1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
5 #include <asm/perf_event.h>
9 #include "../perf_event.h"
13 LBR_FORMAT_LIP
= 0x01,
14 LBR_FORMAT_EIP
= 0x02,
15 LBR_FORMAT_EIP_FLAGS
= 0x03,
16 LBR_FORMAT_EIP_FLAGS2
= 0x04,
17 LBR_FORMAT_INFO
= 0x05,
18 LBR_FORMAT_TIME
= 0x06,
19 LBR_FORMAT_MAX_KNOWN
= LBR_FORMAT_TIME
,
25 } lbr_desc
[LBR_FORMAT_MAX_KNOWN
+ 1] = {
26 [LBR_FORMAT_EIP_FLAGS
] = LBR_EIP_FLAGS
,
27 [LBR_FORMAT_EIP_FLAGS2
] = LBR_EIP_FLAGS
| LBR_TSX
,
31 * Intel LBR_SELECT bits
32 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
34 * Hardware branch filter (not available on all CPUs)
36 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
37 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
38 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
39 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
40 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
41 #define LBR_RETURN_BIT 5 /* do not capture near returns */
42 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
43 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
44 #define LBR_FAR_BIT 8 /* do not capture far branches */
45 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
48 * Following bit only exists in Linux; we mask it out before writing it to
49 * the actual MSR. But it helps the constraint perf code to understand
50 * that this is a separate configuration.
52 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
54 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
55 #define LBR_USER (1 << LBR_USER_BIT)
56 #define LBR_JCC (1 << LBR_JCC_BIT)
57 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
58 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
59 #define LBR_RETURN (1 << LBR_RETURN_BIT)
60 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
61 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
62 #define LBR_FAR (1 << LBR_FAR_BIT)
63 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
64 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
66 #define LBR_PLM (LBR_KERNEL | LBR_USER)
68 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
69 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
70 #define LBR_IGN 0 /* ignored */
81 #define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
82 #define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
83 #define LBR_FROM_FLAG_ABORT BIT_ULL(61)
85 #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
88 * x86control flow change classification
89 * x86control flow changes include branches, interrupts, traps, faults
92 X86_BR_NONE
= 0, /* unknown */
94 X86_BR_USER
= 1 << 0, /* branch target is user */
95 X86_BR_KERNEL
= 1 << 1, /* branch target is kernel */
97 X86_BR_CALL
= 1 << 2, /* call */
98 X86_BR_RET
= 1 << 3, /* return */
99 X86_BR_SYSCALL
= 1 << 4, /* syscall */
100 X86_BR_SYSRET
= 1 << 5, /* syscall return */
101 X86_BR_INT
= 1 << 6, /* sw interrupt */
102 X86_BR_IRET
= 1 << 7, /* return from interrupt */
103 X86_BR_JCC
= 1 << 8, /* conditional */
104 X86_BR_JMP
= 1 << 9, /* jump */
105 X86_BR_IRQ
= 1 << 10,/* hw interrupt or trap or fault */
106 X86_BR_IND_CALL
= 1 << 11,/* indirect calls */
107 X86_BR_ABORT
= 1 << 12,/* transaction abort */
108 X86_BR_IN_TX
= 1 << 13,/* in transaction */
109 X86_BR_NO_TX
= 1 << 14,/* not in transaction */
110 X86_BR_ZERO_CALL
= 1 << 15,/* zero length call */
111 X86_BR_CALL_STACK
= 1 << 16,/* call stack */
112 X86_BR_IND_JMP
= 1 << 17,/* indirect jump */
114 X86_BR_TYPE_SAVE
= 1 << 18,/* indicate to save branch type */
118 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
119 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
136 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
138 #define X86_BR_ANY_CALL \
146 static void intel_pmu_lbr_filter(struct cpu_hw_events
*cpuc
);
149 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
150 * otherwise it becomes near impossible to get a reliable stack.
153 static void __intel_pmu_lbr_enable(bool pmi
)
155 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
156 u64 debugctl
, lbr_select
= 0, orig_debugctl
;
159 * No need to unfreeze manually, as v4 can do that as part
160 * of the GLOBAL_STATUS ack.
162 if (pmi
&& x86_pmu
.version
>= 4)
166 * No need to reprogram LBR_SELECT in a PMI, as it
170 lbr_select
= cpuc
->lbr_sel
->config
& x86_pmu
.lbr_sel_mask
;
171 if (!pmi
&& cpuc
->lbr_sel
)
172 wrmsrl(MSR_LBR_SELECT
, lbr_select
);
174 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
175 orig_debugctl
= debugctl
;
176 debugctl
|= DEBUGCTLMSR_LBR
;
178 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
179 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
180 * may cause superfluous increase/decrease of LBR_TOS.
