x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / arch / x86 / kernel / kprobes / core.c
blob56cf6c26325494ea1bf983ffd8b17e17e83bc012
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 #include <linux/moduleloader.h>
57 #include <asm/text-patching.h>
58 #include <asm/cacheflush.h>
59 #include <asm/desc.h>
60 #include <asm/pgtable.h>
61 #include <linux/uaccess.h>
62 #include <asm/alternative.h>
63 #include <asm/insn.h>
64 #include <asm/debugreg.h>
65 #include <asm/set_memory.h>
66 #include <asm/sections.h>
68 #include "common.h"
70 void jprobe_return_end(void);
72 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
73 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
75 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
77 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
78 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
79 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
80 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
81 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
82 << (row % 32))
84 * Undefined/reserved opcodes, conditional jump, Opcode Extension
85 * Groups, and some special opcodes can not boost.
86 * This is non-const and volatile to keep gcc from statically
87 * optimizing it out, as variable_test_bit makes gcc think only
88 * *(unsigned long*) is used.
90 static volatile u32 twobyte_is_boostable[256 / 32] = {
91 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
92 /* ---------------------------------------------- */
93 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
94 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
95 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
96 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
97 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
98 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
99 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
100 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
101 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
102 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
103 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
104 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
105 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
106 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
107 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
108 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
109 /* ----------------------------------------------- */
110 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
112 #undef W
114 struct kretprobe_blackpoint kretprobe_blacklist[] = {
115 {"__switch_to", }, /* This function switches only current task, but
116 doesn't switch kernel stack.*/
117 {NULL, NULL} /* Terminator */
120 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
122 static nokprobe_inline void
123 __synthesize_relative_insn(void *from, void *to, u8 op)
125 struct __arch_relative_insn {
126 u8 op;
127 s32 raddr;
128 } __packed *insn;
130 insn = (struct __arch_relative_insn *)from;
131 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
132 insn->op = op;
135 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
136 void synthesize_reljump(void *from, void *to)
138 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
140 NOKPROBE_SYMBOL(synthesize_reljump);
142 /* Insert a call instruction at address 'from', which calls address 'to'.*/
143 void synthesize_relcall(void *from, void *to)
145 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
147 NOKPROBE_SYMBOL(synthesize_relcall);
150 * Skip the prefixes of the instruction.
152 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
154 insn_attr_t attr;
156 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
157 while (inat_is_legacy_prefix(attr)) {
158 insn++;
159 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
161 #ifdef CONFIG_X86_64
162 if (inat_is_rex_prefix(attr))
163 insn++;
164 #endif
165 return insn;
167 NOKPROBE_SYMBOL(skip_prefixes);
170 * Returns non-zero if INSN is boostable.
171 * RIP relative instructions are adjusted at copying time in 64 bits mode
173 int can_boost(struct insn *insn, void *addr)
175 kprobe_opcode_t opcode;
177 if (search_exception_tables((unsigned long)addr))
178 return 0; /* Page fault may occur on this address. */
180 /* 2nd-byte opcode */
181 if (insn->opcode.nbytes == 2)
182 return test_bit(insn->opcode.bytes[1],
183 (unsigned long *)twobyte_is_boostable);
185 if (insn->opcode.nbytes != 1)
186 return 0;
188 /* Can't boost Address-size override prefix */
189 if (unlikely(inat_is_address_size_prefix(insn->attr)))
190 return 0;
192 opcode = insn->opcode.bytes[0];
194 switch (opcode & 0xf0) {
195 case 0x60:
196 /* can't boost "bound" */
197 return (opcode != 0x62);
198 case 0x70:
199 return 0; /* can't boost conditional jump */
200 case 0x90:
201 return opcode != 0x9a; /* can't boost call far */
202 case 0xc0:
203 /* can't boost software-interruptions */
204 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
205 case 0xd0:
206 /* can boost AA* and XLAT */
207 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
208 case 0xe0:
209 /* can boost in/out and absolute jmps */
210 return ((opcode & 0x04) || opcode == 0xea);
211 case 0xf0:
212 /* clear and set flags are boostable */
213 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
214 default:
215 /* CS override prefix and call are not boostable */
216 return (opcode != 0x2e && opcode != 0x9a);
220 static unsigned long
221 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
223 struct kprobe *kp;
224 unsigned long faddr;
226 kp = get_kprobe((void *)addr);
227 faddr = ftrace_location(addr);
229 * Addresses inside the ftrace location are refused by
230 * arch_check_ftrace_location(). Something went terribly wrong
231 * if such an address is checked here.
