x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / arch / x86 / kernel / cpu / mcheck / mce_amd.c
blob4fa97a44e73fa2b530d652bf57019e2f5248547f
1 /*
2 * (c) 2005-2016 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Written by Jacob Shin - AMD, Inc.
8 * Maintained by: Borislav Petkov <bp@alien8.de>
10 * All MC4_MISCi registers are shared between cores on a node.
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
25 #include <asm/amd_nb.h>
26 #include <asm/traps.h>
27 #include <asm/apic.h>
28 #include <asm/mce.h>
29 #include <asm/msr.h>
30 #include <asm/trace/irq_vectors.h>
32 #include "mce-internal.h"
34 #define NR_BLOCKS 5
35 #define THRESHOLD_MAX 0xFFF
36 #define INT_TYPE_APIC 0x00020000
37 #define MASK_VALID_HI 0x80000000
38 #define MASK_CNTP_HI 0x40000000
39 #define MASK_LOCKED_HI 0x20000000
40 #define MASK_LVTOFF_HI 0x00F00000
41 #define MASK_COUNT_EN_HI 0x00080000
42 #define MASK_INT_TYPE_HI 0x00060000
43 #define MASK_OVERFLOW_HI 0x00010000
44 #define MASK_ERR_COUNT_HI 0x00000FFF
45 #define MASK_BLKPTR_LO 0xFF000000
46 #define MCG_XBLK_ADDR 0xC0000400
48 /* Deferred error settings */
49 #define MSR_CU_DEF_ERR 0xC0000410
50 #define MASK_DEF_LVTOFF 0x000000F0
51 #define MASK_DEF_INT_TYPE 0x00000006
52 #define DEF_LVT_OFF 0x2
53 #define DEF_INT_TYPE_APIC 0x2
55 /* Scalable MCA: */
57 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
58 #define SMCA_THR_LVT_OFF 0xF000
60 static bool thresholding_irq_en;
62 static const char * const th_names[] = {
63 "load_store",
64 "insn_fetch",
65 "combined_unit",
66 "decode_unit",
67 "northbridge",
68 "execution_unit",
71 static const char * const smca_umc_block_names[] = {
72 "dram_ecc",
73 "misc_umc"
76 struct smca_bank_name {
77 const char *name; /* Short name for sysfs */
78 const char *long_name; /* Long name for pretty-printing */
81 static struct smca_bank_name smca_names[] = {
82 [SMCA_LS] = { "load_store", "Load Store Unit" },
83 [SMCA_IF] = { "insn_fetch", "Instruction Fetch Unit" },
84 [SMCA_L2_CACHE] = { "l2_cache", "L2 Cache" },
85 [SMCA_DE] = { "decode_unit", "Decode Unit" },
86 [SMCA_RESERVED] = { "reserved", "Reserved" },
87 [SMCA_EX] = { "execution_unit", "Execution Unit" },
88 [SMCA_FP] = { "floating_point", "Floating Point Unit" },
89 [SMCA_L3_CACHE] = { "l3_cache", "L3 Cache" },
90 [SMCA_CS] = { "coherent_slave", "Coherent Slave" },
91 [SMCA_PIE] = { "pie", "Power, Interrupts, etc." },
92 [SMCA_UMC] = { "umc", "Unified Memory Controller" },
93 [SMCA_PB] = { "param_block", "Parameter Block" },
94 [SMCA_PSP] = { "psp", "Platform Security Processor" },
95 [SMCA_SMU] = { "smu", "System Management Unit" },
98 static u32 smca_bank_addrs[MAX_NR_BANKS][NR_BLOCKS] __ro_after_init =
100 [0 ... MAX_NR_BANKS - 1] = { [0 ... NR_BLOCKS - 1] = -1 }
103 static const char *smca_get_name(enum smca_bank_types t)
105 if (t >= N_SMCA_BANK_TYPES)
106 return NULL;
108 return smca_names[t].name;
111 const char *smca_get_long_name(enum smca_bank_types t)
113 if (t >= N_SMCA_BANK_TYPES)
114 return NULL;
116 return smca_names[t].long_name;
118 EXPORT_SYMBOL_GPL(smca_get_long_name);
120 static enum smca_bank_types smca_get_bank_type(unsigned int bank)
122 struct smca_bank *b;
124 if (bank >= MAX_NR_BANKS)
125 return N_SMCA_BANK_TYPES;
127 b = &smca_banks[bank];
128 if (!b->hwid)
129 return N_SMCA_BANK_TYPES;
131 return b->hwid->bank_type;
134 static struct smca_hwid smca_hwid_mcatypes[] = {
135 /* { bank_type, hwid_mcatype, xec_bitmap } */
137 /* Reserved type */
138 { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 },
140 /* ZN Core (HWID=0xB0) MCA types */
141 { SMCA_LS, HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
142 { SMCA_IF, HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
143 { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
144 { SMCA_DE, HWID_MCATYPE(0xB0, 0x3), 0x1FF },
145 /* HWID 0xB0 MCATYPE 0x4 is Reserved */
146 { SMCA_EX, HWID_MCATYPE(0xB0, 0x5), 0x7FF },
147 { SMCA_FP, HWID_MCATYPE(0xB0, 0x6), 0x7F },
148 { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
150 /* Data Fabric MCA types */
151 { SMCA_CS, HWID_MCATYPE(0x2E, 0x0), 0x1FF },
152 { SMCA_PIE, HWID_MCATYPE(0x2E, 0x1), 0xF },
154 /* Unified Memory Controller MCA type */
155 { SMCA_UMC, HWID_MCATYPE(0x96, 0x0), 0x3F },
157 /* Parameter Block MCA type */
158 { SMCA_PB, HWID_MCATYPE(0x05, 0x0), 0x1 },
160 /* Platform Security Processor MCA type */
161 { SMCA_PSP, HWID_MCATYPE(0xFF, 0x0), 0x1 },
163 /* System Management Unit MCA type */
164 { SMCA_SMU, HWID_MCATYPE(0x01, 0x0), 0x1 },
167 struct smca_bank smca_banks[MAX_NR_BANKS];
168 EXPORT_SYMBOL_GPL(smca_banks);
171 * In SMCA enabled processors, we can have multiple banks for a given IP type.