182 if (!(lbr_select
& LBR_CALL_STACK
))
183 debugctl
|= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI
;
184 if (orig_debugctl
!= debugctl
)
185 wrmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
188 static void __intel_pmu_lbr_disable(void)
192 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
193 debugctl
&= ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_FREEZE_LBRS_ON_PMI
);
194 wrmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
197 static void intel_pmu_lbr_reset_32(void)
201 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++)
202 wrmsrl(x86_pmu
.lbr_from
+ i
, 0);
205 static void intel_pmu_lbr_reset_64(void)
209 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
210 wrmsrl(x86_pmu
.lbr_from
+ i
, 0);
211 wrmsrl(x86_pmu
.lbr_to
+ i
, 0);
212 if (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_INFO
)
213 wrmsrl(MSR_LBR_INFO_0
+ i
, 0);
217 void intel_pmu_lbr_reset(void)
222 if (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_32
)
223 intel_pmu_lbr_reset_32();
225 intel_pmu_lbr_reset_64();
229 * TOS = most recently recorded branch
231 static inline u64
intel_pmu_lbr_tos(void)
235 rdmsrl(x86_pmu
.lbr_tos
, tos
);
245 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
246 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
247 * TSX is not supported they have no consistent behavior:
249 * - For wrmsr(), bits 61:62 are considered part of the sign extension.
250 * - For HW updates (branch captures) bits 61:62 are always OFF and are not
251 * part of the sign extension.
255 * 1) LBR has TSX format
256 * 2) CPU has no TSX support enabled
258 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
259 * value from rdmsr() must be converted to have a 61 bits sign extension,
260 * ignoring the TSX flags.
262 static inline bool lbr_from_signext_quirk_needed(void)
264 int lbr_format
= x86_pmu
.intel_cap
.lbr_format
;
265 bool tsx_support
= boot_cpu_has(X86_FEATURE_HLE
) ||
266 boot_cpu_has(X86_FEATURE_RTM
);
268 return !tsx_support
&& (lbr_desc
[lbr_format
] & LBR_TSX
);
271 DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key
);
273 /* If quirk is enabled, ensure sign extension is 63 bits: */
274 inline u64
lbr_from_signext_quirk_wr(u64 val
)
276 if (static_branch_unlikely(&lbr_from_quirk_key
)) {
278 * Sign extend into bits 61:62 while preserving bit 63.
280 * Quirk is enabled when TSX is disabled. Therefore TSX bits
281 * in val are always OFF and must be changed to be sign
282 * extension bits. Since bits 59:60 are guaranteed to be
283 * part of the sign extension bits, we can just copy them
286 val
|= (LBR_FROM_SIGNEXT_2MSB
& val
) << 2;
292 * If quirk is needed, ensure sign extension is 61 bits:
294 static u64
lbr_from_signext_quirk_rd(u64 val
)
296 if (static_branch_unlikely(&lbr_from_quirk_key
)) {
298 * Quirk is on when TSX is not enabled. Therefore TSX
299 * flags must be read as OFF.
301 val
&= ~(LBR_FROM_FLAG_IN_TX
| LBR_FROM_FLAG_ABORT
);
306 static inline void wrlbr_from(unsigned int idx
, u64 val
)
308 val
= lbr_from_signext_quirk_wr(val
);
309 wrmsrl(x86_pmu
.lbr_from
+ idx
, val
);
312 static inline void wrlbr_to(unsigned int idx
, u64 val
)
314 wrmsrl(x86_pmu
.lbr_to
+ idx
, val
);
317 static inline u64
rdlbr_from(unsigned int idx
)
321 rdmsrl(x86_pmu
.lbr_from
+ idx
, val
);
323 return lbr_from_signext_quirk_rd(val
);
326 static inline u64
rdlbr_to(unsigned int idx
)
330 rdmsrl(x86_pmu
.lbr_to
+ idx
, val
);
335 static void __intel_pmu_lbr_restore(struct x86_perf_task_context
*task_ctx
)
338 unsigned lbr_idx
, mask
;
341 if (task_ctx
->lbr_callstack_users
== 0 ||
342 task_ctx
->lbr_stack_state
== LBR_NONE
) {
343 intel_pmu_lbr_reset();
347 mask
= x86_pmu
.lbr_nr
- 1;
349 for (i
= 0; i
< task_ctx
->valid_lbrs
; i
++) {
350 lbr_idx
= (tos
- i
) & mask
;
351 wrlbr_from(lbr_idx
, task_ctx
->lbr_from
[i
]);
