x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / arch / x86 / events / core.c
blob6ed99de2ddf5994e45388e276eab33eb050e1189
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
44 #include "perf_event.h"
46 struct x86_pmu x86_pmu __read_mostly;
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 .enabled = 1,
52 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX]
60 [PERF_COUNT_HW_CACHE_OP_MAX]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX];
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
68 u64 x86_perf_event_update(struct perf_event *event)
70 struct hw_perf_event *hwc = &event->hw;
71 int shift = 64 - x86_pmu.cntval_bits;
72 u64 prev_raw_count, new_raw_count;
73 int idx = hwc->idx;
74 u64 delta;
76 if (idx == INTEL_PMC_IDX_FIXED_BTS)
77 return 0;
80 * Careful: an NMI might modify the previous event value.
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
86 again:
87 prev_raw_count = local64_read(&hwc->prev_count);
88 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 new_raw_count) != prev_raw_count)
92 goto again;
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
99 * Careful, not all hw sign-extends above the physical width
100 * of the count.
102 delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 delta >>= shift;
105 local64_add(delta, &event->count);
106 local64_sub(delta, &hwc->period_left);
108 return new_raw_count;
112 * Find and validate any extra registers to set up.
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
116 struct hw_perf_event_extra *reg;
117 struct extra_reg *er;
119 reg = &event->hw.extra_reg;
121 if (!x86_pmu.extra_regs)
122 return 0;
124 for (er = x86_pmu.extra_regs; er->msr; er++) {
125 if (er->event != (config & er->config_mask))
126 continue;
127 if (event->attr.config1 & ~er->valid_mask)
128 return -EINVAL;
129 /* Check if the extra msrs can be safely accessed*/
130 if (!er->extra_msr_access)
131 return -ENXIO;
133 reg->idx = er->idx;
134 reg->config = event->attr.config1;
135 reg->reg = er->msr;
136 break;
138 return 0;
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
145 #ifdef CONFIG_X86_LOCAL_APIC
147 static bool reserve_pmc_hardware(void)
149 int i;
151 for (i = 0; i < x86_pmu.num_counters; i++) {
152 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153 goto perfctr_fail;
156 for (i = 0; i < x86_pmu.num_counters; i++) {
157 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158 goto eventsel_fail;
161 return true;
163 eventsel_fail:
164 for (i--; i >= 0; i--)
165 release_evntsel_nmi(x86_pmu_config_addr(i));
167 i = x86_pmu.num_counters;
169 perfctr_fail:
170 for (i--; i >= 0; i--)
171 release_perfctr_nmi(x86_pmu_event_addr(i));
173 return false;
176 static void release_pmc_hardware(void)
178 int i;
180 for (i = 0; i < x86_pmu.num_counters; i++) {
181 release_perfctr_nmi(x86_pmu_event_addr(i));
182 release_evntsel_nmi(x86_pmu_config_addr(i));
186 #else
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
191 #endif
193 static bool check_hw_exists(void)
195 u64 val, val_fail = -1, val_new= ~0;
196 int i, reg, reg_fail = -1, ret = 0;
197 int bios_fail = 0;
198 int reg_safe = -1;
201 * Check to see if the BIOS enabled any of the counters, if so
202 * complain and bail.
204 for (i = 0; i < x86_pmu.num_counters; i++) {
205 reg = x86_pmu_config_addr(i);
206 ret = rdmsrl_safe(reg, &val);
207 if (ret)
208 goto msr_fail;
209 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210 bios_fail = 1;
211 val_fail = val;
212 reg_fail = reg;
213 } else {
214 reg_safe = i;
218 if (x86_pmu.num_counters_fixed) {
219 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 ret = rdmsrl_safe(reg, &val);
221 if (ret)
222 goto msr_fail;
223 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 if (val & (0x03 << i*4)) {
225 bios_fail = 1;
226 val_fail = val;
227 reg_fail = reg;
233 * If all the counters are enabled, the below test will always
234 * fail. The tools will also become useless in this scenario.
235 * Just fail and disable the hardware counters.
238 if (reg_safe == -1) {
239 reg = reg_safe;
240 goto msr_fail;
244 * Read the current value, change it and read it back to see if it
245 * matches, this is needed to detect certain hardware emulators
246 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
248 reg = x86_pmu_event_addr(reg_safe);
249 if (rdmsrl_safe(reg, &val))
250 goto msr_fail;
251 val ^= 0xffffUL;
252 ret = wrmsrl_safe(reg, val);
253 ret |= rdmsrl_safe(reg, &val_new);
254 if (ret || val != val_new)
255 goto msr_fail;
258 * We still allow the PMU driver to operate:
260 if (bios_fail) {
261 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263 reg_fail, val_fail);
266 return true;
268 msr_fail:
269 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 pr_cont("PMU not available due to virtualization, using software events only.\n");
271 } else {
272 pr_cont("Broken PMU hardware detected, using software events only.\n");
273 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274 reg, val_new);
277 return false;
280 static void hw_perf_event_destroy(struct perf_event *event)
282 x86_release_hardware();
283 atomic_dec(&active_events);
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
288 hw_perf_event_destroy(event);
290 /* undo the lbr/bts event accounting */
291 x86_del_exclusive(x86_lbr_exclusive_lbr);
294 static inline int x86_pmu_initialized(void)
296 return x86_pmu.handle_irq != NULL;
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
302 struct perf_event_attr *attr = &event->attr;
303 unsigned int cache_type, cache_op, cache_result;
304 u64 config, val;
306 config = attr->config;
308 cache_type = (config >> 0) & 0xff;
309 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 return -EINVAL;
311 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
313 cache_op = (config >> 8) & 0xff;
314 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315 return -EINVAL;
316 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
318 cache_result = (config >> 16) & 0xff;
319 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320 return -EINVAL;
321 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
323 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
325 if (val == 0)
326 return -ENOENT;
328 if (val == -1)
329 return -EINVAL;
331 hwc->config |= val;
332 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 return x86_pmu_extra_regs(val, event);
336 int x86_reserve_hardware(void)
338 int err = 0;
340 if (!atomic_inc_not_zero(&pmc_refcount)) {
341 mutex_lock(&pmc_reserve_mutex);
342 if (atomic_read(&pmc_refcount) == 0) {
343 if (!reserve_pmc_hardware())
344 err = -EBUSY;
345 else
346 reserve_ds_buffers();
348 if (!err)
349 atomic_inc(&pmc_refcount);
350 mutex_unlock(&pmc_reserve_mutex);
353 return err;
356 void x86_release_hardware(void)
358 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 release_pmc_hardware();
360 release_ds_buffers();
361 mutex_unlock(&pmc_reserve_mutex);
366 * Check if we can create event of a certain type (that no conflicting events
367 * are present).
369 int x86_add_exclusive(unsigned int what)
371 int i;
374 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 * LBR and BTS are still mutually exclusive.
