x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / arch / x86 / kernel / irq.c
blob3c2326b598208ceb1254468e3dd9a01e23ec0e67
1 /*
2 * Common interrupt code for 32 and 64 bit
3 */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13 #include <linux/irq.h>
15 #include <asm/apic.h>
16 #include <asm/io_apic.h>
17 #include <asm/irq.h>
18 #include <asm/mce.h>
19 #include <asm/hw_irq.h>
20 #include <asm/desc.h>
22 #define CREATE_TRACE_POINTS
23 #include <asm/trace/irq_vectors.h>
25 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
26 EXPORT_PER_CPU_SYMBOL(irq_stat);
28 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
29 EXPORT_PER_CPU_SYMBOL(irq_regs);
31 atomic_t irq_err_count;
34 * 'what should we do if we get a hw irq event on an illegal vector'.
35 * each architecture has to answer this themselves.
37 void ack_bad_irq(unsigned int irq)
39 if (printk_ratelimit())
40 pr_err("unexpected IRQ trap at vector %02x\n", irq);
43 * Currently unexpected vectors happen only on SMP and APIC.
44 * We _must_ ack these because every local APIC has only N
45 * irq slots per priority level, and a 'hanging, unacked' IRQ
46 * holds up an irq slot - in excessive cases (when multiple
47 * unexpected vectors occur) that might lock up the APIC
48 * completely.
49 * But only ack when the APIC is enabled -AK
51 ack_APIC_irq();
54 #define irq_stats(x) (&per_cpu(irq_stat, x))
56 * /proc/interrupts printing for arch specific interrupts
58 int arch_show_interrupts(struct seq_file *p, int prec)
60 int j;
62 seq_printf(p, "%*s: ", prec, "NMI");
63 for_each_online_cpu(j)
64 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
65 seq_puts(p, " Non-maskable interrupts\n");
66 #ifdef CONFIG_X86_LOCAL_APIC
67 seq_printf(p, "%*s: ", prec, "LOC");
68 for_each_online_cpu(j)
69 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
70 seq_puts(p, " Local timer interrupts\n");
72 seq_printf(p, "%*s: ", prec, "SPU");
73 for_each_online_cpu(j)
74 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
75 seq_puts(p, " Spurious interrupts\n");
76 seq_printf(p, "%*s: ", prec, "PMI");
77 for_each_online_cpu(j)
78 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
79 seq_puts(p, " Performance monitoring interrupts\n");
80 seq_printf(p, "%*s: ", prec, "IWI");
81 for_each_online_cpu(j)
82 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
83 seq_puts(p, " IRQ work interrupts\n");
84 seq_printf(p, "%*s: ", prec, "RTR");
85 for_each_online_cpu(j)
86 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
87 seq_puts(p, " APIC ICR read retries\n");
88 if (x86_platform_ipi_callback) {
89 seq_printf(p, "%*s: ", prec, "PLT");
90 for_each_online_cpu(j)
91 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
92 seq_puts(p, " Platform interrupts\n");
94 #endif
95 #ifdef CONFIG_SMP
96 seq_printf(p, "%*s: ", prec, "RES");
97 for_each_online_cpu(j)
98 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
99 seq_puts(p, " Rescheduling interrupts\n");
100 seq_printf(p, "%*s: ", prec, "CAL");
101 for_each_online_cpu(j)
102 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
103 seq_puts(p, " Function call interrupts\n");
104 seq_printf(p, "%*s: ", prec, "TLB");
105 for_each_online_cpu(j)
106 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
107 seq_puts(p, " TLB shootdowns\n");
108 #endif
109 #ifdef CONFIG_X86_THERMAL_VECTOR
110 seq_printf(p, "%*s: ", prec, "TRM");
111 for_each_online_cpu(j)
112 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
113 seq_puts(p, " Thermal event interrupts\n");
114 #endif
115 #ifdef CONFIG_X86_MCE_THRESHOLD
116 seq_printf(p, "%*s: ", prec, "THR");
117 for_each_online_cpu(j)
118 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
119 seq_puts(p, " Threshold APIC interrupts\n");
120 #endif
121 #ifdef CONFIG_X86_MCE_AMD
122 seq_printf(p, "%*s: ", prec, "DFR");
123 for_each_online_cpu(j)
124 seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
125 seq_puts(p, " Deferred Error APIC interrupts\n");
126 #endif
127 #ifdef CONFIG_X86_MCE
128 seq_printf(p, "%*s: ", prec, "MCE");
129 for_each_online_cpu(j)
130 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
131 seq_puts(p, " Machine check exceptions\n");
