x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / arch / x86 / events / amd / core.c
blob27ade3cb6482ce417e0798d531f1c9ad3cf3c17c
1 #include <linux/perf_event.h>
2 #include <linux/export.h>
3 #include <linux/types.h>
4 #include <linux/init.h>
5 #include <linux/slab.h>
6 #include <linux/delay.h>
7 #include <asm/apicdef.h>
8 #include <asm/nmi.h>
10 #include "../perf_event.h"
12 static DEFINE_PER_CPU(unsigned int, perf_nmi_counter);
14 static __initconst const u64 amd_hw_cache_event_ids
15 [PERF_COUNT_HW_CACHE_MAX]
16 [PERF_COUNT_HW_CACHE_OP_MAX]
17 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
19 [ C(L1D) ] = {
20 [ C(OP_READ) ] = {
21 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
22 [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
24 [ C(OP_WRITE) ] = {
25 [ C(RESULT_ACCESS) ] = 0,
26 [ C(RESULT_MISS) ] = 0,
28 [ C(OP_PREFETCH) ] = {
29 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
30 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
33 [ C(L1I ) ] = {
34 [ C(OP_READ) ] = {
35 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
36 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
38 [ C(OP_WRITE) ] = {
39 [ C(RESULT_ACCESS) ] = -1,
40 [ C(RESULT_MISS) ] = -1,
42 [ C(OP_PREFETCH) ] = {
43 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
44 [ C(RESULT_MISS) ] = 0,
47 [ C(LL ) ] = {
48 [ C(OP_READ) ] = {
49 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
50 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
52 [ C(OP_WRITE) ] = {
53 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
54 [ C(RESULT_MISS) ] = 0,
56 [ C(OP_PREFETCH) ] = {
57 [ C(RESULT_ACCESS) ] = 0,
58 [ C(RESULT_MISS) ] = 0,
61 [ C(DTLB) ] = {
62 [ C(OP_READ) ] = {
63 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
64 [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
66 [ C(OP_WRITE) ] = {
67 [ C(RESULT_ACCESS) ] = 0,
68 [ C(RESULT_MISS) ] = 0,
70 [ C(OP_PREFETCH) ] = {
71 [ C(RESULT_ACCESS) ] = 0,
72 [ C(RESULT_MISS) ] = 0,
75 [ C(ITLB) ] = {
76 [ C(OP_READ) ] = {
77 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
78 [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
80 [ C(OP_WRITE) ] = {
81 [ C(RESULT_ACCESS) ] = -1,
82 [ C(RESULT_MISS) ] = -1,
84 [ C(OP_PREFETCH) ] = {
85 [ C(RESULT_ACCESS) ] = -1,
86 [ C(RESULT_MISS) ] = -1,
89 [ C(BPU ) ] = {
90 [ C(OP_READ) ] = {
91 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
92 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
94 [ C(OP_WRITE) ] = {
95 [ C(RESULT_ACCESS) ] = -1,
96 [ C(RESULT_MISS) ] = -1,
98 [ C(OP_PREFETCH) ] = {
99 [ C(RESULT_ACCESS) ] = -1,
100 [ C(RESULT_MISS) ] = -1,
103 [ C(NODE) ] = {
104 [ C(OP_READ) ] = {
105 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
106 [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
108 [ C(OP_WRITE) ] = {
109 [ C(RESULT_ACCESS) ] = -1,
110 [ C(RESULT_MISS) ] = -1,
112 [ C(OP_PREFETCH) ] = {
113 [ C(RESULT_ACCESS) ] = -1,
114 [ C(RESULT_MISS) ] = -1,
119 static __initconst const u64 amd_hw_cache_event_ids_f17h
120 [PERF_COUNT_HW_CACHE_MAX]
121 [PERF_COUNT_HW_CACHE_OP_MAX]
122 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
123 [C(L1D)] = {
124 [C(OP_READ)] = {
125 [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
126 [C(RESULT_MISS)] = 0xc860, /* L2$ access from DC Miss */
128 [C(OP_WRITE)] = {
129 [C(RESULT_ACCESS)] = 0,
130 [C(RESULT_MISS)] = 0,
132 [C(OP_PREFETCH)] = {
133 [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
134 [C(RESULT_MISS)] = 0,
137 [C(L1I)] = {
138 [C(OP_READ)] = {
139 [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches */
140 [C(RESULT_MISS)] = 0x0081, /* Instruction cache misses */
142 [C(OP_WRITE)] = {
143 [C(RESULT_ACCESS)] = -1,
144 [C(RESULT_MISS)] = -1,
146 [C(OP_PREFETCH)] = {
147 [C(RESULT_ACCESS)] = 0,
148 [C(RESULT_MISS)] = 0,
151 [C(LL)] = {
152 [C(OP_READ)] = {
