2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 #include <linux/moduleloader.h>
57 #include <asm/text-patching.h>
58 #include <asm/cacheflush.h>
60 #include <asm/pgtable.h>
61 #include <linux/uaccess.h>
62 #include <asm/alternative.h>
64 #include <asm/debugreg.h>
65 #include <asm/set_memory.h>
66 #include <asm/sections.h>
70 void jprobe_return_end(void);
72 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
73 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
75 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
77 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
78 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
79 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
80 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
81 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
84 * Undefined/reserved opcodes, conditional jump, Opcode Extension
85 * Groups, and some special opcodes can not boost.
86 * This is non-const and volatile to keep gcc from statically
87 * optimizing it out, as variable_test_bit makes gcc think only
88 * *(unsigned long*) is used.
90 static volatile u32 twobyte_is_boostable
[256 / 32] = {
91 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
92 /* ---------------------------------------------- */
93 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
94 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
95 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
96 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
97 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
98 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
99 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
100 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
101 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
102 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
103 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
104 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
105 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
106 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
107 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
108 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
109 /* ----------------------------------------------- */
110 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
114 struct kretprobe_blackpoint kretprobe_blacklist
[] = {
115 {"__switch_to", }, /* This function switches only current task, but
116 doesn't switch kernel stack.*/
117 {NULL
, NULL
} /* Terminator */
120 const int kretprobe_blacklist_size
= ARRAY_SIZE(kretprobe_blacklist
);
122 static nokprobe_inline
void
123 __synthesize_relative_insn(void *from
, void *to
, u8 op
)
125 struct __arch_relative_insn
{
130 insn
= (struct __arch_relative_insn
*)from
;
131 insn
->raddr
= (s32
)((long)(to
) - ((long)(from
) + 5));
135 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
136 void synthesize_reljump(void *from
, void *to
)
138 __synthesize_relative_insn(from
, to
, RELATIVEJUMP_OPCODE
);
140 NOKPROBE_SYMBOL(synthesize_reljump
);
142 /* Insert a call instruction at address 'from', which calls address 'to'.*/
143 void synthesize_relcall(void *from
, void *to
)
145 __synthesize_relative_insn(from
, to
, RELATIVECALL_OPCODE
);
147 NOKPROBE_SYMBOL(synthesize_relcall
);
150 * Skip the prefixes of the instruction.
152 static kprobe_opcode_t
*skip_prefixes(kprobe_opcode_t
*insn
)
156 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
157 while (inat_is_legacy_prefix(attr
)) {
159 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
162 if (inat_is_rex_prefix(attr
))
167 NOKPROBE_SYMBOL(skip_prefixes
);
170 * Returns non-zero if INSN is boostable.
171 * RIP relative instructions are adjusted at copying time in 64 bits mode
173 int can_boost(struct insn
*insn
, void *addr
)
175 kprobe_opcode_t opcode
;
177 if (search_exception_tables((unsigned long)addr
))
178 return 0; /* Page fault may occur on this address. */
180 /* 2nd-byte opcode */
181 if (insn
->opcode
.nbytes
== 2)
182 return test_bit(insn
->opcode
.bytes
[1],
183 (unsigned long *)twobyte_is_boostable
);
185 if (insn
->opcode
.nbytes
!= 1)
188 /* Can't boost Address-size override prefix */
189 if (unlikely(inat_is_address_size_prefix(insn
->attr
)))
192 opcode
= insn
->opcode
.bytes
[0];
194 switch (opcode
& 0xf0) {
196 /* can't boost "bound" */
197 return (opcode
!= 0x62);
199 return 0; /* can't boost conditional jump */
201 return opcode
!= 0x9a; /* can't boost call far */
203 /* can't boost software-interruptions */
204 return (0xc1 < opcode
&& opcode
< 0xcc) || opcode
== 0xcf;
206 /* can boost AA* and XLAT */
207 return (opcode
== 0xd4 || opcode
== 0xd5 || opcode
== 0xd7);
209 /* can boost in/out and absolute jmps */
210 return ((opcode
& 0x04) || opcode
== 0xea);
212 /* clear and set flags are boostable */
213 return (opcode
== 0xf5 || (0xf7 < opcode
&& opcode
< 0xfe));
215 /* CS override prefix and call are not boostable */
216 return (opcode
!= 0x2e && opcode
!= 0x9a);
221 __recover_probed_insn(kprobe_opcode_t
*buf
, unsigned long addr
)
226 kp
= get_kprobe((void *)addr
);
227 faddr
= ftrace_location(addr
);
229 * Addresses inside the ftrace location are refused by
230 * arch_check_ftrace_location(). Something went terribly wrong
231 * if such an address is checked here.