352 wrlbr_to (lbr_idx
, task_ctx
->lbr_to
[i
]);
354 if (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_INFO
)
355 wrmsrl(MSR_LBR_INFO_0
+ lbr_idx
, task_ctx
->lbr_info
[i
]);
358 for (; i
< x86_pmu
.lbr_nr
; i
++) {
359 lbr_idx
= (tos
- i
) & mask
;
360 wrlbr_from(lbr_idx
, 0);
361 wrlbr_to(lbr_idx
, 0);
362 if (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_INFO
)
363 wrmsrl(MSR_LBR_INFO_0
+ lbr_idx
, 0);
366 wrmsrl(x86_pmu
.lbr_tos
, tos
);
367 task_ctx
->lbr_stack_state
= LBR_NONE
;
370 static void __intel_pmu_lbr_save(struct x86_perf_task_context
*task_ctx
)
372 unsigned lbr_idx
, mask
;
376 if (task_ctx
->lbr_callstack_users
== 0) {
377 task_ctx
->lbr_stack_state
= LBR_NONE
;
381 mask
= x86_pmu
.lbr_nr
- 1;
382 tos
= intel_pmu_lbr_tos();
383 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
384 lbr_idx
= (tos
- i
) & mask
;
385 from
= rdlbr_from(lbr_idx
);
388 task_ctx
->lbr_from
[i
] = from
;
389 task_ctx
->lbr_to
[i
] = rdlbr_to(lbr_idx
);
390 if (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_INFO
)
391 rdmsrl(MSR_LBR_INFO_0
+ lbr_idx
, task_ctx
->lbr_info
[i
]);
393 task_ctx
->valid_lbrs
= i
;
395 task_ctx
->lbr_stack_state
= LBR_VALID
;
398 void intel_pmu_lbr_sched_task(struct perf_event_context
*ctx
, bool sched_in
)
400 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
401 struct x86_perf_task_context
*task_ctx
;
403 if (!cpuc
->lbr_users
)
407 * If LBR callstack feature is enabled and the stack was saved when
408 * the task was scheduled out, restore the stack. Otherwise flush
411 task_ctx
= ctx
? ctx
->task_ctx_data
: NULL
;
414 __intel_pmu_lbr_restore(task_ctx
);
416 __intel_pmu_lbr_save(task_ctx
);
421 * Since a context switch can flip the address space and LBR entries
422 * are not tagged with an identifier, we need to wipe the LBR, even for
423 * per-cpu events. You simply cannot resolve the branches from the old
427 intel_pmu_lbr_reset();
430 static inline bool branch_user_callstack(unsigned br_sel
)
432 return (br_sel
& X86_BR_USER
) && (br_sel
& X86_BR_CALL_STACK
);
435 void intel_pmu_lbr_add(struct perf_event
*event
)
437 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
438 struct x86_perf_task_context
*task_ctx
;
443 cpuc
->br_sel
= event
->hw
.branch_reg
.reg
;
445 if (branch_user_callstack(cpuc
->br_sel
) && event
->ctx
->task_ctx_data
) {
446 task_ctx
= event
->ctx
->task_ctx_data
;
447 task_ctx
->lbr_callstack_users
++;
451 * Request pmu::sched_task() callback, which will fire inside the
452 * regular perf event scheduling, so that call will:
454 * - restore or wipe; when LBR-callstack,
457 * when this is from __perf_event_task_sched_in().
459 * However, if this is from perf_install_in_context(), no such callback
460 * will follow and we'll need to reset the LBR here if this is the
463 * The problem is, we cannot tell these cases apart... but we can
464 * exclude the biggest chunk of cases by looking at
465 * event->total_time_running. An event that has accrued runtime cannot
466 * be 'new'. Conversely, a new event can get installed through the
467 * context switch path for the first time.
469 perf_sched_cb_inc(event
->ctx
->pmu
);
470 if (!cpuc
->lbr_users
++ && !event
->total_time_running
)
471 intel_pmu_lbr_reset();
474 void intel_pmu_lbr_del(struct perf_event
*event
)
476 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
477 struct x86_perf_task_context
*task_ctx
;
482 if (branch_user_callstack(cpuc
->br_sel
) &&
483 event
->ctx
->task_ctx_data
) {
484 task_ctx
= event
->ctx
->task_ctx_data
;
485 task_ctx
->lbr_callstack_users
--;
489 WARN_ON_ONCE(cpuc
->lbr_users
< 0);
490 perf_sched_cb_dec(event
->ctx
->pmu
);
493 void intel_pmu_lbr_enable_all(bool pmi
)
495 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
498 __intel_pmu_lbr_enable(pmi
);
501 void intel_pmu_lbr_disable_all(void)
