3 * Purpose: Generic MCA handling layer
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
72 #include <linux/jiffies.h>
73 #include <linux/types.h>
74 #include <linux/init.h>
75 #include <linux/sched/signal.h>
76 #include <linux/sched/debug.h>
77 #include <linux/sched/task.h>
78 #include <linux/interrupt.h>
79 #include <linux/irq.h>
80 #include <linux/bootmem.h>
81 #include <linux/acpi.h>
82 #include <linux/timer.h>
83 #include <linux/module.h>
84 #include <linux/kernel.h>
85 #include <linux/smp.h>
86 #include <linux/workqueue.h>
87 #include <linux/cpumask.h>
88 #include <linux/kdebug.h>
89 #include <linux/cpu.h>
90 #include <linux/gfp.h>
92 #include <asm/delay.h>
93 #include <asm/machvec.h>
94 #include <asm/meminit.h>
96 #include <asm/ptrace.h>
99 #include <asm/kexec.h>
102 #include <asm/hw_irq.h>
108 #if defined(IA64_MCA_DEBUG_INFO)
109 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
111 # define IA64_MCA_DEBUG(fmt...)
114 #define NOTIFY_INIT(event, regs, arg, spin) \
116 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
117 == NOTIFY_STOP) && ((spin) == 1)) \
118 ia64_mca_spin(__func__); \
121 #define NOTIFY_MCA(event, regs, arg, spin) \
123 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
124 == NOTIFY_STOP) && ((spin) == 1)) \
125 ia64_mca_spin(__func__); \
128 /* Used by mca_asm.S */
129 DEFINE_PER_CPU(u64
, ia64_mca_data
); /* == __per_cpu_mca[smp_processor_id()] */
130 DEFINE_PER_CPU(u64
, ia64_mca_per_cpu_pte
); /* PTE to map per-CPU area */
131 DEFINE_PER_CPU(u64
, ia64_mca_pal_pte
); /* PTE to map PAL code */
132 DEFINE_PER_CPU(u64
, ia64_mca_pal_base
); /* vaddr PAL code granule */
133 DEFINE_PER_CPU(u64
, ia64_mca_tr_reload
); /* Flag for TR reload */
135 unsigned long __per_cpu_mca
[NR_CPUS
];
138 extern void ia64_os_init_dispatch_monarch (void);
139 extern void ia64_os_init_dispatch_slave (void);
141 static int monarch_cpu
= -1;
143 static ia64_mc_info_t ia64_mc_info
;
145 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
146 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
147 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
148 #define CPE_HISTORY_LENGTH 5
149 #define CMC_HISTORY_LENGTH 5
152 static struct timer_list cpe_poll_timer
;
154 static struct timer_list cmc_poll_timer
;
156 * This variable tells whether we are currently in polling mode.
157 * Start with this in the wrong state so we won't play w/ timers
158 * before the system is ready.
160 static int cmc_polling_enabled
= 1;
163 * Clearing this variable prevents CPE polling from getting activated
164 * in mca_late_init. Use it if your system doesn't provide a CPEI,
165 * but encounters problems retrieving CPE logs. This should only be
166 * necessary for debugging.
168 static int cpe_poll_enabled
= 1;
170 extern void salinfo_log_wakeup(int type
, u8
*buffer
, u64 size
, int irqsafe
);
172 static int mca_init __initdata
;
175 * limited & delayed printing support for MCA/INIT handler
178 #define mprintk(fmt...) ia64_mca_printk(fmt)
180 #define MLOGBUF_SIZE (512+256*NR_CPUS)
181 #define MLOGBUF_MSGMAX 256
182 static char mlogbuf
[MLOGBUF_SIZE
];
183 static DEFINE_SPINLOCK(mlogbuf_wlock
); /* mca context only */
184 static DEFINE_SPINLOCK(mlogbuf_rlock
); /* normal context only */
185 static unsigned long mlogbuf_start
;
186 static unsigned long mlogbuf_end
;
187 static unsigned int mlogbuf_finished
= 0;
188 static unsigned long mlogbuf_timestamp
= 0;
190 static int loglevel_save
= -1;
191 #define BREAK_LOGLEVEL(__console_loglevel) \
192 oops_in_progress = 1; \
193 if (loglevel_save < 0) \
194 loglevel_save = __console_loglevel; \
195 __console_loglevel = 15;
197 #define RESTORE_LOGLEVEL(__console_loglevel) \
198 if (loglevel_save >= 0) { \
199 __console_loglevel = loglevel_save; \
200 loglevel_save = -1; \
202 mlogbuf_finished = 0; \
203 oops_in_progress = 0;
206 * Push messages into buffer, print them later if not urgent.
208 void ia64_mca_printk(const char *fmt
, ...)
212 char temp_buf
[MLOGBUF_MSGMAX
];
216 printed_len
= vscnprintf(temp_buf
, sizeof(temp_buf
), fmt
, args
);
219 /* Copy the output into mlogbuf */
220 if (oops_in_progress
) {
221 /* mlogbuf was abandoned, use printk directly instead. */
222 printk("%s", temp_buf
);
224 spin_lock(&mlogbuf_wlock
);
225 for (p
= temp_buf
; *p
; p
++) {
226 unsigned long next
= (mlogbuf_end
+ 1) % MLOGBUF_SIZE
;
227 if (next
!= mlogbuf_start
) {
228 mlogbuf
[mlogbuf_end
] = *p
;
235 mlogbuf
[mlogbuf_end
] = '\0';
236 spin_unlock(&mlogbuf_wlock
);
239 EXPORT_SYMBOL(ia64_mca_printk
);
242 * Print buffered messages.
243 * NOTE: call this after returning normal context. (ex. from salinfod)
245 void ia64_mlogbuf_dump(void)
247 char temp_buf
[MLOGBUF_MSGMAX
];
251 unsigned int printed_len
;
253 /* Get output from mlogbuf */
254 while (mlogbuf_start
!= mlogbuf_end
) {
259 spin_lock_irqsave(&mlogbuf_rlock
, flags
);
261 index
= mlogbuf_start
;
262 while (index
!= mlogbuf_end
) {
264 index
= (index
+ 1) % MLOGBUF_SIZE
;
268 if (++printed_len
>= MLOGBUF_MSGMAX
- 1)
273 printk("%s", temp_buf
);
274 mlogbuf_start
= index
;
276 mlogbuf_timestamp
= 0;
277 spin_unlock_irqrestore(&mlogbuf_rlock
, flags
);
280 EXPORT_SYMBOL(ia64_mlogbuf_dump
);
283 * Call this if system is going to down or if immediate flushing messages to
284 * console is required. (ex. recovery was failed, crash dump is going to be
285 * invoked, long-wait rendezvous etc.)
286 * NOTE: this should be called from monarch.
288 static void ia64_mlogbuf_finish(int wait
)
290 BREAK_LOGLEVEL(console_loglevel
);
292 spin_lock_init(&mlogbuf_rlock
);
294 printk(KERN_EMERG
"mlogbuf_finish: printing switched to urgent mode, "
295 "MCA/INIT might be dodgy or fail.\n");
300 /* wait for console */
301 printk("Delaying for 5 seconds...\n");
304 mlogbuf_finished
= 1;
308 * Print buffered messages from INIT context.
