2 # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
4 # Licensed under the OpenSSL license (the "License"). You may not use
5 # this file except in compliance with the License. You can obtain a copy
6 # in the file LICENSE in the source distribution or at
7 # https://www.openssl.org/source/license.html
9 # ====================================================================
10 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
11 # project. The module is, however, dual licensed under OpenSSL and
12 # CRYPTOGAMS licenses depending on where you obtain it. For further
13 # details see http://www.openssl.org/~appro/cryptogams/.
15 # Permission to use under GPLv2 terms is granted.
16 # ====================================================================
18 # SHA256/512 for ARMv8.
20 # Performance in cycles per processed byte and improvement coefficient
21 # over code generated with "default" compiler:
23 # SHA256-hw SHA256(*) SHA512
24 # Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
25 # Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
26 # Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
27 # Denver 2.01 10.5 (+26%) 6.70 (+8%)
28 # X-Gene 20.0 (+100%) 12.8 (+300%(***))
29 # Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
31 # (*) Software SHA256 results are of lesser relevance, presented
32 # mostly for informational purposes.
33 # (**) The result is a trade-off: it's possible to improve it by
34 # 10% (or by 1 cycle per round), but at the cost of 20% loss
35 # on Cortex-A53 (or by 4 cycles per round).
36 # (***) Super-impressive coefficients over gcc-generated code are
37 # indication of some compiler "pathology", most notably code
38 # generated with -mgeneral-regs-only is significanty faster
39 # and the gap is only 40-90%.
43 # Originally it was reckoned that it makes no sense to implement NEON
44 # version of SHA256 for 64-bit processors. This is because performance
45 # improvement on most wide-spread Cortex-A5x processors was observed
46 # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
47 # observed that 32-bit NEON SHA256 performs significantly better than
48 # 64-bit scalar version on *some* of the more recent processors. As
49 # result 64-bit NEON version of SHA256 was added to provide best
50 # all-round performance. For example it executes ~30% faster on X-Gene
51 # and Mongoose. [For reference, NEON version of SHA512 is bound to
52 # deliver much less improvement, likely *negative* on Cortex-A5x.
53 # Which is why NEON support is limited to SHA256.]
58 if ($flavour && $flavour ne "void") {
59 $0 =~ m/(.*[\/\\])[^\
/\\]+$/; $dir=$1;
60 ( $xlate="${dir}arm-xlate.pl" and -f
$xlate ) or
61 ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f
$xlate) or
62 die "can't locate arm-xlate.pl";
64 open OUT
,"| \"$^X\" $xlate $flavour $output";
67 open STDOUT
,">$output";
70 if ($output =~ /512/) {
90 $func="sha${BITS}_block_data_order";
92 ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
94 @X=map("$reg_t$_",(3..15,0..2));
95 @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
96 ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
99 my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
101 my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
102 $T0=@X[$i+3] if ($i<11);
104 $code.=<<___
if ($i<16);
105 #ifndef __AARCH64EB__
106 rev
@X[$i],@X[$i] // $i
109 $code.=<<___
if ($i<13 && ($i&1));
110 ldp
@X[$i+1],@X[$i+2],[$inp],#2*$SZ
112 $code.=<<___
if ($i==13);
113 ldp
@X[14],@X[15],[$inp]
115 $code.=<<___
if ($i>=14);
116 ldr
@X[($i-11)&15],[sp
,#`$SZ*(($i-11)%4)`]
118 $code.=<<___
if ($i>0 && $i<16);
119 add
$a,$a,$t1 // h
+=Sigma0
(a
)
121 $code.=<<___
if ($i>=11);
122 str
@X[($i-8)&15],[sp
,#`$SZ*(($i-8)%4)`]
124 # While ARMv8 specifies merged rotate-n-logical operation such as
125 # 'eor x,y,z,ror#n', it was found to negatively affect performance
126 # on Apple A7. The reason seems to be that it requires even 'y' to
127 # be available earlier. This means that such merged instruction is
128 # not necessarily best choice on critical path... On the other hand
129 # Cortex-A5x handles merged instructions much better than disjoint
130 # rotate and logical... See (**) footnote above.
