x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / arch / x86 / events / intel / lbr.c
blob17fbd07e4245bf4737d99592fb06ed4f5e89afd6
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
5 #include <asm/perf_event.h>
6 #include <asm/msr.h>
7 #include <asm/insn.h>
9 #include "../perf_event.h"
11 enum {
12 LBR_FORMAT_32 = 0x00,
13 LBR_FORMAT_LIP = 0x01,
14 LBR_FORMAT_EIP = 0x02,
15 LBR_FORMAT_EIP_FLAGS = 0x03,
16 LBR_FORMAT_EIP_FLAGS2 = 0x04,
17 LBR_FORMAT_INFO = 0x05,
18 LBR_FORMAT_TIME = 0x06,
19 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME,
22 static const enum {
23 LBR_EIP_FLAGS = 1,
24 LBR_TSX = 2,
25 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
26 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
27 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
31 * Intel LBR_SELECT bits
32 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
34 * Hardware branch filter (not available on all CPUs)
36 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
37 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
38 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
39 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
40 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
41 #define LBR_RETURN_BIT 5 /* do not capture near returns */
42 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
43 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
44 #define LBR_FAR_BIT 8 /* do not capture far branches */
45 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
48 * Following bit only exists in Linux; we mask it out before writing it to
49 * the actual MSR. But it helps the constraint perf code to understand
50 * that this is a separate configuration.
52 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
54 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
55 #define LBR_USER (1 << LBR_USER_BIT)
56 #define LBR_JCC (1 << LBR_JCC_BIT)
57 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
58 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
59 #define LBR_RETURN (1 << LBR_RETURN_BIT)
60 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
61 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
62 #define LBR_FAR (1 << LBR_FAR_BIT)
63 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
64 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
66 #define LBR_PLM (LBR_KERNEL | LBR_USER)
68 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
69 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
70 #define LBR_IGN 0 /* ignored */
72 #define LBR_ANY \
73 (LBR_JCC |\
74 LBR_REL_CALL |\
75 LBR_IND_CALL |\
76 LBR_RETURN |\
77 LBR_REL_JMP |\
78 LBR_IND_JMP |\
79 LBR_FAR)
81 #define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
82 #define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
83 #define LBR_FROM_FLAG_ABORT BIT_ULL(61)
85 #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
88 * x86control flow change classification
89 * x86control flow changes include branches, interrupts, traps, faults
91 enum {
92 X86_BR_NONE = 0, /* unknown */
94 X86_BR_USER = 1 << 0, /* branch target is user */
95 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
97 X86_BR_CALL = 1 << 2, /* call */
98 X86_BR_RET = 1 << 3, /* return */
99 X86_BR_SYSCALL = 1 << 4, /* syscall */
100 X86_BR_SYSRET = 1 << 5, /* syscall return */
101 X86_BR_INT = 1 << 6, /* sw interrupt */
102 X86_BR_IRET = 1 << 7, /* return from interrupt */
103 X86_BR_JCC = 1 << 8, /* conditional */
104 X86_BR_JMP = 1 << 9, /* jump */
105 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
106 X86_BR_IND_CALL = 1 << 11,/* indirect calls */
107 X86_BR_ABORT = 1 << 12,/* transaction abort */
108 X86_BR_IN_TX = 1 << 13,/* in transaction */
109 X86_BR_NO_TX = 1 << 14,/* not in transaction */
110 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
111 X86_BR_CALL_STACK = 1 << 16,/* call stack */
112 X86_BR_IND_JMP = 1 << 17,/* indirect jump */
114 X86_BR_TYPE_SAVE = 1 << 18,/* indicate to save branch type */
118 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
119 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
121 #define X86_BR_ANY \
122 (X86_BR_CALL |\
123 X86_BR_RET |\
124 X86_BR_SYSCALL |\
125 X86_BR_SYSRET |\
126 X86_BR_INT |\
127 X86_BR_IRET |\
128 X86_BR_JCC |\
129 X86_BR_JMP |\
130 X86_BR_IRQ |\
131 X86_BR_ABORT |\
132 X86_BR_IND_CALL |\
133 X86_BR_IND_JMP |\
134 X86_BR_ZERO_CALL)
136 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
138 #define X86_BR_ANY_CALL \
139 (X86_BR_CALL |\
140 X86_BR_IND_CALL |\
141 X86_BR_ZERO_CALL |\
142 X86_BR_SYSCALL |\
143 X86_BR_IRQ |\
144 X86_BR_INT)
146 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
149 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
150 * otherwise it becomes near impossible to get a reliable stack.