377 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378 return 0;
380 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381 mutex_lock(&pmc_reserve_mutex);
382 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384 goto fail_unlock;
386 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387 mutex_unlock(&pmc_reserve_mutex);
390 atomic_inc(&active_events);
391 return 0;
393 fail_unlock:
394 mutex_unlock(&pmc_reserve_mutex);
395 return -EBUSY;
398 void x86_del_exclusive(unsigned int what)
400 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
401 return;
403 atomic_dec(&x86_pmu.lbr_exclusive[what]);
404 atomic_dec(&active_events);
407 int x86_setup_perfctr(struct perf_event *event)
409 struct perf_event_attr *attr = &event->attr;
410 struct hw_perf_event *hwc = &event->hw;
411 u64 config;
413 if (!is_sampling_event(event)) {
414 hwc->sample_period = x86_pmu.max_period;
415 hwc->last_period = hwc->sample_period;
416 local64_set(&hwc->period_left, hwc->sample_period);
419 if (attr->type == PERF_TYPE_RAW)
420 return x86_pmu_extra_regs(event->attr.config, event);
422 if (attr->type == PERF_TYPE_HW_CACHE)
423 return set_ext_hw_attr(hwc, event);
425 if (attr->config >= x86_pmu.max_events)
426 return -EINVAL;
428 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
431 * The generic map:
433 config = x86_pmu.event_map(attr->config);
435 if (config == 0)
436 return -ENOENT;
438 if (config == -1LL)
439 return -EINVAL;
441 hwc->config |= config;
443 return 0;
447 * check that branch_sample_type is compatible with
448 * settings needed for precise_ip > 1 which implies
449 * using the LBR to capture ALL taken branches at the
450 * priv levels of the measurement
452 static inline int precise_br_compat(struct perf_event *event)
454 u64 m = event->attr.branch_sample_type;
455 u64 b = 0;
457 /* must capture all branches */
458 if (!(m & PERF_SAMPLE_BRANCH_ANY))
459 return 0;
461 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
463 if (!event->attr.exclude_user)
464 b |= PERF_SAMPLE_BRANCH_USER;
466 if (!event->attr.exclude_kernel)
467 b |= PERF_SAMPLE_BRANCH_KERNEL;
470 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
473 return m == b;
476 int x86_pmu_max_precise(void)
478 int precise = 0;
480 /* Support for constant skid */
481 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
482 precise++;
484 /* Support for IP fixup */
485 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
486 precise++;
488 if (x86_pmu.pebs_prec_dist)
489 precise++;
491 return precise;
494 int x86_pmu_hw_config(struct perf_event *event)
496 if (event->attr.precise_ip) {
497 int precise = x86_pmu_max_precise();
499 if (event->attr.precise_ip > precise)
500 return -EOPNOTSUPP;
502 /* There's no sense in having PEBS for non sampling events: */
503 if (!is_sampling_event(event))
504 return -EINVAL;
507 * check that PEBS LBR correction does not conflict with
508 * whatever the user is asking with attr->branch_sample_type
510 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
511 u64 *br_type = &event->attr.branch_sample_type;
513 if (has_branch_stack(event)) {
514 if (!precise_br_compat(event))
515 return -EOPNOTSUPP;
517 /* branch_sample_type is compatible */
519 } else {
521 * user did not specify branch_sample_type
523 * For PEBS fixups, we capture all
524 * the branches at the priv level of the
525 * event.
527 *br_type = PERF_SAMPLE_BRANCH_ANY;
529 if (!event->attr.exclude_user)
530 *br_type |= PERF_SAMPLE_BRANCH_USER;
532 if (!event->attr.exclude_kernel)
533 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
537 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
538 event->attach_state |= PERF_ATTACH_TASK_DATA;
541 * Generate PMC IRQs:
542 * (keep 'enabled' bit clear for now)
544 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
547 * Count user and OS events unless requested not to
549 if (!event->attr.exclude_user)
550 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
551 if (!event->attr.exclude_kernel)
552 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
554 if (event->attr.type == PERF_TYPE_RAW)
555 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
557 if (event->attr.sample_period && x86_pmu.limit_period) {
558 if (x86_pmu.limit_period(event, event->attr.sample_period) >
559 event->attr.sample_period)
560 return -EINVAL;
563 return x86_setup_perfctr(event);
567 * Setup the hardware configuration for a given attr_type
569 static int __x86_pmu_event_init(struct perf_event *event)
571 int err;
573 if (!x86_pmu_initialized())
574 return -ENODEV;
576 err = x86_reserve_hardware();
577 if (err)
578 return err;
580 atomic_inc(&active_events);
581 event->destroy = hw_perf_event_destroy;
583 event->hw.idx = -1;
584 event->hw.last_cpu = -1;
585 event->hw.last_tag = ~0ULL;
587 /* mark unused */
588 event->hw.extra_reg.idx = EXTRA_REG_NONE;
589 event->hw.branch_reg.idx = EXTRA_REG_NONE;
591 return x86_pmu.hw_config(event);
594 void x86_pmu_disable_all(void)
596 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
597 int idx;
599 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
600 u64 val;
602 if (!test_bit(idx, cpuc->active_mask))
603 continue;
604 rdmsrl(x86_pmu_config_addr(idx), val);
605 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
606 continue;
607 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
608 wrmsrl(x86_pmu_config_addr(idx), val);
613 * There may be PMI landing after enabled=0. The PMI hitting could be before or
614 * after disable_all.
616 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
617 * It will not be re-enabled in the NMI handler again, because enabled=0. After
618 * handling the NMI, disable_all will be called, which will not change the
619 * state either. If PMI hits after disable_all, the PMU is already disabled
620 * before entering NMI handler. The NMI handler will not change the state
621 * either.
623 * So either situation is harmless.
625 static void x86_pmu_disable(struct pmu *pmu)
627 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
629 if (!x86_pmu_initialized())
630 return;
632 if (!cpuc->enabled)
633 return;
635 cpuc->n_added = 0;
636 cpuc->enabled = 0;
637 barrier();
639 x86_pmu.disable_all();
642 void x86_pmu_enable_all(int added)
644 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
645 int idx;
647 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
648 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
650 if (!test_bit(idx, cpuc->active_mask))
651 continue;
653 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
657 static struct pmu pmu;
659 static inline int is_x86_event(struct perf_event *event)
661 return event->pmu == &pmu;
665 * Event scheduler state:
667 * Assign events iterating over all events and counters, beginning
668 * with events with least weights first. Keep the current iterator
669 * state in struct sched_state.
671 struct sched_state {
672 int weight;
673 int event; /* event index */
674 int counter; /* counter index */
675 int unassigned; /* number of events to be assigned left */
676 int nr_gp; /* number of GP counters used */
677 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
680 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
681 #define SCHED_STATES_MAX 2
683 struct perf_sched {
684 int max_weight;
685 int max_events;
686 int max_gp;
687 int saved_states;
688 struct event_constraint **constraints;
689 struct sched_state state;
690 struct sched_state saved[SCHED_STATES_MAX];
694 * Initialize interator that runs through all events and counters.
696 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
697 int num, int wmin, int wmax, int gpmax)
699 int idx;
701 memset(sched, 0, sizeof(*sched));
702 sched->max_events = num;
703 sched->max_weight = wmax;
704 sched->max_gp = gpmax;
705 sched->constraints = constraints;
707 for (idx = 0; idx < num; idx++) {
708 if (constraints[idx]->weight == wmin)
709 break;
712 sched->state.event = idx; /* start with min weight */
713 sched->state.weight = wmin;
714 sched->state.unassigned = num;
717 static void perf_sched_save_state(struct perf_sched *sched)
719 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
720 return;
722 sched->saved[sched->saved_states] = sched->state;
723 sched->saved_states++;
726 static bool perf_sched_restore_state(struct perf_sched *sched)
728 if (!sched->saved_states)
729 return false;
731 sched->saved_states--;
732 sched->state = sched->saved[sched->saved_states];
734 /* continue with next counter: */
735 clear_bit(sched->state.counter++, sched->state.used);
737 return true;
741 * Select a counter for the current event to schedule. Return true on
742 * success.
