x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / arch / x86 / kernel / cpu / intel_rdt_monitor.c
blob30827510094befb37aec9be1b356201a3644dd5e
1 /*
2 * Resource Director Technology(RDT)
3 * - Monitoring code
5 * Copyright (C) 2017 Intel Corporation
7 * Author:
8 * Vikas Shivappa <vikas.shivappa@intel.com>
10 * This replaces the cqm.c based on perf but we reuse a lot of
11 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms and conditions of the GNU General Public License,
15 * version 2, as published by the Free Software Foundation.
17 * This program is distributed in the hope it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
22 * More information about RDT be found in the Intel (R) x86 Architecture
23 * Software Developer Manual June 2016, volume 3, section 17.17.
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <asm/cpu_device_id.h>
29 #include "intel_rdt.h"
31 #define MSR_IA32_QM_CTR 0x0c8e
32 #define MSR_IA32_QM_EVTSEL 0x0c8d
34 struct rmid_entry {
35 u32 rmid;
36 int busy;
37 struct list_head list;
40 /**
41 * @rmid_free_lru A least recently used list of free RMIDs
42 * These RMIDs are guaranteed to have an occupancy less than the
43 * threshold occupancy
45 static LIST_HEAD(rmid_free_lru);
47 /**
48 * @rmid_limbo_count count of currently unused but (potentially)
49 * dirty RMIDs.
50 * This counts RMIDs that no one is currently using but that
51 * may have a occupancy value > intel_cqm_threshold. User can change
52 * the threshold occupancy value.
54 unsigned int rmid_limbo_count;
56 /**
57 * @rmid_entry - The entry in the limbo and free lists.
59 static struct rmid_entry *rmid_ptrs;
62 * Global boolean for rdt_monitor which is true if any
63 * resource monitoring is enabled.
65 bool rdt_mon_capable;
68 * Global to indicate which monitoring events are enabled.
70 unsigned int rdt_mon_features;
73 * This is the threshold cache occupancy at which we will consider an
74 * RMID available for re-allocation.
76 unsigned int intel_cqm_threshold;
78 static inline struct rmid_entry *__rmid_entry(u32 rmid)
80 struct rmid_entry *entry;
82 entry = &rmid_ptrs[rmid];
83 WARN_ON(entry->rmid != rmid);
85 return entry;
88 static u64 __rmid_read(u32 rmid, u32 eventid)
90 u64 val;
93 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
94 * with a valid event code for supported resource type and the bits
95 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
96 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
97 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
98 * are error bits.
100 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
101 rdmsrl(MSR_IA32_QM_CTR, val);
103 return val;
106 static bool rmid_dirty(struct rmid_entry *entry)
108 u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
110 return val >= intel_cqm_threshold;
114 * Check the RMIDs that are marked as busy for this domain. If the
115 * reported LLC occupancy is below the threshold clear the busy bit and
116 * decrement the count. If the busy count gets to zero on an RMID, we
117 * free the RMID
119 void __check_limbo(struct rdt_domain *d, bool force_free)
121 struct rmid_entry *entry;
122 struct rdt_resource *r;
123 u32 crmid = 1, nrmid;
125 r = &rdt_resources_all[RDT_RESOURCE_L3];
128 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
129 * are marked as busy for occupancy < threshold. If the occupancy
130 * is less than the threshold decrement the busy counter of the
131 * RMID and move it to the free list when the counter reaches 0.
133 for (;;) {
134 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
135 if (nrmid >= r->num_rmid)
136 break;
138 entry = __rmid_entry(nrmid);
139 if (force_free || !rmid_dirty(entry)) {
140 clear_bit(entry->rmid, d->rmid_busy_llc);
141 if (!--entry->busy) {
142 rmid_limbo_count--;
143 list_add_tail(&entry->list, &rmid_free_lru);
146 crmid = nrmid + 1;
150 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
152 return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
156 * As of now the RMIDs allocation is global.
157 * However we keep track of which packages the RMIDs
158 * are used to optimize the limbo list management.