153 static void __intel_pmu_lbr_enable(bool pmi)
155 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
156 u64 debugctl, lbr_select = 0, orig_debugctl;
159 * No need to unfreeze manually, as v4 can do that as part
160 * of the GLOBAL_STATUS ack.
162 if (pmi && x86_pmu.version >= 4)
163 return;
166 * No need to reprogram LBR_SELECT in a PMI, as it
167 * did not change.
169 if (cpuc->lbr_sel)
170 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
171 if (!pmi && cpuc->lbr_sel)
172 wrmsrl(MSR_LBR_SELECT, lbr_select);
174 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
175 orig_debugctl = debugctl;
176 debugctl |= DEBUGCTLMSR_LBR;
178 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
179 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
180 * may cause superfluous increase/decrease of LBR_TOS.
182 if (!(lbr_select & LBR_CALL_STACK))
183 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
184 if (orig_debugctl != debugctl)
185 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
188 static void __intel_pmu_lbr_disable(void)
190 u64 debugctl;
192 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
193 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
194 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
197 static void intel_pmu_lbr_reset_32(void)
199 int i;
201 for (i = 0; i < x86_pmu.lbr_nr; i++)
202 wrmsrl(x86_pmu.lbr_from + i, 0);
205 static void intel_pmu_lbr_reset_64(void)
207 int i;
209 for (i = 0; i < x86_pmu.lbr_nr; i++) {
210 wrmsrl(x86_pmu.lbr_from + i, 0);
211 wrmsrl(x86_pmu.lbr_to + i, 0);
212 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
213 wrmsrl(MSR_LBR_INFO_0 + i, 0);
217 void intel_pmu_lbr_reset(void)
219 if (!x86_pmu.lbr_nr)
220 return;
222 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
223 intel_pmu_lbr_reset_32();
224 else
225 intel_pmu_lbr_reset_64();
229 * TOS = most recently recorded branch
231 static inline u64 intel_pmu_lbr_tos(void)
233 u64 tos;
235 rdmsrl(x86_pmu.lbr_tos, tos);
236 return tos;
239 enum {
240 LBR_NONE,
241 LBR_VALID,
245 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
246 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
247 * TSX is not supported they have no consistent behavior:
249 * - For wrmsr(), bits 61:62 are considered part of the sign extension.
250 * - For HW updates (branch captures) bits 61:62 are always OFF and are not
251 * part of the sign extension.
253 * Therefore, if:
255 * 1) LBR has TSX format
256 * 2) CPU has no TSX support enabled
258 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
259 * value from rdmsr() must be converted to have a 61 bits sign extension,
260 * ignoring the TSX flags.
262 static inline bool lbr_from_signext_quirk_needed(void)
264 int lbr_format = x86_pmu.intel_cap.lbr_format;
265 bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
266 boot_cpu_has(X86_FEATURE_RTM);
268 return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
271 DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
273 /* If quirk is enabled, ensure sign extension is 63 bits: */
274 inline u64 lbr_from_signext_quirk_wr(u64 val)
276 if (static_branch_unlikely(&lbr_from_quirk_key)) {
278 * Sign extend into bits 61:62 while preserving bit 63.
280 * Quirk is enabled when TSX is disabled. Therefore TSX bits
281 * in val are always OFF and must be changed to be sign
282 * extension bits. Since bits 59:60 are guaranteed to be
283 * part of the sign extension bits, we can just copy them
284 * to 61:62.
286 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
288 return val;
292 * If quirk is needed, ensure sign extension is 61 bits:
294 static u64 lbr_from_signext_quirk_rd(u64 val)
296 if (static_branch_unlikely(&lbr_from_quirk_key)) {
298 * Quirk is on when TSX is not enabled. Therefore TSX
299 * flags must be read as OFF.