503 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
506 __intel_pmu_lbr_disable();
509 static void intel_pmu_lbr_read_32(struct cpu_hw_events
*cpuc
)
511 unsigned long mask
= x86_pmu
.lbr_nr
- 1;
512 u64 tos
= intel_pmu_lbr_tos();
515 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
516 unsigned long lbr_idx
= (tos
- i
) & mask
;
525 rdmsrl(x86_pmu
.lbr_from
+ lbr_idx
, msr_lastbranch
.lbr
);
527 cpuc
->lbr_entries
[i
].from
= msr_lastbranch
.from
;
528 cpuc
->lbr_entries
[i
].to
= msr_lastbranch
.to
;
529 cpuc
->lbr_entries
[i
].mispred
= 0;
530 cpuc
->lbr_entries
[i
].predicted
= 0;
531 cpuc
->lbr_entries
[i
].in_tx
= 0;
532 cpuc
->lbr_entries
[i
].abort
= 0;
533 cpuc
->lbr_entries
[i
].cycles
= 0;
534 cpuc
->lbr_entries
[i
].type
= 0;
535 cpuc
->lbr_entries
[i
].reserved
= 0;
537 cpuc
->lbr_stack
.nr
= i
;
541 * Due to lack of segmentation in Linux the effective address (offset)
542 * is the same as the linear address, allowing us to merge the LIP and EIP
545 static void intel_pmu_lbr_read_64(struct cpu_hw_events
*cpuc
)
547 bool need_info
= false, call_stack
= false;
548 unsigned long mask
= x86_pmu
.lbr_nr
- 1;
549 int lbr_format
= x86_pmu
.intel_cap
.lbr_format
;
550 u64 tos
= intel_pmu_lbr_tos();
553 int num
= x86_pmu
.lbr_nr
;
556 need_info
= !(cpuc
->lbr_sel
->config
& LBR_NO_INFO
);
557 if (cpuc
->lbr_sel
->config
& LBR_CALL_STACK
)
561 for (i
= 0; i
< num
; i
++) {
562 unsigned long lbr_idx
= (tos
- i
) & mask
;
563 u64 from
, to
, mis
= 0, pred
= 0, in_tx
= 0, abort
= 0;
566 int lbr_flags
= lbr_desc
[lbr_format
];
568 from
= rdlbr_from(lbr_idx
);
569 to
= rdlbr_to(lbr_idx
);
572 * Read LBR call stack entries
573 * until invalid entry (0s) is detected.
575 if (call_stack
&& !from
)
578 if (lbr_format
== LBR_FORMAT_INFO
&& need_info
) {
581 rdmsrl(MSR_LBR_INFO_0
+ lbr_idx
, info
);
582 mis
= !!(info
& LBR_INFO_MISPRED
);
584 in_tx
= !!(info
& LBR_INFO_IN_TX
);
585 abort
= !!(info
& LBR_INFO_ABORT
);
586 cycles
= (info
& LBR_INFO_CYCLES
);
589 if (lbr_format
== LBR_FORMAT_TIME
) {
590 mis
= !!(from
& LBR_FROM_FLAG_MISPRED
);
593 cycles
= ((to
>> 48) & LBR_INFO_CYCLES
);
595 to
= (u64
)((((s64
)to
) << 16) >> 16);
598 if (lbr_flags
& LBR_EIP_FLAGS
) {
599 mis
= !!(from
& LBR_FROM_FLAG_MISPRED
);
603 if (lbr_flags
& LBR_TSX
) {
604 in_tx
= !!(from
& LBR_FROM_FLAG_IN_TX
);
605 abort
= !!(from
& LBR_FROM_FLAG_ABORT
);
608 from
= (u64
)((((s64
)from
) << skip
) >> skip
);
611 * Some CPUs report duplicated abort records,
612 * with the second entry not having an abort bit set.
613 * Skip them here. This loop runs backwards,
614 * so we need to undo the previous record.
615 * If the abort just happened outside the window
616 * the extra entry cannot be removed.
618 if (abort
&& x86_pmu
.lbr_double_abort
&& out
> 0)
621 cpuc
->lbr_entries
[out
].from
= from
;
622 cpuc
->lbr_entries
[out
].to
= to
;
623 cpuc
->lbr_entries
[out
].mispred
= mis
;
624 cpuc
->lbr_entries
[out
].predicted
= pred
;
625 cpuc
->lbr_entries
[out
].in_tx
= in_tx
;
626 cpuc
->lbr_entries
[out
].abort
= abort
;
627 cpuc
->lbr_entries
[out
].cycles
= cycles
;
628 cpuc
->lbr_entries
[out
].type
= 0;
629 cpuc
->lbr_entries
[out
].reserved
= 0;
632 cpuc
->lbr_stack
.nr
= out
;
635 void intel_pmu_lbr_read(void)
637 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
639 if (!cpuc
->lbr_users
)
642 if (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_32
)
643 intel_pmu_lbr_read_32(cpuc
);
645 intel_pmu_lbr_read_64(cpuc
);
647 intel_pmu_lbr_filter(cpuc
);
652 * - in case there is no HW filter
653 * - in case the HW filter has errata or limitations
655 static int intel_pmu_setup_sw_lbr_filter(struct perf_event
*event
)
657 u64 br_type
= event
->attr
.branch_sample_type
;
660 if (br_type
& PERF_SAMPLE_BRANCH_USER
)
663 if (br_type
& PERF_SAMPLE_BRANCH_KERNEL
)
664 mask
|= X86_BR_KERNEL
;