233 if (WARN_ON(faddr && faddr != addr))
234 return 0UL;
236 * Use the current code if it is not modified by Kprobe
237 * and it cannot be modified by ftrace.
239 if (!kp && !faddr)
240 return addr;
243 * Basically, kp->ainsn.insn has an original instruction.
244 * However, RIP-relative instruction can not do single-stepping
245 * at different place, __copy_instruction() tweaks the displacement of
246 * that instruction. In that case, we can't recover the instruction
247 * from the kp->ainsn.insn.
249 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
250 * of the first byte of the probed instruction, which is overwritten
251 * by int3. And the instruction at kp->addr is not modified by kprobes
252 * except for the first byte, we can recover the original instruction
253 * from it and kp->opcode.
255 * In case of Kprobes using ftrace, we do not have a copy of
256 * the original instruction. In fact, the ftrace location might
257 * be modified at anytime and even could be in an inconsistent state.
258 * Fortunately, we know that the original code is the ideal 5-byte
259 * long NOP.
261 if (probe_kernel_read(buf, (void *)addr,
262 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
263 return 0UL;
265 if (faddr)
266 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
267 else
268 buf[0] = kp->opcode;
269 return (unsigned long)buf;
273 * Recover the probed instruction at addr for further analysis.
274 * Caller must lock kprobes by kprobe_mutex, or disable preemption
275 * for preventing to release referencing kprobes.
276 * Returns zero if the instruction can not get recovered (or access failed).
278 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
280 unsigned long __addr;
282 __addr = __recover_optprobed_insn(buf, addr);
283 if (__addr != addr)
284 return __addr;
286 return __recover_probed_insn(buf, addr);
289 /* Check if paddr is at an instruction boundary */
290 static int can_probe(unsigned long paddr)
292 unsigned long addr, __addr, offset = 0;
293 struct insn insn;
294 kprobe_opcode_t buf[MAX_INSN_SIZE];
296 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
297 return 0;
299 /* Decode instructions */
300 addr = paddr - offset;
301 while (addr < paddr) {
303 * Check if the instruction has been modified by another
304 * kprobe, in which case we replace the breakpoint by the
305 * original instruction in our buffer.
306 * Also, jump optimization will change the breakpoint to
307 * relative-jump. Since the relative-jump itself is
308 * normally used, we just go through if there is no kprobe.
310 __addr = recover_probed_instruction(buf, addr);
311 if (!__addr)
312 return 0;
313 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
314 insn_get_length(&insn);
317 * Another debugging subsystem might insert this breakpoint.
318 * In that case, we can't recover it.
320 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
321 return 0;
322 addr += insn.length;
325 return (addr == paddr);
329 * Returns non-zero if opcode modifies the interrupt flag.
331 static int is_IF_modifier(kprobe_opcode_t *insn)
333 /* Skip prefixes */
334 insn = skip_prefixes(insn);
336 switch (*insn) {
337 case 0xfa: /* cli */
338 case 0xfb: /* sti */
339 case 0xcf: /* iret/iretd */
340 case 0x9d: /* popf/popfd */
341 return 1;
344 return 0;
348 * Copy an instruction with recovering modified instruction by kprobes
349 * and adjust the displacement if the instruction uses the %rip-relative
350 * addressing mode.
351 * This returns the length of copied instruction, or 0 if it has an error.