301 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
303 return val;
306 static inline void wrlbr_from(unsigned int idx, u64 val)
308 val = lbr_from_signext_quirk_wr(val);
309 wrmsrl(x86_pmu.lbr_from + idx, val);
312 static inline void wrlbr_to(unsigned int idx, u64 val)
314 wrmsrl(x86_pmu.lbr_to + idx, val);
317 static inline u64 rdlbr_from(unsigned int idx)
319 u64 val;
321 rdmsrl(x86_pmu.lbr_from + idx, val);
323 return lbr_from_signext_quirk_rd(val);
326 static inline u64 rdlbr_to(unsigned int idx)
328 u64 val;
330 rdmsrl(x86_pmu.lbr_to + idx, val);
332 return val;
335 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
337 int i;
338 unsigned lbr_idx, mask;
339 u64 tos;
341 if (task_ctx->lbr_callstack_users == 0 ||
342 task_ctx->lbr_stack_state == LBR_NONE) {
343 intel_pmu_lbr_reset();
344 return;
347 mask = x86_pmu.lbr_nr - 1;
348 tos = task_ctx->tos;
349 for (i = 0; i < task_ctx->valid_lbrs; i++) {
350 lbr_idx = (tos - i) & mask;
351 wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
352 wrlbr_to (lbr_idx, task_ctx->lbr_to[i]);
354 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
355 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
358 for (; i < x86_pmu.lbr_nr; i++) {
359 lbr_idx = (tos - i) & mask;
360 wrlbr_from(lbr_idx, 0);
361 wrlbr_to(lbr_idx, 0);
362 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
363 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, 0);
366 wrmsrl(x86_pmu.lbr_tos, tos);
367 task_ctx->lbr_stack_state = LBR_NONE;
370 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
372 unsigned lbr_idx, mask;
373 u64 tos, from;
374 int i;
376 if (task_ctx->lbr_callstack_users == 0) {
377 task_ctx->lbr_stack_state = LBR_NONE;
378 return;
381 mask = x86_pmu.lbr_nr - 1;
382 tos = intel_pmu_lbr_tos();
383 for (i = 0; i < x86_pmu.lbr_nr; i++) {
384 lbr_idx = (tos - i) & mask;
385 from = rdlbr_from(lbr_idx);
386 if (!from)
387 break;
388 task_ctx->lbr_from[i] = from;
389 task_ctx->lbr_to[i] = rdlbr_to(lbr_idx);
390 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
391 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
393 task_ctx->valid_lbrs = i;
394 task_ctx->tos = tos;
395 task_ctx->lbr_stack_state = LBR_VALID;
398 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
400 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
401 struct x86_perf_task_context *task_ctx;
403 if (!cpuc->lbr_users)
404 return;
407 * If LBR callstack feature is enabled and the stack was saved when
408 * the task was scheduled out, restore the stack. Otherwise flush
409 * the LBR stack.
411 task_ctx = ctx ? ctx->task_ctx_data : NULL;
412 if (task_ctx) {
413 if (sched_in)
414 __intel_pmu_lbr_restore(task_ctx);
415 else
416 __intel_pmu_lbr_save(task_ctx);
417 return;
421 * Since a context switch can flip the address space and LBR entries
422 * are not tagged with an identifier, we need to wipe the LBR, even for
423 * per-cpu events. You simply cannot resolve the branches from the old
424 * address space.
426 if (sched_in)
427 intel_pmu_lbr_reset();
430 static inline bool branch_user_callstack(unsigned br_sel)
432 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
435 void intel_pmu_lbr_add(struct perf_event *event)
437 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
438 struct x86_perf_task_context *task_ctx;
440 if (!x86_pmu.lbr_nr)
441 return;
443 cpuc->br_sel = event->hw.branch_reg.reg;
445 if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
446 task_ctx = event->ctx->task_ctx_data;
447 task_ctx->lbr_callstack_users++;
451 * Request pmu::sched_task() callback, which will fire inside the
452 * regular perf event scheduling, so that call will:
454 * - restore or wipe; when LBR-callstack,
455 * - wipe; otherwise,
457 * when this is from __perf_event_task_sched_in().
459 * However, if this is from perf_install_in_context(), no such callback
460 * will follow and we'll need to reset the LBR here if this is the
461 * first LBR event.