744 static bool __perf_sched_find_counter(struct perf_sched *sched)
746 struct event_constraint *c;
747 int idx;
749 if (!sched->state.unassigned)
750 return false;
752 if (sched->state.event >= sched->max_events)
753 return false;
755 c = sched->constraints[sched->state.event];
756 /* Prefer fixed purpose counters */
757 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
758 idx = INTEL_PMC_IDX_FIXED;
759 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
760 if (!__test_and_set_bit(idx, sched->state.used))
761 goto done;
765 /* Grab the first unused counter starting with idx */
766 idx = sched->state.counter;
767 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
768 if (!__test_and_set_bit(idx, sched->state.used)) {
769 if (sched->state.nr_gp++ >= sched->max_gp)
770 return false;
772 goto done;
776 return false;
778 done:
779 sched->state.counter = idx;
781 if (c->overlap)
782 perf_sched_save_state(sched);
784 return true;
787 static bool perf_sched_find_counter(struct perf_sched *sched)
789 while (!__perf_sched_find_counter(sched)) {
790 if (!perf_sched_restore_state(sched))
791 return false;
794 return true;
798 * Go through all unassigned events and find the next one to schedule.
799 * Take events with the least weight first. Return true on success.
801 static bool perf_sched_next_event(struct perf_sched *sched)
803 struct event_constraint *c;
805 if (!sched->state.unassigned || !--sched->state.unassigned)
806 return false;
808 do {
809 /* next event */
810 sched->state.event++;
811 if (sched->state.event >= sched->max_events) {
812 /* next weight */
813 sched->state.event = 0;
814 sched->state.weight++;
815 if (sched->state.weight > sched->max_weight)
816 return false;
818 c = sched->constraints[sched->state.event];
819 } while (c->weight != sched->state.weight);
821 sched->state.counter = 0; /* start with first counter */
823 return true;
827 * Assign a counter for each event.
829 int perf_assign_events(struct event_constraint **constraints, int n,
830 int wmin, int wmax, int gpmax, int *assign)
832 struct perf_sched sched;
834 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
836 do {
837 if (!perf_sched_find_counter(&sched))
838 break; /* failed */
839 if (assign)
840 assign[sched.state.event] = sched.state.counter;
841 } while (perf_sched_next_event(&sched));
843 return sched.state.unassigned;
845 EXPORT_SYMBOL_GPL(perf_assign_events);
847 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
849 struct event_constraint *c;
850 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
851 struct perf_event *e;
852 int i, wmin, wmax, unsched = 0;
853 struct hw_perf_event *hwc;
855 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
857 if (x86_pmu.start_scheduling)
858 x86_pmu.start_scheduling(cpuc);
860 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
861 cpuc->event_constraint[i] = NULL;
862 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
863 cpuc->event_constraint[i] = c;
865 wmin = min(wmin, c->weight);
866 wmax = max(wmax, c->weight);
870 * fastpath, try to reuse previous register
872 for (i = 0; i < n; i++) {
873 hwc = &cpuc->event_list[i]->hw;
874 c = cpuc->event_constraint[i];
876 /* never assigned */
877 if (hwc->idx == -1)
878 break;
880 /* constraint still honored */
881 if (!test_bit(hwc->idx, c->idxmsk))
882 break;
884 /* not already used */
885 if (test_bit(hwc->idx, used_mask))
886 break;
888 __set_bit(hwc->idx, used_mask);
889 if (assign)
890 assign[i] = hwc->idx;
893 /* slow path */
894 if (i != n) {
895 int gpmax = x86_pmu.num_counters;
898 * Do not allow scheduling of more than half the available
899 * generic counters.
901 * This helps avoid counter starvation of sibling thread by
902 * ensuring at most half the counters cannot be in exclusive
903 * mode. There is no designated counters for the limits. Any
904 * N/2 counters can be used. This helps with events with
905 * specific counter constraints.
907 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
908 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
909 gpmax /= 2;
911 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
912 wmax, gpmax, assign);
916 * In case of success (unsched = 0), mark events as committed,
917 * so we do not put_constraint() in case new events are added
918 * and fail to be scheduled
920 * We invoke the lower level commit callback to lock the resource
922 * We do not need to do all of this in case we are called to
923 * validate an event group (assign == NULL)
925 if (!unsched && assign) {
926 for (i = 0; i < n; i++) {
927 e = cpuc->event_list[i];
928 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
929 if (x86_pmu.commit_scheduling)
930 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
932 } else {
933 for (i = 0; i < n; i++) {
934 e = cpuc->event_list[i];
936 * do not put_constraint() on comitted events,
937 * because they are good to go
939 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
940 continue;
943 * release events that failed scheduling
945 if (x86_pmu.put_event_constraints)
946 x86_pmu.put_event_constraints(cpuc, e);
950 if (x86_pmu.stop_scheduling)
951 x86_pmu.stop_scheduling(cpuc);
953 return unsched ? -EINVAL : 0;
957 * dogrp: true if must collect siblings events (group)
958 * returns total number of events and error code
960 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
962 struct perf_event *event;
963 int n, max_count;
965 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
967 /* current number of events already accepted */
968 n = cpuc->n_events;
970 if (is_x86_event(leader)) {
971 if (n >= max_count)
972 return -EINVAL;
973 cpuc->event_list[n] = leader;
974 n++;
976 if (!dogrp)
977 return n;
979 list_for_each_entry(event, &leader->sibling_list, group_entry) {
980 if (!is_x86_event(event) ||
981 event->state <= PERF_EVENT_STATE_OFF)
982 continue;
984 if (n >= max_count)
985 return -EINVAL;
987 cpuc->event_list[n] = event;
988 n++;
990 return n;
993 static inline void x86_assign_hw_event(struct perf_event *event,
994 struct cpu_hw_events *cpuc, int i)
996 struct hw_perf_event *hwc = &event->hw;
998 hwc->idx = cpuc->assign[i];
999 hwc->last_cpu = smp_processor_id();
1000 hwc->last_tag = ++cpuc->tags[i];
1002 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1003 hwc->config_base = 0;
1004 hwc->event_base = 0;
1005 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1006 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1007 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1008 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1009 } else {
1010 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1011 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1012 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1016 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1017 struct cpu_hw_events *cpuc,
1018 int i)
1020 return hwc->idx == cpuc->assign[i] &&
1021 hwc->last_cpu == smp_processor_id() &&
1022 hwc->last_tag == cpuc->tags[i];
1025 static void x86_pmu_start(struct perf_event *event, int flags);
1027 static void x86_pmu_enable(struct pmu *pmu)
1029 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1030 struct perf_event *event;
1031 struct hw_perf_event *hwc;
1032 int i, added = cpuc->n_added;
1034 if (!x86_pmu_initialized())
1035 return;
1037 if (cpuc->enabled)
1038 return;
1040 if (cpuc->n_added) {
1041 int n_running = cpuc->n_events - cpuc->n_added;
1043 * apply assignment obtained either from
1044 * hw_perf_group_sched_in() or x86_pmu_enable()
1046 * step1: save events moving to new counters
1048 for (i = 0; i < n_running; i++) {
1049 event = cpuc->event_list[i];
1050 hwc = &event->hw;
1053 * we can avoid reprogramming counter if:
1054 * - assigned same counter as last time
1055 * - running on same CPU as last time
1056 * - no other event has used the counter since
1058 if (hwc->idx == -1 ||
1059 match_prev_assignment(hwc, cpuc, i))
1060 continue;
1063 * Ensure we don't accidentally enable a stopped
1064 * counter simply because we rescheduled.