666 /* we ignore BRANCH_HV here */
668 if (br_type
& PERF_SAMPLE_BRANCH_ANY
)
671 if (br_type
& PERF_SAMPLE_BRANCH_ANY_CALL
)
672 mask
|= X86_BR_ANY_CALL
;
674 if (br_type
& PERF_SAMPLE_BRANCH_ANY_RETURN
)
675 mask
|= X86_BR_RET
| X86_BR_IRET
| X86_BR_SYSRET
;
677 if (br_type
& PERF_SAMPLE_BRANCH_IND_CALL
)
678 mask
|= X86_BR_IND_CALL
;
680 if (br_type
& PERF_SAMPLE_BRANCH_ABORT_TX
)
681 mask
|= X86_BR_ABORT
;
683 if (br_type
& PERF_SAMPLE_BRANCH_IN_TX
)
684 mask
|= X86_BR_IN_TX
;
686 if (br_type
& PERF_SAMPLE_BRANCH_NO_TX
)
687 mask
|= X86_BR_NO_TX
;
689 if (br_type
& PERF_SAMPLE_BRANCH_COND
)
692 if (br_type
& PERF_SAMPLE_BRANCH_CALL_STACK
) {
693 if (!x86_pmu_has_lbr_callstack())
695 if (mask
& ~(X86_BR_USER
| X86_BR_KERNEL
))
697 mask
|= X86_BR_CALL
| X86_BR_IND_CALL
| X86_BR_RET
|
701 if (br_type
& PERF_SAMPLE_BRANCH_IND_JUMP
)
702 mask
|= X86_BR_IND_JMP
;
704 if (br_type
& PERF_SAMPLE_BRANCH_CALL
)
705 mask
|= X86_BR_CALL
| X86_BR_ZERO_CALL
;
707 if (br_type
& PERF_SAMPLE_BRANCH_TYPE_SAVE
)
708 mask
|= X86_BR_TYPE_SAVE
;
711 * stash actual user request into reg, it may
712 * be used by fixup code for some CPU
714 event
->hw
.branch_reg
.reg
= mask
;
719 * setup the HW LBR filter
720 * Used only when available, may not be enough to disambiguate
721 * all branches, may need the help of the SW filter
723 static int intel_pmu_setup_hw_lbr_filter(struct perf_event
*event
)
725 struct hw_perf_event_extra
*reg
;
726 u64 br_type
= event
->attr
.branch_sample_type
;
730 for (i
= 0; i
< PERF_SAMPLE_BRANCH_MAX_SHIFT
; i
++) {
731 if (!(br_type
& (1ULL << i
)))
734 v
= x86_pmu
.lbr_sel_map
[i
];
735 if (v
== LBR_NOT_SUPP
)
742 reg
= &event
->hw
.branch_reg
;
743 reg
->idx
= EXTRA_REG_LBR
;
746 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
747 * in suppress mode. So LBR_SELECT should be set to
748 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
749 * But the 10th bit LBR_CALL_STACK does not operate
752 reg
->config
= mask
^ (x86_pmu
.lbr_sel_mask
& ~LBR_CALL_STACK
);
754 if ((br_type
& PERF_SAMPLE_BRANCH_NO_CYCLES
) &&
755 (br_type
& PERF_SAMPLE_BRANCH_NO_FLAGS
) &&
756 (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_INFO
))
757 reg
->config
|= LBR_NO_INFO
;
762 int intel_pmu_setup_lbr_filter(struct perf_event
*event
)
773 * setup SW LBR filter
775 ret
= intel_pmu_setup_sw_lbr_filter(event
);
780 * setup HW LBR filter, if any
782 if (x86_pmu
.lbr_sel_map
)
783 ret
= intel_pmu_setup_hw_lbr_filter(event
);
789 * return the type of control flow change at address "from"
790 * instruction is not necessarily a branch (in case of interrupt).
792 * The branch type returned also includes the priv level of the
793 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
795 * If a branch type is unknown OR the instruction cannot be
796 * decoded (e.g., text page not present), then X86_BR_NONE is
799 static int branch_type(unsigned long from
, unsigned long to
, int abort
)
803 int bytes_read
, bytes_left
;
804 int ret
= X86_BR_NONE
;
805 int ext
, to_plm
, from_plm
;
806 u8 buf
[MAX_INSN_SIZE
];
809 to_plm
= kernel_ip(to
) ? X86_BR_KERNEL
: X86_BR_USER
;
810 from_plm
= kernel_ip(from
) ? X86_BR_KERNEL
: X86_BR_USER
;
813 * maybe zero if lbr did not fill up after a reset by the time
814 * we get a PMU interrupt
816 if (from
== 0 || to
== 0)
820 return X86_BR_ABORT
| to_plm
;
822 if (from_plm
== X86_BR_USER
) {
824 * can happen if measuring at the user level only
825 * and we interrupt in a kernel thread, e.g., idle.
830 /* may fail if text not present */
831 bytes_left
= copy_from_user_nmi(buf
, (void __user
*)from
,
833 bytes_read
= MAX_INSN_SIZE
- bytes_left
;
840 * The LBR logs any address in the IP, even if the IP just
841 * faulted. This means userspace can control the from address.
842 * Ensure we don't blindy read any address by validating it is
843 * a known text address.