233 if (WARN_ON(faddr
&& faddr
!= addr
))
236 * Use the current code if it is not modified by Kprobe
237 * and it cannot be modified by ftrace.
243 * Basically, kp->ainsn.insn has an original instruction.
244 * However, RIP-relative instruction can not do single-stepping
245 * at different place, __copy_instruction() tweaks the displacement of
246 * that instruction. In that case, we can't recover the instruction
247 * from the kp->ainsn.insn.
249 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
250 * of the first byte of the probed instruction, which is overwritten
251 * by int3. And the instruction at kp->addr is not modified by kprobes
252 * except for the first byte, we can recover the original instruction
253 * from it and kp->opcode.
255 * In case of Kprobes using ftrace, we do not have a copy of
256 * the original instruction. In fact, the ftrace location might
257 * be modified at anytime and even could be in an inconsistent state.
258 * Fortunately, we know that the original code is the ideal 5-byte
261 if (probe_kernel_read(buf
, (void *)addr
,
262 MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
)))
266 memcpy(buf
, ideal_nops
[NOP_ATOMIC5
], 5);
269 return (unsigned long)buf
;
273 * Recover the probed instruction at addr for further analysis.
274 * Caller must lock kprobes by kprobe_mutex, or disable preemption
275 * for preventing to release referencing kprobes.
276 * Returns zero if the instruction can not get recovered (or access failed).
278 unsigned long recover_probed_instruction(kprobe_opcode_t
*buf
, unsigned long addr
)
280 unsigned long __addr
;
282 __addr
= __recover_optprobed_insn(buf
, addr
);
286 return __recover_probed_insn(buf
, addr
);
289 /* Check if paddr is at an instruction boundary */
290 static int can_probe(unsigned long paddr
)
292 unsigned long addr
, __addr
, offset
= 0;
294 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
296 if (!kallsyms_lookup_size_offset(paddr
, NULL
, &offset
))
299 /* Decode instructions */
300 addr
= paddr
- offset
;
301 while (addr
< paddr
) {
303 * Check if the instruction has been modified by another
304 * kprobe, in which case we replace the breakpoint by the
305 * original instruction in our buffer.
306 * Also, jump optimization will change the breakpoint to
307 * relative-jump. Since the relative-jump itself is
308 * normally used, we just go through if there is no kprobe.
310 __addr
= recover_probed_instruction(buf
, addr
);
313 kernel_insn_init(&insn
, (void *)__addr
, MAX_INSN_SIZE
);
314 insn_get_length(&insn
);
317 * Another debugging subsystem might insert this breakpoint.
318 * In that case, we can't recover it.
320 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
)
325 return (addr
== paddr
);
329 * Returns non-zero if opcode modifies the interrupt flag.
331 static int is_IF_modifier(kprobe_opcode_t
*insn
)
334 insn
= skip_prefixes(insn
);
339 case 0xcf: /* iret/iretd */
340 case 0x9d: /* popf/popfd */
348 * Copy an instruction with recovering modified instruction by kprobes
349 * and adjust the displacement if the instruction uses the %rip-relative
351 * This returns the length of copied instruction, or 0 if it has an error.