132 seq_printf(p, "%*s: ", prec, "MCP");
133 for_each_online_cpu(j)
134 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
135 seq_puts(p, " Machine check polls\n");
136 #endif
137 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
138 if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) {
139 seq_printf(p, "%*s: ", prec, "HYP");
140 for_each_online_cpu(j)
141 seq_printf(p, "%10u ",
142 irq_stats(j)->irq_hv_callback_count);
143 seq_puts(p, " Hypervisor callback interrupts\n");
145 #endif
146 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
147 #if defined(CONFIG_X86_IO_APIC)
148 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
149 #endif
150 #ifdef CONFIG_HAVE_KVM
151 seq_printf(p, "%*s: ", prec, "PIN");
152 for_each_online_cpu(j)
153 seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
154 seq_puts(p, " Posted-interrupt notification event\n");
156 seq_printf(p, "%*s: ", prec, "NPI");
157 for_each_online_cpu(j)
158 seq_printf(p, "%10u ",
159 irq_stats(j)->kvm_posted_intr_nested_ipis);
160 seq_puts(p, " Nested posted-interrupt event\n");
162 seq_printf(p, "%*s: ", prec, "PIW");
163 for_each_online_cpu(j)
164 seq_printf(p, "%10u ",
165 irq_stats(j)->kvm_posted_intr_wakeup_ipis);
166 seq_puts(p, " Posted-interrupt wakeup event\n");
167 #endif
168 return 0;
172 * /proc/stat helpers
174 u64 arch_irq_stat_cpu(unsigned int cpu)
176 u64 sum = irq_stats(cpu)->__nmi_count;
178 #ifdef CONFIG_X86_LOCAL_APIC
179 sum += irq_stats(cpu)->apic_timer_irqs;
180 sum += irq_stats(cpu)->irq_spurious_count;
181 sum += irq_stats(cpu)->apic_perf_irqs;
182 sum += irq_stats(cpu)->apic_irq_work_irqs;
183 sum += irq_stats(cpu)->icr_read_retry_count;
184 if (x86_platform_ipi_callback)
185 sum += irq_stats(cpu)->x86_platform_ipis;
186 #endif
187 #ifdef CONFIG_SMP
188 sum += irq_stats(cpu)->irq_resched_count;
189 sum += irq_stats(cpu)->irq_call_count;
190 #endif
191 #ifdef CONFIG_X86_THERMAL_VECTOR
192 sum += irq_stats(cpu)->irq_thermal_count;
193 #endif
194 #ifdef CONFIG_X86_MCE_THRESHOLD
195 sum += irq_stats(cpu)->irq_threshold_count;
196 #endif
197 #ifdef CONFIG_X86_MCE
198 sum += per_cpu(mce_exception_count, cpu);
199 sum += per_cpu(mce_poll_count, cpu);
200 #endif
201 return sum;
204 u64 arch_irq_stat(void)
206 u64 sum = atomic_read(&irq_err_count);
207 return sum;
212 * do_IRQ handles all normal device IRQ's (the special
213 * SMP cross-CPU interrupts have their own specific
214 * handlers).
216 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
218 struct pt_regs *old_regs = set_irq_regs(regs);
219 struct irq_desc * desc;
220 /* high bit used in ret_from_ code */
221 unsigned vector = ~regs->orig_ax;
223 entering_irq();
225 /* entering_irq() tells RCU that we're not quiescent. Check it. */
226 RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
228 desc = __this_cpu_read(vector_irq[vector]);
230 if (!handle_irq(desc, regs)) {
231 ack_APIC_irq();
233 if (desc != VECTOR_RETRIGGERED) {
234 pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
235 __func__, smp_processor_id(),
236 vector);
237 } else {
238 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
242 exiting_irq();
244 set_irq_regs(old_regs);
245 return 1;
248 #ifdef CONFIG_X86_LOCAL_APIC
249 /* Function pointer for generic interrupt vector handling */
250 void (*x86_platform_ipi_callback)(void) = NULL;
252 * Handler for X86_PLATFORM_IPI_VECTOR.
254 __visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs)
256 struct pt_regs *old_regs = set_irq_regs(regs);
258 entering_ack_irq();
259 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
260 inc_irq_stat(x86_platform_ipis);
261 if (x86_platform_ipi_callback)
262 x86_platform_ipi_callback();
263 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
264 exiting_irq();
265 set_irq_regs(old_regs);
267 #endif
269 #ifdef CONFIG_HAVE_KVM
270 static void dummy_handler(void) {}
271 static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
273 void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
275 if (handler)
276 kvm_posted_intr_wakeup_handler = handler;
277 else
278 kvm_posted_intr_wakeup_handler = dummy_handler;
280 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
283 * Handler for POSTED_INTERRUPT_VECTOR.