172 * So to define a unique name for each bank, we use a temp c-string to append
173 * the MCA_IPID[InstanceId] to type's name in get_name().
175 * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
176 * is greater than 8 plus 1 (for underscore) plus length of longest type name.
178 #define MAX_MCATYPE_NAME_LEN 30
179 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
181 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
182 static DEFINE_PER_CPU(unsigned int, bank_map); /* see which banks are on */
184 static void amd_threshold_interrupt(void);
185 static void amd_deferred_error_interrupt(void);
187 static void default_deferred_error_interrupt(void)
189 pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
191 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
193 static void smca_configure(unsigned int bank, unsigned int cpu)
195 unsigned int i, hwid_mcatype;
196 struct smca_hwid *s_hwid;
197 u32 high, low;
198 u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
200 /* Set appropriate bits in MCA_CONFIG */
201 if (!rdmsr_safe(smca_config, &low, &high)) {
203 * OS is required to set the MCAX bit to acknowledge that it is
204 * now using the new MSR ranges and new registers under each
205 * bank. It also means that the OS will configure deferred
206 * errors in the new MCx_CONFIG register. If the bit is not set,
207 * uncorrectable errors will cause a system panic.
209 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
211 high |= BIT(0);
214 * SMCA sets the Deferred Error Interrupt type per bank.
216 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
217 * if the DeferredIntType bit field is available.
219 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
220 * high portion of the MSR). OS should set this to 0x1 to enable
221 * APIC based interrupt. First, check that no interrupt has been
222 * set.
224 if ((low & BIT(5)) && !((high >> 5) & 0x3))
225 high |= BIT(5);
227 wrmsr(smca_config, low, high);
230 /* Return early if this bank was already initialized. */
231 if (smca_banks[bank].hwid)
232 return;
234 if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
235 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
236 return;
239 hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
240 (high & MCI_IPID_MCATYPE) >> 16);
242 for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
243 s_hwid = &smca_hwid_mcatypes[i];
244 if (hwid_mcatype == s_hwid->hwid_mcatype) {
245 smca_banks[bank].hwid = s_hwid;
246 smca_banks[bank].id = low;
247 smca_banks[bank].sysfs_id = s_hwid->count++;
248 break;
253 struct thresh_restart {
254 struct threshold_block *b;
255 int reset;
256 int set_lvt_off;
257 int lvt_off;
258 u16 old_limit;
261 static inline bool is_shared_bank(int bank)
264 * Scalable MCA provides for only one core to have access to the MSRs of
265 * a shared bank.
267 if (mce_flags.smca)
268 return false;
270 /* Bank 4 is for northbridge reporting and is thus shared */
271 return (bank == 4);
274 static const char *bank4_names(const struct threshold_block *b)
276 switch (b->address) {
277 /* MSR4_MISC0 */
278 case 0x00000413:
279 return "dram";
281 case 0xc0000408:
282 return "ht_links";
284 case 0xc0000409:
285 return "l3_cache";
287 default:
288 WARN(1, "Funny MSR: 0x%08x\n", b->address);
289 return "";
294 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
297 * bank 4 supports APIC LVT interrupts implicitly since forever.