131 $code.=<<___
if ($i<15);
132 ror
$t0,$e,#$Sigma1[0]
133 add
$h,$h,$t2 // h
+=K
[i
]
134 eor
$T0,$e,$e,ror
#`$Sigma1[2]-$Sigma1[1]`
137 add
$h,$h,@X[$i&15] // h
+=X
[i
]
138 orr
$t1,$t1,$t2 // Ch
(e
,f
,g
)
139 eor
$t2,$a,$b // a
^b
, b
^c
in next round
140 eor
$t0,$t0,$T0,ror
#$Sigma1[1] // Sigma1(e)
141 ror
$T0,$a,#$Sigma0[0]
142 add
$h,$h,$t1 // h
+=Ch
(e
,f
,g
)
143 eor
$t1,$a,$a,ror
#`$Sigma0[2]-$Sigma0[1]`
144 add
$h,$h,$t0 // h
+=Sigma1
(e
)
145 and $t3,$t3,$t2 // (b
^c
)&=(a
^b
)
147 eor
$t3,$t3,$b // Maj
(a
,b
,c
)
148 eor
$t1,$T0,$t1,ror
#$Sigma0[1] // Sigma0(a)
149 add
$h,$h,$t3 // h
+=Maj
(a
,b
,c
)
150 ldr
$t3,[$Ktbl],#$SZ // *K++, $t2 in next round
151 //add $h,$h,$t1 // h
+=Sigma0
(a
)
153 $code.=<<___
if ($i>=15);
154 ror
$t0,$e,#$Sigma1[0]
155 add
$h,$h,$t2 // h
+=K
[i
]
156 ror
$T1,@X[($j+1)&15],#$sigma0[0]
158 ror
$T2,@X[($j+14)&15],#$sigma1[0]
160 ror
$T0,$a,#$Sigma0[0]
161 add
$h,$h,@X[$i&15] // h
+=X
[i
]
162 eor
$t0,$t0,$e,ror
#$Sigma1[1]
163 eor
$T1,$T1,@X[($j+1)&15],ror
#$sigma0[1]
164 orr
$t1,$t1,$t2 // Ch
(e
,f
,g
)
165 eor
$t2,$a,$b // a
^b
, b
^c
in next round
166 eor
$t0,$t0,$e,ror
#$Sigma1[2] // Sigma1(e)
167 eor
$T0,$T0,$a,ror
#$Sigma0[1]
168 add
$h,$h,$t1 // h
+=Ch
(e
,f
,g
)
169 and $t3,$t3,$t2 // (b
^c
)&=(a
^b
)
170 eor
$T2,$T2,@X[($j+14)&15],ror
#$sigma1[1]
171 eor
$T1,$T1,@X[($j+1)&15],lsr
#$sigma0[2] // sigma0(X[i+1])
172 add
$h,$h,$t0 // h
+=Sigma1
(e
)
173 eor
$t3,$t3,$b // Maj
(a
,b
,c
)
174 eor
$t1,$T0,$a,ror
#$Sigma0[2] // Sigma0(a)
175 eor
$T2,$T2,@X[($j+14)&15],lsr
#$sigma1[2] // sigma1(X[i+14])
176 add
@X[$j],@X[$j],@X[($j+9)&15]
178 add
$h,$h,$t3 // h
+=Maj
(a
,b
,c
)
179 ldr
$t3,[$Ktbl],#$SZ // *K++, $t2 in next round
180 add
@X[$j],@X[$j],$T1
181 add
$h,$h,$t1 // h
+=Sigma0
(a
)
182 add
@X[$j],@X[$j],$T2
189 # include "arm_arch.h"
194 .extern OPENSSL_armcap_P
196 .type
$func,%function
200 $code.=<<___
if ($SZ==4);
203 ldrsw x16
,.LOPENSSL_armcap_P
205 ldr x16
,.LOPENSSL_armcap_P
207 adr x17
,.LOPENSSL_armcap_P
210 tst w16
,#ARMV8_SHA256
217 stp x29
,x30
,[sp
,#-128]!