285 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
287 struct pt_regs *old_regs = set_irq_regs(regs);
289 entering_ack_irq();
290 inc_irq_stat(kvm_posted_intr_ipis);
291 exiting_irq();
292 set_irq_regs(old_regs);
296 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
298 __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
300 struct pt_regs *old_regs = set_irq_regs(regs);
302 entering_ack_irq();
303 inc_irq_stat(kvm_posted_intr_wakeup_ipis);
304 kvm_posted_intr_wakeup_handler();
305 exiting_irq();
306 set_irq_regs(old_regs);
310 * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
312 __visible void smp_kvm_posted_intr_nested_ipi(struct pt_regs *regs)
314 struct pt_regs *old_regs = set_irq_regs(regs);
316 entering_ack_irq();
317 inc_irq_stat(kvm_posted_intr_nested_ipis);
318 exiting_irq();
319 set_irq_regs(old_regs);
321 #endif
324 #ifdef CONFIG_HOTPLUG_CPU
326 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
327 * below, which is protected by stop_machine(). Putting them on the stack
328 * results in a stack frame overflow. Dynamically allocating could result in a
329 * failure so declare these two cpumasks as global.
331 static struct cpumask affinity_new, online_new;
334 * This cpu is going to be removed and its vectors migrated to the remaining
335 * online cpus. Check to see if there are enough vectors in the remaining cpus.
336 * This function is protected by stop_machine().
338 int check_irq_vectors_for_cpu_disable(void)
340 unsigned int this_cpu, vector, this_count, count;
341 struct irq_desc *desc;
342 struct irq_data *data;
343 int cpu;
345 this_cpu = smp_processor_id();
346 cpumask_copy(&online_new, cpu_online_mask);
347 cpumask_clear_cpu(this_cpu, &online_new);
349 this_count = 0;
350 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
351 desc = __this_cpu_read(vector_irq[vector]);
352 if (IS_ERR_OR_NULL(desc))
353 continue;
355 * Protect against concurrent action removal, affinity
356 * changes etc.
358 raw_spin_lock(&desc->lock);
359 data = irq_desc_get_irq_data(desc);
360 cpumask_copy(&affinity_new,
361 irq_data_get_affinity_mask(data));
362 cpumask_clear_cpu(this_cpu, &affinity_new);
364 /* Do not count inactive or per-cpu irqs. */
365 if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) {
366 raw_spin_unlock(&desc->lock);
367 continue;
370 raw_spin_unlock(&desc->lock);
372 * A single irq may be mapped to multiple cpu's
373 * vector_irq[] (for example IOAPIC cluster mode). In
374 * this case we have two possibilities:
376 * 1) the resulting affinity mask is empty; that is
377 * this the down'd cpu is the last cpu in the irq's
378 * affinity mask, or
380 * 2) the resulting affinity mask is no longer a
381 * subset of the online cpus but the affinity mask is
382 * not zero; that is the down'd cpu is the last online
383 * cpu in a user set affinity mask.
385 if (cpumask_empty(&affinity_new) ||
386 !cpumask_subset(&affinity_new, &online_new))
387 this_count++;
389 /* No need to check any further. */
390 if (!this_count)
391 return 0;
393 count = 0;
394 for_each_online_cpu(cpu) {
395 if (cpu == this_cpu)
396 continue;
398 * We scan from FIRST_EXTERNAL_VECTOR to first system
399 * vector. If the vector is marked in the used vectors
400 * bitmap or an irq is assigned to it, we don't count
401 * it as available.
403 * As this is an inaccurate snapshot anyway, we can do
404 * this w/o holding vector_lock.
406 for (vector = FIRST_EXTERNAL_VECTOR;
407 vector < FIRST_SYSTEM_VECTOR; vector++) {
408 if (!test_bit(vector, used_vectors) &&
409 IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector])) {
410 if (++count == this_count)
411 return 0;
416 if (count < this_count) {
417 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
418 this_cpu, this_count, count);
419 return -ERANGE;
421 return 0;
424 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
425 void fixup_irqs(void)
427 unsigned int irr, vector;
428 struct irq_desc *desc;
429 struct irq_data *data;
430 struct irq_chip *chip;
432 irq_migrate_all_off_this_cpu();
435 * We can remove mdelay() and then send spuriuous interrupts to
436 * new cpu targets for all the irqs that were handled previously by
437 * this cpu. While it works, I have seen spurious interrupt messages
438 * (nothing wrong but still...).
440 * So for now, retain mdelay(1) and check the IRR and then send those
441 * interrupts to new targets as this cpu is already offlined...
443 mdelay(1);
446 * We can walk the vector array of this cpu without holding
447 * vector_lock because the cpu is already marked !online, so
448 * nothing else will touch it.
450 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
451 if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
452 continue;
454 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
455 if (irr & (1 << (vector % 32))) {
456 desc = __this_cpu_read(vector_irq[vector]);
458 raw_spin_lock(&desc->lock);
459 data = irq_desc_get_irq_data(desc);
460 chip = irq_data_get_irq_chip(data);
461 if (chip->irq_retrigger) {
462 chip->irq_retrigger(data);
463 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
465 raw_spin_unlock(&desc->lock);
467 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
468 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
471 #endif