463 * The problem is, we cannot tell these cases apart... but we can
464 * exclude the biggest chunk of cases by looking at
465 * event->total_time_running. An event that has accrued runtime cannot
466 * be 'new'. Conversely, a new event can get installed through the
467 * context switch path for the first time.
469 perf_sched_cb_inc(event->ctx->pmu);
470 if (!cpuc->lbr_users++ && !event->total_time_running)
471 intel_pmu_lbr_reset();
474 void intel_pmu_lbr_del(struct perf_event *event)
476 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
477 struct x86_perf_task_context *task_ctx;
479 if (!x86_pmu.lbr_nr)
480 return;
482 if (branch_user_callstack(cpuc->br_sel) &&
483 event->ctx->task_ctx_data) {
484 task_ctx = event->ctx->task_ctx_data;
485 task_ctx->lbr_callstack_users--;
488 cpuc->lbr_users--;
489 WARN_ON_ONCE(cpuc->lbr_users < 0);
490 perf_sched_cb_dec(event->ctx->pmu);
493 void intel_pmu_lbr_enable_all(bool pmi)
495 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
497 if (cpuc->lbr_users)
498 __intel_pmu_lbr_enable(pmi);
501 void intel_pmu_lbr_disable_all(void)
503 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
505 if (cpuc->lbr_users)
506 __intel_pmu_lbr_disable();
509 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
511 unsigned long mask = x86_pmu.lbr_nr - 1;
512 u64 tos = intel_pmu_lbr_tos();
513 int i;
515 for (i = 0; i < x86_pmu.lbr_nr; i++) {
516 unsigned long lbr_idx = (tos - i) & mask;
517 union {
518 struct {
519 u32 from;
520 u32 to;
522 u64 lbr;
523 } msr_lastbranch;
525 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
527 cpuc->lbr_entries[i].from = msr_lastbranch.from;
528 cpuc->lbr_entries[i].to = msr_lastbranch.to;
529 cpuc->lbr_entries[i].mispred = 0;
530 cpuc->lbr_entries[i].predicted = 0;
531 cpuc->lbr_entries[i].in_tx = 0;
532 cpuc->lbr_entries[i].abort = 0;
533 cpuc->lbr_entries[i].cycles = 0;
534 cpuc->lbr_entries[i].type = 0;
535 cpuc->lbr_entries[i].reserved = 0;
537 cpuc->lbr_stack.nr = i;
541 * Due to lack of segmentation in Linux the effective address (offset)
542 * is the same as the linear address, allowing us to merge the LIP and EIP
543 * LBR formats.
545 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
547 bool need_info = false, call_stack = false;
548 unsigned long mask = x86_pmu.lbr_nr - 1;
549 int lbr_format = x86_pmu.intel_cap.lbr_format;
550 u64 tos = intel_pmu_lbr_tos();
551 int i;
552 int out = 0;
553 int num = x86_pmu.lbr_nr;
555 if (cpuc->lbr_sel) {
556 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
557 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
558 call_stack = true;
561 for (i = 0; i < num; i++) {
562 unsigned long lbr_idx = (tos - i) & mask;
563 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
564 int skip = 0;
565 u16 cycles = 0;
566 int lbr_flags = lbr_desc[lbr_format];
568 from = rdlbr_from(lbr_idx);
569 to = rdlbr_to(lbr_idx);
572 * Read LBR call stack entries
573 * until invalid entry (0s) is detected.
575 if (call_stack && !from)
576 break;
578 if (lbr_format == LBR_FORMAT_INFO && need_info) {
579 u64 info;
581 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
582 mis = !!(info & LBR_INFO_MISPRED);
583 pred = !mis;
584 in_tx = !!(info & LBR_INFO_IN_TX);
585 abort = !!(info & LBR_INFO_ABORT);
586 cycles = (info & LBR_INFO_CYCLES);
589 if (lbr_format == LBR_FORMAT_TIME) {
590 mis = !!(from & LBR_FROM_FLAG_MISPRED);
591 pred = !mis;
592 skip = 1;
593 cycles = ((to >> 48) & LBR_INFO_CYCLES);
595 to = (u64)((((s64)to) << 16) >> 16);
598 if (lbr_flags & LBR_EIP_FLAGS) {
599 mis = !!(from & LBR_FROM_FLAG_MISPRED);
600 pred = !mis;
601 skip = 1;
603 if (lbr_flags & LBR_TSX) {
604 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
605 abort = !!(from & LBR_FROM_FLAG_ABORT);
606 skip = 3;
608 from = (u64)((((s64)from) << skip) >> skip);
611 * Some CPUs report duplicated abort records,
612 * with the second entry not having an abort bit set.