1066 if (hwc->state & PERF_HES_STOPPED)
1067 hwc->state |= PERF_HES_ARCH;
1069 x86_pmu_stop(event, PERF_EF_UPDATE);
1073 * step2: reprogram moved events into new counters
1075 for (i = 0; i < cpuc->n_events; i++) {
1076 event = cpuc->event_list[i];
1077 hwc = &event->hw;
1079 if (!match_prev_assignment(hwc, cpuc, i))
1080 x86_assign_hw_event(event, cpuc, i);
1081 else if (i < n_running)
1082 continue;
1084 if (hwc->state & PERF_HES_ARCH)
1085 continue;
1087 x86_pmu_start(event, PERF_EF_RELOAD);
1089 cpuc->n_added = 0;
1090 perf_events_lapic_init();
1093 cpuc->enabled = 1;
1094 barrier();
1096 x86_pmu.enable_all(added);
1099 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1102 * Set the next IRQ period, based on the hwc->period_left value.
1103 * To be called with the event disabled in hw:
1105 int x86_perf_event_set_period(struct perf_event *event)
1107 struct hw_perf_event *hwc = &event->hw;
1108 s64 left = local64_read(&hwc->period_left);
1109 s64 period = hwc->sample_period;
1110 int ret = 0, idx = hwc->idx;
1112 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1113 return 0;
1116 * If we are way outside a reasonable range then just skip forward:
1118 if (unlikely(left <= -period)) {
1119 left = period;
1120 local64_set(&hwc->period_left, left);
1121 hwc->last_period = period;
1122 ret = 1;
1125 if (unlikely(left <= 0)) {
1126 left += period;
1127 local64_set(&hwc->period_left, left);
1128 hwc->last_period = period;
1129 ret = 1;
1132 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1134 if (unlikely(left < 2))
1135 left = 2;
1137 if (left > x86_pmu.max_period)
1138 left = x86_pmu.max_period;
1140 if (x86_pmu.limit_period)
1141 left = x86_pmu.limit_period(event, left);
1143 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1146 * The hw event starts counting from this event offset,
1147 * mark it to be able to extra future deltas:
1149 local64_set(&hwc->prev_count, (u64)-left);
1151 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1154 * Due to erratum on certan cpu we need
1155 * a second write to be sure the register
1156 * is updated properly
1158 if (x86_pmu.perfctr_second_write) {
1159 wrmsrl(hwc->event_base,
1160 (u64)(-left) & x86_pmu.cntval_mask);
1163 perf_event_update_userpage(event);
1165 return ret;
1168 void x86_pmu_enable_event(struct perf_event *event)
1170 if (__this_cpu_read(cpu_hw_events.enabled))
1171 __x86_pmu_enable_event(&event->hw,
1172 ARCH_PERFMON_EVENTSEL_ENABLE);
1176 * Add a single event to the PMU.
1178 * The event is added to the group of enabled events
1179 * but only if it can be scehduled with existing events.
1181 static int x86_pmu_add(struct perf_event *event, int flags)
1183 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1184 struct hw_perf_event *hwc;
1185 int assign[X86_PMC_IDX_MAX];
1186 int n, n0, ret;
1188 hwc = &event->hw;
1190 n0 = cpuc->n_events;
1191 ret = n = collect_events(cpuc, event, false);
1192 if (ret < 0)
1193 goto out;
1195 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1196 if (!(flags & PERF_EF_START))
1197 hwc->state |= PERF_HES_ARCH;
1200 * If group events scheduling transaction was started,
1201 * skip the schedulability test here, it will be performed
1202 * at commit time (->commit_txn) as a whole.
1204 * If commit fails, we'll call ->del() on all events
1205 * for which ->add() was called.
1207 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1208 goto done_collect;
1210 ret = x86_pmu.schedule_events(cpuc, n, assign);
1211 if (ret)
1212 goto out;
1214 * copy new assignment, now we know it is possible
1215 * will be used by hw_perf_enable()
1217 memcpy(cpuc->assign, assign, n*sizeof(int));
1219 done_collect:
1221 * Commit the collect_events() state. See x86_pmu_del() and
1222 * x86_pmu_*_txn().
1224 cpuc->n_events = n;
1225 cpuc->n_added += n - n0;
1226 cpuc->n_txn += n - n0;
1228 if (x86_pmu.add) {
1230 * This is before x86_pmu_enable() will call x86_pmu_start(),
1231 * so we enable LBRs before an event needs them etc..
1233 x86_pmu.add(event);
1236 ret = 0;
1237 out:
1238 return ret;
1241 static void x86_pmu_start(struct perf_event *event, int flags)
1243 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1244 int idx = event->hw.idx;
1246 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1247 return;
1249 if (WARN_ON_ONCE(idx == -1))
1250 return;
1252 if (flags & PERF_EF_RELOAD) {
1253 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1254 x86_perf_event_set_period(event);
1257 event->hw.state = 0;
1259 cpuc->events[idx] = event;
1260 __set_bit(idx, cpuc->active_mask);
1261 __set_bit(idx, cpuc->running);
1262 x86_pmu.enable(event);
1263 perf_event_update_userpage(event);
1266 void perf_event_print_debug(void)
1268 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1269 u64 pebs, debugctl;
1270 struct cpu_hw_events *cpuc;
1271 unsigned long flags;
1272 int cpu, idx;
1274 if (!x86_pmu.num_counters)
1275 return;
1277 local_irq_save(flags);
1279 cpu = smp_processor_id();
1280 cpuc = &per_cpu(cpu_hw_events, cpu);
1282 if (x86_pmu.version >= 2) {
1283 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1284 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1285 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1286 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1288 pr_info("\n");
1289 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1290 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1291 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1292 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1293 if (x86_pmu.pebs_constraints) {
1294 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1295 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1297 if (x86_pmu.lbr_nr) {
1298 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1299 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1302 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1304 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1305 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1306 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1308 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1310 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1311 cpu, idx, pmc_ctrl);
1312 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1313 cpu, idx, pmc_count);
1314 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1315 cpu, idx, prev_left);
1317 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1318 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1320 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1321 cpu, idx, pmc_count);
1323 local_irq_restore(flags);
1326 void x86_pmu_stop(struct perf_event *event, int flags)
1328 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1329 struct hw_perf_event *hwc = &event->hw;
1331 if (test_bit(hwc->idx, cpuc->active_mask)) {
1332 x86_pmu.disable(event);
1333 __clear_bit(hwc->idx, cpuc->active_mask);
1334 cpuc->events[hwc->idx] = NULL;
1335 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1336 hwc->state |= PERF_HES_STOPPED;
1339 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1341 * Drain the remaining delta count out of a event
1342 * that we are disabling:
1344 x86_perf_event_update(event);
1345 hwc->state |= PERF_HES_UPTODATE;
1349 static void x86_pmu_del(struct perf_event *event, int flags)
1351 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1352 int i;
1355 * event is descheduled
1357 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1360 * If we're called during a txn, we only need to undo x86_pmu.add.