353 int __copy_instruction(u8 *dest, u8 *src, struct insn *insn)
355 kprobe_opcode_t buf[MAX_INSN_SIZE];
356 unsigned long recovered_insn =
357 recover_probed_instruction(buf, (unsigned long)src);
359 if (!recovered_insn || !insn)
360 return 0;
362 /* This can access kernel text if given address is not recovered */
363 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
364 return 0;
366 kernel_insn_init(insn, dest, MAX_INSN_SIZE);
367 insn_get_length(insn);
369 /* Another subsystem puts a breakpoint, failed to recover */
370 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
371 return 0;
373 /* We should not singlestep on the exception masking instructions */
374 if (insn_masking_exception(insn))
375 return 0;
377 #ifdef CONFIG_X86_64
378 /* Only x86_64 has RIP relative instructions */
379 if (insn_rip_relative(insn)) {
380 s64 newdisp;
381 u8 *disp;
383 * The copied instruction uses the %rip-relative addressing
384 * mode. Adjust the displacement for the difference between
385 * the original location of this instruction and the location
386 * of the copy that will actually be run. The tricky bit here
387 * is making sure that the sign extension happens correctly in
388 * this calculation, since we need a signed 32-bit result to
389 * be sign-extended to 64 bits when it's added to the %rip
390 * value and yield the same 64-bit result that the sign-
391 * extension of the original signed 32-bit displacement would
392 * have given.
394 newdisp = (u8 *) src + (s64) insn->displacement.value
395 - (u8 *) dest;
396 if ((s64) (s32) newdisp != newdisp) {
397 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
398 return 0;
400 disp = (u8 *) dest + insn_offset_displacement(insn);
401 *(s32 *) disp = (s32) newdisp;
403 #endif
404 return insn->length;
407 /* Prepare reljump right after instruction to boost */
408 static void prepare_boost(struct kprobe *p, struct insn *insn)
410 if (can_boost(insn, p->addr) &&
411 MAX_INSN_SIZE - insn->length >= RELATIVEJUMP_SIZE) {
413 * These instructions can be executed directly if it
414 * jumps back to correct address.
416 synthesize_reljump(p->ainsn.insn + insn->length,
417 p->addr + insn->length);
418 p->ainsn.boostable = true;
419 } else {
420 p->ainsn.boostable = false;
424 /* Recover page to RW mode before releasing it */
425 void free_insn_page(void *page)
427 set_memory_nx((unsigned long)page & PAGE_MASK, 1);
428 set_memory_rw((unsigned long)page & PAGE_MASK, 1);
429 module_memfree(page);
432 static int arch_copy_kprobe(struct kprobe *p)
434 struct insn insn;
435 int len;
437 set_memory_rw((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
439 /* Copy an instruction with recovering if other optprobe modifies it.*/
440 len = __copy_instruction(p->ainsn.insn, p->addr, &insn);
441 if (!len)
442 return -EINVAL;
445 * __copy_instruction can modify the displacement of the instruction,
446 * but it doesn't affect boostable check.
448 prepare_boost(p, &insn);
450 set_memory_ro((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
452 /* Check whether the instruction modifies Interrupt Flag or not */
453 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
455 /* Also, displacement change doesn't affect the first byte */
456 p->opcode = p->ainsn.insn[0];
458 return 0;
461 int arch_prepare_kprobe(struct kprobe *p)
463 int ret;
465 if (alternatives_text_reserved(p->addr, p->addr))
466 return -EINVAL;
468 if (!can_probe((unsigned long)p->addr))
469 return -EILSEQ;
470 /* insn: must be on special executable page on x86. */
471 p->ainsn.insn = get_insn_slot();
472 if (!p->ainsn.insn)
473 return -ENOMEM;
475 ret = arch_copy_kprobe(p);
476 if (ret) {
477 free_insn_slot(p->ainsn.insn, 0);
478 p->ainsn.insn = NULL;
481 return ret;
484 void arch_arm_kprobe(struct kprobe *p)
486 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
489 void arch_disarm_kprobe(struct kprobe *p)
491 text_poke(p->addr, &p->opcode, 1);
494 void arch_remove_kprobe(struct kprobe *p)
496 if (p->ainsn.insn) {
497 free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
498 p->ainsn.insn = NULL;
502 static nokprobe_inline void
503 save_previous_kprobe(struct kprobe_ctlblk *kcb)
505 kcb->prev_kprobe.kp = kprobe_running();
506 kcb->prev_kprobe.status = kcb->kprobe_status;