153 [C(RESULT_ACCESS)] = 0,
154 [C(RESULT_MISS)] = 0,
156 [C(OP_WRITE)] = {
157 [C(RESULT_ACCESS)] = 0,
158 [C(RESULT_MISS)] = 0,
160 [C(OP_PREFETCH)] = {
161 [C(RESULT_ACCESS)] = 0,
162 [C(RESULT_MISS)] = 0,
165 [C(DTLB)] = {
166 [C(OP_READ)] = {
167 [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
168 [C(RESULT_MISS)] = 0xf045, /* L2 DTLB misses (PT walks) */
170 [C(OP_WRITE)] = {
171 [C(RESULT_ACCESS)] = 0,
172 [C(RESULT_MISS)] = 0,
174 [C(OP_PREFETCH)] = {
175 [C(RESULT_ACCESS)] = 0,
176 [C(RESULT_MISS)] = 0,
179 [C(ITLB)] = {
180 [C(OP_READ)] = {
181 [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
182 [C(RESULT_MISS)] = 0xff85, /* L1 ITLB misses, L2 misses */
184 [C(OP_WRITE)] = {
185 [C(RESULT_ACCESS)] = -1,
186 [C(RESULT_MISS)] = -1,
188 [C(OP_PREFETCH)] = {
189 [C(RESULT_ACCESS)] = -1,
190 [C(RESULT_MISS)] = -1,
193 [C(BPU)] = {
194 [C(OP_READ)] = {
195 [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr. */
196 [C(RESULT_MISS)] = 0x00c3, /* Retired Mispredicted BI */
198 [C(OP_WRITE)] = {
199 [C(RESULT_ACCESS)] = -1,
200 [C(RESULT_MISS)] = -1,
202 [C(OP_PREFETCH)] = {
203 [C(RESULT_ACCESS)] = -1,
204 [C(RESULT_MISS)] = -1,
207 [C(NODE)] = {
208 [C(OP_READ)] = {
209 [C(RESULT_ACCESS)] = 0,
210 [C(RESULT_MISS)] = 0,
212 [C(OP_WRITE)] = {
213 [C(RESULT_ACCESS)] = -1,
214 [C(RESULT_MISS)] = -1,
216 [C(OP_PREFETCH)] = {
217 [C(RESULT_ACCESS)] = -1,
218 [C(RESULT_MISS)] = -1,
224 * AMD Performance Monitor K7 and later, up to and including Family 16h:
226 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
228 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
229 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
230 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d,
231 [PERF_COUNT_HW_CACHE_MISSES] = 0x077e,
232 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
233 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
234 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
235 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
239 * AMD Performance Monitor Family 17h and later:
241 static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
243 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
244 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
245 [PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60,
246 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
247 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
248 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
249 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x0187,
252 static u64 amd_pmu_event_map(int hw_event)
254 if (boot_cpu_data.x86 >= 0x17)
255 return amd_f17h_perfmon_event_map[hw_event];
257 return amd_perfmon_event_map[hw_event];
261 * Previously calculated offsets
263 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
264 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
267 * Legacy CPUs:
268 * 4 counters starting at 0xc0010000 each offset by 1
270 * CPUs with core performance counter extensions:
271 * 6 counters starting at 0xc0010200 each offset by 2
273 static inline int amd_pmu_addr_offset(int index, bool eventsel)
275 int offset;
277 if (!index)
278 return index;
280 if (eventsel)
281 offset = event_offsets[index];
282 else
283 offset = count_offsets[index];
285 if (offset)
286 return offset;
288 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
289 offset = index;
290 else
291 offset = index << 1;
293 if (eventsel)
294 event_offsets[index] = offset;
295 else
296 count_offsets[index] = offset;
298 return offset;
301 static int amd_core_hw_config(struct perf_event *event)
303 if (event->attr.exclude_host && event->attr.exclude_guest)
305 * When HO == GO == 1 the hardware treats that as GO == HO == 0
306 * and will count in both modes. We don't want to count in that
307 * case so we emulate no-counting by setting US = OS = 0.