310 static void ia64_mlogbuf_dump_from_init(void)
312 if (mlogbuf_finished
)
315 if (mlogbuf_timestamp
&&
316 time_before(jiffies
, mlogbuf_timestamp
+ 30 * HZ
)) {
317 printk(KERN_ERR
"INIT: mlogbuf_dump is interrupted by INIT "
318 " and the system seems to be messed up.\n");
319 ia64_mlogbuf_finish(0);
323 if (!spin_trylock(&mlogbuf_rlock
)) {
324 printk(KERN_ERR
"INIT: mlogbuf_dump is interrupted by INIT. "
325 "Generated messages other than stack dump will be "
326 "buffered to mlogbuf and will be printed later.\n");
327 printk(KERN_ERR
"INIT: If messages would not printed after "
328 "this INIT, wait 30sec and assert INIT again.\n");
329 if (!mlogbuf_timestamp
)
330 mlogbuf_timestamp
= jiffies
;
333 spin_unlock(&mlogbuf_rlock
);
338 ia64_mca_spin(const char *func
)
340 if (monarch_cpu
== smp_processor_id())
341 ia64_mlogbuf_finish(0);
342 mprintk(KERN_EMERG
"%s: spinning here, not returning to SAL\n", func
);
347 * IA64_MCA log support
349 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
350 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
352 typedef struct ia64_state_log_s
356 unsigned long isl_count
;
357 ia64_err_rec_t
*isl_log
[IA64_MAX_LOGS
]; /* need space to store header + error log */
360 static ia64_state_log_t ia64_state_log
[IA64_MAX_LOG_TYPES
];
362 #define IA64_LOG_ALLOCATE(it, size) \
363 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
364 (ia64_err_rec_t *)alloc_bootmem(size); \
365 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
366 (ia64_err_rec_t *)alloc_bootmem(size);}
367 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
368 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
369 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
370 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
371 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
372 #define IA64_LOG_INDEX_INC(it) \
373 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
374 ia64_state_log[it].isl_count++;}
375 #define IA64_LOG_INDEX_DEC(it) \
376 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
377 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
378 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
379 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
383 * Reset the OS ia64 log buffer
384 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
388 ia64_log_init(int sal_info_type
)
392 IA64_LOG_NEXT_INDEX(sal_info_type
) = 0;
393 IA64_LOG_LOCK_INIT(sal_info_type
);
395 // SAL will tell us the maximum size of any error record of this type
396 max_size
= ia64_sal_get_state_info_size(sal_info_type
);
398 /* alloc_bootmem() doesn't like zero-sized allocations! */
401 // set up OS data structures to hold error info
402 IA64_LOG_ALLOCATE(sal_info_type
, max_size
);
403 memset(IA64_LOG_CURR_BUFFER(sal_info_type
), 0, max_size
);
404 memset(IA64_LOG_NEXT_BUFFER(sal_info_type
), 0, max_size
);
410 * Get the current MCA log from SAL and copy it into the OS log buffer.
412 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
413 * irq_safe whether you can use printk at this point
414 * Outputs : size (total record length)
415 * *buffer (ptr to error record)
419 ia64_log_get(int sal_info_type
, u8
**buffer
, int irq_safe
)
421 sal_log_record_header_t
*log_buffer
;
425 IA64_LOG_LOCK(sal_info_type
);
427 /* Get the process state information */
428 log_buffer
= IA64_LOG_NEXT_BUFFER(sal_info_type
);
430 total_len
= ia64_sal_get_state_info(sal_info_type
, (u64
*)log_buffer
);
433 IA64_LOG_INDEX_INC(sal_info_type
);
434 IA64_LOG_UNLOCK(sal_info_type
);
436 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
437 __func__
, sal_info_type
, total_len
);
439 *buffer
= (u8
*) log_buffer
;
442 IA64_LOG_UNLOCK(sal_info_type
);
448 * ia64_mca_log_sal_error_record
450 * This function retrieves a specified error record type from SAL
451 * and wakes up any processes waiting for error records.
453 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
454 * FIXME: remove MCA and irq_safe.
457 ia64_mca_log_sal_error_record(int sal_info_type
)
460 sal_log_record_header_t
*rh
;
462 int irq_safe
= sal_info_type
!= SAL_INFO_TYPE_MCA
;
463 #ifdef IA64_MCA_DEBUG_INFO
464 static const char * const rec_name
[] = { "MCA", "INIT", "CMC", "CPE" };
467 size
= ia64_log_get(sal_info_type
, &buffer
, irq_safe
);
471 salinfo_log_wakeup(sal_info_type
, buffer
, size
, irq_safe
);
474 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
476 sal_info_type
< ARRAY_SIZE(rec_name
) ? rec_name
[sal_info_type
] : "UNKNOWN");
478 /* Clear logs from corrected errors in case there's no user-level logger */
479 rh
= (sal_log_record_header_t
*)buffer
;
480 if (rh
->severity
== sal_log_severity_corrected
)
481 ia64_sal_clear_state_info(sal_info_type
);
486 * See if the MCA surfaced in an instruction range
487 * that has been tagged as recoverable.
490 * first First address range to check
491 * last Last address range to check
492 * ip Instruction pointer, address we are looking for
495 * 1 on Success (in the table)/ 0 on Failure (not in the table)
498 search_mca_table (const struct mca_table_entry
*first
,
499 const struct mca_table_entry
*last
,
502 const struct mca_table_entry
*curr
;
503 u64 curr_start
, curr_end
;
506 while (curr
<= last
) {
507 curr_start
= (u64
) &curr
->start_addr
+ curr
->start_addr
;
508 curr_end
= (u64
) &curr
->end_addr
+ curr
->end_addr
;
510 if ((ip
>= curr_start
) && (ip
<= curr_end
)) {
518 /* Given an address, look for it in the mca tables. */
519 int mca_recover_range(unsigned long addr
)
521 extern struct mca_table_entry __start___mca_table
[];
522 extern struct mca_table_entry __stop___mca_table
[];
524 return search_mca_table(__start___mca_table
, __stop___mca_table
-1, addr
);
526 EXPORT_SYMBOL_GPL(mca_recover_range
);
531 int ia64_cpe_irq
= -1;
534 ia64_mca_cpe_int_handler (int cpe_irq
, void *arg
)
536 static unsigned long cpe_history
[CPE_HISTORY_LENGTH
];
538 static DEFINE_SPINLOCK(cpe_history_lock
);
540 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
541 __func__
, cpe_irq
, smp_processor_id());
543 /* SAL spec states this should run w/ interrupts enabled */
546 spin_lock(&cpe_history_lock
);
547 if (!cpe_poll_enabled
&& cpe_vector
>= 0) {
549 int i
, count
= 1; /* we know 1 happened now */
550 unsigned long now
= jiffies
;
552 for (i
= 0; i
< CPE_HISTORY_LENGTH
; i
++) {
553 if (now
- cpe_history
[i
] <= HZ
)
557 IA64_MCA_DEBUG(KERN_INFO
"CPE threshold %d/%d\n", count
, CPE_HISTORY_LENGTH
);
558 if (count
>= CPE_HISTORY_LENGTH
) {
560 cpe_poll_enabled
= 1;
561 spin_unlock(&cpe_history_lock
);
562 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR
));
565 * Corrected errors will still be corrected, but
566 * make sure there's a log somewhere that indicates
567 * something is generating more than we can handle.
569 printk(KERN_WARNING
"WARNING: Switching to polling CPE handler; error records may be lost\n");
571 mod_timer(&cpe_poll_timer
, jiffies
+ MIN_CPE_POLL_INTERVAL
);
573 /* lock already released, get out now */
576 cpe_history
[index
++] = now
;
577 if (index
== CPE_HISTORY_LENGTH
)
581 spin_unlock(&cpe_history_lock
);
583 /* Get the CPE error record and log it */
584 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE
);
591 #endif /* CONFIG_ACPI */
595 * ia64_mca_register_cpev
597 * Register the corrected platform error vector with SAL.
600 * cpev Corrected Platform Error Vector number
606 ia64_mca_register_cpev (int cpev
)
608 /* Register the CPE interrupt vector with SAL */
609 struct ia64_sal_retval isrv
;
611 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT
, SAL_MC_PARAM_MECHANISM_INT
, cpev
, 0, 0);
613 printk(KERN_ERR
"Failed to register Corrected Platform "
614 "Error interrupt vector with SAL (status %ld)\n", isrv
.status
);
618 IA64_MCA_DEBUG("%s: corrected platform error "
619 "vector %#x registered\n", __func__
, cpev
);
621 #endif /* CONFIG_ACPI */
624 * ia64_mca_cmc_vector_setup
626 * Setup the corrected machine check vector register in the processor.
627 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
628 * This function is invoked on a per-processor basis.
637 ia64_mca_cmc_vector_setup (void)
641 cmcv
.cmcv_regval
= 0;
642 cmcv
.cmcv_mask
= 1; /* Mask/disable interrupt at first */
643 cmcv
.cmcv_vector
= IA64_CMC_VECTOR
;
644 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
646 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
647 __func__
, smp_processor_id(), IA64_CMC_VECTOR
);
649 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
650 __func__
, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV
));
654 * ia64_mca_cmc_vector_disable
656 * Mask the corrected machine check vector register in the processor.
657 * This function is invoked on a per-processor basis.