227 ldp
$A,$B,[$ctx] // load context
228 ldp
$C,$D,[$ctx,#2*$SZ]
229 ldp
$E,$F,[$ctx,#4*$SZ]
230 add
$num,$inp,$num,lsl
#`log(16*$SZ)/log(2)` // end of input
231 ldp
$G,$H,[$ctx,#6*$SZ]
233 stp
$ctx,$num,[x29
,#96]
236 ldp
@X[0],@X[1],[$inp],#2*$SZ
237 ldr
$t2,[$Ktbl],#$SZ // *K++
238 eor
$t3,$B,$C // magic seed
241 for ($i=0;$i<16;$i++) { &BODY_00_xx
($i,@V); unshift(@V,pop(@V)); }
242 $code.=".Loop_16_xx:\n";
243 for (;$i<32;$i++) { &BODY_00_xx
($i,@V); unshift(@V,pop(@V)); }
247 ldp
$ctx,$num,[x29
,#96]
249 sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
251 ldp
@X[0],@X[1],[$ctx]
252 ldp
@X[2],@X[3],[$ctx,#2*$SZ]
253 add
$inp,$inp,#14*$SZ // advance input pointer
254 ldp
@X[4],@X[5],[$ctx,#4*$SZ]
256 ldp
@X[6],@X[7],[$ctx,#6*$SZ]
263 stp
$C,$D,[$ctx,#2*$SZ]
267 stp
$E,$F,[$ctx,#4*$SZ]
268 stp
$G,$H,[$ctx,#6*$SZ]
271 ldp x19
,x20
,[x29
,#16]
273 ldp x21
,x22
,[x29
,#32]
274 ldp x23
,x24
,[x29
,#48]
275 ldp x25
,x26
,[x29
,#64]
276 ldp x27
,x28
,[x29
,#80]
277 ldp x29
,x30
,[sp
],#128
282 .type
.LK
$BITS,%object
285 $code.=<<___
if ($SZ==8);
286 .quad
0x428a2f98d728ae22,0x7137449123ef65cd
287 .quad
0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
288 .quad
0x3956c25bf348b538,0x59f111f1b605d019
289 .quad
0x923f82a4af194f9b,0xab1c5ed5da6d8118
290 .quad
0xd807aa98a3030242,0x12835b0145706fbe
291 .quad
0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
292 .quad
0x72be5d74f27b896f,0x80deb1fe3b1696b1
293 .quad
0x9bdc06a725c71235,0xc19bf174cf692694
294 .quad
0xe49b69c19ef14ad2,0xefbe4786384f25e3
295 .quad
0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
296 .quad
0x2de92c6f592b0275,0x4a7484aa6ea6e483
297 .quad
0x5cb0a9dcbd41fbd4,0x76f988da831153b5
298 .quad
0x983e5152ee66dfab,0xa831c66d2db43210
299 .quad
0xb00327c898fb213f,0xbf597fc7beef0ee4
300 .quad
0xc6e00bf33da88fc2,0xd5a79147930aa725
301 .quad
0x06ca6351e003826f,0x142929670a0e6e70
302 .quad
0x27b70a8546d22ffc,0x2e1b21385c26c926
303 .quad
0x4d2c6dfc5ac42aed,0x53380d139d95b3df
304 .quad
0x650a73548baf63de,0x766a0abb3c77b2a8
305 .quad
0x81c2c92e47edaee6,0x92722c851482353b
306 .quad
0xa2bfe8a14cf10364,0xa81a664bbc423001
307 .quad
0xc24b8b70d0f89791,0xc76c51a30654be30
308 .quad
0xd192e819d6ef5218,0xd69906245565a910
309 .quad
0xf40e35855771202a,0x106aa07032bbd1b8
310 .quad
0x19a4c116b8d2d0c8,0x1e376c085141ab53
311 .quad
0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
312 .quad
0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
313 .quad
0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
314 .quad
0x748f82ee5defb2fc,0x78a5636f43172f60
315 .quad
0x84c87814a1f0ab72,0x8cc702081a6439ec
316 .quad
0x90befffa23631e28,0xa4506cebde82bde9
317 .quad
0xbef9a3f7b2c67915,0xc67178f2e372532b
318 .quad
0xca273eceea26619c,0xd186b8c721c0c207
319 .quad
0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
320 .quad
0x06f067aa72176fba,0x0a637dc5a2c898a6
321 .quad
0x113f9804bef90dae,0x1b710b35131c471b
322 .quad
0x28db77f523047d84,0x32caab7b40c72493
323 .quad
0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
324 .quad
0x4cc5d4becb3e42b6,0x597f299cfc657e2a
325 .quad
0x5fcb6fab3ad6faec,0x6c44198c4a475817