507 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
508 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
511 static nokprobe_inline void
512 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
514 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
515 kcb->kprobe_status = kcb->prev_kprobe.status;
516 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
517 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
520 static nokprobe_inline void
521 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
522 struct kprobe_ctlblk *kcb)
524 __this_cpu_write(current_kprobe, p);
525 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
526 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
527 if (p->ainsn.if_modifier)
528 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
531 static nokprobe_inline void clear_btf(void)
533 if (test_thread_flag(TIF_BLOCKSTEP)) {
534 unsigned long debugctl = get_debugctlmsr();
536 debugctl &= ~DEBUGCTLMSR_BTF;
537 update_debugctlmsr(debugctl);
541 static nokprobe_inline void restore_btf(void)
543 if (test_thread_flag(TIF_BLOCKSTEP)) {
544 unsigned long debugctl = get_debugctlmsr();
546 debugctl |= DEBUGCTLMSR_BTF;
547 update_debugctlmsr(debugctl);
551 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
553 unsigned long *sara = stack_addr(regs);
555 ri->ret_addr = (kprobe_opcode_t *) *sara;
556 ri->fp = sara;
558 /* Replace the return addr with trampoline addr */
559 *sara = (unsigned long) &kretprobe_trampoline;
561 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
563 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
564 struct kprobe_ctlblk *kcb, int reenter)
566 if (setup_detour_execution(p, regs, reenter))
567 return;
569 #if !defined(CONFIG_PREEMPT)
570 if (p->ainsn.boostable && !p->post_handler) {
571 /* Boost up -- we can execute copied instructions directly */
572 if (!reenter)
573 reset_current_kprobe();
575 * Reentering boosted probe doesn't reset current_kprobe,
576 * nor set current_kprobe, because it doesn't use single
577 * stepping.
579 regs->ip = (unsigned long)p->ainsn.insn;
580 preempt_enable_no_resched();
581 return;
583 #endif
584 if (reenter) {
585 save_previous_kprobe(kcb);
586 set_current_kprobe(p, regs, kcb);
587 kcb->kprobe_status = KPROBE_REENTER;
588 } else
589 kcb->kprobe_status = KPROBE_HIT_SS;
590 /* Prepare real single stepping */
591 clear_btf();
592 regs->flags |= X86_EFLAGS_TF;
593 regs->flags &= ~X86_EFLAGS_IF;
594 /* single step inline if the instruction is an int3 */
595 if (p->opcode == BREAKPOINT_INSTRUCTION)
596 regs->ip = (unsigned long)p->addr;
597 else
598 regs->ip = (unsigned long)p->ainsn.insn;
600 NOKPROBE_SYMBOL(setup_singlestep);
603 * We have reentered the kprobe_handler(), since another probe was hit while
604 * within the handler. We save the original kprobes variables and just single
605 * step on the instruction of the new probe without calling any user handlers.
607 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
608 struct kprobe_ctlblk *kcb)
610 switch (kcb->kprobe_status) {
611 case KPROBE_HIT_SSDONE:
612 case KPROBE_HIT_ACTIVE:
613 case KPROBE_HIT_SS:
614 kprobes_inc_nmissed_count(p);
615 setup_singlestep(p, regs, kcb, 1);
616 break;
617 case KPROBE_REENTER:
618 /* A probe has been hit in the codepath leading up to, or just
619 * after, single-stepping of a probed instruction. This entire
620 * codepath should strictly reside in .kprobes.text section.
621 * Raise a BUG or we'll continue in an endless reentering loop
622 * and eventually a stack overflow.
624 pr_err("Unrecoverable kprobe detected.\n");
625 dump_kprobe(p);
626 BUG();
627 default:
628 /* impossible cases */
629 WARN_ON(1);
630 return 0;
633 return 1;
635 NOKPROBE_SYMBOL(reenter_kprobe);
638 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
639 * remain disabled throughout this function.
641 int kprobe_int3_handler(struct pt_regs *regs)
643 kprobe_opcode_t *addr;
644 struct kprobe *p;
645 struct kprobe_ctlblk *kcb;
647 if (user_mode(regs))
648 return 0;
650 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
652 * We don't want to be preempted for the entire
653 * duration of kprobe processing. We conditionally
654 * re-enable preemption at the end of this function,
655 * and also in reenter_kprobe() and setup_singlestep().