309 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
310 ARCH_PERFMON_EVENTSEL_OS);
311 else if (event->attr.exclude_host)
312 event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
313 else if (event->attr.exclude_guest)
314 event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
316 return 0;
320 * AMD64 events are detected based on their event codes.
322 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
324 return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
327 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
329 return (hwc->config & 0xe0) == 0xe0;
332 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
334 struct amd_nb *nb = cpuc->amd_nb;
336 return nb && nb->nb_id != -1;
339 static int amd_pmu_hw_config(struct perf_event *event)
341 int ret;
343 /* pass precise event sampling to ibs: */
344 if (event->attr.precise_ip && get_ibs_caps())
345 return -ENOENT;
347 if (has_branch_stack(event))
348 return -EOPNOTSUPP;
350 ret = x86_pmu_hw_config(event);
351 if (ret)
352 return ret;
354 if (event->attr.type == PERF_TYPE_RAW)
355 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
357 return amd_core_hw_config(event);
360 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
361 struct perf_event *event)
363 struct amd_nb *nb = cpuc->amd_nb;
364 int i;
367 * need to scan whole list because event may not have
368 * been assigned during scheduling
370 * no race condition possible because event can only
371 * be removed on one CPU at a time AND PMU is disabled
372 * when we come here
374 for (i = 0; i < x86_pmu.num_counters; i++) {
375 if (cmpxchg(nb->owners + i, event, NULL) == event)
376 break;
381 * AMD64 NorthBridge events need special treatment because
382 * counter access needs to be synchronized across all cores
383 * of a package. Refer to BKDG section 3.12
385 * NB events are events measuring L3 cache, Hypertransport
386 * traffic. They are identified by an event code >= 0xe00.
387 * They measure events on the NorthBride which is shared
388 * by all cores on a package. NB events are counted on a
389 * shared set of counters. When a NB event is programmed
390 * in a counter, the data actually comes from a shared
391 * counter. Thus, access to those counters needs to be
392 * synchronized.
394 * We implement the synchronization such that no two cores
395 * can be measuring NB events using the same counters. Thus,
396 * we maintain a per-NB allocation table. The available slot
397 * is propagated using the event_constraint structure.
399 * We provide only one choice for each NB event based on
400 * the fact that only NB events have restrictions. Consequently,
401 * if a counter is available, there is a guarantee the NB event
402 * will be assigned to it. If no slot is available, an empty
403 * constraint is returned and scheduling will eventually fail
404 * for this event.
406 * Note that all cores attached the same NB compete for the same
407 * counters to host NB events, this is why we use atomic ops. Some
408 * multi-chip CPUs may have more than one NB.
410 * Given that resources are allocated (cmpxchg), they must be
411 * eventually freed for others to use. This is accomplished by
412 * calling __amd_put_nb_event_constraints()
414 * Non NB events are not impacted by this restriction.