299 if (bank == 4)
300 return true;
303 * IntP: interrupt present; if this bit is set, the thresholding
304 * bank can generate APIC LVT interrupts
306 return msr_high_bits & BIT(28);
309 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
311 int msr = (hi & MASK_LVTOFF_HI) >> 20;
313 if (apic < 0) {
314 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
315 "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
316 b->bank, b->block, b->address, hi, lo);
317 return 0;
320 if (apic != msr) {
322 * On SMCA CPUs, LVT offset is programmed at a different MSR, and
323 * the BIOS provides the value. The original field where LVT offset
324 * was set is reserved. Return early here:
326 if (mce_flags.smca)
327 return 0;
329 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
330 "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
331 b->cpu, apic, b->bank, b->block, b->address, hi, lo);
332 return 0;
335 return 1;
338 /* Reprogram MCx_MISC MSR behind this threshold bank. */
339 static void threshold_restart_bank(void *_tr)
341 struct thresh_restart *tr = _tr;
342 u32 hi, lo;
344 rdmsr(tr->b->address, lo, hi);
346 if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
347 tr->reset = 1; /* limit cannot be lower than err count */
349 if (tr->reset) { /* reset err count and overflow bit */
350 hi =
351 (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
352 (THRESHOLD_MAX - tr->b->threshold_limit);
353 } else if (tr->old_limit) { /* change limit w/o reset */
354 int new_count = (hi & THRESHOLD_MAX) +
355 (tr->old_limit - tr->b->threshold_limit);
357 hi = (hi & ~MASK_ERR_COUNT_HI) |
358 (new_count & THRESHOLD_MAX);
361 /* clear IntType */
362 hi &= ~MASK_INT_TYPE_HI;
364 if (!tr->b->interrupt_capable)
365 goto done;
367 if (tr->set_lvt_off) {
368 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
369 /* set new lvt offset */
370 hi &= ~MASK_LVTOFF_HI;
371 hi |= tr->lvt_off << 20;
375 if (tr->b->interrupt_enable)
376 hi |= INT_TYPE_APIC;
378 done:
380 hi |= MASK_COUNT_EN_HI;
381 wrmsr(tr->b->address, lo, hi);
384 static void mce_threshold_block_init(struct threshold_block *b, int offset)
386 struct thresh_restart tr = {
387 .b = b,
388 .set_lvt_off = 1,
389 .lvt_off = offset,
392 b->threshold_limit = THRESHOLD_MAX;
393 threshold_restart_bank(&tr);
396 static int setup_APIC_mce_threshold(int reserved, int new)
398 if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
399 APIC_EILVT_MSG_FIX, 0))
400 return new;
402 return reserved;
405 static int setup_APIC_deferred_error(int reserved, int new)
407 if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
408 APIC_EILVT_MSG_FIX, 0))
409 return new;
411 return reserved;
414 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
416 u32 low = 0, high = 0;
417 int def_offset = -1, def_new;
419 if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
420 return;
422 def_new = (low & MASK_DEF_LVTOFF) >> 4;
423 if (!(low & MASK_DEF_LVTOFF)) {
424 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
425 def_new = DEF_LVT_OFF;
426 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
429 def_offset = setup_APIC_deferred_error(def_offset, def_new);
430 if ((def_offset == def_new) &&
431 (deferred_error_int_vector != amd_deferred_error_interrupt))
432 deferred_error_int_vector = amd_deferred_error_interrupt;
434 low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
435 wrmsr(MSR_CU_DEF_ERR, low, high);
438 static u32 smca_get_block_address(unsigned int cpu, unsigned int bank,
439 unsigned int block)
441 u32 low, high;
442 u32 addr = 0;
444 if (smca_get_bank_type(bank) == SMCA_RESERVED)
445 return addr;
447 if (!block)
448 return MSR_AMD64_SMCA_MCx_MISC(bank);
450 /* Check our cache first: */
451 if (smca_bank_addrs[bank][block] != -1)
452 return smca_bank_addrs[bank][block];
455 * For SMCA enabled processors, BLKPTR field of the first MISC register
456 * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
458 if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
459 goto out;
461 if (!(low & MCI_CONFIG_MCAX))
462 goto out;
464 if (!rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
465 (low & MASK_BLKPTR_LO))
466 addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
468 out:
469 smca_bank_addrs[bank][block] = addr;
470 return addr;
473 static u32 get_block_address(unsigned int cpu, u32 current_addr, u32 low, u32 high,
474 unsigned int bank, unsigned int block)
476 u32 addr = 0, offset = 0;
478 if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
479 return addr;
481 if (mce_flags.smca)
482 return smca_get_block_address(cpu, bank, block);
484 /* Fall back to method we used for older processors: */
485 switch (block) {
486 case 0:
487 addr = msr_ops.misc(bank);
488 break;
489 case 1:
490 offset = ((low & MASK_BLKPTR_LO) >> 21);
491 if (offset)
492 addr = MCG_XBLK_ADDR + offset;
493 break;
494 default:
495 addr = ++current_addr;
497 return addr;
500 static int