326 .quad
0 // terminator
328 $code.=<<___
if ($SZ==4);
329 .long
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
330 .long
0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
331 .long
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
332 .long
0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
333 .long
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
334 .long
0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
335 .long
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
336 .long
0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
337 .long
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
338 .long
0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
339 .long
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
340 .long
0xd192e819,0xd6990624,0xf40e3585,0x106aa070
341 .long
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
342 .long
0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
343 .long
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
344 .long
0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
348 .size
.LK
$BITS,.-.LK
$BITS
353 .long OPENSSL_armcap_P
-.
355 .quad OPENSSL_armcap_P
-.
358 .asciz
"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
365 my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
366 my @MSG=map("v$_.16b",(4..7));
367 my ($W0,$W1)=("v16.4s","v17.4s");
368 my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
372 .type sha256_block_armv8
,%function
376 stp x29
,x30
,[sp
,#-16]!
379 ld1
.32
{$ABCD,$EFGH},[$ctx]
383 ld1
{@MSG[0]-@MSG[3]},[$inp],#64
385 ld1
.32
{$W0},[$Ktbl],#16
386 rev32
@MSG[0],@MSG[0]
387 rev32
@MSG[1],@MSG[1]
388 rev32
@MSG[2],@MSG[2]
389 rev32
@MSG[3],@MSG[3]
390 orr
$ABCD_SAVE,$ABCD,$ABCD // offload
391 orr
$EFGH_SAVE,$EFGH,$EFGH
393 for($i=0;$i<12;$i++) {
395 ld1
.32
{$W1},[$Ktbl],#16
396 add
.i32
$W0,$W0,@MSG[0]
397 sha256su0
@MSG[0],@MSG[1]
398 orr
$abcd,$ABCD,$ABCD
399 sha256h
$ABCD,$EFGH,$W0
400 sha256h2
$EFGH,$abcd,$W0
401 sha256su1
@MSG[0],@MSG[2],@MSG[3]
403 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
406 ld1
.32
{$W1},[$Ktbl],#16
407 add
.i32
$W0,$W0,@MSG[0]
408 orr
$abcd,$ABCD,$ABCD
409 sha256h
$ABCD,$EFGH,$W0
410 sha256h2
$EFGH,$abcd,$W0
412 ld1
.32
{$W0},[$Ktbl],#16
413 add
.i32
$W1,$W1,@MSG[1]
414 orr
$abcd,$ABCD,$ABCD
415 sha256h
$ABCD,$EFGH,$W1
416 sha256h2
$EFGH,$abcd,$W1
419 add
.i32
$W0,$W0,@MSG[2]
420 sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
421 orr
$abcd,$ABCD,$ABCD
422 sha256h
$ABCD,$EFGH,$W0
423 sha256h2
$EFGH,$abcd,$W0
425 add
.i32
$W1,$W1,@MSG[3]
426 orr
$abcd,$ABCD,$ABCD
427 sha256h
$ABCD,$EFGH,$W1
428 sha256h2
$EFGH,$abcd,$W1
430 add
.i32
$ABCD,$ABCD,$ABCD_SAVE
431 add
.i32
$EFGH,$EFGH,$EFGH_SAVE
435 st1
.32
{$ABCD,$EFGH},[$ctx]
439 .size sha256_block_armv8
,.-sha256_block_armv8
444 if ($SZ==4) { ######################################### NEON stuff #
445 # You'll surely note a lot of similarities with sha256-armv4 module,
446 # and of course it's not a coincidence. sha256-armv4 was used as
447 # initial template, but was adapted for ARMv8 instruction set and
448 # extensively re-tuned for all-round performance.
