$b // a^b, b^c in next round
166 eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e)
167 eor $T0,$T0,$a,ror#$Sigma0[1]
168 add $h,$h,$t1 // h+=Ch(e,f,g)
169 and $t3,$t3,$t2 // (b^c)&=(a^b)
170 eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
171 eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1])
172 add $h,$h,$t0 // h+=Sigma1(e)
173 eor $t3,$t3,$b // Maj(a,b,c)
174 eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a)
175 eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14])
176 add @X[$j],@X[$j],@X[($j+9)&15]
177 add $d,$d,$h // d+=h
178 add $h,$h,$t3 // h+=Maj(a,b,c)
179 ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
180 add @X[$j],@X[$j],$T1
181 add $h,$h,$t1 // h+=Sigma0(a)
182 add @X[$j],@X[$j],$T2
184 ($t2,$t3)=($t3,$t2);
187 $code.=<<___;
188 #ifndef __KERNEL__
189 # include "arm_arch.h"
190 #endif
192 .text
194 .extern OPENSSL_armcap_P
195 .globl $func
196 .type $func,%function
197 .align 6
198 $func:
200 $code.=<<___ if ($SZ==4);
201 #ifndef __KERNEL__
202 # ifdef __ILP32__
203 ldrsw x16,.LOPENSSL_armcap_P
204 # else
205 ldr x16,.LOPENSSL_armcap_P
206 # endif
207 adr x17,.LOPENSSL_armcap_P
208 add x16,x16,x17
209 ldr w16,[x16]
210 tst w16,#ARMV8_SHA256
211 b.ne .Lv8_entry
212 tst w16,#ARMV7_NEON
213 b.ne .Lneon_entry
214 #endif
216 $code.=<<___;
217 stp x29,x30,[sp,#-128]!
218 add x29,sp,#0
220 stp x19,x20,[sp,#16]
221 stp x21,x22,[sp,#32]
222 stp x23,x24,[sp,#48]
223 stp x25,x26,[sp,#64]
224 stp x27,x28,[sp,#80]
225 sub sp,sp,#4*$SZ
227 ldp $A,$B,[$ctx] // load context
228 ldp $C,$D,[$ctx,#2*$SZ]
229 ldp $E,$F,[$ctx,#4*$SZ]
230 add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
231 ldp $G,$H,[$ctx,#6*$SZ]
232 adr $Ktbl,.LK$BITS
233 stp $ctx,$num,[x29,#96]
235 .Loop:
236 ldp @X[0],@X[1],[$inp],#2*$SZ
237 ldr $t2,[$Ktbl],#$SZ // *K++
238 eor $t3,$B,$C // magic seed
239 str $inp,[x29,#112]
241 for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
242 $code.=".Loop_16_xx:\n";
243 for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
244 $code.=<<___;
245 cbnz $t2,.Loop_16_xx
247 ldp $ctx,$num,[x29,#96]
248 ldr $inp,[x29,#112]
249 sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
251 ldp @X[0],@X[1],[$ctx]
252 ldp @X[2],@X[3],[$ctx,#2*$SZ]
253 add $inp,$inp,#14*$SZ // advance input pointer
254 ldp @X[4],@X[5],[$ctx,#4*$SZ]
255 add $A,$A,@X[0]
256 ldp @X[6],@X[7],[$ctx,#6*$SZ]
257 add $B,$B,@X[1]
258 add $C,$C,@X[2]
259 add $D,$D,@X[3]
260 stp $A,$B,[$ctx]
261 add $E,$E,@X[4]
262 add $F,$F,@X[5]
263 stp $C,$D,[$ctx,#2*$SZ]
264 add $G,$G,@X[6]
265 add $H,$H,@X[7]
266 cmp $inp,$num
267 stp $E,$F,[$ctx,#4*$SZ]
268 stp $G,$H,[$ctx,#6*$SZ]
269 b.ne .Loop
271 ldp x19,x20,[x29,#16]
272 add sp,sp,#4*$SZ
273 ldp x21,x22,[x29,#32]
274 ldp x23,x24,[x29,#48]
275 ldp x25,x26,[x29,#64]
276 ldp x27,x28,[x29,#80]
277 ldp x29,x30,[sp],#128
279 .size $func,.-$func
281 .align 6
282 .type .LK$BITS,%object
283 .LK$BITS:
285 $code.=<<___ if ($SZ==8);
286 .quad 0x428a2f98d728ae22,0x7137449123ef65cd
287 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
288 .quad 0x3956c25bf348b538,0x59f111f1b605d019
289 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
290 .quad 0xd807aa98a3030242,0x12835b0145706fbe
291 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
292 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
293 .quad 0x9bdc06a725c71235,0xc19bf174cf692694
294 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
295 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
296 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
297 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
298 .quad 0x983e5152ee66dfab,0xa831c66d2db43210
299 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
300 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
301 .quad 0x06ca6351e003826f,0x142929670a0e6e70
302 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
303 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
304 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
305 .quad 0x81c2c92e47edaee6,0x92722c851482353b
306 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
307 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
308 .quad 0xd192e819d6ef5218,0xd69906245565a910
309 .quad 0xf40e35855771202a,0x106aa07032bbd1b8
310 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