501 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
502 int offset, u32 misc_high)
504 unsigned int cpu = smp_processor_id();
505 u32 smca_low, smca_high;
506 struct threshold_block b;
507 int new;
509 if (!block)
510 per_cpu(bank_map, cpu) |= (1 << bank);
512 memset(&b, 0, sizeof(b));
513 b.cpu = cpu;
514 b.bank = bank;
515 b.block = block;
516 b.address = addr;
517 b.interrupt_capable = lvt_interrupt_supported(bank, misc_high);
519 if (!b.interrupt_capable)
520 goto done;
522 b.interrupt_enable = 1;
524 if (!mce_flags.smca) {
525 new = (misc_high & MASK_LVTOFF_HI) >> 20;
526 goto set_offset;
529 /* Gather LVT offset for thresholding: */
530 if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
531 goto out;
533 new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
535 set_offset:
536 offset = setup_APIC_mce_threshold(offset, new);
537 if (offset == new)
538 thresholding_irq_en = true;
540 done:
541 mce_threshold_block_init(&b, offset);
543 out:
544 return offset;
547 /* cpu init entry point, called from mce.c with preempt off */
548 void mce_amd_feature_init(struct cpuinfo_x86 *c)
550 u32 low = 0, high = 0, address = 0;
551 unsigned int bank, block, cpu = smp_processor_id();
552 int offset = -1;
554 for (bank = 0; bank < mca_cfg.banks; ++bank) {
555 if (mce_flags.smca)
556 smca_configure(bank, cpu);
558 for (block = 0; block < NR_BLOCKS; ++block) {
559 address = get_block_address(cpu, address, low, high, bank, block);
560 if (!address)
561 break;
563 if (rdmsr_safe(address, &low, &high))
564 break;
566 if (!(high & MASK_VALID_HI))
567 continue;
569 if (!(high & MASK_CNTP_HI) ||
570 (high & MASK_LOCKED_HI))
571 continue;
573 offset = prepare_threshold_block(bank, block, address, offset, high);
577 if (mce_flags.succor)
578 deferred_error_interrupt_enable(c);
581 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
583 u64 dram_base_addr, dram_limit_addr, dram_hole_base;
584 /* We start from the normalized address */
585 u64 ret_addr = norm_addr;
587 u32 tmp;
589 u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
590 u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
591 u8 intlv_addr_sel, intlv_addr_bit;
592 u8 num_intlv_bits, hashed_bit;
593 u8 lgcy_mmio_hole_en, base = 0;
594 u8 cs_mask, cs_id = 0;
595 bool hash_enabled = false;
597 /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
598 if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
599 goto out_err;
601 /* Remove HiAddrOffset from normalized address, if enabled: */
602 if (tmp & BIT(0)) {
603 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
605 if (norm_addr >= hi_addr_offset) {
606 ret_addr -= hi_addr_offset;
607 base = 1;
611 /* Read D18F0x110 (DramBaseAddress). */
612 if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
613 goto out_err;
615 /* Check if address range is valid. */
616 if (!(tmp & BIT(0))) {
617 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
618 __func__, tmp);
619 goto out_err;
622 lgcy_mmio_hole_en = tmp & BIT(1);
623 intlv_num_chan = (tmp >> 4) & 0xF;
624 intlv_addr_sel = (tmp >> 8) & 0x7;
625 dram_base_addr = (tmp & GENMASK_ULL(31, 12)) << 16;
627 /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
628 if (intlv_addr_sel > 3) {
629 pr_err("%s: Invalid interleave address select %d.\n",
630 __func__, intlv_addr_sel);
631 goto out_err;
634 /* Read D18F0x114 (DramLimitAddress). */
635 if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
636 goto out_err;
638 intlv_num_sockets = (tmp >> 8) & 0x1;
639 intlv_num_dies = (tmp >> 10) & 0x3;
640 dram_limit_addr = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
642 intlv_addr_bit = intlv_addr_sel + 8;
644 /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
645 switch (intlv_num_chan) {
646 case 0: intlv_num_chan = 0; break;
647 case 1: intlv_num_chan = 1; break;
648 case 3: intlv_num_chan = 2; break;
649 case 5: intlv_num_chan = 3; break;
650 case 7: intlv_num_chan = 4; break;
652 case 8: intlv_num_chan = 1;
653 hash_enabled = true;
654 break;
655 default:
656 pr_err("%s: Invalid number of interleaved channels %d.\n",
657 __func__, intlv_num_chan);
658 goto out_err;
661 num_intlv_bits = intlv_num_chan;
663 if (intlv_num_dies > 2) {
664 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
665 __func__, intlv_num_dies);
666 goto out_err;
669 num_intlv_bits += intlv_num_dies;
671 /* Add a bit if sockets are interleaved. */
672 num_intlv_bits += intlv_num_sockets;
674 /* Assert num_intlv_bits <= 4 */
675 if (num_intlv_bits > 4) {
676 pr_err("%s: Invalid interleave bits %d.\n",
677 __func__, num_intlv_bits);
678 goto out_err;
681 if (num_intlv_bits > 0) {
682 u64 temp_addr_x, temp_addr_i, temp_addr_y;
683 u8 die_id_bit, sock_id_bit, cs_fabric_id;
686 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
687 * This is the fabric id for this coherent slave. Use
688 * umc/channel# as instance id of the coherent slave
689 * for FICAA.