666 ia64_mca_cmc_vector_disable (void *dummy
)
670 cmcv
.cmcv_regval
= ia64_getreg(_IA64_REG_CR_CMCV
);
672 cmcv
.cmcv_mask
= 1; /* Mask/disable interrupt */
673 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
675 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
676 __func__
, smp_processor_id(), cmcv
.cmcv_vector
);
680 * ia64_mca_cmc_vector_enable
682 * Unmask the corrected machine check vector register in the processor.
683 * This function is invoked on a per-processor basis.
692 ia64_mca_cmc_vector_enable (void *dummy
)
696 cmcv
.cmcv_regval
= ia64_getreg(_IA64_REG_CR_CMCV
);
698 cmcv
.cmcv_mask
= 0; /* Unmask/enable interrupt */
699 ia64_setreg(_IA64_REG_CR_CMCV
, cmcv
.cmcv_regval
);
701 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
702 __func__
, smp_processor_id(), cmcv
.cmcv_vector
);
706 * ia64_mca_cmc_vector_disable_keventd
708 * Called via keventd (smp_call_function() is not safe in interrupt context) to
709 * disable the cmc interrupt vector.
712 ia64_mca_cmc_vector_disable_keventd(struct work_struct
*unused
)
714 on_each_cpu(ia64_mca_cmc_vector_disable
, NULL
, 0);
718 * ia64_mca_cmc_vector_enable_keventd
720 * Called via keventd (smp_call_function() is not safe in interrupt context) to
721 * enable the cmc interrupt vector.
724 ia64_mca_cmc_vector_enable_keventd(struct work_struct
*unused
)
726 on_each_cpu(ia64_mca_cmc_vector_enable
, NULL
, 0);
732 * Send an inter-cpu interrupt to wake-up a particular cpu.
738 ia64_mca_wakeup(int cpu
)
740 platform_send_ipi(cpu
, IA64_MCA_WAKEUP_VECTOR
, IA64_IPI_DM_INT
, 0);
744 * ia64_mca_wakeup_all
746 * Wakeup all the slave cpus which have rendez'ed previously.
752 ia64_mca_wakeup_all(void)
756 /* Clear the Rendez checkin flag for all cpus */
757 for_each_online_cpu(cpu
) {
758 if (ia64_mc_info
.imi_rendez_checkin
[cpu
] == IA64_MCA_RENDEZ_CHECKIN_DONE
)
759 ia64_mca_wakeup(cpu
);
765 * ia64_mca_rendez_interrupt_handler
767 * This is handler used to put slave processors into spinloop
768 * while the monarch processor does the mca handling and later
769 * wake each slave up once the monarch is done. The state
770 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
771 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
772 * the cpu has come out of OS rendezvous.
778 ia64_mca_rendez_int_handler(int rendez_irq
, void *arg
)
781 int cpu
= smp_processor_id();
782 struct ia64_mca_notify_die nd
=
783 { .sos
= NULL
, .monarch_cpu
= &monarch_cpu
};
785 /* Mask all interrupts */
786 local_irq_save(flags
);
788 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER
, get_irq_regs(), (long)&nd
, 1);
790 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_DONE
;
791 /* Register with the SAL monarch that the slave has
794 ia64_sal_mc_rendez();
796 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS
, get_irq_regs(), (long)&nd
, 1);
798 /* Wait for the monarch cpu to exit. */
799 while (monarch_cpu
!= -1)
800 cpu_relax(); /* spin until monarch leaves */
802 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE
, get_irq_regs(), (long)&nd
, 1);
804 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
805 /* Enable all interrupts */
806 local_irq_restore(flags
);
811 * ia64_mca_wakeup_int_handler
813 * The interrupt handler for processing the inter-cpu interrupt to the
814 * slave cpu which was spinning in the rendez loop.
815 * Since this spinning is done by turning off the interrupts and
816 * polling on the wakeup-interrupt bit in the IRR, there is
817 * nothing useful to be done in the handler.
819 * Inputs : wakeup_irq (Wakeup-interrupt bit)
820 * arg (Interrupt handler specific argument)
825 ia64_mca_wakeup_int_handler(int wakeup_irq
, void *arg
)
830 /* Function pointer for extra MCA recovery */
831 int (*ia64_mca_ucmc_extension
)
832 (void*,struct ia64_sal_os_state
*)
836 ia64_reg_MCA_extension(int (*fn
)(void *, struct ia64_sal_os_state
*))
838 if (ia64_mca_ucmc_extension
)
841 ia64_mca_ucmc_extension
= fn
;
846 ia64_unreg_MCA_extension(void)
848 if (ia64_mca_ucmc_extension
)
849 ia64_mca_ucmc_extension
= NULL
;
852 EXPORT_SYMBOL(ia64_reg_MCA_extension
);
853 EXPORT_SYMBOL(ia64_unreg_MCA_extension
);
857 copy_reg(const u64
*fr
, u64 fnat
, unsigned long *tr
, unsigned long *tnat
)
859 u64 fslot
, tslot
, nat
;
861 fslot
= ((unsigned long)fr
>> 3) & 63;
862 tslot
= ((unsigned long)tr
>> 3) & 63;
863 *tnat
&= ~(1UL << tslot
);
864 nat
= (fnat
>> fslot
) & 1;
865 *tnat
|= (nat
<< tslot
);
868 /* Change the comm field on the MCA/INT task to include the pid that
869 * was interrupted, it makes for easier debugging. If that pid was 0
870 * (swapper or nested MCA/INIT) then use the start of the previous comm
871 * field suffixed with its cpu.
875 ia64_mca_modify_comm(const struct task_struct
*previous_current
)
877 char *p
, comm
[sizeof(current
->comm
)];
878 if (previous_current
->pid
)
879 snprintf(comm
, sizeof(comm
), "%s %d",
880 current
->comm
, previous_current
->pid
);
883 if ((p
= strchr(previous_current
->comm
, ' ')))
884 l
= p
- previous_current
->comm
;
886 l
= strlen(previous_current
->comm
);
887 snprintf(comm
, sizeof(comm
), "%s %*s %d",
888 current
->comm
, l
, previous_current
->comm
,
889 task_thread_info(previous_current
)->cpu
);
891 memcpy(current
->comm
, comm
, sizeof(current
->comm
));
895 finish_pt_regs(struct pt_regs
*regs
, struct ia64_sal_os_state
*sos
,
898 const pal_min_state_area_t
*ms
= sos
->pal_min_state
;
901 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
902 * pmsa_{xip,xpsr,xfs}
904 if (ia64_psr(regs
)->ic
) {
905 regs
->cr_iip
= ms
->pmsa_iip
;
906 regs
->cr_ipsr
= ms
->pmsa_ipsr
;
907 regs
->cr_ifs
= ms
->pmsa_ifs
;
909 regs
->cr_iip
= ms
->pmsa_xip
;
910 regs
->cr_ipsr
= ms
->pmsa_xpsr
;
911 regs
->cr_ifs
= ms
->pmsa_xfs
;
913 sos
->iip
= ms
->pmsa_iip
;
914 sos
->ipsr
= ms
->pmsa_ipsr
;
915 sos
->ifs
= ms
->pmsa_ifs
;
917 regs
->pr
= ms
->pmsa_pr
;
918 regs
->b0
= ms
->pmsa_br0
;
919 regs
->ar_rsc
= ms
->pmsa_rsc
;
920 copy_reg(&ms
->pmsa_gr
[1-1], ms
->pmsa_nat_bits
, ®s
->r1
, nat
);
921 copy_reg(&ms
->pmsa_gr
[2-1], ms
->pmsa_nat_bits
, ®s
->r2
, nat
);
922 copy_reg(&ms
->pmsa_gr
[3-1], ms
->pmsa_nat_bits
, ®s
->r3
, nat
);
923 copy_reg(&ms
->pmsa_gr
[8-1], ms
->pmsa_nat_bits
, ®s
->r8
, nat
);
924 copy_reg(&ms
->pmsa_gr
[9-1], ms
->pmsa_nat_bits
, ®s
->r9
, nat
);
925 copy_reg(&ms
->pmsa_gr
[10-1], ms
->pmsa_nat_bits
, ®s
->r10
, nat
);
926 copy_reg(&ms