353 int __copy_instruction(u8
*dest
, u8
*src
, struct insn
*insn
)
355 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
356 unsigned long recovered_insn
=
357 recover_probed_instruction(buf
, (unsigned long)src
);
359 if (!recovered_insn
|| !insn
)
362 /* This can access kernel text if given address is not recovered */
363 if (probe_kernel_read(dest
, (void *)recovered_insn
, MAX_INSN_SIZE
))
366 kernel_insn_init(insn
, dest
, MAX_INSN_SIZE
);
367 insn_get_length(insn
);
369 /* Another subsystem puts a breakpoint, failed to recover */
370 if (insn
->opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
)
373 /* We should not singlestep on the exception masking instructions */
374 if (insn_masking_exception(insn
))
378 /* Only x86_64 has RIP relative instructions */
379 if (insn_rip_relative(insn
)) {
383 * The copied instruction uses the %rip-relative addressing
384 * mode. Adjust the displacement for the difference between
385 * the original location of this instruction and the location
386 * of the copy that will actually be run. The tricky bit here
387 * is making sure that the sign extension happens correctly in
388 * this calculation, since we need a signed 32-bit result to
389 * be sign-extended to 64 bits when it's added to the %rip
390 * value and yield the same 64-bit result that the sign-
391 * extension of the original signed 32-bit displacement would
394 newdisp
= (u8
*) src
+ (s64
) insn
->displacement
.value
396 if ((s64
) (s32
) newdisp
!= newdisp
) {
397 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp
);
400 disp
= (u8
*) dest
+ insn_offset_displacement(insn
);
401 *(s32
*) disp
= (s32
) newdisp
;
407 /* Prepare reljump right after instruction to boost */
408 static void prepare_boost(struct kprobe
*p
, struct insn
*insn
)
410 if (can_boost(insn
, p
->addr
) &&
411 MAX_INSN_SIZE
- insn
->length
>= RELATIVEJUMP_SIZE
) {
413 * These instructions can be executed directly if it
414 * jumps back to correct address.
416 synthesize_reljump(p
->ainsn
.insn
+ insn
->length
,
417 p
->addr
+ insn
->length
);
418 p
->ainsn
.boostable
= true;
420 p
->ainsn
.boostable
= false;
424 /* Recover page to RW mode before releasing it */
425 void free_insn_page(void *page
)
427 set_memory_nx((unsigned long)page
& PAGE_MASK
, 1);
428 set_memory_rw((unsigned long)page
& PAGE_MASK
, 1);
429 module_memfree(page
);
432 static int arch_copy_kprobe(struct kprobe
*p
)
437 set_memory_rw((unsigned long)p
->ainsn
.insn
& PAGE_MASK
, 1);
439 /* Copy an instruction with recovering if other optprobe modifies it.*/
440 len
= __copy_instruction(p
->ainsn
.insn
, p
->addr
, &insn
);
445 * __copy_instruction can modify the displacement of the instruction,
446 * but it doesn't affect boostable check.
448 prepare_boost(p
, &insn
);
450 set_memory_ro((unsigned long)p
->ainsn
.insn
& PAGE_MASK
, 1);
452 /* Check whether the instruction modifies Interrupt Flag or not */
453 p
->ainsn
.if_modifier
= is_IF_modifier(p
->ainsn
.insn
);
455 /* Also, displacement change doesn't affect the first byte */
456 p
->opcode
= p
->ainsn
.insn
[0];
461 int arch_prepare_kprobe(struct kprobe
*p
)
465 if (alternatives_text_reserved(p
->addr
, p
->addr
))
468 if (!can_probe((unsigned long)p
->addr
))
470 /* insn: must be on special executable page on x86. */
471 p
->ainsn
.insn
= get_insn_slot();
475 ret
= arch_copy_kprobe(p
);
477 free_insn_slot(p
->ainsn
.insn
, 0);
478 p
->ainsn
.insn
= NULL
;
484 void arch_arm_kprobe(struct kprobe
*p
)
486 text_poke(p
->addr
, ((unsigned char []){BREAKPOINT_INSTRUCTION
}), 1);
489 void arch_disarm_kprobe(struct kprobe
*p
)
491 text_poke(p
->addr
, &p
->opcode
, 1);
494 void arch_remove_kprobe(struct kprobe
*p
)
497 free_insn_slot(p
->ainsn
.insn
, p
->ainsn
.boostable