311 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
312 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
313 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
314 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
315 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
316 .quad 0x90befffa23631e28,0xa4506cebde82bde9
317 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
318 .quad 0xca273eceea26619c,0xd186b8c721c0c207
319 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
320 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
321 .quad 0x113f9804bef90dae,0x1b710b35131c471b
322 .quad 0x28db77f523047d84,0x32caab7b40c72493
323 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
324 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
325 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
326 .quad 0 // terminator
328 $code.=<<___ if ($SZ==4);
329 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
330 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
331 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
332 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
333 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
334 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
335 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
336 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
337 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
338 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
339 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
340 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
341 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
342 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
343 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
344 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
345 .long 0 //terminator
347 $code.=<<___;
348 .size .LK$BITS,.-.LK$BITS
349 #ifndef __KERNEL__
350 .align 3
351 .LOPENSSL_armcap_P:
352 # ifdef __ILP32__
353 .long OPENSSL_armcap_P-.
354 # else
355 .quad OPENSSL_armcap_P-.
356 # endif
357 #endif
358 .asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
359 .align 2
362 if ($SZ==4) {
363 my $Ktbl="x3";
365 my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
366 my @MSG=map("v$_.16b",(4..7));
367 my ($W0,$W1)=("v16.4s","v17.4s");
368 my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
370 $code.=<<___;
371 #ifndef __KERNEL__
372 .type sha256_block_armv8,%function
373 .align 6
374 sha256_block_armv8:
375 .Lv8_entry:
376 stp x29,x30,[sp,#-16]!
377 add x29,sp,#0
379 ld1.32 {$ABCD,$EFGH},[$ctx]
380 adr $Ktbl,.LK256
382 .Loop_hw:
383 ld1 {@MSG[0]-@MSG[3]},[$inp],#64
384 sub $num,$num,#1
385 ld1.32 {$W0},[$Ktbl],#16
386 rev32 @MSG[0],@MSG[0]
387 rev32 @MSG[1],@MSG[1]
388 rev32 @MSG[2],@MSG[2]
389 rev32 @MSG[3],@MSG[3]
390 orr $ABCD_SAVE,$ABCD,$ABCD // offload
391 orr $EFGH_SAVE,$EFGH,$EFGH
393 for($i=0;$i<12;$i++) {
394 $code.=<<___;
395 ld1.32 {$W1},[$Ktbl],#16
396 add.i32 $W0,$W0,@MSG[0]
397 sha256su0 @MSG[0],@MSG[1]
398 orr $abcd,$ABCD,$ABCD
399 sha256h $ABCD,$EFGH,$W0
400 sha256h2 $EFGH,$abcd,$W0
401 sha256su1 @MSG[0],@MSG[2],@MSG[3]
403 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
405 $code.=<<___;
406 ld1.32 {$W1},[$Ktbl],#16
407 add.i32 $W0,$W0,@MSG[0]
408 orr $abcd,$ABCD,$ABCD
409 sha256h $ABCD,$EFGH,$W0
410 sha256h2 $EFGH,$abcd,$W0
412 ld1.32 {$W0},[$Ktbl],#16
413 add.i32 $W1,$W1,@MSG[1]
414 orr $abcd,$ABCD,$ABCD
415 sha256h $ABCD,$EFGH,$W1
416 sha256h2 $EFGH,$abcd,$W1
418 ld1.32 {$W1},[$Ktbl]
419 add.i32 $W0,$W0,@MSG[2]
420 sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
421 orr $abcd,$ABCD,$ABCD
422 sha256h $ABCD,$EFGH,$W0
423 sha256h2 $EFGH,$abcd,$W0
425 add.i32 $W1,$W1,@MSG[3]
426 orr $abcd,$ABCD,$ABCD
427 sha256h $ABCD,$EFGH,$W1
428 sha256h2 $EFGH,$abcd,$W1
430 add.i32 $ABCD,$ABCD,$ABCD_SAVE
431 add.i32 $EFGH,$EFGH,$EFGH_SAVE
433 cbnz $num,.Loop_hw
435 st1.32 {$ABCD,$EFGH},[$ctx]
437 ldr x29,[sp],#16
439 .size sha256_block_armv8,.-sha256_block_armv8
440 #endif
444 if ($SZ==4) { ######################################### NEON stuff #
445 # You'll surely note a lot of similarities with sha256-armv4 module,
446 # and of course it's not a coincidence. sha256-armv4 was used as
447 # initial template, but was adapted for ARMv8 instruction set and
448 # extensively re-tuned for all-round performance.