657 preempt_disable();
659 kcb = get_kprobe_ctlblk();
660 p = get_kprobe(addr);
662 if (p) {
663 if (kprobe_running()) {
664 if (reenter_kprobe(p, regs, kcb))
665 return 1;
666 } else {
667 set_current_kprobe(p, regs, kcb);
668 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
671 * If we have no pre-handler or it returned 0, we
672 * continue with normal processing. If we have a
673 * pre-handler and it returned non-zero, it prepped
674 * for calling the break_handler below on re-entry
675 * for jprobe processing, so get out doing nothing
676 * more here.
678 if (!p->pre_handler || !p->pre_handler(p, regs))
679 setup_singlestep(p, regs, kcb, 0);
680 return 1;
682 } else if (*addr != BREAKPOINT_INSTRUCTION) {
684 * The breakpoint instruction was removed right
685 * after we hit it. Another cpu has removed
686 * either a probepoint or a debugger breakpoint
687 * at this address. In either case, no further
688 * handling of this interrupt is appropriate.
689 * Back up over the (now missing) int3 and run
690 * the original instruction.
692 regs->ip = (unsigned long)addr;
693 preempt_enable_no_resched();
694 return 1;
695 } else if (kprobe_running()) {
696 p = __this_cpu_read(current_kprobe);
697 if (p->break_handler && p->break_handler(p, regs)) {
698 if (!skip_singlestep(p, regs, kcb))
699 setup_singlestep(p, regs, kcb, 0);
700 return 1;
702 } /* else: not a kprobe fault; let the kernel handle it */
704 preempt_enable_no_resched();
705 return 0;
707 NOKPROBE_SYMBOL(kprobe_int3_handler);
710 * When a retprobed function returns, this code saves registers and
711 * calls trampoline_handler() runs, which calls the kretprobe's handler.
713 asm(
714 ".global kretprobe_trampoline\n"
715 ".type kretprobe_trampoline, @function\n"
716 "kretprobe_trampoline:\n"
717 #ifdef CONFIG_X86_64
718 /* We don't bother saving the ss register */
719 " pushq %rsp\n"
720 " pushfq\n"
721 SAVE_REGS_STRING
722 " movq %rsp, %rdi\n"
723 " call trampoline_handler\n"
724 /* Replace saved sp with true return address. */
725 " movq %rax, 152(%rsp)\n"
726 RESTORE_REGS_STRING
727 " popfq\n"
728 #else
729 " pushf\n"
730 SAVE_REGS_STRING
731 " movl %esp, %eax\n"
732 " call trampoline_handler\n"
733 /* Move flags to cs */
734 " movl 56(%esp), %edx\n"
735 " movl %edx, 52(%esp)\n"
736 /* Replace saved flags with true return address. */
737 " movl %eax, 56(%esp)\n"
738 RESTORE_REGS_STRING
739 " popf\n"
740 #endif
741 " ret\n"
742 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
744 NOKPROBE_SYMBOL(kretprobe_trampoline);
745 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
748 * Called from kretprobe_trampoline
750 __visible __used void *trampoline_handler(struct pt_regs *regs)
752 struct kretprobe_instance *ri = NULL;
753 struct hlist_head *head, empty_rp;
754 struct hlist_node *tmp;
755 unsigned long flags, orig_ret_address = 0;
756 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
757 kprobe_opcode_t *correct_ret_addr = NULL;
758 void *frame_pointer;
759 bool skipped = false;
761 INIT_HLIST_HEAD(&empty_rp);
762 kretprobe_hash_lock(current, &head, &flags);
763 /* fixup registers */
764 #ifdef CONFIG_X86_64
765 regs->cs = __KERNEL_CS;
766 /* On x86-64, we use pt_regs->sp for return address holder. */
767 frame_pointer = &regs->sp;
768 #else
769 regs->cs = __KERNEL_CS | get_kernel_rpl();
770 regs->gs = 0;
771 /* On x86-32, we use pt_regs->flags for return address holder. */
772 frame_pointer = &regs->flags;
773 #endif
774 regs->ip = trampoline_address;
775 regs->orig_ax = ~0UL;
778 * It is possible to have multiple instances associated with a given
779 * task either because multiple functions in the call path have
780 * return probes installed on them, and/or more than one
781 * return probe was registered for a target function.