450 my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
451 my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
454 my @X = map("q$_",(0..3));
455 my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
458 sub AUTOLOAD
() # thunk [simplified] x86-style perlasm
459 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
461 $arg = "#$arg" if ($arg*1 eq $arg);
462 $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
465 sub Dscalar
{ shift =~ m
|[qv
]([0-9]+)|?
"d$1":""; }
466 sub Dlo
{ shift =~ m
|[qv
]([0-9]+)|?
"v$1.d[0]":""; }
467 sub Dhi
{ shift =~ m
|[qv
]([0-9]+)|?
"v$1.d[1]":""; }
472 my @insns = (&$body,&$body,&$body,&$body);
473 my ($a,$b,$c,$d,$e,$f,$g,$h);
475 &ext_8
($T0,@X[0],@X[1],4); # X[1..4]
479 &ext_8
($T3,@X[2],@X[3],4); # X[9..12]
482 &mov
(&Dscalar
($T7),&Dhi
(@X[3])); # X[14..15]
485 &ushr_32
($T2,$T0,$sigma0[0]);
487 &ushr_32
($T1,$T0,$sigma0[2]);
489 &add_32
(@X[0],@X[0],$T3); # X[0..3] += X[9..12]
491 &sli_32
($T2,$T0,32-$sigma0[0]);
494 &ushr_32
($T3,$T0,$sigma0[1]);
497 &eor_8
($T1,$T1,$T2);
500 &sli_32
($T3,$T0,32-$sigma0[1]);
503 &ushr_32
($T4,$T7,$sigma1[0]);
506 &eor_8
($T1,$T1,$T3); # sigma0(X[1..4])
509 &sli_32
($T4,$T7,32-$sigma1[0]);
512 &ushr_32
($T5,$T7,$sigma1[2]);
515 &ushr_32
($T3,$T7,$sigma1[1]);
518 &add_32
(@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
521 &sli_u32
($T3,$T7,32-$sigma1[1]);
524 &eor_8
($T5,$T5,$T4);
528 &eor_8
($T5,$T5,$T3); # sigma1(X[14..15])
532 &add_32
(@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15])
536 &ushr_32
($T6,@X[0],$sigma1[0]);
538 &ushr_32
($T7,@X[0],$sigma1[2]);
541 &sli_32
($T6,@X[0],32-$sigma1[0]);
543 &ushr_32
($T5,@X[0],$sigma1[1]);
546 &eor_8
($T7,$T7,$T6);
549 &sli_32
($T5,@X[0],32-$sigma1[1]);
552 &ld1_32
("{$T0}","[$Ktbl], #16");
554 &eor_8
($T7,$T7,$T5); # sigma1(X[16..17])
557 &eor_8
($T5,$T5,$T5);
560 &mov
(&Dhi
($T5), &Dlo
($T7));
564 &add_32
(@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17])
568 &add_32
($T0,$T0,@X[0]);
569 while($#insns>=1) { eval(shift(@insns)); }
570 &st1_32
("{$T0}","[$Xfer], #16");
573 push(@X,shift(@X)); # "rotate" X[]
579 my @insns = (&$body,&$body,&$body,&$body);
580 my ($a,$b,$c,$d,$e,$f,$g,$h);
584 &ld1_8
("{@X[0]}","[$inp],#16");
587 &ld1_32
("{$T0}","[$Ktbl],#16");
592 &rev32
(@X[0],@X[0]);
597 &add_32
($T0,$T0,@X[0]);
598 foreach (@insns) { eval; } # remaining instructions
599 &st1_32
("{$T0}","[$Xfer], #16");
601 push(@X,shift(@X)); # "rotate" X[]
606 '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
607 '&add ($h,$h,$t1)', # h+=X[i]+K[i]
608 '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past
611 '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
612 '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
613 '&orr ($t1,$t1,$t4)', # Ch(e,f,g)
614 '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
615 '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
616 '&add ($h,$h,$t1)', # h+=Ch(e,f,g)
617 '&ror ($t0,$t0,"#$Sigma1[0]")',
618 '&eor ($t2,$a,$b)', # a^b, b^c in next round
619 '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
620 '&add ($h,$h,$t0)', # h+=Sigma1(e)
621 '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
622 '&ldr ($t1,"[$Ktbl]") if ($j==15);'.