->pmsa_gr
[11-1], ms
->pmsa_nat_bits
, ®s
->r11
, nat
);
927 copy_reg(&ms
->pmsa_gr
[12-1], ms
->pmsa_nat_bits
, ®s
->r12
, nat
);
928 copy_reg(&ms
->pmsa_gr
[13-1], ms
->pmsa_nat_bits
, ®s
->r13
, nat
);
929 copy_reg(&ms
->pmsa_gr
[14-1], ms
->pmsa_nat_bits
, ®s
->r14
, nat
);
930 copy_reg(&ms
->pmsa_gr
[15-1], ms
->pmsa_nat_bits
, ®s
->r15
, nat
);
931 if (ia64_psr(regs
)->bn
)
932 bank
= ms
->pmsa_bank1_gr
;
934 bank
= ms
->pmsa_bank0_gr
;
935 copy_reg(&bank
[16-16], ms
->pmsa_nat_bits
, ®s
->r16
, nat
);
936 copy_reg(&bank
[17-16], ms
->pmsa_nat_bits
, ®s
->r17
, nat
);
937 copy_reg(&bank
[18-16], ms
->pmsa_nat_bits
, ®s
->r18
, nat
);
938 copy_reg(&bank
[19-16], ms
->pmsa_nat_bits
, ®s
->r19
, nat
);
939 copy_reg(&bank
[20-16], ms
->pmsa_nat_bits
, ®s
->r20
, nat
);
940 copy_reg(&bank
[21-16], ms
->pmsa_nat_bits
, ®s
->r21
, nat
);
941 copy_reg(&bank
[22-16], ms
->pmsa_nat_bits
, ®s
->r22
, nat
);
942 copy_reg(&bank
[23-16], ms
->pmsa_nat_bits
, ®s
->r23
, nat
);
943 copy_reg(&bank
[24-16], ms
->pmsa_nat_bits
, ®s
->r24
, nat
);
944 copy_reg(&bank
[25-16], ms
->pmsa_nat_bits
, ®s
->r25
, nat
);
945 copy_reg(&bank
[26-16], ms
->pmsa_nat_bits
, ®s
->r26
, nat
);
946 copy_reg(&bank
[27-16], ms
->pmsa_nat_bits
, ®s
->r27
, nat
);
947 copy_reg(&bank
[28-16], ms
->pmsa_nat_bits
, ®s
->r28
, nat
);
948 copy_reg(&bank
[29-16], ms
->pmsa_nat_bits
, ®s
->r29
, nat
);
949 copy_reg(&bank
[30-16], ms
->pmsa_nat_bits
, ®s
->r30
, nat
);
950 copy_reg(&bank
[31-16], ms
->pmsa_nat_bits
, ®s
->r31
, nat
);
953 /* On entry to this routine, we are running on the per cpu stack, see
954 * mca_asm.h. The original stack has not been touched by this event. Some of
955 * the original stack's registers will be in the RBS on this stack. This stack
956 * also contains a partial pt_regs and switch_stack, the rest of the data is in
959 * The first thing to do is modify the original stack to look like a blocked
960 * task so we can run backtrace on the original task. Also mark the per cpu
961 * stack as current to ensure that we use the correct task state, it also means
962 * that we can do backtrace on the MCA/INIT handler code itself.
965 static struct task_struct
*
966 ia64_mca_modify_original_stack(struct pt_regs
*regs
,
967 const struct switch_stack
*sw
,
968 struct ia64_sal_os_state
*sos
,
973 extern char ia64_leave_kernel
[]; /* Need asm address, not function descriptor */
974 const pal_min_state_area_t
*ms
= sos
->pal_min_state
;
975 struct task_struct
*previous_current
;
976 struct pt_regs
*old_regs
;
977 struct switch_stack
*old_sw
;
978 unsigned size
= sizeof(struct pt_regs
) +
979 sizeof(struct switch_stack
) + 16;
980 unsigned long *old_bspstore
, *old_bsp
;
981 unsigned long *new_bspstore
, *new_bsp
;
982 unsigned long old_unat
, old_rnat
, new_rnat
, nat
;
983 u64 slots
, loadrs
= regs
->loadrs
;
984 u64 r12
= ms
->pmsa_gr
[12-1], r13
= ms
->pmsa_gr
[13-1];
985 u64 ar_bspstore
= regs
->ar_bspstore
;
986 u64 ar_bsp
= regs
->ar_bspstore
+ (loadrs
>> 16);
988 int cpu
= smp_processor_id();
990 previous_current
= curr_task(cpu
);
991 ia64_set_curr_task(cpu
, current
);
992 if ((p
= strchr(current
->comm
, ' ')))
995 /* Best effort attempt to cope with MCA/INIT delivered while in
998 regs
->cr_ipsr
= ms
->pmsa_ipsr
;
999 if (ia64_psr(regs
)->dt
== 0) {
1001 if (va
.f
.reg
== 0) {
1006 if (va
.f
.reg
== 0) {
1011 if (ia64_psr(regs
)->rt
== 0) {
1013 if (va
.f
.reg
== 0) {
1018 if (va
.f
.reg
== 0) {
1024 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1025 * have been copied to the old stack, the old stack may fail the
1026 * validation tests below. So ia64_old_stack() must restore the dirty
1027 * registers from the new stack. The old and new bspstore probably
1028 * have different alignments, so loadrs calculated on the old bsp
1029 * cannot be used to restore from the new bsp. Calculate a suitable
1030 * loadrs for the new stack and save it in the new pt_regs, where
1031 * ia64_old_stack() can get it.
1033 old_bspstore
= (unsigned long *)ar_bspstore
;
1034 old_bsp
= (unsigned long *)ar_bsp
;
1035 slots
= ia64_rse_num_regs(old_bspstore
, old_bsp
);
1036 new_bspstore
= (unsigned long *)((u64
)current
+ IA64_RBS_OFFSET
);
1037 new_bsp
= ia64_rse_skip_regs(new_bspstore
, slots
);
1038 regs
->loadrs
= (new_bsp
- new_bspstore
) * 8 << 16;
1040 /* Verify the previous stack state before we change it */
1041 if (user_mode(regs
)) {
1042 msg
= "occurred in user space";
1043 /* previous_current is guaranteed to be valid when the task was
1044 * in user space, so ...
1046 ia64_mca_modify_comm(previous_current
);
1050 if (r13
!= sos
->prev_IA64_KR_CURRENT
) {
1051 msg
= "inconsistent previous current and r13";
1055 if (!mca_recover_range(ms
->pmsa_iip
)) {
1056 if ((r12
- r13
) >= KERNEL_STACK_SIZE
) {
1057 msg
= "inconsistent r12 and r13";
1060 if ((ar_bspstore
- r13
) >= KERNEL_STACK_SIZE
) {
1061 msg
= "inconsistent ar.bspstore and r13";
1064 va
.p
= old_bspstore
;
1066 msg
= "old_bspstore is in the wrong region";
1069 if ((ar_bsp
- r13
) >= KERNEL_STACK_SIZE
) {
1070 msg
= "inconsistent ar.bsp and r13";
1073 size
+= (ia64_rse_skip_regs(old_bspstore
, slots
) - old_bspstore
) * 8;
1074 if (ar_bspstore
+ size
> r12
) {
1075 msg
= "no room for blocked state";
1080 ia64_mca_modify_comm(previous_current
);
1082 /* Make the original task look blocked. First stack a struct pt_regs,
1083 * describing the state at the time of interrupt. mca_asm.S built a
1084 * partial pt_regs, copy it and fill in the blanks using minstate.
1086 p
= (char *)r12
- sizeof(*regs
);
1087 old_regs
= (struct pt_regs
*)p
;
1088 memcpy(old_regs
, regs
, sizeof(*regs
));
1089 old_regs
->loadrs
= loadrs
;
1090 old_unat
= old_regs
->ar_unat
;
1091 finish_pt_regs(old_regs
, sos
, &old_unat
);
1093 /* Next stack a struct switch_stack. mca_asm.S built a partial
1094 * switch_stack, copy it and fill in the blanks using pt_regs and
1097 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1098 * ar.pfs is set to 0.
1100 * unwind.c::unw_unwind() does special processing for interrupt frames.
1101 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1102 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1103 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1104 * switch_stack on the original stack so it will unwind correctly when
1105 * unwind.c reads pt_regs.
1107 * thread.ksp is updated to point to the synthesized switch_stack.