1361 * The events never got scheduled and ->cancel_txn will truncate
1362 * the event_list.
1364 * XXX assumes any ->del() called during a TXN will only be on
1365 * an event added during that same TXN.
1367 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1368 goto do_del;
1371 * Not a TXN, therefore cleanup properly.
1373 x86_pmu_stop(event, PERF_EF_UPDATE);
1375 for (i = 0; i < cpuc->n_events; i++) {
1376 if (event == cpuc->event_list[i])
1377 break;
1380 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1381 return;
1383 /* If we have a newly added event; make sure to decrease n_added. */
1384 if (i >= cpuc->n_events - cpuc->n_added)
1385 --cpuc->n_added;
1387 if (x86_pmu.put_event_constraints)
1388 x86_pmu.put_event_constraints(cpuc, event);
1390 /* Delete the array entry. */
1391 while (++i < cpuc->n_events) {
1392 cpuc->event_list[i-1] = cpuc->event_list[i];
1393 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1395 --cpuc->n_events;
1397 perf_event_update_userpage(event);
1399 do_del:
1400 if (x86_pmu.del) {
1402 * This is after x86_pmu_stop(); so we disable LBRs after any
1403 * event can need them etc..
1405 x86_pmu.del(event);
1409 int x86_pmu_handle_irq(struct pt_regs *regs)
1411 struct perf_sample_data data;
1412 struct cpu_hw_events *cpuc;
1413 struct perf_event *event;
1414 int idx, handled = 0;
1415 u64 val;
1417 cpuc = this_cpu_ptr(&cpu_hw_events);
1420 * Some chipsets need to unmask the LVTPC in a particular spot
1421 * inside the nmi handler. As a result, the unmasking was pushed
1422 * into all the nmi handlers.
1424 * This generic handler doesn't seem to have any issues where the
1425 * unmasking occurs so it was left at the top.
1427 apic_write(APIC_LVTPC, APIC_DM_NMI);
1429 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1430 if (!test_bit(idx, cpuc->active_mask))
1431 continue;
1433 event = cpuc->events[idx];
1435 val = x86_perf_event_update(event);
1436 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1437 continue;
1440 * event overflow
1442 handled++;
1443 perf_sample_data_init(&data, 0, event->hw.last_period);
1445 if (!x86_perf_event_set_period(event))
1446 continue;
1448 if (perf_event_overflow(event, &data, regs))
1449 x86_pmu_stop(event, 0);
1452 if (handled)
1453 inc_irq_stat(apic_perf_irqs);
1455 return handled;
1458 void perf_events_lapic_init(void)
1460 if (!x86_pmu.apic || !x86_pmu_initialized())
1461 return;
1464 * Always use NMI for PMU
1466 apic_write(APIC_LVTPC, APIC_DM_NMI);
1469 static int
1470 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1472 u64 start_clock;
1473 u64 finish_clock;
1474 int ret;
1477 * All PMUs/events that share this PMI handler should make sure to
1478 * increment active_events for their events.
1480 if (!atomic_read(&active_events))
1481 return NMI_DONE;
1483 start_clock = sched_clock();
1484 ret = x86_pmu.handle_irq(regs);
1485 finish_clock = sched_clock();
1487 perf_sample_event_took(finish_clock - start_clock);
1489 return ret;
1491 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1493 struct event_constraint emptyconstraint;
1494 struct event_constraint unconstrained;
1496 static int x86_pmu_prepare_cpu(unsigned int cpu)
1498 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1499 int i;
1501 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1502 cpuc->kfree_on_online[i] = NULL;
1503 if (x86_pmu.cpu_prepare)
1504 return x86_pmu.cpu_prepare(cpu);
1505 return 0;
1508 static int x86_pmu_dead_cpu(unsigned int cpu)
1510 if (x86_pmu.cpu_dead)
1511 x86_pmu.cpu_dead(cpu);
1512 return 0;
1515 static int x86_pmu_online_cpu(unsigned int cpu)
1517 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1518 int i;
1520 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1521 kfree(cpuc->kfree_on_online[i]);
1522 cpuc->kfree_on_online[i] = NULL;
1524 return 0;
1527 static int x86_pmu_starting_cpu(unsigned int cpu)
1529 if (x86_pmu.cpu_starting)
1530 x86_pmu.cpu_starting(cpu);
1531 return 0;
1534 static int x86_pmu_dying_cpu(unsigned int cpu)
1536 if (x86_pmu.cpu_dying)
1537 x86_pmu.cpu_dying(cpu);
1538 return 0;
1541 static void __init pmu_check_apic(void)
1543 if (boot_cpu_has(X86_FEATURE_APIC))
1544 return;
1546 x86_pmu.apic = 0;
1547 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1548 pr_info("no hardware sampling interrupt available.\n");
1551 * If we have a PMU initialized but no APIC
1552 * interrupts, we cannot sample hardware
1553 * events (user-space has to fall back and
1554 * sample via a hrtimer based software event):
1556 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1560 static struct attribute_group x86_pmu_format_group = {
1561 .name = "format",
1562 .attrs = NULL,
1566 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1567 * out of events_attr attributes.
1569 static void __init filter_events(struct attribute **attrs)
1571 struct device_attribute *d;
1572 struct perf_pmu_events_attr *pmu_attr;
1573 int offset = 0;
1574 int i, j;
1576 for (i = 0; attrs[i]; i++) {
1577 d = (struct device_attribute *)attrs[i];
1578 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1579 /* str trumps id */
1580 if (pmu_attr->event_str)
1581 continue;
1582 if (x86_pmu.event_map(i + offset))
1583 continue;
1585 for (j = i; attrs[j]; j++)
1586 attrs[j] = attrs[j + 1];
1588 /* Check the shifted attr. */
1589 i--;
1592 * event_map() is index based, the attrs array is organized
1593 * by increasing event index. If we shift the events, then
1594 * we need to compensate for the event_map(), otherwise
1595 * we are looking up the wrong event in the map
1597 offset++;
1601 /* Merge two pointer arrays */
1602 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1604 struct attribute **new;
1605 int j, i;
1607 for (j = 0; a[j]; j++)
1609 for (i = 0; b[i]; i++)
1610 j++;
1611 j++;
1613 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1614 if (!new)
1615 return NULL;
1617 j = 0;
1618 for (i = 0; a[i]; i++)
1619 new[j++] = a[i];
1620 for (i = 0; b[i]; i++)
1621 new[j++] = b[i];
1622 new[j] = NULL;
1624 return new;
1627 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1629 struct perf_pmu_events_attr *pmu_attr = \
1630 container_of(attr, struct perf_pmu_events_attr, attr);
1631 u64 config = x86_pmu.event_map(pmu_attr->id);
1633 /* string trumps id */
1634 if (pmu_attr->event_str)
1635 return sprintf(page, "%s", pmu_attr->event_str);
1637 return x86_pmu.events_sysfs_show(page, config);
1639 EXPORT_SYMBOL_GPL(events_sysfs_show);
1641 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1642 char *page)
1644 struct perf_pmu_events_ht_attr *pmu_attr =
1645 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1648 * Report conditional events depending on Hyper-Threading.
1650 * This is overly conservative as usually the HT special
1651 * handling is not needed if the other CPU thread is idle.