);
498 p
->ainsn
.insn
= NULL
;
502 static nokprobe_inline
void
503 save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
505 kcb
->prev_kprobe
.kp
= kprobe_running();
506 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
507 kcb
->prev_kprobe
.old_flags
= kcb
->kprobe_old_flags
;
508 kcb
->prev_kprobe
.saved_flags
= kcb
->kprobe_saved_flags
;
511 static nokprobe_inline
void
512 restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
514 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
515 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
516 kcb
->kprobe_old_flags
= kcb
->prev_kprobe
.old_flags
;
517 kcb
->kprobe_saved_flags
= kcb
->prev_kprobe
.saved_flags
;
520 static nokprobe_inline
void
521 set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
522 struct kprobe_ctlblk
*kcb
)
524 __this_cpu_write(current_kprobe
, p
);
525 kcb
->kprobe_saved_flags
= kcb
->kprobe_old_flags
526 = (regs
->flags
& (X86_EFLAGS_TF
| X86_EFLAGS_IF
));
527 if (p
->ainsn
.if_modifier
)
528 kcb
->kprobe_saved_flags
&= ~X86_EFLAGS_IF
;
531 static nokprobe_inline
void clear_btf(void)
533 if (test_thread_flag(TIF_BLOCKSTEP
)) {
534 unsigned long debugctl
= get_debugctlmsr();
536 debugctl
&= ~DEBUGCTLMSR_BTF
;
537 update_debugctlmsr(debugctl
);
541 static nokprobe_inline
void restore_btf(void)
543 if (test_thread_flag(TIF_BLOCKSTEP
)) {
544 unsigned long debugctl
= get_debugctlmsr();
546 debugctl
|= DEBUGCTLMSR_BTF
;
547 update_debugctlmsr(debugctl
);
551 void arch_prepare_kretprobe(struct kretprobe_instance
*ri
, struct pt_regs
*regs
)
553 unsigned long *sara
= stack_addr(regs
);
555 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
558 /* Replace the return addr with trampoline addr */
559 *sara
= (unsigned long) &kretprobe_trampoline
;
561 NOKPROBE_SYMBOL(arch_prepare_kretprobe
);
563 static void setup_singlestep(struct kprobe
*p
, struct pt_regs
*regs
,
564 struct kprobe_ctlblk
*kcb
, int reenter
)
566 if (setup_detour_execution(p
, regs
, reenter
))
569 #if !defined(CONFIG_PREEMPT)
570 if (p
->ainsn
.boostable
&& !p
->post_handler
) {
571 /* Boost up -- we can execute copied instructions directly */
573 reset_current_kprobe();
575 * Reentering boosted probe doesn't reset current_kprobe,
576 * nor set current_kprobe, because it doesn't use single
579 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
580 preempt_enable_no_resched();
585 save_previous_kprobe(kcb
);
586 set_current_kprobe(p
, regs
, kcb
);
587 kcb
->kprobe_status
= KPROBE_REENTER
;
589 kcb
->kprobe_status
= KPROBE_HIT_SS
;
590 /* Prepare real single stepping */
592 regs
->flags
|= X86_EFLAGS_TF
;
593 regs
->flags
&= ~X86_EFLAGS_IF
;
594 /* single step inline if the instruction is an int3 */
595 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
596 regs
->ip
= (unsigned long)p
->addr
;
598 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
600 NOKPROBE_SYMBOL(setup_singlestep
);
603 * We have reentered the kprobe_handler(), since another probe was hit while
604 * within the handler. We save the original kprobes variables and just single
605 * step on the instruction of the new probe without calling any user handlers.
607 static int reenter_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
608 struct kprobe_ctlblk
*kcb
)
610 switch (kcb
->kprobe_status
) {
611 case KPROBE_HIT_SSDONE
:
612 case KPROBE_HIT_ACTIVE
:
614 kprobes_inc_nmissed_count(p
);
615 setup_singlestep(p
, regs
, kcb
, 1);
618 /* A probe has been hit in the codepath leading up to, or just
619 * after, single-stepping of a probed instruction. This entire
620 * codepath should strictly reside in .kprobes.text section.
621 * Raise a BUG or we'll continue in an endless reentering loop
622 * and eventually a stack overflow.