691 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
692 goto out_err;
694 cs_fabric_id = (tmp >> 8) & 0xFF;
695 die_id_bit = 0;
697 /* If interleaved over more than 1 channel: */
698 if (intlv_num_chan) {
699 die_id_bit = intlv_num_chan;
700 cs_mask = (1 << die_id_bit) - 1;
701 cs_id = cs_fabric_id & cs_mask;
704 sock_id_bit = die_id_bit;
706 /* Read D18F1x208 (SystemFabricIdMask). */
707 if (intlv_num_dies || intlv_num_sockets)
708 if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
709 goto out_err;
711 /* If interleaved over more than 1 die. */
712 if (intlv_num_dies) {
713 sock_id_bit = die_id_bit + intlv_num_dies;
714 die_id_shift = (tmp >> 24) & 0xF;
715 die_id_mask = (tmp >> 8) & 0xFF;
717 cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
720 /* If interleaved over more than 1 socket. */
721 if (intlv_num_sockets) {
722 socket_id_shift = (tmp >> 28) & 0xF;
723 socket_id_mask = (tmp >> 16) & 0xFF;
725 cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
729 * The pre-interleaved address consists of XXXXXXIIIYYYYY
730 * where III is the ID for this CS, and XXXXXXYYYYY are the
731 * address bits from the post-interleaved address.
732 * "num_intlv_bits" has been calculated to tell us how many "I"
733 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
734 * there are (where "I" starts).
736 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
737 temp_addr_i = (cs_id << intlv_addr_bit);
738 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
739 ret_addr = temp_addr_x | temp_addr_i | temp_addr_y;
742 /* Add dram base address */
743 ret_addr += dram_base_addr;
745 /* If legacy MMIO hole enabled */
746 if (lgcy_mmio_hole_en) {
747 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
748 goto out_err;
750 dram_hole_base = tmp & GENMASK(31, 24);
751 if (ret_addr >= dram_hole_base)
752 ret_addr += (BIT_ULL(32) - dram_hole_base);
755 if (hash_enabled) {
756 /* Save some parentheses and grab ls-bit at the end. */
757 hashed_bit = (ret_addr >> 12) ^
758 (ret_addr >> 18) ^
759 (ret_addr >> 21) ^
760 (ret_addr >> 30) ^
761 cs_id;
763 hashed_bit &= BIT(0);
765 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
766 ret_addr ^= BIT(intlv_addr_bit);
769 /* Is calculated system address is above DRAM limit address? */
770 if (ret_addr > dram_limit_addr)
771 goto out_err;
773 *sys_addr = ret_addr;
774 return 0;
776 out_err:
777 return -EINVAL;
779 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
781 bool amd_mce_is_memory_error(struct mce *m)
783 /* ErrCodeExt[20:16] */
784 u8 xec = (m->status >> 16) & 0x1f;
786 if (mce_flags.smca)
787 return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
789 return m->bank == 4 && xec == 0x8;
792 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
794 struct mce m;
796 mce_setup(&m);
798 m.status = status;
799 m.misc = misc;
800 m.bank = bank;
801 m.tsc = rdtsc();
803 if (m.status & MCI_STATUS_ADDRV) {
804 m.addr = addr;
807 * Extract [55:<lsb>] where lsb is the least significant
808 * *valid* bit of the address bits.
810 if (mce_flags.smca) {
811 u8 lsb = (m.addr >> 56) & 0x3f;
813 m.addr &= GENMASK_ULL(55, lsb);
817 if (mce_flags.smca) {
818 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
820 if (m.status & MCI_STATUS_SYNDV)
821 rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
824 mce_log(&m);
827 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(struct pt_regs *regs)
829 entering_irq();
830 trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
831 inc_irq_stat(irq_deferred_error_count);
832 deferred_error_int_vector();
833 trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
834 exiting_ack_irq();
838 * Returns true if the logged error is deferred. False, otherwise.
840 static inline bool
841 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
843 u64 status, addr = 0;
845 rdmsrl(msr_stat, status);
846 if (!(status & MCI_STATUS_VAL))
847 return false;
849 if (status & MCI_STATUS_ADDRV)
850 rdmsrl(msr_addr, addr);
852 __log_error(bank, status, addr, misc);
854 wrmsrl(msr_stat, 0);
856 return status & MCI_STATUS_DEFERRED;
860 * We have three scenarios for checking for Deferred errors:
862 * 1) Non-SMCA systems check MCA_STATUS and log error if found.