613 * Skip them here. This loop runs backwards,
614 * so we need to undo the previous record.
615 * If the abort just happened outside the window
616 * the extra entry cannot be removed.
618 if (abort && x86_pmu.lbr_double_abort && out > 0)
619 out--;
621 cpuc->lbr_entries[out].from = from;
622 cpuc->lbr_entries[out].to = to;
623 cpuc->lbr_entries[out].mispred = mis;
624 cpuc->lbr_entries[out].predicted = pred;
625 cpuc->lbr_entries[out].in_tx = in_tx;
626 cpuc->lbr_entries[out].abort = abort;
627 cpuc->lbr_entries[out].cycles = cycles;
628 cpuc->lbr_entries[out].type = 0;
629 cpuc->lbr_entries[out].reserved = 0;
630 out++;
632 cpuc->lbr_stack.nr = out;
635 void intel_pmu_lbr_read(void)
637 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
639 if (!cpuc->lbr_users)
640 return;
642 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
643 intel_pmu_lbr_read_32(cpuc);
644 else
645 intel_pmu_lbr_read_64(cpuc);
647 intel_pmu_lbr_filter(cpuc);
651 * SW filter is used:
652 * - in case there is no HW filter
653 * - in case the HW filter has errata or limitations
655 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
657 u64 br_type = event->attr.branch_sample_type;
658 int mask = 0;
660 if (br_type & PERF_SAMPLE_BRANCH_USER)
661 mask |= X86_BR_USER;
663 if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
664 mask |= X86_BR_KERNEL;
666 /* we ignore BRANCH_HV here */
668 if (br_type & PERF_SAMPLE_BRANCH_ANY)
669 mask |= X86_BR_ANY;
671 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
672 mask |= X86_BR_ANY_CALL;
674 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
675 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
677 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
678 mask |= X86_BR_IND_CALL;
680 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
681 mask |= X86_BR_ABORT;
683 if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
684 mask |= X86_BR_IN_TX;
686 if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
687 mask |= X86_BR_NO_TX;
689 if (br_type & PERF_SAMPLE_BRANCH_COND)
690 mask |= X86_BR_JCC;
692 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
693 if (!x86_pmu_has_lbr_callstack())
694 return -EOPNOTSUPP;
695 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
696 return -EINVAL;
697 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
698 X86_BR_CALL_STACK;
701 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
702 mask |= X86_BR_IND_JMP;
704 if (br_type & PERF_SAMPLE_BRANCH_CALL)
705 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
707 if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
708 mask |= X86_BR_TYPE_SAVE;
711 * stash actual user request into reg, it may
712 * be used by fixup code for some CPU
714 event->hw.branch_reg.reg = mask;
715 return 0;
719 * setup the HW LBR filter
720 * Used only when available, may not be enough to disambiguate
721 * all branches, may need the help of the SW filter
723 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
725 struct hw_perf_event_extra *reg;
726 u64 br_type = event->attr.branch_sample_type;
727 u64 mask = 0, v;
728 int i;
730 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
731 if (!(br_type & (1ULL << i)))
732 continue;
734 v = x86_pmu.lbr_sel_map[i];
735 if (v == LBR_NOT_SUPP)
736 return -EOPNOTSUPP;
738 if (v != LBR_IGN)
739 mask |= v;
742 reg = &event->hw.branch_reg;
743 reg->idx = EXTRA_REG_LBR;
746 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
747 * in suppress mode. So LBR_SELECT should be set to
748 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
749 * But the 10th bit LBR_CALL_STACK does not operate
750 * in suppress mode.