845 if (kernel_text_address(from
)) {
848 * Assume we can get the maximum possible size
849 * when grabbing kernel data. This is not
850 * _strictly_ true since we could possibly be
851 * executing up next to a memory hole, but
852 * it is very unlikely to be a problem.
854 bytes_read
= MAX_INSN_SIZE
;
861 * decoder needs to know the ABI especially
862 * on 64-bit systems running 32-bit apps
865 is64
= kernel_ip((unsigned long)addr
) || !test_thread_flag(TIF_IA32
);
867 insn_init(&insn
, addr
, bytes_read
, is64
);
868 insn_get_opcode(&insn
);
869 if (!insn
.opcode
.got
)
872 switch (insn
.opcode
.bytes
[0]) {
874 switch (insn
.opcode
.bytes
[1]) {
875 case 0x05: /* syscall */
876 case 0x34: /* sysenter */
877 ret
= X86_BR_SYSCALL
;
879 case 0x07: /* sysret */
880 case 0x35: /* sysexit */
883 case 0x80 ... 0x8f: /* conditional */
890 case 0x70 ... 0x7f: /* conditional */
893 case 0xc2: /* near ret */
894 case 0xc3: /* near ret */
895 case 0xca: /* far ret */
896 case 0xcb: /* far ret */
899 case 0xcf: /* iret */
902 case 0xcc ... 0xce: /* int */
905 case 0xe8: /* call near rel */
906 insn_get_immediate(&insn
);
907 if (insn
.immediate1
.value
== 0) {
908 /* zero length call */
909 ret
= X86_BR_ZERO_CALL
;
912 case 0x9a: /* call far absolute */
915 case 0xe0 ... 0xe3: /* loop jmp */
918 case 0xe9 ... 0xeb: /* jmp */
921 case 0xff: /* call near absolute, call far absolute ind */
922 insn_get_modrm(&insn
);
923 ext
= (insn
.modrm
.bytes
[0] >> 3) & 0x7;
925 case 2: /* near ind call */
926 case 3: /* far ind call */
927 ret
= X86_BR_IND_CALL
;
931 ret
= X86_BR_IND_JMP
;
939 * interrupts, traps, faults (and thus ring transition) may
940 * occur on any instructions. Thus, to classify them correctly,
941 * we need to first look at the from and to priv levels. If they
942 * are different and to is in the kernel, then it indicates
943 * a ring transition. If the from instruction is not a ring
944 * transition instr (syscall, systenter, int), then it means
945 * it was a irq, trap or fault.
947 * we have no way of detecting kernel to kernel faults.
949 if (from_plm
== X86_BR_USER
&& to_plm
== X86_BR_KERNEL
950 && ret
!= X86_BR_SYSCALL
&& ret
!= X86_BR_INT
)
954 * branch priv level determined by target as
955 * is done by HW when LBR_SELECT is implemented
957 if (ret
!= X86_BR_NONE
)
963 #define X86_BR_TYPE_MAP_MAX 16
965 static int branch_map
[X86_BR_TYPE_MAP_MAX
] = {
966 PERF_BR_CALL
, /* X86_BR_CALL */
967 PERF_BR_RET
, /* X86_BR_RET */
968 PERF_BR_SYSCALL
, /* X86_BR_SYSCALL */
969 PERF_BR_SYSRET
, /* X86_BR_SYSRET */
970 PERF_BR_UNKNOWN
, /* X86_BR_INT */
971 PERF_BR_UNKNOWN
, /* X86_BR_IRET */
972 PERF_BR_COND
, /* X86_BR_JCC */
973 PERF_BR_UNCOND
, /* X86_BR_JMP */
974 PERF_BR_UNKNOWN
, /* X86_BR_IRQ */
975 PERF_BR_IND_CALL
, /* X86_BR_IND_CALL */
976 PERF_BR_UNKNOWN
, /* X86_BR_ABORT */
977 PERF_BR_UNKNOWN
, /* X86_BR_IN_TX */
978 PERF_BR_UNKNOWN
, /* X86_BR_NO_TX */
979 PERF_BR_CALL
, /* X86_BR_ZERO_CALL */
980 PERF_BR_UNKNOWN
, /* X86_BR_CALL_STACK */
981 PERF_BR_IND
, /* X86_BR_IND_JMP */
985 common_branch_type(int type
)
989 type
>>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
993 if (i
< X86_BR_TYPE_MAP_MAX
)
994 return branch_map
[i
];
997 return PERF_BR_UNKNOWN
;
1001 * implement actual branch filter based on user demand.