416 static struct event_constraint *
417 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
418 struct event_constraint *c)
420 struct hw_perf_event *hwc = &event->hw;
421 struct amd_nb *nb = cpuc->amd_nb;
422 struct perf_event *old;
423 int idx, new = -1;
425 if (!c)
426 c = &unconstrained;
428 if (cpuc->is_fake)
429 return c;
432 * detect if already present, if so reuse
434 * cannot merge with actual allocation
435 * because of possible holes
437 * event can already be present yet not assigned (in hwc->idx)
438 * because of successive calls to x86_schedule_events() from
439 * hw_perf_group_sched_in() without hw_perf_enable()
441 for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
442 if (new == -1 || hwc->idx == idx)
443 /* assign free slot, prefer hwc->idx */
444 old = cmpxchg(nb->owners + idx, NULL, event);
445 else if (nb->owners[idx] == event)
446 /* event already present */
447 old = event;
448 else
449 continue;
451 if (old && old != event)
452 continue;
454 /* reassign to this slot */
455 if (new != -1)
456 cmpxchg(nb->owners + new, event, NULL);
457 new = idx;
459 /* already present, reuse */
460 if (old == event)
461 break;
464 if (new == -1)
465 return &emptyconstraint;
467 return &nb->event_constraints[new];
470 static struct amd_nb *amd_alloc_nb(int cpu)
472 struct amd_nb *nb;
473 int i;
475 nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
476 if (!nb)
477 return NULL;
479 nb->nb_id = -1;
482 * initialize all possible NB constraints
484 for (i = 0; i < x86_pmu.num_counters; i++) {
485 __set_bit(i, nb->event_constraints[i].idxmsk);
486 nb->event_constraints[i].weight = 1;
488 return nb;
491 static int amd_pmu_cpu_prepare(int cpu)
493 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
495 WARN_ON_ONCE(cpuc->amd_nb);
497 if (!x86_pmu.amd_nb_constraints)
498 return 0;
500 cpuc->amd_nb = amd_alloc_nb(cpu);
501 if (!cpuc->amd_nb)
502 return -ENOMEM;
504 return 0;
507 static void amd_pmu_cpu_starting(int cpu)
509 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
510 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
511 struct amd_nb *nb;
512 int i, nb_id;
514 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
516 if (!x86_pmu.amd_nb_constraints)
517 return;
519 nb_id = amd_get_nb_id(cpu);
520 WARN_ON_ONCE(nb_id == BAD_APICID);
522 for_each_online_cpu(i) {
523 nb = per_cpu(cpu_hw_events, i).amd_nb;
524 if (WARN_ON_ONCE(!nb))
525 continue;
527 if (nb->nb_id == nb_id) {
528 *onln = cpuc->amd_nb;
529 cpuc->amd_nb = nb;
530 break;
534 cpuc->amd_nb->nb_id = nb_id;
535 cpuc->amd_nb->refcnt++;
538 static void amd_pmu_cpu_dead(int cpu)
540 struct cpu_hw_events *cpuhw;
542 if (!x86_pmu.amd_nb_constraints)
543 return;
545 cpuhw = &per_cpu(cpu_hw_events, cpu);
547 if (cpuhw->amd_nb) {
548 struct amd_nb *nb = cpuhw->amd_nb;
550 if (nb->nb_id == -1 || --nb->refcnt == 0)
551 kfree(nb);
553 cpuhw->amd_nb = NULL;
558 * When a PMC counter overflows, an NMI is used to process the event and
559 * reset the counter. NMI latency can result in the counter being updated
560 * before the NMI can run, which can result in what appear to be spurious
561 * NMIs. This function is intended to wait for the NMI to run and reset
562 * the counter to avoid possible unhandled NMI messages.
564 #define OVERFLOW_WAIT_COUNT 50
566 static void amd_pmu_wait_on_overflow(int idx)
568 unsigned int i;
569 u64 counter;
572 * Wait for the counter to be reset if it has overflowed. This loop
573 * should exit very, very quickly, but just in case, don't wait
574 * forever...
576 for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
577 rdmsrl(x86_pmu_event_addr(idx), counter);
578 if (counter & (1ULL << (x86_pmu.cntval_bits - 1)))
579 break;
581 /* Might be in IRQ context, so can't sleep */
582 udelay(1);
586 static void amd_pmu_disable_all(void)
588 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
589 int idx;
591 x86_pmu_disable_all();
594 * This shouldn't be called from NMI context, but add a safeguard here
595 * to return, since if we're in NMI context we can't wait for an NMI
596 * to reset an overflowed counter value.
598 if (in_nmi())
599 return;
602 * Check each counter for overflow and wait for it to be reset by the
603 * NMI if it has overflowed. This relies on the fact that all active
604 * counters are always enabled when this function is caled and
605 * ARCH_PERFMON_EVENTSEL_INT is always set.