752 reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
754 if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
755 (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
756 (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
757 reg->config |= LBR_NO_INFO;
759 return 0;
762 int intel_pmu_setup_lbr_filter(struct perf_event *event)
764 int ret = 0;
767 * no LBR on this PMU
769 if (!x86_pmu.lbr_nr)
770 return -EOPNOTSUPP;
773 * setup SW LBR filter
775 ret = intel_pmu_setup_sw_lbr_filter(event);
776 if (ret)
777 return ret;
780 * setup HW LBR filter, if any
782 if (x86_pmu.lbr_sel_map)
783 ret = intel_pmu_setup_hw_lbr_filter(event);
785 return ret;
789 * return the type of control flow change at address "from"
790 * instruction is not necessarily a branch (in case of interrupt).
792 * The branch type returned also includes the priv level of the
793 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
795 * If a branch type is unknown OR the instruction cannot be
796 * decoded (e.g., text page not present), then X86_BR_NONE is
797 * returned.
799 static int branch_type(unsigned long from, unsigned long to, int abort)
801 struct insn insn;
802 void *addr;
803 int bytes_read, bytes_left;
804 int ret = X86_BR_NONE;
805 int ext, to_plm, from_plm;
806 u8 buf[MAX_INSN_SIZE];
807 int is64 = 0;
809 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
810 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
813 * maybe zero if lbr did not fill up after a reset by the time
814 * we get a PMU interrupt
816 if (from == 0 || to == 0)
817 return X86_BR_NONE;
819 if (abort)
820 return X86_BR_ABORT | to_plm;
822 if (from_plm == X86_BR_USER) {
824 * can happen if measuring at the user level only
825 * and we interrupt in a kernel thread, e.g., idle.
827 if (!current->mm)
828 return X86_BR_NONE;
830 /* may fail if text not present */
831 bytes_left = copy_from_user_nmi(buf, (void __user *)from,
832 MAX_INSN_SIZE);
833 bytes_read = MAX_INSN_SIZE - bytes_left;
834 if (!bytes_read)
835 return X86_BR_NONE;
837 addr = buf;
838 } else {
840 * The LBR logs any address in the IP, even if the IP just
841 * faulted. This means userspace can control the from address.
842 * Ensure we don't blindy read any address by validating it is
843 * a known text address.
845 if (kernel_text_address(from)) {
846 addr = (void *)from;
848 * Assume we can get the maximum possible size
849 * when grabbing kernel data. This is not
850 * _strictly_ true since we could possibly be
851 * executing up next to a memory hole, but
852 * it is very unlikely to be a problem.
854 bytes_read = MAX_INSN_SIZE;
855 } else {
856 return X86_BR_NONE;
861 * decoder needs to know the ABI especially
862 * on 64-bit systems running 32-bit apps
864 #ifdef CONFIG_X86_64
865 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
866 #endif
867 insn_init(&insn, addr, bytes_read, is64);
868 insn_get_opcode(&insn);
869 if (!insn.opcode.got)
870 return X86_BR_ABORT;
872 switch (insn.opcode.bytes[0]) {
873 case 0xf:
874 switch (insn.opcode.bytes[1]) {
875 case 0x05: /* syscall */
876 case 0x34: /* sysenter */
877 ret = X86_BR_SYSCALL;
878 break;
879 case 0x07: /* sysret */
880 case 0x35: /* sysexit */
881 ret = X86_BR_SYSRET;
882 break;
883 case 0x80 ... 0x8f: /* conditional */
884 ret = X86_BR_JCC;
885 break;
886 default:
887 ret = X86_BR_NONE;
889 break;
890 case 0x70 ... 0x7f: /* conditional */
891 ret = X86_BR_JCC;
892 break;
893 case 0xc2: /* near ret */
894 case 0xc3: /* near ret */
895 case 0xca: /* far ret */
896 case 0xcb: /* far ret */
897 ret = X86_BR_RET;
898 break;
899 case 0xcf: /* iret */
900 ret = X86_BR_IRET;
901 break;
902 case 0xcc ... 0xce: /* int */
903 ret = X86_BR_INT;
904 break;
905 case 0xe8: /* call near rel */
906 insn_get_immediate(&insn);
907 if (insn.immediate1.value == 0) {
908 /* zero length call */
909 ret = X86_BR_ZERO_CALL;
910 break;
912 case 0x9a: /* call far absolute */
913 ret = X86_BR_CALL;
914 break;
915 case 0xe0 ... 0xe3: /* loop jmp */
916 ret = X86_BR_JCC;
917 break;
918 case 0xe9 ... 0xeb: /* jmp */
919 ret = X86_BR_JMP;
920 break;
921 case 0xff: /* call near absolute, call far absolute ind */
922 insn_get_modrm(&insn);
923 ext = (insn.modrm.bytes[0] >> 3) & 0x7;
924 switch (ext) {
925 case 2: /* near ind call */
926 case 3: /* far ind call */
927 ret = X86_BR_IND_CALL;
928 break;
929 case 4:
930 case 5:
931 ret = X86_BR_IND_JMP;
932 break;
934 break;
935 default:
936 ret = X86_BR_NONE;
939 * interrupts, traps, faults (and thus ring transition) may
940 * occur on any instructions. Thus, to classify them correctly,
941 * we need to first look at the from and to priv levels. If they
942 * are different and to is in the kernel, then it indicates
943 * a ring transition. If the from instruction is not a ring
944 * transition instr (syscall, systenter, int), then it means
945 * it was a irq, trap or fault.