624 pr_err("Unrecoverable kprobe detected.\n");
628 /* impossible cases */
635 NOKPROBE_SYMBOL(reenter_kprobe
);
638 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
639 * remain disabled throughout this function.
641 int kprobe_int3_handler(struct pt_regs
*regs
)
643 kprobe_opcode_t
*addr
;
645 struct kprobe_ctlblk
*kcb
;
650 addr
= (kprobe_opcode_t
*)(regs
->ip
- sizeof(kprobe_opcode_t
));
652 * We don't want to be preempted for the entire
653 * duration of kprobe processing. We conditionally
654 * re-enable preemption at the end of this function,
655 * and also in reenter_kprobe() and setup_singlestep().
659 kcb
= get_kprobe_ctlblk();
660 p
= get_kprobe(addr
);
663 if (kprobe_running()) {
664 if (reenter_kprobe(p
, regs
, kcb
))
667 set_current_kprobe(p
, regs
, kcb
);
668 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
671 * If we have no pre-handler or it returned 0, we
672 * continue with normal processing. If we have a
673 * pre-handler and it returned non-zero, it prepped
674 * for calling the break_handler below on re-entry
675 * for jprobe processing, so get out doing nothing
678 if (!p
->pre_handler
|| !p
->pre_handler(p
, regs
))
679 setup_singlestep(p
, regs
, kcb
, 0);
682 } else if (*addr
!= BREAKPOINT_INSTRUCTION
) {
684 * The breakpoint instruction was removed right
685 * after we hit it. Another cpu has removed
686 * either a probepoint or a debugger breakpoint
687 * at this address. In either case, no further
688 * handling of this interrupt is appropriate.
689 * Back up over the (now missing) int3 and run
690 * the original instruction.
692 regs
->ip
= (unsigned long)addr
;
693 preempt_enable_no_resched();
695 } else if (kprobe_running()) {
696 p
= __this_cpu_read(current_kprobe
);
697 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
698 if (!skip_singlestep(p
, regs
, kcb
))
699 setup_singlestep(p
, regs
, kcb
, 0);
702 } /* else: not a kprobe fault; let the kernel handle it */
704 preempt_enable_no_resched();
707 NOKPROBE_SYMBOL(kprobe_int3_handler
);
710 * When a retprobed function returns, this code saves registers and
711 * calls trampoline_handler() runs, which calls the kretprobe's handler.
714 ".global kretprobe_trampoline\n"
715 ".type kretprobe_trampoline, @function\n"
716 "kretprobe_trampoline:\n"
718 /* We don't bother saving the ss register */
723 " call trampoline_handler\n"
724 /* Replace saved sp with true return address. */
725 " movq %rax, 152(%rsp)\n"
732 " call trampoline_handler\n"
733 /* Move flags to cs */
734 " movl 56(%esp), %edx\n"
735 " movl %edx, 52(%esp)\n"
736 /* Replace saved flags with true return address. */
737 " movl %eax, 56(%esp)\n"
742 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
744 NOKPROBE_SYMBOL(kretprobe_trampoline
);
745 STACK_FRAME_NON_STANDARD(kretprobe_trampoline
);
748 * Called from kretprobe_trampoline
750 __visible __used
void *trampoline_handler(struct pt_regs
*regs
)
752 struct kretprobe_instance
*ri
= NULL
;
753 struct hlist_head
*head
, empty_rp
;
754 struct hlist_node
*tmp
;
755 unsigned long flags
, orig_ret_address
= 0;
756 unsigned long trampoline_address
= (unsigned long)&kretprobe_trampoline
;
757 kprobe_opcode_t
*correct_ret_addr
= NULL
;
759 bool skipped
= false;
761 INIT_HLIST_HEAD(&empty_rp
);
762 kretprobe_hash_lock(current
, &head
, &flags
);
763 /* fixup registers */
765 regs
->cs
= __KERNEL_CS
;
766 /* On x86-64, we use pt_regs->sp for return address holder. */
767 frame_pointer
= ®s
->sp
;
769 regs
->cs
= __KERNEL_CS
| get_kernel_rpl();
771 /* On x86-32, we use pt_regs->flags for return address holder. */
772 frame_pointer
= ®s
->flags
;
774 regs
->ip
= trampoline_address
;
775 regs
->orig_ax
= ~0UL;
778 * It is possible to have multiple instances associated with a given
779 * task either because multiple functions in the call path have
780 * return probes installed on them, and/or more than one
781 * return probe was registered for a target function.