863 * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
864 * clear MCA_DESTAT.
865 * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
866 * log it.
868 static void log_error_deferred(unsigned int bank)
870 bool defrd;
872 defrd = _log_error_bank(bank, msr_ops.status(bank),
873 msr_ops.addr(bank), 0);
875 if (!mce_flags.smca)
876 return;
878 /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
879 if (defrd) {
880 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
881 return;
885 * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
886 * for a valid error.
888 _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
889 MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
892 /* APIC interrupt handler for deferred errors */
893 static void amd_deferred_error_interrupt(void)
895 unsigned int bank;
897 for (bank = 0; bank < mca_cfg.banks; ++bank)
898 log_error_deferred(bank);
901 static void log_error_thresholding(unsigned int bank, u64 misc)
903 _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
906 static void log_and_reset_block(struct threshold_block *block)
908 struct thresh_restart tr;
909 u32 low = 0, high = 0;
911 if (!block)
912 return;
914 if (rdmsr_safe(block->address, &low, &high))
915 return;
917 if (!(high & MASK_OVERFLOW_HI))
918 return;
920 /* Log the MCE which caused the threshold event. */
921 log_error_thresholding(block->bank, ((u64)high << 32) | low);
923 /* Reset threshold block after logging error. */
924 memset(&tr, 0, sizeof(tr));
925 tr.b = block;
926 threshold_restart_bank(&tr);
930 * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
931 * goes off when error_count reaches threshold_limit.
933 static void amd_threshold_interrupt(void)
935 struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
936 unsigned int bank, cpu = smp_processor_id();
938 for (bank = 0; bank < mca_cfg.banks; ++bank) {
939 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
940 continue;
942 first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
943 if (!first_block)
944 continue;
947 * The first block is also the head of the list. Check it first
948 * before iterating over the rest.
950 log_and_reset_block(first_block);
951 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
952 log_and_reset_block(block);
957 * Sysfs Interface
960 struct threshold_attr {
961 struct attribute attr;
962 ssize_t (*show) (struct threshold_block *, char *);
963 ssize_t (*store) (struct threshold_block *, const char *, size_t count);
966 #define SHOW_FIELDS(name) \
967 static ssize_t show_ ## name(struct threshold_block *b, char *buf) \
969 return sprintf(buf, "%lu\n", (unsigned long) b->name); \
971 SHOW_FIELDS(interrupt_enable)
972 SHOW_FIELDS(threshold_limit)
974 static ssize_t
975 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
977 struct thresh_restart tr;
978 unsigned long new;
980 if (!b->interrupt_capable)
981 return -EINVAL;
983 if (kstrtoul(buf, 0, &new) < 0)
984 return -EINVAL;
986 b->interrupt_enable = !!new;
988 memset(&tr, 0, sizeof(tr));
989 tr.b = b;
991 smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
993 return size;
996 static ssize_t
997 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
999 struct thresh_restart tr;
1000 unsigned long new;
1002 if (kstrtoul(buf, 0, &new) < 0)
1003 return -EINVAL;
1005 if (new > THRESHOLD_MAX)
1006 new = THRESHOLD_MAX;
1007 if (new < 1)
1008 new = 1;
1010 memset(&tr, 0, sizeof(tr));
1011 tr.old_limit = b->threshold_limit;
1012 b->threshold_limit = new;
1013 tr.b = b;
1015 smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1017 return size;
1020 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1022 u32 lo, hi;
1024 rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
1026 return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1027 (THRESHOLD_MAX - b->threshold_limit)));
1030 static struct threshold_attr error_count = {
1031 .attr = {.name = __stringify(error_count), .mode = 0444 },
1032 .show = show_error_count,
1035 #define RW_ATTR(val) \
1036 static struct threshold_attr val = { \
1037 .attr = {.name = __stringify(val), .mode = 0644 }, \
1038 .show = show_## val, \
1039 .store = store_## val, \
1042 RW_ATTR(interrupt_enable);
1043 RW_ATTR(threshold_limit);
1045 static struct attribute *default_attrs[] = {
1046 &threshold_limit.attr,
1047 &error_count.attr,
1048 NULL, /* possibly interrupt_enable if supported, see below */
1049 NULL,
1052 #define to_block(k) container_of(k, struct threshold_block, kobj)