1653 * Note this does not (and cannot) handle the case when thread
1654 * siblings are invisible, for example with virtualization
1655 * if they are owned by some other guest. The user tool
1656 * has to re-read when a thread sibling gets onlined later.
1658 return sprintf(page, "%s",
1659 topology_max_smt_threads() > 1 ?
1660 pmu_attr->event_str_ht :
1661 pmu_attr->event_str_noht);
1664 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1665 EVENT_ATTR(instructions, INSTRUCTIONS );
1666 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1667 EVENT_ATTR(cache-misses, CACHE_MISSES );
1668 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1669 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1670 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1671 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1672 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1673 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1675 static struct attribute *empty_attrs;
1677 static struct attribute *events_attr[] = {
1678 EVENT_PTR(CPU_CYCLES),
1679 EVENT_PTR(INSTRUCTIONS),
1680 EVENT_PTR(CACHE_REFERENCES),
1681 EVENT_PTR(CACHE_MISSES),
1682 EVENT_PTR(BRANCH_INSTRUCTIONS),
1683 EVENT_PTR(BRANCH_MISSES),
1684 EVENT_PTR(BUS_CYCLES),
1685 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1686 EVENT_PTR(STALLED_CYCLES_BACKEND),
1687 EVENT_PTR(REF_CPU_CYCLES),
1688 NULL,
1691 static struct attribute_group x86_pmu_events_group = {
1692 .name = "events",
1693 .attrs = events_attr,
1696 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1698 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1699 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1700 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1701 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1702 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1703 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1704 ssize_t ret;
1707 * We have whole page size to spend and just little data
1708 * to write, so we can safely use sprintf.
1710 ret = sprintf(page, "event=0x%02llx", event);
1712 if (umask)
1713 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1715 if (edge)
1716 ret += sprintf(page + ret, ",edge");
1718 if (pc)
1719 ret += sprintf(page + ret, ",pc");
1721 if (any)
1722 ret += sprintf(page + ret, ",any");
1724 if (inv)
1725 ret += sprintf(page + ret, ",inv");
1727 if (cmask)
1728 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1730 ret += sprintf(page + ret, "\n");
1732 return ret;
1735 static struct attribute_group x86_pmu_attr_group;
1736 static struct attribute_group x86_pmu_caps_group;
1738 static int __init init_hw_perf_events(void)
1740 struct x86_pmu_quirk *quirk;
1741 int err;
1743 pr_info("Performance Events: ");
1745 switch (boot_cpu_data.x86_vendor) {
1746 case X86_VENDOR_INTEL:
1747 err = intel_pmu_init();
1748 break;
1749 case X86_VENDOR_AMD:
1750 err = amd_pmu_init();
1751 break;
1752 default:
1753 err = -ENOTSUPP;
1755 if (err != 0) {
1756 pr_cont("no PMU driver, software events only.\n");
1757 return 0;
1760 pmu_check_apic();
1762 /* sanity check that the hardware exists or is emulated */
1763 if (!check_hw_exists())
1764 return 0;
1766 pr_cont("%s PMU driver.\n", x86_pmu.name);
1768 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1770 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1771 quirk->func();
1773 if (!x86_pmu.intel_ctrl)
1774 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1776 perf_events_lapic_init();
1777 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1779 unconstrained = (struct event_constraint)
1780 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1781 0, x86_pmu.num_counters, 0, 0);
1783 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1785 if (x86_pmu.caps_attrs) {
1786 struct attribute **tmp;
1788 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1789 if (!WARN_ON(!tmp))
1790 x86_pmu_caps_group.attrs = tmp;
1793 if (x86_pmu.event_attrs)
1794 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1796 if (!x86_pmu.events_sysfs_show)
1797 x86_pmu_events_group.attrs = &empty_attrs;
1798 else
1799 filter_events(x86_pmu_events_group.attrs);
1801 if (x86_pmu.cpu_events) {
1802 struct attribute **tmp;
1804 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1805 if (!WARN_ON(!tmp))
1806 x86_pmu_events_group.attrs = tmp;
1809 if (x86_pmu.attrs) {
1810 struct attribute **tmp;
1812 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1813 if (!WARN_ON(!tmp))
1814 x86_pmu_attr_group.attrs = tmp;
1817 pr_info("... version: %d\n", x86_pmu.version);
1818 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1819 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1820 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1821 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1822 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1823 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1826 * Install callbacks. Core will call them for each online
1827 * cpu.
1829 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1830 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1831 if (err)
1832 return err;
1834 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1835 "perf/x86:starting", x86_pmu_starting_cpu,
1836 x86_pmu_dying_cpu);
1837 if (err)
1838 goto out;
1840 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1841 x86_pmu_online_cpu, NULL);
1842 if (err)
1843 goto out1;
1845 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1846 if (err)
1847 goto out2;
1849 return 0;
1851 out2:
1852 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1853 out1:
1854 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1855 out:
1856 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1857 return err;
1859 early_initcall(init_hw_perf_events);
1861 static inline void x86_pmu_read(struct perf_event *event)
1863 x86_perf_event_update(event);
1867 * Start group events scheduling transaction
1868 * Set the flag to make pmu::enable() not perform the
1869 * schedulability test, it will be performed at commit time
1871 * We only support PERF_PMU_TXN_ADD transactions. Save the
1872 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1873 * transactions.
1875 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1877 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1879 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1881 cpuc->txn_flags = txn_flags;
1882 if (txn_flags & ~PERF_PMU_TXN_ADD)
1883 return;
1885 perf_pmu_disable(pmu);
1886 __this_cpu_write(cpu_hw_events.n_txn, 0);
1890 * Stop group events scheduling transaction
1891 * Clear the flag and pmu::enable() will perform the
1892 * schedulability test.
1894 static void x86_pmu_cancel_txn(struct pmu *pmu)
1896 unsigned int txn_flags;
1897 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1899 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1901 txn_flags = cpuc->txn_flags;
1902 cpuc->txn_flags = 0;
1903 if (txn_flags & ~PERF_PMU_TXN_ADD)
1904 return;
1907 * Truncate collected array by the number of events added in this
1908 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1910 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1911 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1912 perf_pmu_enable(pmu);
1916 * Commit group events scheduling transaction
1917 * Perform the group schedulability test as a whole
1918 * Return 0 if success
1920 * Does not cancel the transaction on failure; expects the caller to do this.
1922 static int x86_pmu_commit_txn(struct pmu *pmu)
1924 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1925 int assign[X86_PMC_IDX_MAX];
1926 int n, ret;
1928 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1930 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1931 cpuc->txn_flags = 0;
1932 return 0;
1935 n = cpuc->n_events;
1937 if (!x86_pmu_initialized())
1938 return -EAGAIN;
1940 ret = x86_pmu.schedule_events(cpuc, n, assign);
1941 if (ret)
1942 return ret;
1945 * copy new assignment, now we know it is possible
1946 * will be used by hw_perf_enable()
1948 memcpy(cpuc->assign, assign, n*sizeof(int));
1950 cpuc->txn_flags = 0;
1951 perf_pmu_enable(pmu);
1952 return 0;
1955 * a fake_cpuc is used to validate event groups. Due to
1956 * the extra reg logic, we need to also allocate a fake
1957 * per_core and per_cpu structure. Otherwise, group events
1958 * using extra reg may conflict without the kernel being
1959 * able to catch this when the last event gets added to
1960 * the group.