947 * we have no way of detecting kernel to kernel faults.
949 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
950 && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
951 ret = X86_BR_IRQ;
954 * branch priv level determined by target as
955 * is done by HW when LBR_SELECT is implemented
957 if (ret != X86_BR_NONE)
958 ret |= to_plm;
960 return ret;
963 #define X86_BR_TYPE_MAP_MAX 16
965 static int branch_map[X86_BR_TYPE_MAP_MAX] = {
966 PERF_BR_CALL, /* X86_BR_CALL */
967 PERF_BR_RET, /* X86_BR_RET */
968 PERF_BR_SYSCALL, /* X86_BR_SYSCALL */
969 PERF_BR_SYSRET, /* X86_BR_SYSRET */
970 PERF_BR_UNKNOWN, /* X86_BR_INT */
971 PERF_BR_UNKNOWN, /* X86_BR_IRET */
972 PERF_BR_COND, /* X86_BR_JCC */
973 PERF_BR_UNCOND, /* X86_BR_JMP */
974 PERF_BR_UNKNOWN, /* X86_BR_IRQ */
975 PERF_BR_IND_CALL, /* X86_BR_IND_CALL */
976 PERF_BR_UNKNOWN, /* X86_BR_ABORT */
977 PERF_BR_UNKNOWN, /* X86_BR_IN_TX */
978 PERF_BR_UNKNOWN, /* X86_BR_NO_TX */
979 PERF_BR_CALL, /* X86_BR_ZERO_CALL */
980 PERF_BR_UNKNOWN, /* X86_BR_CALL_STACK */
981 PERF_BR_IND, /* X86_BR_IND_JMP */
984 static int
985 common_branch_type(int type)
987 int i;
989 type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
991 if (type) {
992 i = __ffs(type);
993 if (i < X86_BR_TYPE_MAP_MAX)
994 return branch_map[i];
997 return PERF_BR_UNKNOWN;
1001 * implement actual branch filter based on user demand.