1053 #define to_attr(a) container_of(a, struct threshold_attr, attr)
1055 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1057 struct threshold_block *b = to_block(kobj);
1058 struct threshold_attr *a = to_attr(attr);
1059 ssize_t ret;
1061 ret = a->show ? a->show(b, buf) : -EIO;
1063 return ret;
1066 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1067 const char *buf, size_t count)
1069 struct threshold_block *b = to_block(kobj);
1070 struct threshold_attr *a = to_attr(attr);
1071 ssize_t ret;
1073 ret = a->store ? a->store(b, buf, count) : -EIO;
1075 return ret;
1078 static const struct sysfs_ops threshold_ops = {
1079 .show = show,
1080 .store = store,
1083 static struct kobj_type threshold_ktype = {
1084 .sysfs_ops = &threshold_ops,
1085 .default_attrs = default_attrs,
1088 static const char *get_name(unsigned int bank, struct threshold_block *b)
1090 enum smca_bank_types bank_type;
1092 if (!mce_flags.smca) {
1093 if (b && bank == 4)
1094 return bank4_names(b);
1096 return th_names[bank];
1099 bank_type = smca_get_bank_type(bank);
1100 if (bank_type >= N_SMCA_BANK_TYPES)
1101 return NULL;
1103 if (b && bank_type == SMCA_UMC) {
1104 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1105 return smca_umc_block_names[b->block];
1106 return NULL;
1109 if (smca_banks[bank].hwid->count == 1)
1110 return smca_get_name(bank_type);
1112 snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1113 "%s_%x", smca_get_name(bank_type),
1114 smca_banks[bank].sysfs_id);
1115 return buf_mcatype;
1118 static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
1119 unsigned int block, u32 address)
1121 struct threshold_block *b = NULL;
1122 u32 low, high;
1123 int err;
1125 if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1126 return 0;
1128 if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1129 return 0;
1131 if (!(high & MASK_VALID_HI)) {
1132 if (block)
1133 goto recurse;
1134 else
1135 return 0;
1138 if (!(high & MASK_CNTP_HI) ||
1139 (high & MASK_LOCKED_HI))
1140 goto recurse;
1142 b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1143 if (!b)
1144 return -ENOMEM;
1146 b->block = block;
1147 b->bank = bank;
1148 b->cpu = cpu;
1149 b->address = address;
1150 b->interrupt_enable = 0;
1151 b->interrupt_capable = lvt_interrupt_supported(bank, high);
1152 b->threshold_limit = THRESHOLD_MAX;
1154 if (b->interrupt_capable) {
1155 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1156 b->interrupt_enable = 1;
1157 } else {
1158 threshold_ktype.default_attrs[2] = NULL;
1161 INIT_LIST_HEAD(&b->miscj);
1163 if (per_cpu(threshold_banks, cpu)[bank]->blocks) {
1164 list_add(&b->miscj,
1165 &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj);
1166 } else {
1167 per_cpu(threshold_banks, cpu)[bank]->blocks = b;
1170 err = kobject_init_and_add(&b->kobj, &threshold_ktype,
1171 per_cpu(threshold_banks, cpu)[bank]->kobj,
1172 get_name(bank, b));
1173 if (err)
1174 goto out_free;
1175 recurse:
1176 address = get_block_address(cpu, address, low, high, bank, ++block);
1177 if (!address)
1178 return 0;
1180 err = allocate_threshold_blocks(cpu, bank, block, address);
1181 if (err)
1182 goto out_free;
1184 if (b)
1185 kobject_uevent(&b->kobj, KOBJ_ADD);
1187 return err;
1189 out_free:
1190 if (b) {
1191 kobject_put(&b->kobj);
1192 list_del(&b->miscj);
1193 kfree(b);
1195 return err;
1198 static int __threshold_add_blocks(struct threshold_bank *b)
1200 struct list_head *head = &b->blocks->miscj;
1201 struct threshold_block *pos = NULL;
1202 struct threshold_block *tmp = NULL;
1203 int err = 0;
1205 err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1206 if (err)
1207 return err;
1209 list_for_each_entry_safe(pos, tmp, head, miscj) {
1211 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1212 if (err) {
1213 list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1214 kobject_del(&pos->kobj);
1216 return err;
1219 return err;
1222 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1224 struct device *dev = per_cpu(mce_device, cpu);
1225 struct amd_northbridge *nb = NULL;
1226 struct threshold_bank *b = NULL;
1227 const char *name = get_name(bank, NULL);
1228 int err = 0;
1230 if (!dev)
1231 return -ENODEV;
1233 if (is_shared_bank(bank)) {
1234 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1236 /* threshold descriptor already initialized on this node? */
1237 if (nb && nb->bank4) {
1238 /* yes, use it */
1239 b = nb->bank4;
1240 err = kobject_add(b->kobj, &dev->kobj, name);
1241 if (err)
1242 goto out;