783 * We can handle this because:
784 * - instances are always pushed into the head of the list
785 * - when multiple return probes are registered for the same
786 * function, the (chronologically) first instance's ret_addr
787 * will be the real return address, and all the rest will
788 * point to kretprobe_trampoline.
790 hlist_for_each_entry(ri, head, hlist) {
791 if (ri->task != current)
792 /* another task is sharing our hash bucket */
793 continue;
795 * Return probes must be pushed on this hash list correct
796 * order (same as return order) so that it can be poped
797 * correctly. However, if we find it is pushed it incorrect
798 * order, this means we find a function which should not be
799 * probed, because the wrong order entry is pushed on the
800 * path of processing other kretprobe itself.
802 if (ri->fp != frame_pointer) {
803 if (!skipped)
804 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
805 skipped = true;
806 continue;
809 orig_ret_address = (unsigned long)ri->ret_addr;
810 if (skipped)
811 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
812 ri->rp->kp.addr);
814 if (orig_ret_address != trampoline_address)
816 * This is the real return address. Any other
817 * instances associated with this task are for
818 * other calls deeper on the call stack
820 break;
823 kretprobe_assert(ri, orig_ret_address, trampoline_address);
825 correct_ret_addr = ri->ret_addr;
826 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
827 if (ri->task != current)
828 /* another task is sharing our hash bucket */
829 continue;
830 if (ri->fp != frame_pointer)
831 continue;
833 orig_ret_address = (unsigned long)ri->ret_addr;
834 if (ri->rp && ri->rp->handler) {
835 __this_cpu_write(current_kprobe, &ri->rp->kp);
836 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
837 ri->ret_addr = correct_ret_addr;
838 ri->rp->handler(ri, regs);
839 __this_cpu_write(current_kprobe, NULL);
842 recycle_rp_inst(ri, &empty_rp);
844 if (orig_ret_address != trampoline_address)
846 * This is the real return address. Any other
847 * instances associated with this task are for
848 * other calls deeper on the call stack
850 break;
853 kretprobe_hash_unlock(current, &flags);
855 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
856 hlist_del(&ri->hlist);
857 kfree(ri);
859 return (void *)orig_ret_address;
861 NOKPROBE_SYMBOL(trampoline_handler);
864 * Called after single-stepping. p->addr is the address of the
865 * instruction whose first byte has been replaced by the "int 3"
866 * instruction. To avoid the SMP problems that can occur when we
867 * temporarily put back the original opcode to single-step, we
868 * single-stepped a copy of the instruction. The address of this
869 * copy is p->ainsn.insn.
871 * This function prepares to return from the post-single-step
872 * interrupt. We have to fix up the stack as follows:
874 * 0) Except in the case of absolute or indirect jump or call instructions,
875 * the new ip is relative to the copied instruction. We need to make
876 * it relative to the original instruction.
878 * 1) If the single-stepped instruction was pushfl, then the TF and IF
879 * flags are set in the just-pushed flags, and may need to be cleared.
881 * 2) If the single-stepped instruction was a call, the return address
882 * that is atop the stack is the address following the copied instruction.
883 * We need to make it the address following the original instruction.
885 * If this is the first time we've single-stepped the instruction at
886 * this probepoint, and the instruction is boostable, boost it: add a
887 * jump instruction after the copied instruction, that jumps to the next
888 * instruction after the probepoint.
890 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
891 struct kprobe_ctlblk *kcb)
893 unsigned long *tos = stack_addr(regs);
894 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
895 unsigned long orig_ip = (unsigned long)p->addr;
896 kprobe_opcode_t *insn = p->ainsn.insn;
898 /* Skip prefixes */
899 insn = skip_prefixes(insn);
901 regs->flags &= ~X86_EFLAGS_TF;
902 switch (*insn) {
903 case 0x9c: /* pushfl */
904 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
905 *tos |= kcb->kprobe_old_flags;
906 break;
907 case 0xc2: /* iret/ret/lret */
908 case 0xc3:
909 case 0xca:
910 case 0xcb:
911 case 0xcf:
912 case 0xea: /* jmp absolute -- ip is correct */
913 /* ip is already adjusted, no more changes required */
914 p->ainsn.boostable = true;
915 goto no_change;
916 case 0xe8: /* call relative - Fix return addr */
917 *tos = orig_ip + (*tos - copy_ip);
918 break;
919 #ifdef CONFIG_X86_32
920 case 0x9a: /* call absolute -- same as call absolute, indirect */
921 *tos = orig_ip + (*tos - copy_ip);
922 goto no_change;
923 #endif
924 case 0xff:
925 if ((insn[1] & 0x30) == 0x10) {
927 * call absolute, indirect
928 * Fix return addr; ip is correct.