623 '&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
624 '&ror ($t4,$t4,"#$Sigma0[0]")',
625 '&add ($d,$d,$h)', # d+=h
626 '&eor ($t3,$t3,$b)', # Maj(a,b,c)
627 '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
633 .globl sha256_block_neon
635 .type sha256_block_neon
,%function
639 stp x29
, x30
, [sp
, #-16]!
644 add
$num,$inp,$num,lsl
#6 // len to point at the end of inp
646 ld1
.8
{@X[0]},[$inp], #16
647 ld1
.8
{@X[1]},[$inp], #16
648 ld1
.8
{@X[2]},[$inp], #16
649 ld1
.8
{@X[3]},[$inp], #16
650 ld1
.32
{$T0},[$Ktbl], #16
651 ld1
.32
{$T1},[$Ktbl], #16
652 ld1
.32
{$T2},[$Ktbl], #16
653 ld1
.32
{$T3},[$Ktbl], #16
654 rev32
@X[0],@X[0] // yes
, even on
655 rev32
@X[1],@X[1] // big
-endian
662 st1
.32
{$T0-$T1},[$Xfer], #32
664 st1
.32
{$T2-$T3},[$Xfer]
680 &Xupdate
(\
&body_00_15
);
681 &Xupdate
(\
&body_00_15
);
682 &Xupdate
(\
&body_00_15
);
683 &Xupdate
(\
&body_00_15
);
685 cmp $t1,#0 // check for K256 terminator
690 sub $Ktbl,$Ktbl,#256 // rewind $Ktbl
693 csel
$Xfer, $Xfer, xzr
, eq
694 sub $inp,$inp,$Xfer // avoid SEGV
697 &Xpreload
(\
&body_00_15
);
698 &Xpreload
(\
&body_00_15
);
699 &Xpreload
(\
&body_00_15
);
700 &Xpreload
(\
&body_00_15
);
702 add
$A,$A,$t4 // h
+=Sigma0
(a
) from the past
703 ldp
$t0,$t1,[$ctx,#0]
704 add
$A,$A,$t2 // h
+=Maj
(a
,b
,c
) from the past
705 ldp
$t2,$t3,[$ctx,#8]
706 add
$A,$A,$t0 // accumulate
708 ldp
$t0,$t1,[$ctx,#16]
711 ldp
$t2,$t3,[$ctx,#24]
730 .size sha256_block_neon
,.-sha256_block_neon
736 .comm OPENSSL_armcap_P
,4,4
741 "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
742 "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
745 my ($mnemonic,$arg)=@_;
747 $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
749 sprintf ".inst\t0x%08x\t//%s %s",
750 $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
758 last if (!s/^#/\/\
// and !/^$/);
763 foreach(split("\n",$code)) {
765 s/\`([^\`]*)\`/eval($1)/ge;
767 s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
769 s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers
772 s/\.\w?32\b// and s/\.16b/\.4s/g;
773 m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g;