783 * We can handle this because:
784 * - instances are always pushed into the head of the list
785 * - when multiple return probes are registered for the same
786 * function, the (chronologically) first instance's ret_addr
787 * will be the real return address, and all the rest will
788 * point to kretprobe_trampoline.
790 hlist_for_each_entry(ri
, head
, hlist
) {
791 if (ri
->task
!= current
)
792 /* another task is sharing our hash bucket */
795 * Return probes must be pushed on this hash list correct
796 * order (same as return order) so that it can be poped
797 * correctly. However, if we find it is pushed it incorrect
798 * order, this means we find a function which should not be
799 * probed, because the wrong order entry is pushed on the
800 * path of processing other kretprobe itself.
802 if (ri
->fp
!= frame_pointer
) {
804 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
809 orig_ret_address
= (unsigned long)ri
->ret_addr
;
811 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
814 if (orig_ret_address
!= trampoline_address
)
816 * This is the real return address. Any other
817 * instances associated with this task are for
818 * other calls deeper on the call stack
823 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
825 correct_ret_addr
= ri
->ret_addr
;
826 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
827 if (ri
->task
!= current
)
828 /* another task is sharing our hash bucket */
830 if (ri
->fp
!= frame_pointer
)
833 orig_ret_address
= (unsigned long)ri
->ret_addr
;
834 if (ri
->rp
&& ri
->rp
->handler
) {
835 __this_cpu_write(current_kprobe
, &ri
->rp
->kp
);
836 get_kprobe_ctlblk()->kprobe_status
= KPROBE_HIT_ACTIVE
;
837 ri
->ret_addr
= correct_ret_addr
;
838 ri
->rp
->handler(ri
, regs
);
839 __this_cpu_write(current_kprobe
, NULL
);
842 recycle_rp_inst(ri
, &empty_rp
);
844 if (orig_ret_address
!= trampoline_address
)
846 * This is the real return address. Any other
847 * instances associated with this task are for
848 * other calls deeper on the call stack
853 kretprobe_hash_unlock(current
, &flags
);
855 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
856 hlist_del(&ri
->hlist
);
859 return (void *)orig_ret_address
;
861 NOKPROBE_SYMBOL(trampoline_handler
);
864 * Called after single-stepping. p->addr is the address of the
865 * instruction whose first byte has been replaced by the "int 3"
866 * instruction. To avoid the SMP problems that can occur when we
867 * temporarily put back the original opcode to single-step, we
868 * single-stepped a copy of the instruction. The address of this
869 * copy is p->ainsn.insn.
871 * This function prepares to return from the post-single-step
872 * interrupt. We have to fix up the stack as follows:
874 * 0) Except in the case of absolute or indirect jump or call instructions,
875 * the new ip is relative to the copied instruction. We need to make
876 * it relative to the original instruction.
878 * 1) If the single-stepped instruction was pushfl, then the TF and IF
879 * flags are set in the just-pushed flags, and may need to be cleared.
881 * 2) If the single-stepped instruction was a call, the return address
882 * that is atop the stack is the address following the copied instruction.
883 * We need to make it the address following the original instruction.
885 * If this is the first time we've single-stepped the instruction at
886 * this probepoint, and the instruction is boostable, boost it: add a
887 * jump instruction after the copied instruction, that jumps to the next
888 * instruction after the probepoint.