929 * But this is not boostable
931 *tos = orig_ip + (*tos - copy_ip);
932 goto no_change;
933 } else if (((insn[1] & 0x31) == 0x20) ||
934 ((insn[1] & 0x31) == 0x21)) {
936 * jmp near and far, absolute indirect
937 * ip is correct. And this is boostable
939 p->ainsn.boostable = true;
940 goto no_change;
942 default:
943 break;
946 regs->ip += orig_ip - copy_ip;
948 no_change:
949 restore_btf();
951 NOKPROBE_SYMBOL(resume_execution);
954 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
955 * remain disabled throughout this function.
957 int kprobe_debug_handler(struct pt_regs *regs)
959 struct kprobe *cur = kprobe_running();
960 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
962 if (!cur)
963 return 0;
965 resume_execution(cur, regs, kcb);
966 regs->flags |= kcb->kprobe_saved_flags;
968 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
969 kcb->kprobe_status = KPROBE_HIT_SSDONE;
970 cur->post_handler(cur, regs, 0);
973 /* Restore back the original saved kprobes variables and continue. */
974 if (kcb->kprobe_status == KPROBE_REENTER) {
975 restore_previous_kprobe(kcb);
976 goto out;
978 reset_current_kprobe();
979 out:
980 preempt_enable_no_resched();
983 * if somebody else is singlestepping across a probe point, flags
984 * will have TF set, in which case, continue the remaining processing
985 * of do_debug, as if this is not a probe hit.
987 if (regs->flags & X86_EFLAGS_TF)
988 return 0;
990 return 1;
992 NOKPROBE_SYMBOL(kprobe_debug_handler);
994 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
996 struct kprobe *cur = kprobe_running();
997 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
999 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1000 /* This must happen on single-stepping */
1001 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1002 kcb->kprobe_status != KPROBE_REENTER);
1004 * We are here because the instruction being single
1005 * stepped caused a page fault. We reset the current
1006 * kprobe and the ip points back to the probe address
1007 * and allow the page fault handler to continue as a
1008 * normal page fault.
1010 regs->ip = (unsigned long)cur->addr;
1012 * Trap flag (TF) has been set here because this fault
1013 * happened where the single stepping will be done.
1014 * So clear it by resetting the current kprobe:
1016 regs->flags &= ~X86_EFLAGS_TF;
1019 * If the TF flag was set before the kprobe hit,
1020 * don't touch it:
1022 regs->flags |= kcb->kprobe_old_flags;
1024 if (kcb->kprobe_status == KPROBE_REENTER)
1025 restore_previous_kprobe(kcb);
1026 else
1027 reset_current_kprobe();
1028 preempt_enable_no_resched();
1029 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1030 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1032 * We increment the nmissed count for accounting,
1033 * we can also use npre/npostfault count for accounting
1034 * these specific fault cases.
1036 kprobes_inc_nmissed_count(cur);
1039 * We come here because instructions in the pre/post
1040 * handler caused the page_fault, this could happen
1041 * if handler tries to access user space by
1042 * copy_from_user(), get_user() etc. Let the
1043 * user-specified handler try to fix it first.
1045 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1046 return 1;
1049 * In case the user-specified fault handler returned
1050 * zero, try to fix up.
1052 if (fixup_exception(regs, trapnr))
1053 return 1;
1056 * fixup routine could not handle it,
1057 * Let do_page_fault() fix it.
1061 return 0;
1063 NOKPROBE_SYMBOL(kprobe_fault_handler);
1066 * Wrapper routine for handling exceptions.