1002 * Hardware may not exactly satisfy that request, thus
1003 * we need to inspect opcodes. Mismatched branches are
1004 * discarded. Therefore, the number of branches returned
1005 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1008 intel_pmu_lbr_filter(struct cpu_hw_events
*cpuc
)
1011 int br_sel
= cpuc
->br_sel
;
1013 bool compress
= false;
1015 /* if sampling all branches, then nothing to filter */
1016 if (((br_sel
& X86_BR_ALL
) == X86_BR_ALL
) &&
1017 ((br_sel
& X86_BR_TYPE_SAVE
) != X86_BR_TYPE_SAVE
))
1020 for (i
= 0; i
< cpuc
->lbr_stack
.nr
; i
++) {
1022 from
= cpuc
->lbr_entries
[i
].from
;
1023 to
= cpuc
->lbr_entries
[i
].to
;
1025 type
= branch_type(from
, to
, cpuc
->lbr_entries
[i
].abort
);
1026 if (type
!= X86_BR_NONE
&& (br_sel
& X86_BR_ANYTX
)) {
1027 if (cpuc
->lbr_entries
[i
].in_tx
)
1028 type
|= X86_BR_IN_TX
;
1030 type
|= X86_BR_NO_TX
;
1033 /* if type does not correspond, then discard */
1034 if (type
== X86_BR_NONE
|| (br_sel
& type
) != type
) {
1035 cpuc
->lbr_entries
[i
].from
= 0;
1039 if ((br_sel
& X86_BR_TYPE_SAVE
) == X86_BR_TYPE_SAVE
)
1040 cpuc
->lbr_entries
[i
].type
= common_branch_type(type
);
1046 /* remove all entries with from=0 */
1047 for (i
= 0; i
< cpuc
->lbr_stack
.nr
; ) {
1048 if (!cpuc
->lbr_entries
[i
].from
) {
1050 while (++j
< cpuc
->lbr_stack
.nr
)
1051 cpuc
->lbr_entries
[j
-1] = cpuc
->lbr_entries
[j
];
1052 cpuc
->lbr_stack
.nr
--;
1053 if (!cpuc
->lbr_entries
[i
].from
)
1061 * Map interface branch filters onto LBR filters
1063 static const int nhm_lbr_sel_map
[PERF_SAMPLE_BRANCH_MAX_SHIFT
] = {
1064 [PERF_SAMPLE_BRANCH_ANY_SHIFT
] = LBR_ANY
,
1065 [PERF_SAMPLE_BRANCH_USER_SHIFT
] = LBR_USER
,
1066 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT
] = LBR_KERNEL
,
1067 [PERF_SAMPLE_BRANCH_HV_SHIFT
] = LBR_IGN
,
1068 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT
] = LBR_RETURN
| LBR_REL_JMP
1069 | LBR_IND_JMP
| LBR_FAR
,
1071 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1073 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT
] =
1074 LBR_REL_CALL
| LBR_IND_CALL
| LBR_REL_JMP
| LBR_IND_JMP
| LBR_FAR
,
1076 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1078 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT
] = LBR_IND_CALL
| LBR_IND_JMP
,
1079 [PERF_SAMPLE_BRANCH_COND_SHIFT
] = LBR_JCC
,
1080 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT
] = LBR_IND_JMP
,
1083 static const int snb_lbr_sel_map
[PERF_SAMPLE_BRANCH_MAX_SHIFT
] = {
1084 [PERF_SAMPLE_BRANCH_ANY_SHIFT
] = LBR_ANY
,
1085 [PERF_SAMPLE_BRANCH_USER_SHIFT
] = LBR_USER
,
1086 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT
] = LBR_KERNEL
,
1087 [PERF_SAMPLE_BRANCH_HV_SHIFT
] = LBR_IGN
,
1088 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT
] = LBR_RETURN
| LBR_FAR
,
1089 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT
] = LBR_REL_CALL
| LBR_IND_CALL
1091 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT
] = LBR_IND_CALL
,
1092 [PERF_SAMPLE_BRANCH_COND_SHIFT
] = LBR_JCC
,
1093 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT
] = LBR_IND_JMP
,
1094 [PERF_SAMPLE_BRANCH_CALL_SHIFT
] = LBR_REL_CALL
,
1097 static const int hsw_lbr_sel_map
[PERF_SAMPLE_BRANCH_MAX_SHIFT
] = {
1098 [PERF_SAMPLE_BRANCH_ANY_SHIFT
] = LBR_ANY
,
1099 [PERF_SAMPLE_BRANCH_USER_SHIFT
] = LBR_USER
,
1100 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT
] = LBR_KERNEL
,
1101 [PERF_SAMPLE_BRANCH_HV_SHIFT
] = LBR_IGN
,
1102 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT
] = LBR_RETURN
| LBR_FAR
,
1103 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT
] = LBR_REL_CALL
| LBR_IND_CALL
1105 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT
] = LBR_IND_CALL
,
1106 [PERF_SAMPLE_BRANCH_COND_SHIFT
] = LBR_JCC
,
1107 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT
] = LBR_REL_CALL
| LBR_IND_CALL
1108 | LBR_RETURN
| LBR_CALL_STACK
,
1109 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT
] = LBR_IND_JMP
,
1110 [PERF_SAMPLE_BRANCH_CALL_SHIFT
] = LBR_REL_CALL
,
1114 void __init
intel_pmu_lbr_init_core(void)
1117 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1118 x86_pmu
.lbr_from
= MSR_LBR_CORE_FROM
;
1119 x86_pmu
.lbr_to
= MSR_LBR_CORE_TO
;
1122 * SW branch filter usage:
1123 * - compensate for lack of HW filter
1127 /* nehalem/westmere */
1128 void __init
intel_pmu_lbr_init_nhm(void)
1130 x86_pmu
.lbr_nr
= 16;
1131 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1132 x86_pmu
.lbr_from
= MSR_LBR_NHM_FROM
;
1133 x86_pmu
.lbr_to
= MSR_LBR_NHM_TO
;
1135 x86_pmu
.lbr_sel_mask
= LBR_SEL_MASK
;
1136 x86_pmu
.lbr_sel_map
= nhm_lbr_sel_map
;
1139 * SW branch filter usage:
1140 * - workaround LBR_SEL errata (see above)
1141 * - support syscall, sysret capture.