1109 p
-= sizeof(struct switch_stack
);
1110 old_sw
= (struct switch_stack
*)p
;
1111 memcpy(old_sw
, sw
, sizeof(*sw
));
1112 old_sw
->caller_unat
= old_unat
;
1113 old_sw
->ar_fpsr
= old_regs
->ar_fpsr
;
1114 copy_reg(&ms
->pmsa_gr
[4-1], ms
->pmsa_nat_bits
, &old_sw
->r4
, &old_unat
);
1115 copy_reg(&ms
->pmsa_gr
[5-1], ms
->pmsa_nat_bits
, &old_sw
->r5
, &old_unat
);
1116 copy_reg(&ms
->pmsa_gr
[6-1], ms
->pmsa_nat_bits
, &old_sw
->r6
, &old_unat
);
1117 copy_reg(&ms
->pmsa_gr
[7-1], ms
->pmsa_nat_bits
, &old_sw
->r7
, &old_unat
);
1118 old_sw
->b0
= (u64
)ia64_leave_kernel
;
1119 old_sw
->b1
= ms
->pmsa_br1
;
1121 old_sw
->ar_unat
= old_unat
;
1122 old_sw
->pr
= old_regs
->pr
| (1UL << PRED_NON_SYSCALL
);
1123 previous_current
->thread
.ksp
= (u64
)p
- 16;
1125 /* Finally copy the original stack's registers back to its RBS.
1126 * Registers from ar.bspstore through ar.bsp at the time of the event
1127 * are in the current RBS, copy them back to the original stack. The
1128 * copy must be done register by register because the original bspstore
1129 * and the current one have different alignments, so the saved RNAT
1130 * data occurs at different places.
1132 * mca_asm does cover, so the old_bsp already includes all registers at
1133 * the time of MCA/INIT. It also does flushrs, so all registers before
1134 * this function have been written to backing store on the MCA/INIT
1137 new_rnat
= ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore
));
1138 old_rnat
= regs
->ar_rnat
;
1140 if (ia64_rse_is_rnat_slot(new_bspstore
)) {
1141 new_rnat
= ia64_get_rnat(new_bspstore
++);
1143 if (ia64_rse_is_rnat_slot(old_bspstore
)) {
1144 *old_bspstore
++ = old_rnat
;
1147 nat
= (new_rnat
>> ia64_rse_slot_num(new_bspstore
)) & 1UL;
1148 old_rnat
&= ~(1UL << ia64_rse_slot_num(old_bspstore
));
1149 old_rnat
|= (nat
<< ia64_rse_slot_num(old_bspstore
));
1150 *old_bspstore
++ = *new_bspstore
++;
1152 old_sw
->ar_bspstore
= (unsigned long)old_bspstore
;
1153 old_sw
->ar_rnat
= old_rnat
;
1155 sos
->prev_task
= previous_current
;
1156 return previous_current
;
1159 mprintk(KERN_INFO
"cpu %d, %s %s, original stack not modified\n",
1160 smp_processor_id(), type
, msg
);
1161 old_unat
= regs
->ar_unat
;
1162 finish_pt_regs(regs
, sos
, &old_unat
);
1163 return previous_current
;
1166 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1167 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1168 * not entered rendezvous yet then wait a bit. The assumption is that any
1169 * slave that has not rendezvoused after a reasonable time is never going to do
1170 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1171 * interrupt, as well as cpus that receive the INIT slave event.
1175 ia64_wait_for_slaves(int monarch
, const char *type
)
1180 * wait 5 seconds total for slaves (arbitrary)
1182 for (i
= 0; i
< 5000; i
++) {
1184 for_each_online_cpu(c
) {
1187 if (ia64_mc_info
.imi_rendez_checkin
[c
]
1188 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE
) {
1189 udelay(1000); /* short wait */
1199 * Maybe slave(s) dead. Print buffered messages immediately.
1201 ia64_mlogbuf_finish(0);
1202 mprintk(KERN_INFO
"OS %s slave did not rendezvous on cpu", type
);
1203 for_each_online_cpu(c
) {
1206 if (ia64_mc_info
.imi_rendez_checkin
[c
] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE
)
1213 mprintk(KERN_INFO
"All OS %s slaves have reached rendezvous\n", type
);
1219 * Switch rid when TR reload and needed!
1220 * iord: 1: itr, 2: itr;
1223 static void mca_insert_tr(u64 iord
)
1228 struct ia64_tr_entry
*p
;
1230 int cpu
= smp_processor_id();
1232 if (!ia64_idtrs
[cpu
])
1235 psr
= ia64_clear_ic();
1236 for (i
= IA64_TR_ALLOC_BASE
; i
< IA64_TR_ALLOC_MAX
; i
++) {
1237 p
= ia64_idtrs
[cpu
] + (iord
- 1) * IA64_TR_ALLOC_MAX
;
1239 old_rr
= ia64_get_rr(p
->ifa
);
1240 if (old_rr
!= p
->rr
) {
1241 ia64_set_rr(p
->ifa
, p
->rr
);
1244 ia64_ptr(iord
, p
->ifa
, p
->itir
>> 2);
1247 ia64_itr(0x1, i
, p
->ifa
, p
->pte
, p
->itir
>> 2);
1251 ia64_itr(0x2, i
, p
->ifa
, p
->pte
, p
->itir
>> 2);
1254 if (old_rr
!= p
->rr
) {
1255 ia64_set_rr(p
->ifa
, old_rr
);
1266 * This is uncorrectable machine check handler called from OS_MCA
1267 * dispatch code which is in turn called from SAL_CHECK().
1268 * This is the place where the core of OS MCA handling is done.
1269 * Right now the logs are extracted and displayed in a well-defined
1270 * format. This handler code is supposed to be run only on the
1271 * monarch processor. Once the monarch is done with MCA handling
1272 * further MCA logging is enabled by clearing logs.
1273 * Monarch also has the duty of sending wakeup-IPIs to pull the
1274 * slave processors out of rendezvous spinloop.
1276 * If multiple processors call into OS_MCA, the first will become
1277 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1278 * bitmask. After the first monarch has processed its MCA, it
1279 * will wake up the next cpu in the mca_cpu bitmask and then go
1280 * into the rendezvous loop. When all processors have serviced
1281 * their MCA, the last monarch frees up the rest of the processors.
1284 ia64_mca_handler(struct pt_regs
*regs
, struct switch_stack
*sw
,
1285 struct ia64_sal_os_state
*sos
)
1287 int recover
, cpu
= smp_processor_id();
1288 struct task_struct
*previous_current
;
1289 struct ia64_mca_notify_die nd
=
1290 { .sos
= sos
, .monarch_cpu
= &monarch_cpu
, .data
= &recover
};
1291 static atomic_t mca_count
;
1292 static cpumask_t mca_cpu
;
1294 if (atomic_add_return(1, &mca_count
) == 1) {
1298 cpumask_set_cpu(cpu
, &mca_cpu
);
1301 mprintk(KERN_INFO
"Entered OS MCA handler. PSP=%lx cpu=%d "
1302 "monarch=%ld\n", sos
->proc_state_param
, cpu
, sos
->monarch
);
1304 previous_current
= ia64_mca_modify_original_stack(regs
, sw
, sos
, "MCA");
1306 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER
, regs
, (long)&nd
, 1);
1308 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA
;
1310 ia64_wait_for_slaves(cpu
, "MCA");
1312 /* Wakeup all the processors which are spinning in the
1313 * rendezvous loop. They will leave SAL, then spin in the OS
1314 * with interrupts disabled until this monarch cpu leaves the
1315 * MCA handler. That gets control back to the OS so we can
1316 * backtrace the other cpus, backtrace when spinning in SAL
1319 ia64_mca_wakeup_all();
1321 while (cpumask_test_cpu(cpu
, &mca_cpu
))
1322 cpu_relax(); /* spin until monarch wakes us */
1325 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS
, regs
, (long)&nd
, 1);
1327 /* Get the MCA error record and log it */
1328 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA
);
1330 /* MCA error recovery */
1331 recover
= (ia64_mca_ucmc_extension
1332 && ia64_mca_ucmc_extension(
1333 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA
),
1337 sal_log_record_header_t
*rh
= IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA
);
1338 rh
->severity
= sal_log_severity_corrected
;
1339 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA
);
1340 sos
->os_status
= IA64_MCA_CORRECTED
;
1342 /* Dump buffered message to console */
1343 ia64_mlogbuf_finish(1);
1346 if (__this_cpu_read(ia64_mca_tr_reload
)) {
1347 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1348 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1351 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE
, regs
, (long)&nd
, 1);
1353 if (atomic_dec_return(&mca_count
) > 0) {
1356 /* wake up the next monarch cpu,
1357 * and put this cpu in the rendez loop.