607 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
608 if (!test_bit(idx, cpuc->active_mask))
609 continue;
611 amd_pmu_wait_on_overflow(idx);
615 static void amd_pmu_disable_event(struct perf_event *event)
617 x86_pmu_disable_event(event);
620 * This can be called from NMI context (via x86_pmu_stop). The counter
621 * may have overflowed, but either way, we'll never see it get reset
622 * by the NMI if we're already in the NMI. And the NMI latency support
623 * below will take care of any pending NMI that might have been
624 * generated by the overflow.
626 if (in_nmi())
627 return;
629 amd_pmu_wait_on_overflow(event->hw.idx);
633 * Because of NMI latency, if multiple PMC counters are active or other sources
634 * of NMIs are received, the perf NMI handler can handle one or more overflowed
635 * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
636 * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
637 * back-to-back NMI support won't be active. This PMC handler needs to take into
638 * account that this can occur, otherwise this could result in unknown NMI
639 * messages being issued. Examples of this is PMC overflow while in the NMI
640 * handler when multiple PMCs are active or PMC overflow while handling some
641 * other source of an NMI.
643 * Attempt to mitigate this by using the number of active PMCs to determine
644 * whether to return NMI_HANDLED if the perf NMI handler did not handle/reset
645 * any PMCs. The per-CPU perf_nmi_counter variable is set to a minimum of the
646 * number of active PMCs or 2. The value of 2 is used in case an NMI does not
647 * arrive at the LAPIC in time to be collapsed into an already pending NMI.
649 static int amd_pmu_handle_irq(struct pt_regs *regs)
651 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
652 int active, handled;
655 * Obtain the active count before calling x86_pmu_handle_irq() since
656 * it is possible that x86_pmu_handle_irq() may make a counter
657 * inactive (through x86_pmu_stop).
659 active = __bitmap_weight(cpuc->active_mask, X86_PMC_IDX_MAX);
661 /* Process any counter overflows */
662 handled = x86_pmu_handle_irq(regs);
665 * If a counter was handled, record the number of possible remaining
666 * NMIs that can occur.
668 if (handled) {
669 this_cpu_write(perf_nmi_counter,
670 min_t(unsigned int, 2, active));
672 return handled;
675 if (!this_cpu_read(perf_nmi_counter))
676 return NMI_DONE;
678 this_cpu_dec(perf_nmi_counter);
680 return NMI_HANDLED;
683 static struct event_constraint *
684 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
685 struct perf_event *event)
688 * if not NB event or no NB, then no constraints
690 if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
691 return &unconstrained;
693 return __amd_get_nb_event_constraints(cpuc, event, NULL);
696 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
697 struct perf_event *event)
699 if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
700 __amd_put_nb_event_constraints(cpuc, event);
703 PMU_FORMAT_ATTR(event, "config:0-7,32-35");
704 PMU_FORMAT_ATTR(umask, "config:8-15" );
705 PMU_FORMAT_ATTR(edge, "config:18" );
706 PMU_FORMAT_ATTR(inv, "config:23" );
707 PMU_FORMAT_ATTR(cmask, "config:24-31" );
709 static struct attribute *amd_format_attr[] = {
710 &format_attr_event.attr,
711 &format_attr_umask.attr,
712 &format_attr_edge.attr,
713 &format_attr_inv.attr,
714 &format_attr_cmask.attr,
715 NULL,
718 /* AMD Family 15h */
720 #define AMD_EVENT_TYPE_MASK 0x000000F0ULL
722 #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
723 #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
724 #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