1142 * That requires LBR_FAR but that means far
1143 * jmp need to be filtered out
1148 void __init
intel_pmu_lbr_init_snb(void)
1150 x86_pmu
.lbr_nr
= 16;
1151 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1152 x86_pmu
.lbr_from
= MSR_LBR_NHM_FROM
;
1153 x86_pmu
.lbr_to
= MSR_LBR_NHM_TO
;
1155 x86_pmu
.lbr_sel_mask
= LBR_SEL_MASK
;
1156 x86_pmu
.lbr_sel_map
= snb_lbr_sel_map
;
1159 * SW branch filter usage:
1160 * - support syscall, sysret capture.
1161 * That requires LBR_FAR but that means far
1162 * jmp need to be filtered out
1167 void intel_pmu_lbr_init_hsw(void)
1169 x86_pmu
.lbr_nr
= 16;
1170 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1171 x86_pmu
.lbr_from
= MSR_LBR_NHM_FROM
;
1172 x86_pmu
.lbr_to
= MSR_LBR_NHM_TO
;
1174 x86_pmu
.lbr_sel_mask
= LBR_SEL_MASK
;
1175 x86_pmu
.lbr_sel_map
= hsw_lbr_sel_map
;
1177 if (lbr_from_signext_quirk_needed())
1178 static_branch_enable(&lbr_from_quirk_key
);
1182 __init
void intel_pmu_lbr_init_skl(void)
1184 x86_pmu
.lbr_nr
= 32;
1185 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1186 x86_pmu
.lbr_from
= MSR_LBR_NHM_FROM
;
1187 x86_pmu
.lbr_to
= MSR_LBR_NHM_TO
;
1189 x86_pmu
.lbr_sel_mask
= LBR_SEL_MASK
;
1190 x86_pmu
.lbr_sel_map
= hsw_lbr_sel_map
;
1193 * SW branch filter usage:
1194 * - support syscall, sysret capture.
1195 * That requires LBR_FAR but that means far
1196 * jmp need to be filtered out
1201 void __init
intel_pmu_lbr_init_atom(void)
1204 * only models starting at stepping 10 seems
1205 * to have an operational LBR which can freeze
1208 if (boot_cpu_data
.x86_model
== 28
1209 && boot_cpu_data
.x86_stepping
< 10) {
1210 pr_cont("LBR disabled due to erratum");
1215 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1216 x86_pmu
.lbr_from
= MSR_LBR_CORE_FROM
;
1217 x86_pmu
.lbr_to
= MSR_LBR_CORE_TO
;
1220 * SW branch filter usage:
1221 * - compensate for lack of HW filter
1226 void __init
intel_pmu_lbr_init_slm(void)
1229 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1230 x86_pmu
.lbr_from
= MSR_LBR_CORE_FROM
;
1231 x86_pmu
.lbr_to
= MSR_LBR_CORE_TO
;
1233 x86_pmu
.lbr_sel_mask
= LBR_SEL_MASK
;
1234 x86_pmu
.lbr_sel_map
= nhm_lbr_sel_map
;
1237 * SW branch filter usage:
1238 * - compensate for lack of HW filter
1240 pr_cont("8-deep LBR, ");
1243 /* Knights Landing */
1244 void intel_pmu_lbr_init_knl(void)
1247 x86_pmu
.lbr_tos
= MSR_LBR_TOS
;
1248 x86_pmu
.lbr_from
= MSR_LBR_NHM_FROM
;
1249 x86_pmu
.lbr_to
= MSR_LBR_NHM_TO
;
1251 x86_pmu
.lbr_sel_mask
= LBR_SEL_MASK
;
1252 x86_pmu
.lbr_sel_map
= snb_lbr_sel_map
;
1254 /* Knights Landing does have MISPREDICT bit */
1255 if (x86_pmu
.intel_cap
.lbr_format
== LBR_FORMAT_LIP
)
1256 x86_pmu
.intel_cap
.lbr_format
= LBR_FORMAT_EIP_FLAGS
;