1359 for_each_online_cpu(i
) {
1360 if (cpumask_test_cpu(i
, &mca_cpu
)) {
1362 cpumask_clear_cpu(i
, &mca_cpu
); /* wake next cpu */
1363 while (monarch_cpu
!= -1)
1364 cpu_relax(); /* spin until last cpu leaves */
1365 ia64_set_curr_task(cpu
, previous_current
);
1366 ia64_mc_info
.imi_rendez_checkin
[cpu
]
1367 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1372 ia64_set_curr_task(cpu
, previous_current
);
1373 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1374 monarch_cpu
= -1; /* This frees the slaves and previous monarchs */
1377 static DECLARE_WORK(cmc_disable_work
, ia64_mca_cmc_vector_disable_keventd
);
1378 static DECLARE_WORK(cmc_enable_work
, ia64_mca_cmc_vector_enable_keventd
);
1381 * ia64_mca_cmc_int_handler
1383 * This is corrected machine check interrupt handler.
1384 * Right now the logs are extracted and displayed in a well-defined
1389 * client data arg ptr
1395 ia64_mca_cmc_int_handler(int cmc_irq
, void *arg
)
1397 static unsigned long cmc_history
[CMC_HISTORY_LENGTH
];
1399 static DEFINE_SPINLOCK(cmc_history_lock
);
1401 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1402 __func__
, cmc_irq
, smp_processor_id());
1404 /* SAL spec states this should run w/ interrupts enabled */
1407 spin_lock(&cmc_history_lock
);
1408 if (!cmc_polling_enabled
) {
1409 int i
, count
= 1; /* we know 1 happened now */
1410 unsigned long now
= jiffies
;
1412 for (i
= 0; i
< CMC_HISTORY_LENGTH
; i
++) {
1413 if (now
- cmc_history
[i
] <= HZ
)
1417 IA64_MCA_DEBUG(KERN_INFO
"CMC threshold %d/%d\n", count
, CMC_HISTORY_LENGTH
);
1418 if (count
>= CMC_HISTORY_LENGTH
) {
1420 cmc_polling_enabled
= 1;
1421 spin_unlock(&cmc_history_lock
);
1422 /* If we're being hit with CMC interrupts, we won't
1423 * ever execute the schedule_work() below. Need to
1424 * disable CMC interrupts on this processor now.
1426 ia64_mca_cmc_vector_disable(NULL
);
1427 schedule_work(&cmc_disable_work
);
1430 * Corrected errors will still be corrected, but
1431 * make sure there's a log somewhere that indicates
1432 * something is generating more than we can handle.
1434 printk(KERN_WARNING
"WARNING: Switching to polling CMC handler; error records may be lost\n");
1436 mod_timer(&cmc_poll_timer
, jiffies
+ CMC_POLL_INTERVAL
);
1438 /* lock already released, get out now */
1441 cmc_history
[index
++] = now
;
1442 if (index
== CMC_HISTORY_LENGTH
)
1446 spin_unlock(&cmc_history_lock
);
1448 /* Get the CMC error record and log it */
1449 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC
);
1451 local_irq_disable();
1457 * ia64_mca_cmc_int_caller
1459 * Triggered by sw interrupt from CMC polling routine. Calls
1460 * real interrupt handler and either triggers a sw interrupt
1461 * on the next cpu or does cleanup at the end.
1465 * client data arg ptr
1470 ia64_mca_cmc_int_caller(int cmc_irq
, void *arg
)
1472 static int start_count
= -1;
1475 cpuid
= smp_processor_id();
1477 /* If first cpu, update count */
1478 if (start_count
== -1)
1479 start_count
= IA64_LOG_COUNT(SAL_INFO_TYPE_CMC
);
1481 ia64_mca_cmc_int_handler(cmc_irq
, arg
);
1483 cpuid
= cpumask_next(cpuid
+1, cpu_online_mask
);
1485 if (cpuid
< nr_cpu_ids
) {
1486 platform_send_ipi(cpuid
, IA64_CMCP_VECTOR
, IA64_IPI_DM_INT
, 0);
1488 /* If no log record, switch out of polling mode */
1489 if (start_count
== IA64_LOG_COUNT(SAL_INFO_TYPE_CMC
)) {
1491 printk(KERN_WARNING
"Returning to interrupt driven CMC handler\n");
1492 schedule_work(&cmc_enable_work
);
1493 cmc_polling_enabled
= 0;
1497 mod_timer(&cmc_poll_timer
, jiffies
+ CMC_POLL_INTERVAL
);
1509 * Poll for Corrected Machine Checks (CMCs)
1511 * Inputs : dummy(unused)
1516 ia64_mca_cmc_poll (unsigned long dummy
)
1518 /* Trigger a CMC interrupt cascade */
1519 platform_send_ipi(cpumask_first(cpu_online_mask
), IA64_CMCP_VECTOR
,
1520 IA64_IPI_DM_INT
, 0);
1524 * ia64_mca_cpe_int_caller
1526 * Triggered by sw interrupt from CPE polling routine. Calls
1527 * real interrupt handler and either triggers a sw interrupt
1528 * on the next cpu or does cleanup at the end.
1532 * client data arg ptr
1539 ia64_mca_cpe_int_caller(int cpe_irq
, void *arg
)
1541 static int start_count
= -1;
1542 static int poll_time
= MIN_CPE_POLL_INTERVAL
;
1545 cpuid
= smp_processor_id();
1547 /* If first cpu, update count */
1548 if (start_count
== -1)
1549 start_count
= IA64_LOG_COUNT(SAL_INFO_TYPE_CPE
);
1551 ia64_mca_cpe_int_handler(cpe_irq
, arg
);
1553 cpuid
= cpumask_next(cpuid
+1, cpu_online_mask
);
1555 if (cpuid
< NR_CPUS
) {
1556 platform_send_ipi(cpuid
, IA64_CPEP_VECTOR
, IA64_IPI_DM_INT
, 0);
1559 * If a log was recorded, increase our polling frequency,
1560 * otherwise, backoff or return to interrupt mode.
1562 if (start_count
!= IA64_LOG_COUNT(SAL_INFO_TYPE_CPE
)) {
1563 poll_time
= max(MIN_CPE_POLL_INTERVAL
, poll_time
/ 2);
1564 } else if (cpe_vector
< 0) {
1565 poll_time
= min(MAX_CPE_POLL_INTERVAL
, poll_time
* 2);
1567 poll_time
= MIN_CPE_POLL_INTERVAL
;
1569 printk(KERN_WARNING
"Returning to interrupt driven CPE handler\n");
1570 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR
));
1571 cpe_poll_enabled
= 0;
1574 if (cpe_poll_enabled
)
1575 mod_timer(&cpe_poll_timer
, jiffies
+ poll_time
);
1585 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1586 * on first cpu, from there it will trickle through all the cpus.
1588 * Inputs : dummy(unused)
1593 ia64_mca_cpe_poll (unsigned long dummy
)
1595 /* Trigger a CPE interrupt cascade */
1596 platform_send_ipi(cpumask_first(cpu_online_mask
), IA64_CPEP_VECTOR
,
1597 IA64_IPI_DM_INT
, 0);
1600 #endif /* CONFIG_ACPI */
1603 default_monarch_init_process(struct notifier_block
*self
, unsigned long val
, void *data
)
1606 struct task_struct
*g
, *t
;
1607 if (val
!= DIE_INIT_MONARCH_PROCESS
)
1610 if (atomic_read(&kdump_in_progress
))
1615 * FIXME: mlogbuf will brim over with INIT stack dumps.
1616 * To enable show_stack from INIT, we use oops_in_progress which should
1617 * be used in real oops. This would cause something wrong after INIT.