1068 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1069 void *data)
1071 struct die_args *args = data;
1072 int ret = NOTIFY_DONE;
1074 if (args->regs && user_mode(args->regs))
1075 return ret;
1077 if (val == DIE_GPF) {
1079 * To be potentially processing a kprobe fault and to
1080 * trust the result from kprobe_running(), we have
1081 * be non-preemptible.
1083 if (!preemptible() && kprobe_running() &&
1084 kprobe_fault_handler(args->regs, args->trapnr))
1085 ret = NOTIFY_STOP;
1087 return ret;
1089 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1091 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1093 struct jprobe *jp = container_of(p, struct jprobe, kp);
1094 unsigned long addr;
1095 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1097 kcb->jprobe_saved_regs = *regs;
1098 kcb->jprobe_saved_sp = stack_addr(regs);
1099 addr = (unsigned long)(kcb->jprobe_saved_sp);
1102 * As Linus pointed out, gcc assumes that the callee
1103 * owns the argument space and could overwrite it, e.g.
1104 * tailcall optimization. So, to be absolutely safe
1105 * we also save and restore enough stack bytes to cover
1106 * the argument area.
1107 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1108 * raw stack chunk with redzones:
1110 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1111 regs->ip = (unsigned long)(jp->entry);
1114 * jprobes use jprobe_return() which skips the normal return
1115 * path of the function, and this messes up the accounting of the
1116 * function graph tracer to get messed up.
1118 * Pause function graph tracing while performing the jprobe function.
1120 pause_graph_tracing();
1121 return 1;
1123 NOKPROBE_SYMBOL(setjmp_pre_handler);
1125 void jprobe_return(void)
1127 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1129 /* Unpoison stack redzones in the frames we are going to jump over. */
1130 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1132 asm volatile (
1133 #ifdef CONFIG_X86_64
1134 " xchg %%rbx,%%rsp \n"
1135 #else
1136 " xchgl %%ebx,%%esp \n"
1137 #endif
1138 " int3 \n"
1139 " .globl jprobe_return_end\n"
1140 " jprobe_return_end: \n"
1141 " nop \n"::"b"
1142 (kcb->jprobe_saved_sp):"memory");
1144 NOKPROBE_SYMBOL(jprobe_return);
1145 NOKPROBE_SYMBOL(jprobe_return_end);
1147 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1149 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1150 u8 *addr = (u8 *) (regs->ip - 1);
1151 struct jprobe *jp = container_of(p, struct jprobe, kp);
1152 void *saved_sp = kcb->jprobe_saved_sp;
1154 if ((addr > (u8 *) jprobe_return) &&
1155 (addr < (u8 *) jprobe_return_end)) {
1156 if (stack_addr(regs) != saved_sp) {
1157 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1158 printk(KERN_ERR
1159 "current sp %p does not match saved sp %p\n",
1160 stack_addr(regs), saved_sp);
1161 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1162 show_regs(saved_regs);
1163 printk(KERN_ERR "Current registers\n");
1164 show_regs(regs);
1165 BUG();
1167 /* It's OK to start function graph tracing again */
1168 unpause_graph_tracing();
1169 *regs = kcb->jprobe_saved_regs;
1170 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1171 preempt_enable_no_resched();
1172 return 1;
1174 return 0;
1176 NOKPROBE_SYMBOL(longjmp_break_handler);
1178 bool arch_within_kprobe_blacklist(unsigned long addr)
1180 bool is_in_entry_trampoline_section = false;
1182 #ifdef CONFIG_X86_64
1183 is_in_entry_trampoline_section =
1184 (addr >= (unsigned long)__entry_trampoline_start &&
1185 addr < (unsigned long)__entry_trampoline_end);
1186 #endif
1187 return (addr >= (unsigned long)__kprobes_text_start &&
1188 addr < (unsigned long)__kprobes_text_end) ||
1189 (addr >= (unsigned long)__entry_text_start &&
1190 addr < (unsigned long)__entry_text_end) ||
1191 is_in_entry_trampoline_section;
1194 int __init arch_init_kprobes(void)
1196 return 0;
1199 int arch_trampoline_kprobe(struct kprobe *p)
1201 return 0;