450 my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
451 my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
452 my $Ktbl="x16";
453 my $Xfer="x17";
454 my @X = map("q$_",(0..3));
455 my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
456 my $j=0;
458 sub AUTOLOAD() # thunk [simplified] x86-style perlasm
459 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
460 my $arg = pop;
461 $arg = "#$arg" if ($arg*1 eq $arg);
462 $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
465 sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
466 sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
467 sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
469 sub Xupdate()
470 { use integer;
471 my $body = shift;
472 my @insns = (&$body,&$body,&$body,&$body);
473 my ($a,$b,$c,$d,$e,$f,$g,$h);
475 &ext_8 ($T0,@X[0],@X[1],4); # X[1..4]
476 eval(shift(@insns));
477 eval(shift(@insns));
478 eval(shift(@insns));
479 &ext_8 ($T3,@X[2],@X[3],4); # X[9..12]
480 eval(shift(@insns));
481 eval(shift(@insns));
482 &mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15]
483 eval(shift(@insns));
484 eval(shift(@insns));
485 &ushr_32 ($T2,$T0,$sigma0[0]);
486 eval(shift(@insns));
487 &ushr_32 ($T1,$T0,$sigma0[2]);
488 eval(shift(@insns));
489 &add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12]
490 eval(shift(@insns));
491 &sli_32 ($T2,$T0,32-$sigma0[0]);
492 eval(shift(@insns));
493 eval(shift(@insns));
494 &ushr_32 ($T3,$T0,$sigma0[1]);
495 eval(shift(@insns));
496 eval(shift(@insns));
497 &eor_8 ($T1,$T1,$T2);
498 eval(shift(@insns));
499 eval(shift(@insns));
500 &sli_32 ($T3,$T0,32-$sigma0[1]);
501 eval(shift(@insns));
502 eval(shift(@insns));
503 &ushr_32 ($T4,$T7,$sigma1[0]);
504 eval(shift(@insns));
505 eval(shift(@insns));
506 &eor_8 ($T1,$T1,$T3); # sigma0(X[1..4])
507 eval(shift(@insns));
508 eval(shift(@insns));
509 &sli_32 ($T4,$T7,32-$sigma1[0]);
510 eval(shift(@insns));
511 eval(shift(@insns));
512 &ushr_32 ($T5,$T7,$sigma1[2]);
513 eval(shift(@insns));
514 eval(shift(@insns));
515 &ushr_32 ($T3,$T7,$sigma1[1]);
516 eval(shift(@insns));
517 eval(shift(@insns));
518 &add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
519 eval(shift(@insns));
520 eval(shift(@insns));
521 &sli_u32 ($T3,$T7,32-$sigma1[1]);
522 eval(shift(@insns));
523 eval(shift(@insns));
524 &eor_8 ($T5,$T5,$T4);
525 eval(shift(@insns));
526 eval(shift(@insns));
527 eval(shift(@insns));
528 &eor_8 ($T5,$T5,$T3); # sigma1(X[14..15])
529 eval(shift(@insns));
530 eval(shift(@insns));
531 eval(shift(@insns));
532 &add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15])
533 eval(shift(@insns));
534 eval(shift(@insns));
535 eval(shift(@insns));
536 &ushr_32 ($T6,@X[0],$sigma1[0]);
537 eval(shift(@insns));
538 &ushr_32 ($T7,@X[0],$sigma1[2]);
539 eval(shift(@insns));
540 eval(shift(@insns));
541 &sli_32 ($T6,@X[0],32-$sigma1[0]);
542 eval(shift(@insns));