1619 BREAK_LOGLEVEL(console_loglevel
);
1620 ia64_mlogbuf_dump_from_init();
1622 printk(KERN_ERR
"Processes interrupted by INIT -");
1623 for_each_online_cpu(c
) {
1624 struct ia64_sal_os_state
*s
;
1625 t
= __va(__per_cpu_mca
[c
] + IA64_MCA_CPU_INIT_STACK_OFFSET
);
1626 s
= (struct ia64_sal_os_state
*)((char *)t
+ MCA_SOS_OFFSET
);
1630 printk(" %d", g
->pid
);
1632 printk(" %d (cpu %d task 0x%p)", g
->pid
, task_cpu(g
), g
);
1636 if (read_trylock(&tasklist_lock
)) {
1637 do_each_thread (g
, t
) {
1638 printk("\nBacktrace of pid %d (%s)\n", t
->pid
, t
->comm
);
1639 show_stack(t
, NULL
);
1640 } while_each_thread (g
, t
);
1641 read_unlock(&tasklist_lock
);
1643 /* FIXME: This will not restore zapped printk locks. */
1644 RESTORE_LOGLEVEL(console_loglevel
);
1649 * C portion of the OS INIT handler
1651 * Called from ia64_os_init_dispatch
1653 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1654 * this event. This code is used for both monarch and slave INIT events, see
1657 * All INIT events switch to the INIT stack and change the previous process to
1658 * blocked status. If one of the INIT events is the monarch then we are
1659 * probably processing the nmi button/command. Use the monarch cpu to dump all
1660 * the processes. The slave INIT events all spin until the monarch cpu
1661 * returns. We can also get INIT slave events for MCA, in which case the MCA
1662 * process is the monarch.
1666 ia64_init_handler(struct pt_regs
*regs
, struct switch_stack
*sw
,
1667 struct ia64_sal_os_state
*sos
)
1669 static atomic_t slaves
;
1670 static atomic_t monarchs
;
1671 struct task_struct
*previous_current
;
1672 int cpu
= smp_processor_id();
1673 struct ia64_mca_notify_die nd
=
1674 { .sos
= sos
, .monarch_cpu
= &monarch_cpu
};
1676 NOTIFY_INIT(DIE_INIT_ENTER
, regs
, (long)&nd
, 0);
1678 mprintk(KERN_INFO
"Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1679 sos
->proc_state_param
, cpu
, sos
->monarch
);
1680 salinfo_log_wakeup(SAL_INFO_TYPE_INIT
, NULL
, 0, 0);
1682 previous_current
= ia64_mca_modify_original_stack(regs
, sw
, sos
, "INIT");
1683 sos
->os_status
= IA64_INIT_RESUME
;
1685 /* FIXME: Workaround for broken proms that drive all INIT events as
1686 * slaves. The last slave that enters is promoted to be a monarch.
1687 * Remove this code in September 2006, that gives platforms a year to
1688 * fix their proms and get their customers updated.
1690 if (!sos
->monarch
&& atomic_add_return(1, &slaves
) == num_online_cpus()) {
1691 mprintk(KERN_WARNING
"%s: Promoting cpu %d to monarch.\n",
1693 atomic_dec(&slaves
);
1697 /* FIXME: Workaround for broken proms that drive all INIT events as
1698 * monarchs. Second and subsequent monarchs are demoted to slaves.
1699 * Remove this code in September 2006, that gives platforms a year to
1700 * fix their proms and get their customers updated.
1702 if (sos
->monarch
&& atomic_add_return(1, &monarchs
) > 1) {
1703 mprintk(KERN_WARNING
"%s: Demoting cpu %d to slave.\n",
1705 atomic_dec(&monarchs
);
1709 if (!sos
->monarch
) {
1710 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_INIT
;
1713 while (monarch_cpu
== -1 && !atomic_read(&kdump_in_progress
))
1716 while (monarch_cpu
== -1)
1717 cpu_relax(); /* spin until monarch enters */
1720 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER
, regs
, (long)&nd
, 1);
1721 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS
, regs
, (long)&nd
, 1);
1724 while (monarch_cpu
!= -1 && !atomic_read(&kdump_in_progress
))
1727 while (monarch_cpu
!= -1)
1728 cpu_relax(); /* spin until monarch leaves */
1731 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE
, regs
, (long)&nd
, 1);
1733 mprintk("Slave on cpu %d returning to normal service.\n", cpu
);
1734 ia64_set_curr_task(cpu
, previous_current
);
1735 ia64_mc_info
.imi_rendez_checkin
[cpu
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1736 atomic_dec(&slaves
);
1741 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER
, regs
, (long)&nd
, 1);
1744 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1745 * generated via the BMC's command-line interface, but since the console is on the
1746 * same serial line, the user will need some time to switch out of the BMC before
1749 mprintk("Delaying for 5 seconds...\n");
1751 ia64_wait_for_slaves(cpu
, "INIT");
1752 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1753 * to default_monarch_init_process() above and just print all the
1756 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS
, regs
, (long)&nd
, 1);
1757 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE
, regs
, (long)&nd
, 1);
1759 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu
);
1760 atomic_dec(&monarchs
);
1761 ia64_set_curr_task(cpu
, previous_current
);
1767 ia64_mca_disable_cpe_polling(char *str
)
1769 cpe_poll_enabled
= 0;
1773 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling
);
1775 static struct irqaction cmci_irqaction
= {
1776 .handler
= ia64_mca_cmc_int_handler
,
1780 static struct irqaction cmcp_irqaction
= {
1781 .handler
= ia64_mca_cmc_int_caller
,
1785 static struct irqaction mca_rdzv_irqaction
= {
1786 .handler
= ia64_mca_rendez_int_handler
,
1790 static struct irqaction mca_wkup_irqaction
= {
1791 .handler
= ia64_mca_wakeup_int_handler
,
1796 static struct irqaction mca_cpe_irqaction
= {
1797 .handler
= ia64_mca_cpe_int_handler
,
1801 static struct irqaction mca_cpep_irqaction
= {
1802 .handler
= ia64_mca_cpe_int_caller
,
1805 #endif /* CONFIG_ACPI */
1807 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1808 * these stacks can never sleep, they cannot return from the kernel to user
1809 * space, they do not appear in a normal ps listing. So there is no need to
1810 * format most of the fields.
1814 format_mca_init_stack(void *mca_data
, unsigned long offset
,
1815 const char *type
, int cpu
)
1817 struct task_struct
*p
= (struct task_struct
*)((char *)mca_data
+ offset
);
1818 struct thread_info
*ti
;
1819 memset(p
, 0, KERNEL_STACK_SIZE
);
1820 ti
= task_thread_info(p
);
1821 ti
->flags
= _TIF_MCA_INIT
;
1822 ti
->preempt_count
= 1;
1826 p
->state
= TASK_UNINTERRUPTIBLE
;
1827 cpumask_set_cpu(cpu
, &p
->cpus_allowed
);
1828 INIT_LIST_HEAD(&p
->tasks
);
1829 p
->parent
= p
->real_parent
= p
->group_leader
= p
;
1830 INIT_LIST_HEAD(&p
->children
);
1831 INIT_LIST_HEAD(&p
->sibling
);
1832 strncpy(p
->comm
, type
, sizeof(p
->comm
)-1);
1835 /* Caller prevents this from being called after init */
1836 static void * __ref
mca_bootmem(void)
1838 return __alloc_bootmem(sizeof(struct ia64_mca_cpu
),
1839 KERNEL_STACK_SIZE
, 0);
1842 /* Do per-CPU MCA-related initialization. */
1844 ia64_mca_cpu_init(void *cpu_data
)
1848 long sz
= sizeof(struct ia64_mca_cpu
);
1849 int cpu
= smp_processor_id();
1850 static int first_time
= 1;
1853 * Structure will already be allocated if cpu has been online,
1856 if (__per_cpu_mca
[cpu
]) {
1857 data
= __va(__per_cpu_mca
[cpu
]);
1860 data
= mca_bootmem();
1863 data
= (void *)__get_free_pages(GFP_KERNEL
,
1866 panic("Could not allocate MCA memory for cpu %d\n",
1869 format_mca_init_stack(data
, offsetof(struct ia64_mca_cpu
, mca_stack
),
1871 format_mca_init_stack(data
, offsetof(struct ia64_mca_cpu
, init_stack
),
1873 __this_cpu_write(ia64_mca_data
, (__per_cpu_mca
[cpu
] = __pa(data
)));
1876 * Stash away a copy of the PTE needed to map the per-CPU page.
1877 * We may need it during MCA recovery.
1879 __this_cpu_write(ia64_mca_per_cpu_pte
,
1880 pte_val(mk_pte_phys(__pa(cpu_data
), PAGE_KERNEL
)));
1883 * Also, stash away a copy of the PAL address and the PTE
1886 pal_vaddr
= efi_get_pal_addr();
1889 __this_cpu_write(ia64_mca_pal_base
,
1890 GRANULEROUNDDOWN((unsigned long) pal_vaddr
));
1891 __this_cpu_write(ia64_mca_pal_pte
, pte_val(mk_pte_phys(__pa(pal_vaddr
),
1895 static int ia64_mca_cpu_online(unsigned int cpu
)
1897 unsigned long flags
;
1899 local_irq_save(flags
);
1900 if (!cmc_polling_enabled
)
1901 ia64_mca_cmc_vector_enable(NULL
);
1902 local_irq_restore(flags
);
1909 * Do all the system level mca specific initialization.