725 #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
726 #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
727 #define AMD_EVENT_EX_LS 0x000000C0ULL
728 #define AMD_EVENT_DE 0x000000D0ULL
729 #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
732 * AMD family 15h event code/PMC mappings:
734 * type = event_code & 0x0F0:
736 * 0x000 FP PERF_CTL[5:3]
737 * 0x010 FP PERF_CTL[5:3]
738 * 0x020 LS PERF_CTL[5:0]
739 * 0x030 LS PERF_CTL[5:0]
740 * 0x040 DC PERF_CTL[5:0]
741 * 0x050 DC PERF_CTL[5:0]
742 * 0x060 CU PERF_CTL[2:0]
743 * 0x070 CU PERF_CTL[2:0]
744 * 0x080 IC/DE PERF_CTL[2:0]
745 * 0x090 IC/DE PERF_CTL[2:0]
746 * 0x0A0 ---
747 * 0x0B0 ---
748 * 0x0C0 EX/LS PERF_CTL[5:0]
749 * 0x0D0 DE PERF_CTL[2:0]
750 * 0x0E0 NB NB_PERF_CTL[3:0]
751 * 0x0F0 NB NB_PERF_CTL[3:0]
753 * Exceptions:
755 * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
756 * 0x003 FP PERF_CTL[3]
757 * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
758 * 0x00B FP PERF_CTL[3]
759 * 0x00D FP PERF_CTL[3]
760 * 0x023 DE PERF_CTL[2:0]
761 * 0x02D LS PERF_CTL[3]
762 * 0x02E LS PERF_CTL[3,0]
763 * 0x031 LS PERF_CTL[2:0] (**)
764 * 0x043 CU PERF_CTL[2:0]
765 * 0x045 CU PERF_CTL[2:0]
766 * 0x046 CU PERF_CTL[2:0]
767 * 0x054 CU PERF_CTL[2:0]
768 * 0x055 CU PERF_CTL[2:0]
769 * 0x08F IC PERF_CTL[0]
770 * 0x187 DE PERF_CTL[0]
771 * 0x188 DE PERF_CTL[0]
772 * 0x0DB EX PERF_CTL[5:0]
773 * 0x0DC LS PERF_CTL[5:0]
774 * 0x0DD LS PERF_CTL[5:0]
775 * 0x0DE LS PERF_CTL[5:0]
776 * 0x0DF LS PERF_CTL[5:0]
777 * 0x1C0 EX PERF_CTL[5:3]
778 * 0x1D6 EX PERF_CTL[5:0]
779 * 0x1D8 EX PERF_CTL[5:0]
781 * (*) depending on the umask all FPU counters may be used
782 * (**) only one unitmask enabled at a time
785 static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
786 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
787 static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
788 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
789 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
790 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
792 static struct event_constraint *
793 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
794 struct perf_event *event)
796 struct hw_perf_event *hwc = &event->hw;
797 unsigned int event_code = amd_get_event_code(hwc);
799 switch (event_code & AMD_EVENT_TYPE_MASK) {
800 case AMD_EVENT_FP:
801 switch (event_code) {
802 case 0x000:
803 if (!(hwc->config & 0x0000F000ULL))
804 break;
805 if (!(hwc->config & 0x00000F00ULL))
806 break;
807 return &amd_f15_PMC3;
808 case 0x004:
809 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
810 break;
811 return &amd_f15_PMC3;
812 case 0x003:
813 case 0x00B:
814 case 0x00D:
815 return &amd_f15_PMC3;
817 return &amd_f15_PMC53;
818 case AMD_EVENT_LS:
819 case AMD_EVENT_DC:
820 case AMD_EVENT_EX_LS:
821 switch (event_code) {
822 case 0x023:
823 case 0x043:
824 case 0x045:
825 case 0x046:
826 case 0x054:
827 case 0x055:
828 return &amd_f15_PMC20;
829 case 0x02D:
830 return &amd_f15_PMC3;
831 case 0x02E:
832 return &amd_f15_PMC30;
833 case 0x031:
834 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
835 return &amd_f15_PMC20;
836 return &emptyconstraint;
837 case 0x1C0:
838 return &amd_f15_PMC53;
839 default:
840 return &amd_f15_PMC50;
842 case AMD_EVENT_CU:
843 case AMD_EVENT_IC_DE:
844 case AMD_EVENT_DE:
845 switch (event_code) {
846 case 0x08F:
847 case 0x187:
848 case 0x188:
849 return &amd_f15_PMC0;
850 case 0x0DB ... 0x0DF:
851 case 0x1D6:
852 case 0x1D8:
853 return &amd_f15_PMC50;
854 default:
855 return &amd_f15_PMC20;
857 case AMD_EVENT_NB:
858 /* moved to uncore.c */
859 return &emptyconstraint;
860 default:
861 return &emptyconstraint;
865 static ssize_t amd_event_sysfs_show(char *page, u64 config)