543 &ushr_32 ($T5,@X[0],$sigma1[1]);
544 eval(shift(@insns));
545 eval(shift(@insns));
546 &eor_8 ($T7,$T7,$T6);
547 eval(shift(@insns));
548 eval(shift(@insns));
549 &sli_32 ($T5,@X[0],32-$sigma1[1]);
550 eval(shift(@insns));
551 eval(shift(@insns));
552 &ld1_32 ("{$T0}","[$Ktbl], #16");
553 eval(shift(@insns));
554 &eor_8 ($T7,$T7,$T5); # sigma1(X[16..17])
555 eval(shift(@insns));
556 eval(shift(@insns));
557 &eor_8 ($T5,$T5,$T5);
558 eval(shift(@insns));
559 eval(shift(@insns));
560 &mov (&Dhi($T5), &Dlo($T7));
561 eval(shift(@insns));
562 eval(shift(@insns));
563 eval(shift(@insns));
564 &add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17])
565 eval(shift(@insns));
566 eval(shift(@insns));
567 eval(shift(@insns));
568 &add_32 ($T0,$T0,@X[0]);
569 while($#insns>=1) { eval(shift(@insns)); }
570 &st1_32 ("{$T0}","[$Xfer], #16");
571 eval(shift(@insns));
573 push(@X,shift(@X)); # "rotate" X[]
576 sub Xpreload()
577 { use integer;
578 my $body = shift;
579 my @insns = (&$body,&$body,&$body,&$body);
580 my ($a,$b,$c,$d,$e,$f,$g,$h);
582 eval(shift(@insns));
583 eval(shift(@insns));
584 &ld1_8 ("{@X[0]}","[$inp],#16");
585 eval(shift(@insns));
586 eval(shift(@insns));
587 &ld1_32 ("{$T0}","[$Ktbl],#16");
588 eval(shift(@insns));
589 eval(shift(@insns));
590 eval(shift(@insns));
591 eval(shift(@insns));
592 &rev32 (@X[0],@X[0]);
593 eval(shift(@insns));
594 eval(shift(@insns));
595 eval(shift(@insns));
596 eval(shift(@insns));
597 &add_32 ($T0,$T0,@X[0]);
598 foreach (@insns) { eval; } # remaining instructions
599 &st1_32 ("{$T0}","[$Xfer], #16");
601 push(@X,shift(@X)); # "rotate" X[]
604 sub body_00_15 () {
606 '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
607 '&add ($h,$h,$t1)', # h+=X[i]+K[i]
608 '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past
609 '&and ($t1,$f,$e)',
610 '&bic ($t4,$g,$e)',
611 '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
612 '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
613 '&orr ($t1,$t1,$t4)', # Ch(e,f,g)
614 '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
615 '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
616 '&add ($h,$h,$t1)', # h+=Ch(e,f,g)
617 '&ror ($t0,$t0,"#$Sigma1[0]")',
618 '&eor ($t2,$a,$b)', # a^b, b^c in next round
619 '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
620 '&add ($h,$h,$t0)', # h+=Sigma1(e)
621 '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
622 '&ldr ($t1,"[$Ktbl]") if ($j==15);'.
623 '&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
624 '&ror ($t4,$t4,"#$Sigma0[0]")',
625 '&add ($d,$d,$h)', # d+=h
626 '&eor ($t3,$t3,$b)', # Maj(a,b,c)
627 '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
631 $code.=<<___;
632 #ifdef __KERNEL__
633 .globl sha256_block_neon
634 #endif
635 .type sha256_block_neon,%function
636 .align 4
637 sha256_block_neon:
638 .Lneon_entry:
639 stp x29, x30, [sp, #-16]!