1244 per_cpu(threshold_banks, cpu)[bank] = b;
1245 refcount_inc(&b->cpus);
1247 err = __threshold_add_blocks(b);
1249 goto out;
1253 b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1254 if (!b) {
1255 err = -ENOMEM;
1256 goto out;
1259 b->kobj = kobject_create_and_add(name, &dev->kobj);
1260 if (!b->kobj) {
1261 err = -EINVAL;
1262 goto out_free;
1265 per_cpu(threshold_banks, cpu)[bank] = b;
1267 if (is_shared_bank(bank)) {
1268 refcount_set(&b->cpus, 1);
1270 /* nb is already initialized, see above */
1271 if (nb) {
1272 WARN_ON(nb->bank4);
1273 nb->bank4 = b;
1277 err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank));
1278 if (!err)
1279 goto out;
1281 out_free:
1282 kfree(b);
1284 out:
1285 return err;
1288 static void deallocate_threshold_block(unsigned int cpu,
1289 unsigned int bank)
1291 struct threshold_block *pos = NULL;
1292 struct threshold_block *tmp = NULL;
1293 struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1295 if (!head)
1296 return;
1298 list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1299 kobject_put(&pos->kobj);
1300 list_del(&pos->miscj);
1301 kfree(pos);
1304 kfree(per_cpu(threshold_banks, cpu)[bank]->blocks);
1305 per_cpu(threshold_banks, cpu)[bank]->blocks = NULL;
1308 static void __threshold_remove_blocks(struct threshold_bank *b)
1310 struct threshold_block *pos = NULL;
1311 struct threshold_block *tmp = NULL;
1313 kobject_del(b->kobj);
1315 list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1316 kobject_del(&pos->kobj);
1319 static void threshold_remove_bank(unsigned int cpu, int bank)
1321 struct amd_northbridge *nb;
1322 struct threshold_bank *b;
1324 b = per_cpu(threshold_banks, cpu)[bank];
1325 if (!b)
1326 return;
1328 if (!b->blocks)
1329 goto free_out;
1331 if (is_shared_bank(bank)) {
1332 if (!refcount_dec_and_test(&b->cpus)) {
1333 __threshold_remove_blocks(b);
1334 per_cpu(threshold_banks, cpu)[bank] = NULL;
1335 return;
1336 } else {
1338 * the last CPU on this node using the shared bank is
1339 * going away, remove that bank now.
1341 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1342 nb->bank4 = NULL;
1346 deallocate_threshold_block(cpu, bank);
1348 free_out:
1349 kobject_del(b->kobj);
1350 kobject_put(b->kobj);
1351 kfree(b);
1352 per_cpu(threshold_banks, cpu)[bank] = NULL;
1355 int mce_threshold_remove_device(unsigned int cpu)
1357 unsigned int bank;
1359 for (bank = 0; bank < mca_cfg.banks; ++bank) {
1360 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1361 continue;
1362 threshold_remove_bank(cpu, bank);
1364 kfree(per_cpu(threshold_banks, cpu));
1365 per_cpu(threshold_banks, cpu) = NULL;
1366 return 0;
1369 /* create dir/files for all valid threshold banks */
1370 int mce_threshold_create_device(unsigned int cpu)
1372 unsigned int bank;
1373 struct threshold_bank **bp;
1374 int err = 0;
1376 bp = per_cpu(threshold_banks, cpu);
1377 if (bp)
1378 return 0;
1380 bp = kzalloc(sizeof(struct threshold_bank *) * mca_cfg.banks,
1381 GFP_KERNEL);
1382 if (!bp)
1383 return -ENOMEM;
1385 per_cpu(threshold_banks, cpu) = bp;
1387 for (bank = 0; bank < mca_cfg.banks; ++bank) {
1388 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1389 continue;
1390 err = threshold_create_bank(cpu, bank);
1391 if (err)
1392 goto err;
1394 return err;
1395 err:
1396 mce_threshold_remove_device(cpu);
1397 return err;
1400 static __init int threshold_init_device(void)
1402 unsigned lcpu = 0;
1404 /* to hit CPUs online before the notifier is up */
1405 for_each_online_cpu(lcpu) {
1406 int err = mce_threshold_create_device(lcpu);
1408 if (err)
1409 return err;
1412 if (thresholding_irq_en)
1413 mce_threshold_vector = amd_threshold_interrupt;
1415 return 0;
1418 * there are 3 funcs which need to be _initcalled in a logic sequence:
1419 * 1. xen_late_init_mcelog
1420 * 2. mcheck_init_device
1421 * 3. threshold_init_device
1423 * xen_late_init_mcelog must register xen_mce_chrdev_device before
1424 * native mce_chrdev_device registration if running under xen platform;
1426 * mcheck_init_device should be inited before threshold_init_device to
1427 * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1429 * so we use following _initcalls
1430 * 1. device_initcall(xen_late_init_mcelog);
1431 * 2. device_initcall_sync(mcheck_init_device);
1432 * 3. late_initcall(threshold_init_device);
1434 * when running under xen, the initcall order is 1,2,3;
1435 * on baremetal, we skip 1 and we do only 2 and 3.
1437 late_initcall(threshold_init_device);