867 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
868 (config & AMD64_EVENTSEL_EVENT) >> 24;
870 return x86_event_sysfs_show(page, config, event);
873 static __initconst const struct x86_pmu amd_pmu = {
874 .name = "AMD",
875 .handle_irq = amd_pmu_handle_irq,
876 .disable_all = amd_pmu_disable_all,
877 .enable_all = x86_pmu_enable_all,
878 .enable = x86_pmu_enable_event,
879 .disable = amd_pmu_disable_event,
880 .hw_config = amd_pmu_hw_config,
881 .schedule_events = x86_schedule_events,
882 .eventsel = MSR_K7_EVNTSEL0,
883 .perfctr = MSR_K7_PERFCTR0,
884 .addr_offset = amd_pmu_addr_offset,
885 .event_map = amd_pmu_event_map,
886 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
887 .num_counters = AMD64_NUM_COUNTERS,
888 .cntval_bits = 48,
889 .cntval_mask = (1ULL << 48) - 1,
890 .apic = 1,
891 /* use highest bit to detect overflow */
892 .max_period = (1ULL << 47) - 1,
893 .get_event_constraints = amd_get_event_constraints,
894 .put_event_constraints = amd_put_event_constraints,
896 .format_attrs = amd_format_attr,
897 .events_sysfs_show = amd_event_sysfs_show,
899 .cpu_prepare = amd_pmu_cpu_prepare,
900 .cpu_starting = amd_pmu_cpu_starting,
901 .cpu_dead = amd_pmu_cpu_dead,
903 .amd_nb_constraints = 1,
906 static int __init amd_core_pmu_init(void)
908 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
909 return 0;
911 switch (boot_cpu_data.x86) {
912 case 0x15:
913 pr_cont("Fam15h ");
914 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
915 break;
916 case 0x17:
917 pr_cont("Fam17h ");
919 * In family 17h, there are no event constraints in the PMC hardware.
920 * We fallback to using default amd_get_event_constraints.
922 break;
923 default:
924 pr_err("core perfctr but no constraints; unknown hardware!\n");
925 return -ENODEV;
929 * If core performance counter extensions exists, we must use
930 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
931 * amd_pmu_addr_offset().
933 x86_pmu.eventsel = MSR_F15H_PERF_CTL;
934 x86_pmu.perfctr = MSR_F15H_PERF_CTR;
935 x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE;
937 * AMD Core perfctr has separate MSRs for the NB events, see
938 * the amd/uncore.c driver.
940 x86_pmu.amd_nb_constraints = 0;
942 pr_cont("core perfctr, ");
943 return 0;
946 __init int amd_pmu_init(void)
948 int ret;
950 /* Performance-monitoring supported from K7 and later: */
951 if (boot_cpu_data.x86 < 6)
952 return -ENODEV;
954 x86_pmu = amd_pmu;
956 ret = amd_core_pmu_init();
957 if (ret)
958 return ret;
960 if (num_possible_cpus() == 1) {
962 * No point in allocating data structures to serialize
963 * against other CPUs, when there is only the one CPU.
965 x86_pmu.amd_nb_constraints = 0;
968 if (boot_cpu_data.x86 >= 0x17)
969 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
970 else
971 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
973 return 0;
976 void amd_pmu_enable_virt(void)
978 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
980 cpuc->perf_ctr_virt_mask = 0;
982 /* Reload all events */
983 amd_pmu_disable_all();
984 x86_pmu_enable_all(0);
986 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
988 void amd_pmu_disable_virt(void)
990 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
993 * We only mask out the Host-only bit so that host-only counting works
994 * when SVM is disabled. If someone sets up a guest-only counter when
995 * SVM is disabled the Guest-only bits still gets set and the counter
996 * will not count anything.
998 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1000 /* Reload all events */
1001 amd_pmu_disable_all();
1002 x86_pmu_enable_all(0);
1004 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);