1002 * Hardware may not exactly satisfy that request, thus
1003 * we need to inspect opcodes. Mismatched branches are
1004 * discarded. Therefore, the number of branches returned
1005 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1007 static void
1008 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1010 u64 from, to;
1011 int br_sel = cpuc->br_sel;
1012 int i, j, type;
1013 bool compress = false;
1015 /* if sampling all branches, then nothing to filter */
1016 if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1017 ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1018 return;
1020 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1022 from = cpuc->lbr_entries[i].from;
1023 to = cpuc->lbr_entries[i].to;
1025 type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1026 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1027 if (cpuc->lbr_entries[i].in_tx)
1028 type |= X86_BR_IN_TX;
1029 else
1030 type |= X86_BR_NO_TX;
1033 /* if type does not correspond, then discard */
1034 if (type == X86_BR_NONE || (br_sel & type) != type) {
1035 cpuc->lbr_entries[i].from = 0;
1036 compress = true;
1039 if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1040 cpuc->lbr_entries[i].type = common_branch_type(type);
1043 if (!compress)
1044 return;
1046 /* remove all entries with from=0 */
1047 for (i = 0; i < cpuc->lbr_stack.nr; ) {
1048 if (!cpuc->lbr_entries[i].from) {
1049 j = i;
1050 while (++j < cpuc->lbr_stack.nr)
1051 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1052 cpuc->lbr_stack.nr--;
1053 if (!cpuc->lbr_entries[i].from)
1054 continue;
1056 i++;
1061 * Map interface branch filters onto LBR filters
1063 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1064 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1065 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1066 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1067 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1068 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
1069 | LBR_IND_JMP | LBR_FAR,
1071 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1073 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1074 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1076 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1078 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1079 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1080 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1083 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1084 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1085 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1086 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1087 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1088 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1089 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1090 | LBR_FAR,
1091 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1092 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1093 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1094 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1097 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1098 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1099 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1100 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1101 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1102 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1103 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1104 | LBR_FAR,
1105 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1106 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1107 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1108 | LBR_RETURN | LBR_CALL_STACK,
1109 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1110 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1113 /* core */
1114 void __init intel_pmu_lbr_init_core(void)
1116 x86_pmu.lbr_nr = 4;
1117 x86_pmu.lbr_tos = MSR_LBR_TOS;
1118 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1119 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1122 * SW branch filter usage:
1123 * - compensate for lack of HW filter
1127 /* nehalem/westmere */
1128 void __init intel_pmu_lbr_init_nhm(void)
1130 x86_pmu.lbr_nr = 16;
1131 x86_pmu.lbr_tos = MSR_LBR_TOS;
1132 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1133 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1135 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1136 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1139 * SW branch filter usage:
1140 * - workaround LBR_SEL errata (see above)
1141 * - support syscall, sysret capture.
1142 * That requires LBR_FAR but that means far
1143 * jmp need to be filtered out
1147 /* sandy bridge */
1148 void __init intel_pmu_lbr_init_snb(void)
1150 x86_pmu.lbr_nr = 16;
1151 x86_pmu.lbr_tos = MSR_LBR_TOS;
1152 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1153 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1155 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1156 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1159 * SW branch filter usage:
1160 * - support syscall, sysret capture.
1161 * That requires LBR_FAR but that means far
1162 * jmp need to be filtered out
1166 /* haswell */
1167 void intel_pmu_lbr_init_hsw(void)
1169 x86_pmu.lbr_nr = 16;
1170 x86_pmu.lbr_tos = MSR_LBR_TOS;
1171 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1172 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1174 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1175 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1177 if (lbr_from_signext_quirk_needed())
1178 static_branch_enable(&lbr_from_quirk_key);
1181 /* skylake */
1182 __init void intel_pmu_lbr_init_skl(void)
1184 x86_pmu.lbr_nr = 32;
1185 x86_pmu.lbr_tos = MSR_LBR_TOS;
1186 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1187 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1189 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1190 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1193 * SW branch filter usage:
1194 * - support syscall, sysret capture.
1195 * That requires LBR_FAR but that means far
1196 * jmp need to be filtered out
1200 /* atom */
1201 void __init intel_pmu_lbr_init_atom(void)
1204 * only models starting at stepping 10 seems
1205 * to have an operational LBR which can freeze
1206 * on PMU interrupt
1208 if (boot_cpu_data.x86_model == 28
1209 && boot_cpu_data.x86_stepping < 10) {
1210 pr_cont("LBR disabled due to erratum");
1211 return;
1214 x86_pmu.lbr_nr = 8;
1215 x86_pmu.lbr_tos = MSR_LBR_TOS;
1216 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1217 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1220 * SW branch filter usage:
1221 * - compensate for lack of HW filter
1225 /* slm */
1226 void __init intel_pmu_lbr_init_slm(void)
1228 x86_pmu.lbr_nr = 8;
1229 x86_pmu.lbr_tos = MSR_LBR_TOS;
1230 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1231 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1233 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1234 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1237 * SW branch filter usage:
1238 * - compensate for lack of HW filter
1240 pr_cont("8-deep LBR, ");
1243 /* Knights Landing */
1244 void intel_pmu_lbr_init_knl(void)
1246 x86_pmu.lbr_nr = 8;
1247 x86_pmu.lbr_tos = MSR_LBR_TOS;
1248 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1249 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1251 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1252 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1254 /* Knights Landing does have MISPREDICT bit */
1255 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1256 x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;