1962 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1964 intel_cpuc_finish(cpuc);
1965 kfree(cpuc);
1968 static struct cpu_hw_events *allocate_fake_cpuc(void)
1970 struct cpu_hw_events *cpuc;
1971 int cpu = raw_smp_processor_id();
1973 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1974 if (!cpuc)
1975 return ERR_PTR(-ENOMEM);
1976 cpuc->is_fake = 1;
1978 if (intel_cpuc_prepare(cpuc, cpu))
1979 goto error;
1981 return cpuc;
1982 error:
1983 free_fake_cpuc(cpuc);
1984 return ERR_PTR(-ENOMEM);
1988 * validate that we can schedule this event
1990 static int validate_event(struct perf_event *event)
1992 struct cpu_hw_events *fake_cpuc;
1993 struct event_constraint *c;
1994 int ret = 0;
1996 fake_cpuc = allocate_fake_cpuc();
1997 if (IS_ERR(fake_cpuc))
1998 return PTR_ERR(fake_cpuc);
2000 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2002 if (!c || !c->weight)
2003 ret = -EINVAL;
2005 if (x86_pmu.put_event_constraints)
2006 x86_pmu.put_event_constraints(fake_cpuc, event);
2008 free_fake_cpuc(fake_cpuc);
2010 return ret;
2014 * validate a single event group
2016 * validation include:
2017 * - check events are compatible which each other
2018 * - events do not compete for the same counter
2019 * - number of events <= number of counters
2021 * validation ensures the group can be loaded onto the
2022 * PMU if it was the only group available.
2024 static int validate_group(struct perf_event *event)
2026 struct perf_event *leader = event->group_leader;
2027 struct cpu_hw_events *fake_cpuc;
2028 int ret = -EINVAL, n;
2030 fake_cpuc = allocate_fake_cpuc();
2031 if (IS_ERR(fake_cpuc))
2032 return PTR_ERR(fake_cpuc);
2034 * the event is not yet connected with its
2035 * siblings therefore we must first collect
2036 * existing siblings, then add the new event
2037 * before we can simulate the scheduling
2039 n = collect_events(fake_cpuc, leader, true);
2040 if (n < 0)
2041 goto out;
2043 fake_cpuc->n_events = n;
2044 n = collect_events(fake_cpuc, event, false);
2045 if (n < 0)
2046 goto out;
2048 fake_cpuc->n_events = n;
2050 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2052 out:
2053 free_fake_cpuc(fake_cpuc);
2054 return ret;
2057 static int x86_pmu_event_init(struct perf_event *event)
2059 struct pmu *tmp;
2060 int err;
2062 switch (event->attr.type) {
2063 case PERF_TYPE_RAW:
2064 case PERF_TYPE_HARDWARE:
2065 case PERF_TYPE_HW_CACHE:
2066 break;
2068 default:
2069 return -ENOENT;
2072 err = __x86_pmu_event_init(event);
2073 if (!err) {
2075 * we temporarily connect event to its pmu
2076 * such that validate_group() can classify
2077 * it as an x86 event using is_x86_event()
2079 tmp = event->pmu;
2080 event->pmu = &pmu;
2082 if (event->group_leader != event)
2083 err = validate_group(event);
2084 else
2085 err = validate_event(event);
2087 event->pmu = tmp;
2089 if (err) {
2090 if (event->destroy)
2091 event->destroy(event);
2094 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2095 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2097 return err;
2100 static void refresh_pce(void *ignored)
2102 load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2105 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2107 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2108 return;
2111 * This function relies on not being called concurrently in two
2112 * tasks in the same mm. Otherwise one task could observe
2113 * perf_rdpmc_allowed > 1 and return all the way back to
2114 * userspace with CR4.PCE clear while another task is still
2115 * doing on_each_cpu_mask() to propagate CR4.PCE.
2117 * For now, this can't happen because all callers hold mmap_sem
2118 * for write. If this changes, we'll need a different solution.
2120 lockdep_assert_held_exclusive(&mm->mmap_sem);
2122 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2123 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2126 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2129 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2130 return;
2132 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2133 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2136 static int x86_pmu_event_idx(struct perf_event *event)
2138 int idx = event->hw.idx;
2140 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2141 return 0;
2143 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2144 idx -= INTEL_PMC_IDX_FIXED;
2145 idx |= 1 << 30;
2148 return idx + 1;
2151 static ssize_t get_attr_rdpmc(struct device *cdev,
2152 struct device_attribute *attr,
2153 char *buf)
2155 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2158 static ssize_t set_attr_rdpmc(struct device *cdev,
2159 struct device_attribute *attr,
2160 const char *buf, size_t count)
2162 unsigned long val;
2163 ssize_t ret;
2165 ret = kstrtoul(buf, 0, &val);
2166 if (ret)
2167 return ret;
2169 if (val > 2)
2170 return -EINVAL;
2172 if (x86_pmu.attr_rdpmc_broken)
2173 return -ENOTSUPP;
2175 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2177 * Changing into or out of always available, aka
2178 * perf-event-bypassing mode. This path is extremely slow,
2179 * but only root can trigger it, so it's okay.
2181 if (val == 2)
2182 static_key_slow_inc(&rdpmc_always_available);
2183 else
2184 static_key_slow_dec(&rdpmc_always_available);
2185 on_each_cpu(refresh_pce, NULL, 1);
2188 x86_pmu.attr_rdpmc = val;
2190 return count;
2193 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2195 static struct attribute *x86_pmu_attrs[] = {
2196 &dev_attr_rdpmc.attr,
2197 NULL,
2200 static struct attribute_group x86_pmu_attr_group = {
2201 .attrs = x86_pmu_attrs,
2204 static ssize_t max_precise_show(struct device *cdev,
2205 struct device_attribute *attr,
2206 char *buf)
2208 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2211 static DEVICE_ATTR_RO(max_precise);
2213 static struct attribute *x86_pmu_caps_attrs[] = {
2214 &dev_attr_max_precise.attr,
2215 NULL
2218 static struct attribute_group x86_pmu_caps_group = {
2219 .name = "caps",
2220 .attrs = x86_pmu_caps_attrs,
2223 static const struct attribute_group *x86_pmu_attr_groups[] = {
2224 &x86_pmu_attr_group,
2225 &x86_pmu_format_group,
2226 &x86_pmu_events_group,
2227 &x86_pmu_caps_group,
2228 NULL,
2231 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2233 if (x86_pmu.sched_task)
2234 x86_pmu.sched_task(ctx, sched_in);
2237 void perf_check_microcode(void)
2239 if (x86_pmu.check_microcode)
2240 x86_pmu.check_microcode();
2243 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2245 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2246 return -EINVAL;
2248 if (value && x86_pmu.limit_period) {
2249 if (x86_pmu.limit_period(event, value) > value)
2250 return -EINVAL;
2253 return 0;
2256 static struct pmu pmu = {
2257 .pmu_enable = x86_pmu_enable,
2258 .pmu_disable = x86_pmu_disable,
2260 .attr_groups = x86_pmu_attr_groups,
2262 .event_init = x86_pmu_event_init,
2264 .event_mapped = x86_pmu_event_mapped,
2265 .event_unmapped = x86_pmu_event_unmapped,
2267 .add = x86_pmu_add,
2268 .del = x86_pmu_del,
2269 .start = x86_pmu_start,
2270 .stop = x86_pmu_stop,
2271 .read = x86_pmu_read,
2273 .start_txn = x86_pmu_start_txn,
2274 .cancel_txn = x86_pmu_cancel_txn,
2275 .commit_txn = x86_pmu_commit_txn,
2277 .event_idx = x86_pmu_event_idx,
2278 .sched_task = x86_pmu_sched_task,
2279 .task_ctx_size = sizeof(struct x86_perf_task_context),
2280 .check_period = x86_pmu_check_period,
2283 void arch_perf_update_userpage(struct perf_event *event,
2284 struct perf_event_mmap_page *userpg, u64 now)
2286 struct cyc2ns_data data;
2287 u64 offset;
2289 userpg->cap_user_time = 0;
2290 userpg->cap_user_time_zero = 0;
2291 userpg->cap_user_rdpmc =
2292 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2293 userpg->pmc_width = x86_pmu.cntval_bits;
2295 if (!using_native_sched_clock() || !sched_clock_stable())
2296 return;
2298 cyc2ns_read_begin(&data);
2300 offset = data.cyc2ns_offset + __sched_clock_offset;
2303 * Internal timekeeping for enabled/running/stopped times
2304 * is always in the local_clock domain.