160 int alloc_rmid(void)
162 struct rmid_entry *entry;
164 lockdep_assert_held(&rdtgroup_mutex);
166 if (list_empty(&rmid_free_lru))
167 return rmid_limbo_count ? -EBUSY : -ENOSPC;
169 entry = list_first_entry(&rmid_free_lru,
170 struct rmid_entry, list);
171 list_del(&entry->list);
173 return entry->rmid;
176 static void add_rmid_to_limbo(struct rmid_entry *entry)
178 struct rdt_resource *r;
179 struct rdt_domain *d;
180 int cpu;
181 u64 val;
183 r = &rdt_resources_all[RDT_RESOURCE_L3];
185 entry->busy = 0;
186 cpu = get_cpu();
187 list_for_each_entry(d, &r->domains, list) {
188 if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
189 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
190 if (val <= intel_cqm_threshold)
191 continue;
195 * For the first limbo RMID in the domain,
196 * setup up the limbo worker.
198 if (!has_busy_rmid(r, d))
199 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
200 set_bit(entry->rmid, d->rmid_busy_llc);
201 entry->busy++;
203 put_cpu();
205 if (entry->busy)
206 rmid_limbo_count++;
207 else
208 list_add_tail(&entry->list, &rmid_free_lru);
211 void free_rmid(u32 rmid)
213 struct rmid_entry *entry;
215 if (!rmid)
216 return;
218 lockdep_assert_held(&rdtgroup_mutex);
220 entry = __rmid_entry(rmid);
222 if (is_llc_occupancy_enabled())
223 add_rmid_to_limbo(entry);
224 else
225 list_add_tail(&entry->list, &rmid_free_lru);
228 static int __mon_event_count(u32 rmid, struct rmid_read *rr)
230 u64 chunks, shift, tval;
231 struct mbm_state *m;
233 tval = __rmid_read(rmid, rr->evtid);
234 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
235 rr->val = tval;
236 return -EINVAL;
238 switch (rr->evtid) {
239 case QOS_L3_OCCUP_EVENT_ID:
240 rr->val += tval;
241 return 0;
242 case QOS_L3_MBM_TOTAL_EVENT_ID:
243 m = &rr->d->mbm_total[rmid];
244 break;
245 case QOS_L3_MBM_LOCAL_EVENT_ID:
246 m = &rr->d->mbm_local[rmid];
247 break;
248 default:
250 * Code would never reach here because
251 * an invalid event id would fail the __rmid_read.
253 return -EINVAL;
256 if (rr->first) {
257 m->prev_msr = tval;
258 m->chunks = 0;
259 return 0;
262 shift = 64 - MBM_CNTR_WIDTH;
263 chunks = (tval << shift) - (m->prev_msr << shift);
264 chunks >>= shift;
265 m->chunks += chunks;
266 m->prev_msr = tval;
268 rr->val += m->chunks;
269 return 0;
273 * This is called via IPI to read the CQM/MBM counters
274 * on a domain.
276 void mon_event_count(void *info)
278 struct rdtgroup *rdtgrp, *entry;
279 struct rmid_read *rr = info;
280 struct list_head *head;
282 rdtgrp = rr->rgrp;
284 if (__mon_event_count(rdtgrp->mon.rmid, rr))
285 return;
288 * For Ctrl groups read data from child monitor groups.
290 head = &rdtgrp->mon.crdtgrp_list;
292 if (rdtgrp->type == RDTCTRL_GROUP) {
293 list_for_each_entry(entry, head, mon.crdtgrp_list) {
294 if (__mon_event_count(entry->mon.rmid, rr))
295 return;
300 static void mbm_update(struct rdt_domain *d, int rmid)
302 struct rmid_read rr;
304 rr.first = false;
305 rr.d = d;
308 * This is protected from concurrent reads from user
309 * as both the user and we hold the global mutex.
311 if (is_mbm_total_enabled()) {
312 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
313 __mon_event_count(rmid, &rr);
315 if (is_mbm_local_enabled()) {
316 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
317 __mon_event_count(rmid, &rr);
322 * Handler to scan the limbo list and move the RMIDs
323 * to free list whose occupancy < threshold_occupancy.