640 mov x29, sp
641 sub sp,sp,#16*4
643 adr $Ktbl,.LK256
644 add $num,$inp,$num,lsl#6 // len to point at the end of inp
646 ld1.8 {@X[0]},[$inp], #16
647 ld1.8 {@X[1]},[$inp], #16
648 ld1.8 {@X[2]},[$inp], #16
649 ld1.8 {@X[3]},[$inp], #16
650 ld1.32 {$T0},[$Ktbl], #16
651 ld1.32 {$T1},[$Ktbl], #16
652 ld1.32 {$T2},[$Ktbl], #16
653 ld1.32 {$T3},[$Ktbl], #16
654 rev32 @X[0],@X[0] // yes, even on
655 rev32 @X[1],@X[1] // big-endian
656 rev32 @X[2],@X[2]
657 rev32 @X[3],@X[3]
658 mov $Xfer,sp
659 add.32 $T0,$T0,@X[0]
660 add.32 $T1,$T1,@X[1]
661 add.32 $T2,$T2,@X[2]
662 st1.32 {$T0-$T1},[$Xfer], #32
663 add.32 $T3,$T3,@X[3]
664 st1.32 {$T2-$T3},[$Xfer]
665 sub $Xfer,$Xfer,#32
667 ldp $A,$B,[$ctx]
668 ldp $C,$D,[$ctx,#8]
669 ldp $E,$F,[$ctx,#16]
670 ldp $G,$H,[$ctx,#24]
671 ldr $t1,[sp,#0]
672 mov $t2,wzr
673 eor $t3,$B,$C
674 mov $t4,wzr
675 b .L_00_48
677 .align 4
678 .L_00_48:
680 &Xupdate(\&body_00_15);
681 &Xupdate(\&body_00_15);
682 &Xupdate(\&body_00_15);
683 &Xupdate(\&body_00_15);
684 $code.=<<___;
685 cmp $t1,#0 // check for K256 terminator
686 ldr $t1,[sp,#0]
687 sub $Xfer,$Xfer,#64
688 bne .L_00_48
690 sub $Ktbl,$Ktbl,#256 // rewind $Ktbl
691 cmp $inp,$num
692 mov $Xfer, #64
693 csel $Xfer, $Xfer, xzr, eq
694 sub $inp,$inp,$Xfer // avoid SEGV
695 mov $Xfer,sp
697 &Xpreload(\&body_00_15);
698 &Xpreload(\&body_00_15);
699 &Xpreload(\&body_00_15);
700 &Xpreload(\&body_00_15);
701 $code.=<<___;
702 add $A,$A,$t4 // h+=Sigma0(a) from the past
703 ldp $t0,$t1,[$ctx,#0]
704 add $A,$A,$t2 // h+=Maj(a,b,c) from the past
705 ldp $t2,$t3,[$ctx,#8]
706 add $A,$A,$t0 // accumulate
707 add $B,$B,$t1
708 ldp $t0,$t1,[$ctx,#16]
709 add $C,$C,$t2
710 add $D,$D,$t3
711 ldp $t2,$t3,[$ctx,#24]
712 add $E,$E,$t0
713 add $F,$F,$t1
714 ldr $t1,[sp,#0]
715 stp $A,$B,[$ctx,#0]
716 add $G,$G,$t2
717 mov $t2,wzr
718 stp $C,$D,[$ctx,#8]
719 add $H,$H,$t3
720 stp $E,$F,[$ctx,#16]
721 eor $t3,$B,$C
722 stp $G,$H,[$ctx,#24]
723 mov $t4,wzr
724 mov $Xfer,sp
725 b.ne .L_00_48
727 ldr x29,[x29]
728 add sp,sp,#16*4+16
730 .size sha256_block_neon,.-sha256_block_neon
734 $code.=<<___;
735 #ifndef __KERNEL__
736 .comm OPENSSL_armcap_P,4,4
737 #endif
740 { my %opcode = (
741 "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
742 "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
744 sub unsha256 {
745 my ($mnemonic,$arg)=@_;
747 $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
749 sprintf ".inst\t0x%08x\t//%s %s",
750 $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
751 $mnemonic,$arg;
755 open SELF,$0;
756 while(<SELF>) {
757 next if (/^#!/);
758 last if (!s/^#/\/\// and !/^$/);
759 print;
761 close SELF;
763 foreach(split("\n",$code)) {
765 s/\`([^\`]*)\`/eval($1)/ge;
767 s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
769 s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers
771 s/\.[ui]?8(\s)/$1/;
772 s/\.\w?32\b// and s/\.16b/\.4s/g;
773 m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g;
775 print $_,"\n";
778 close STDOUT;