2306 userpg->cap_user_time = 1;
2307 userpg->time_mult = data.cyc2ns_mul;
2308 userpg->time_shift = data.cyc2ns_shift;
2309 userpg->time_offset = offset - now;
2312 * cap_user_time_zero doesn't make sense when we're using a different
2313 * time base for the records.
2315 if (!event->attr.use_clockid) {
2316 userpg->cap_user_time_zero = 1;
2317 userpg->time_zero = offset;
2320 cyc2ns_read_end();
2323 void
2324 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2326 struct unwind_state state;
2327 unsigned long addr;
2329 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2330 /* TODO: We don't support guest os callchain now */
2331 return;
2334 if (perf_callchain_store(entry, regs->ip))
2335 return;
2337 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2338 unwind_next_frame(&state)) {
2339 addr = unwind_get_return_address(&state);
2340 if (!addr || perf_callchain_store(entry, addr))
2341 return;
2345 static inline int
2346 valid_user_frame(const void __user *fp, unsigned long size)
2348 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2351 static unsigned long get_segment_base(unsigned int segment)
2353 struct desc_struct *desc;
2354 unsigned int idx = segment >> 3;
2356 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2357 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2358 struct ldt_struct *ldt;
2360 /* IRQs are off, so this synchronizes with smp_store_release */
2361 ldt = READ_ONCE(current->active_mm->context.ldt);
2362 if (!ldt || idx >= ldt->nr_entries)
2363 return 0;
2365 desc = &ldt->entries[idx];
2366 #else
2367 return 0;
2368 #endif
2369 } else {
2370 if (idx >= GDT_ENTRIES)
2371 return 0;
2373 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2376 return get_desc_base(desc);
2379 #ifdef CONFIG_IA32_EMULATION
2381 #include <asm/compat.h>
2383 static inline int
2384 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2386 /* 32-bit process in 64-bit kernel. */
2387 unsigned long ss_base, cs_base;
2388 struct stack_frame_ia32 frame;
2389 const void __user *fp;
2391 if (!test_thread_flag(TIF_IA32))
2392 return 0;
2394 cs_base = get_segment_base(regs->cs);
2395 ss_base = get_segment_base(regs->ss);
2397 fp = compat_ptr(ss_base + regs->bp);
2398 pagefault_disable();
2399 while (entry->nr < entry->max_stack) {
2400 unsigned long bytes;
2401 frame.next_frame = 0;
2402 frame.return_address = 0;
2404 if (!valid_user_frame(fp, sizeof(frame)))
2405 break;
2407 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2408 if (bytes != 0)
2409 break;
2410 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2411 if (bytes != 0)
2412 break;
2414 perf_callchain_store(entry, cs_base + frame.return_address);
2415 fp = compat_ptr(ss_base + frame.next_frame);
2417 pagefault_enable();
2418 return 1;
2420 #else
2421 static inline int
2422 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2424 return 0;
2426 #endif
2428 void
2429 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2431 struct stack_frame frame;
2432 const unsigned long __user *fp;
2434 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2435 /* TODO: We don't support guest os callchain now */
2436 return;
2440 * We don't know what to do with VM86 stacks.. ignore them for now.
2442 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2443 return;
2445 fp = (unsigned long __user *)regs->bp;
2447 perf_callchain_store(entry, regs->ip);
2449 if (!nmi_uaccess_okay())
2450 return;
2452 if (perf_callchain_user32(regs, entry))
2453 return;
2455 pagefault_disable();
2456 while (entry->nr < entry->max_stack) {
2457 unsigned long bytes;
2459 frame.next_frame = NULL;
2460 frame.return_address = 0;
2462 if (!valid_user_frame(fp, sizeof(frame)))
2463 break;
2465 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2466 if (bytes != 0)
2467 break;
2468 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2469 if (bytes != 0)
2470 break;
2472 perf_callchain_store(entry, frame.return_address);
2473 fp = (void __user *)frame.next_frame;
2475 pagefault_enable();
2479 * Deal with code segment offsets for the various execution modes:
2481 * VM86 - the good olde 16 bit days, where the linear address is
2482 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2484 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2485 * to figure out what the 32bit base address is.
2487 * X32 - has TIF_X32 set, but is running in x86_64
2489 * X86_64 - CS,DS,SS,ES are all zero based.
2491 static unsigned long code_segment_base(struct pt_regs *regs)
2494 * For IA32 we look at the GDT/LDT segment base to convert the
2495 * effective IP to a linear address.
2498 #ifdef CONFIG_X86_32
2500 * If we are in VM86 mode, add the segment offset to convert to a
2501 * linear address.
2503 if (regs->flags & X86_VM_MASK)
2504 return 0x10 * regs->cs;
2506 if (user_mode(regs) && regs->cs != __USER_CS)
2507 return get_segment_base(regs->cs);
2508 #else
2509 if (user_mode(regs) && !user_64bit_mode(regs) &&
2510 regs->cs != __USER32_CS)
2511 return get_segment_base(regs->cs);
2512 #endif
2513 return 0;
2516 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2518 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2519 return perf_guest_cbs->get_guest_ip();
2521 return regs->ip + code_segment_base(regs);
2524 unsigned long perf_misc_flags(struct pt_regs *regs)
2526 int misc = 0;
2528 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2529 if (perf_guest_cbs->is_user_mode())
2530 misc |= PERF_RECORD_MISC_GUEST_USER;
2531 else
2532 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2533 } else {
2534 if (user_mode(regs))
2535 misc |= PERF_RECORD_MISC_USER;
2536 else
2537 misc |= PERF_RECORD_MISC_KERNEL;
2540 if (regs->flags & PERF_EFLAGS_EXACT)
2541 misc |= PERF_RECORD_MISC_EXACT_IP;
2543 return misc;
2546 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2548 cap->version = x86_pmu.version;
2549 cap->num_counters_gp = x86_pmu.num_counters;
2550 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2551 cap->bit_width_gp = x86_pmu.cntval_bits;
2552 cap->bit_width_fixed = x86_pmu.cntval_bits;
2553 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2554 cap->events_mask_len = x86_pmu.events_mask_len;
2556 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);