1911 * 1. Register spinloop and wakeup request interrupt vectors
1913 * 2. Register OS_MCA handler entry point
1915 * 3. Register OS_INIT handler entry point
1917 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1919 * Note that this initialization is done very early before some kernel
1920 * services are available.
1929 ia64_fptr_t
*init_hldlr_ptr_monarch
= (ia64_fptr_t
*)ia64_os_init_dispatch_monarch
;
1930 ia64_fptr_t
*init_hldlr_ptr_slave
= (ia64_fptr_t
*)ia64_os_init_dispatch_slave
;
1931 ia64_fptr_t
*mca_hldlr_ptr
= (ia64_fptr_t
*)ia64_os_mca_dispatch
;
1934 struct ia64_sal_retval isrv
;
1935 unsigned long timeout
= IA64_MCA_RENDEZ_TIMEOUT
; /* platform specific */
1936 static struct notifier_block default_init_monarch_nb
= {
1937 .notifier_call
= default_monarch_init_process
,
1938 .priority
= 0/* we need to notified last */
1941 IA64_MCA_DEBUG("%s: begin\n", __func__
);
1943 /* Clear the Rendez checkin flag for all cpus */
1944 for(i
= 0 ; i
< NR_CPUS
; i
++)
1945 ia64_mc_info
.imi_rendez_checkin
[i
] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE
;
1948 * Register the rendezvous spinloop and wakeup mechanism with SAL
1951 /* Register the rendezvous interrupt vector with SAL */
1953 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT
,
1954 SAL_MC_PARAM_MECHANISM_INT
,
1955 IA64_MCA_RENDEZ_VECTOR
,
1957 SAL_MC_PARAM_RZ_ALWAYS
);
1962 printk(KERN_INFO
"Increasing MCA rendezvous timeout from "
1963 "%ld to %ld milliseconds\n", timeout
, isrv
.v0
);
1965 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT
, NULL
, timeout
, 0);
1968 printk(KERN_ERR
"Failed to register rendezvous interrupt "
1969 "with SAL (status %ld)\n", rc
);
1973 /* Register the wakeup interrupt vector with SAL */
1974 isrv
= ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP
,
1975 SAL_MC_PARAM_MECHANISM_INT
,
1976 IA64_MCA_WAKEUP_VECTOR
,
1980 printk(KERN_ERR
"Failed to register wakeup interrupt with SAL "
1981 "(status %ld)\n", rc
);
1985 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__
);
1987 ia64_mc_info
.imi_mca_handler
= ia64_tpa(mca_hldlr_ptr
->fp
);
1989 * XXX - disable SAL checksum by setting size to 0; should be
1990 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1992 ia64_mc_info
.imi_mca_handler_size
= 0;
1994 /* Register the os mca handler with SAL */
1995 if ((rc
= ia64_sal_set_vectors(SAL_VECTOR_OS_MCA
,
1996 ia64_mc_info
.imi_mca_handler
,
1997 ia64_tpa(mca_hldlr_ptr
->gp
),
1998 ia64_mc_info
.imi_mca_handler_size
,
2001 printk(KERN_ERR
"Failed to register OS MCA handler with SAL "
2002 "(status %ld)\n", rc
);
2006 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__
,
2007 ia64_mc_info
.imi_mca_handler
, ia64_tpa(mca_hldlr_ptr
->gp
));
2010 * XXX - disable SAL checksum by setting size to 0, should be
2011 * size of the actual init handler in mca_asm.S.
2013 ia64_mc_info
.imi_monarch_init_handler
= ia64_tpa(init_hldlr_ptr_monarch
->fp
);
2014 ia64_mc_info
.imi_monarch_init_handler_size
= 0;
2015 ia64_mc_info
.imi_slave_init_handler
= ia64_tpa(init_hldlr_ptr_slave
->fp
);
2016 ia64_mc_info
.imi_slave_init_handler_size
= 0;
2018 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__
,
2019 ia64_mc_info
.imi_monarch_init_handler
);
2021 /* Register the os init handler with SAL */
2022 if ((rc
= ia64_sal_set_vectors(SAL_VECTOR_OS_INIT
,
2023 ia64_mc_info
.imi_monarch_init_handler
,
2024 ia64_tpa(ia64_getreg(_IA64_REG_GP
)),
2025 ia64_mc_info
.imi_monarch_init_handler_size
,
2026 ia64_mc_info
.imi_slave_init_handler
,
2027 ia64_tpa(ia64_getreg(_IA64_REG_GP
)),
2028 ia64_mc_info
.imi_slave_init_handler_size
)))
2030 printk(KERN_ERR
"Failed to register m/s INIT handlers with SAL "
2031 "(status %ld)\n", rc
);
2034 if (register_die_notifier(&default_init_monarch_nb
)) {
2035 printk(KERN_ERR
"Failed to register default monarch INIT process\n");
2039 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__
);
2041 /* Initialize the areas set aside by the OS to buffer the
2042 * platform/processor error states for MCA/INIT/CMC
2045 ia64_log_init(SAL_INFO_TYPE_MCA
);
2046 ia64_log_init(SAL_INFO_TYPE_INIT
);
2047 ia64_log_init(SAL_INFO_TYPE_CMC
);
2048 ia64_log_init(SAL_INFO_TYPE_CPE
);
2051 printk(KERN_INFO
"MCA related initialization done\n");
2056 * These pieces cannot be done in ia64_mca_init() because it is called before
2057 * early_irq_init() which would wipe out our percpu irq registrations. But we
2058 * cannot leave them until ia64_mca_late_init() because by then all the other
2059 * processors have been brought online and have set their own CMC vectors to
2060 * point at a non-existant action. Called from arch_early_irq_init().
2062 void __init
ia64_mca_irq_init(void)
2065 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2066 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2068 register_percpu_irq(IA64_CMC_VECTOR
, &cmci_irqaction
);
2069 register_percpu_irq(IA64_CMCP_VECTOR
, &cmcp_irqaction
);
2070 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2072 /* Setup the MCA rendezvous interrupt vector */
2073 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR
, &mca_rdzv_irqaction
);
2075 /* Setup the MCA wakeup interrupt vector */
2076 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR
, &mca_wkup_irqaction
);
2079 /* Setup the CPEI/P handler */
2080 register_percpu_irq(IA64_CPEP_VECTOR
, &mca_cpep_irqaction
);
2085 * ia64_mca_late_init
2087 * Opportunity to setup things that require initialization later
2088 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2089 * platform doesn't support an interrupt driven mechanism.
2095 ia64_mca_late_init(void)
2100 /* Setup the CMCI/P vector and handler */
2101 setup_timer(&cmc_poll_timer
, ia64_mca_cmc_poll
, 0UL);
2103 /* Unmask/enable the vector */
2104 cmc_polling_enabled
= 0;
2105 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "ia64/mca:online",
2106 ia64_mca_cpu_online
, NULL
);
2107 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__
);
2110 /* Setup the CPEI/P vector and handler */
2111 cpe_vector
= acpi_request_vector(ACPI_INTERRUPT_CPEI
);
2112 setup_timer(&cpe_poll_timer
, ia64_mca_cpe_poll
, 0UL);
2117 if (cpe_vector
>= 0) {
2118 /* If platform supports CPEI, enable the irq. */
2119 irq
= local_vector_to_irq(cpe_vector
);
2121 cpe_poll_enabled
= 0;
2122 irq_set_status_flags(irq
, IRQ_PER_CPU
);
2123 setup_irq(irq
, &mca_cpe_irqaction
);
2125 ia64_mca_register_cpev(cpe_vector
);
2126 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2130 printk(KERN_ERR
"%s: Failed to find irq for CPE "
2131 "interrupt handler, vector %d\n",
2132 __func__
, cpe_vector
);
2134 /* If platform doesn't support CPEI, get the timer going. */
2135 if (cpe_poll_enabled
) {
2136 ia64_mca_cpe_poll(0UL);
2137 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__
);
2145 device_initcall(ia64_mca_late_init
);