325 void cqm_handle_limbo(struct work_struct *work)
327 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
328 int cpu = smp_processor_id();
329 struct rdt_resource *r;
330 struct rdt_domain *d;
332 mutex_lock(&rdtgroup_mutex);
334 r = &rdt_resources_all[RDT_RESOURCE_L3];
335 d = get_domain_from_cpu(cpu, r);
337 if (!d) {
338 pr_warn_once("Failure to get domain for limbo worker\n");
339 goto out_unlock;
342 __check_limbo(d, false);
344 if (has_busy_rmid(r, d))
345 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
347 out_unlock:
348 mutex_unlock(&rdtgroup_mutex);
351 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
353 unsigned long delay = msecs_to_jiffies(delay_ms);
354 struct rdt_resource *r;
355 int cpu;
357 r = &rdt_resources_all[RDT_RESOURCE_L3];
359 cpu = cpumask_any(&dom->cpu_mask);
360 dom->cqm_work_cpu = cpu;
362 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
365 void mbm_handle_overflow(struct work_struct *work)
367 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
368 struct rdtgroup *prgrp, *crgrp;
369 int cpu = smp_processor_id();
370 struct list_head *head;
371 struct rdt_domain *d;
373 mutex_lock(&rdtgroup_mutex);
375 if (!static_branch_likely(&rdt_enable_key))
376 goto out_unlock;
378 d = get_domain_from_cpu(cpu, &rdt_resources_all[RDT_RESOURCE_L3]);
379 if (!d)
380 goto out_unlock;
382 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
383 mbm_update(d, prgrp->mon.rmid);
385 head = &prgrp->mon.crdtgrp_list;
386 list_for_each_entry(crgrp, head, mon.crdtgrp_list)
387 mbm_update(d, crgrp->mon.rmid);
390 schedule_delayed_work_on(cpu, &d->mbm_over, delay);
392 out_unlock:
393 mutex_unlock(&rdtgroup_mutex);
396 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
398 unsigned long delay = msecs_to_jiffies(delay_ms);
399 int cpu;
401 if (!static_branch_likely(&rdt_enable_key))
402 return;
403 cpu = cpumask_any(&dom->cpu_mask);
404 dom->mbm_work_cpu = cpu;
405 schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
408 static int dom_data_init(struct rdt_resource *r)
410 struct rmid_entry *entry = NULL;
411 int i, nr_rmids;
413 nr_rmids = r->num_rmid;
414 rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
415 if (!rmid_ptrs)
416 return -ENOMEM;
418 for (i = 0; i < nr_rmids; i++) {
419 entry = &rmid_ptrs[i];
420 INIT_LIST_HEAD(&entry->list);
422 entry->rmid = i;
423 list_add_tail(&entry->list, &rmid_free_lru);
427 * RMID 0 is special and is always allocated. It's used for all
428 * tasks that are not monitored.
430 entry = __rmid_entry(0);
431 list_del(&entry->list);
433 return 0;
436 static struct mon_evt llc_occupancy_event = {
437 .name = "llc_occupancy",
438 .evtid = QOS_L3_OCCUP_EVENT_ID,
441 static struct mon_evt mbm_total_event = {
442 .name = "mbm_total_bytes",
443 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
446 static struct mon_evt mbm_local_event = {
447 .name = "mbm_local_bytes",
448 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
452 * Initialize the event list for the resource.
454 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
455 * because as per the SDM the total and local memory bandwidth
456 * are enumerated as part of L3 monitoring.
458 static void l3_mon_evt_init(struct rdt_resource *r)
460 INIT_LIST_HEAD(&r->evt_list);
462 if (is_llc_occupancy_enabled())
463 list_add_tail(&llc_occupancy_event.list, &r->evt_list);
464 if (is_mbm_total_enabled())
465 list_add_tail(&mbm_total_event.list, &r->evt_list);
466 if (is_mbm_local_enabled())
467 list_add_tail(&mbm_local_event.list, &r->evt_list);
470 int rdt_get_mon_l3_config(struct rdt_resource *r)
472 int ret;
474 r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
475 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
478 * A reasonable upper limit on the max threshold is the number
479 * of lines tagged per RMID if all RMIDs have the same number of
480 * lines tagged in the LLC.
482 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
484 intel_cqm_threshold = boot_cpu_data.x86_cache_size * 1024 / r->num_rmid;
486 /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
487 intel_cqm_threshold /= r->mon_scale;
489 ret = dom_data_init(r);
490 if (ret)
491 return ret;
493 l3_mon_evt_init(r);
495 r->mon_capable = true;
496 r->mon_enabled = true;
498 return 0;