890 static void resume_execution(struct kprobe
*p
, struct pt_regs
*regs
,
891 struct kprobe_ctlblk
*kcb
)
893 unsigned long *tos
= stack_addr(regs
);
894 unsigned long copy_ip
= (unsigned long)p
->ainsn
.insn
;
895 unsigned long orig_ip
= (unsigned long)p
->addr
;
896 kprobe_opcode_t
*insn
= p
->ainsn
.insn
;
899 insn
= skip_prefixes(insn
);
901 regs
->flags
&= ~X86_EFLAGS_TF
;
903 case 0x9c: /* pushfl */
904 *tos
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_IF
);
905 *tos
|= kcb
->kprobe_old_flags
;
907 case 0xc2: /* iret/ret/lret */
912 case 0xea: /* jmp absolute -- ip is correct */
913 /* ip is already adjusted, no more changes required */
914 p
->ainsn
.boostable
= true;
916 case 0xe8: /* call relative - Fix return addr */
917 *tos
= orig_ip
+ (*tos
- copy_ip
);
920 case 0x9a: /* call absolute -- same as call absolute, indirect */
921 *tos
= orig_ip
+ (*tos
- copy_ip
);
925 if ((insn
[1] & 0x30) == 0x10) {
927 * call absolute, indirect
928 * Fix return addr; ip is correct.
929 * But this is not boostable
931 *tos
= orig_ip
+ (*tos
- copy_ip
);
933 } else if (((insn
[1] & 0x31) == 0x20) ||
934 ((insn
[1] & 0x31) == 0x21)) {
936 * jmp near and far, absolute indirect
937 * ip is correct. And this is boostable
939 p
->ainsn
.boostable
= true;
946 regs
->ip
+= orig_ip
- copy_ip
;
951 NOKPROBE_SYMBOL(resume_execution
);
954 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
955 * remain disabled throughout this function.
957 int kprobe_debug_handler(struct pt_regs
*regs
)
959 struct kprobe
*cur
= kprobe_running();
960 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
965 resume_execution(cur
, regs
, kcb
);
966 regs
->flags
|= kcb
->kprobe_saved_flags
;
968 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
969 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
970 cur
->post_handler(cur
, regs
, 0);
973 /* Restore back the original saved kprobes variables and continue. */
974 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
975 restore_previous_kprobe(kcb
);
978 reset_current_kprobe();
980 preempt_enable_no_resched();
983 * if somebody else is singlestepping across a probe point, flags
984 * will have TF set, in which case, continue the remaining processing
985 * of do_debug, as if this is not a probe hit.
987 if (regs
->flags
& X86_EFLAGS_TF
)
992 NOKPROBE_SYMBOL(kprobe_debug_handler
);
994 int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
996 struct kprobe
*cur
= kprobe_running();
997 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
999 if (unlikely(regs
->ip
== (unsigned long)cur
->ainsn
.insn
)) {
1000 /* This must happen on single-stepping */
1001 WARN_ON(kcb
->kprobe_status
!= KPROBE_HIT_SS
&&
1002 kcb
->kprobe_status
!= KPROBE_REENTER
);
1004 * We are here because the instruction being single
1005 * stepped caused a page fault. We reset the current
1006 * kprobe and the ip points back to the probe address
1007 * and allow the page fault handler to continue as a
1008 * normal page fault.
1010 regs
->ip
= (unsigned long)cur
->addr
;
1012 * Trap flag (TF) has been set here because this fault
1013 * happened where the single stepping will be done.
1014 * So clear it by resetting the current kprobe:
1016 regs
->flags
&= ~X86_EFLAGS_TF
;
1019 * If the TF flag was set before the kprobe hit,
1022 regs
->flags
|= kcb
->kprobe_old_flags
;
1024 if (kcb
->kprobe_status
== KPROBE_REENTER
)
1025 restore_previous_kprobe(kcb
);
1027 reset_current_kprobe();
1028 preempt_enable_no_resched();
1029 } else if (kcb
->kprobe_status
== KPROBE_HIT_ACTIVE
||
1030 kcb
->kprobe_status
== KPROBE_HIT_SSDONE
) {
1032 * We increment the nmissed count for accounting,
1033 * we can also use npre/npostfault count for accounting
1034 * these specific fault cases.
1036 kprobes_inc_nmissed_count(cur
);
1039 * We come here because instructions in the pre/post
1040 * handler caused the page_fault, this could happen
1041 * if handler tries to access user space by
1042 * copy_from_user(), get_user() etc. Let the
1043 * user-specified handler try to fix it first.
1045 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
1049 * In case the user-specified fault handler returned
1050 * zero, try to fix up.
1052 if (fixup_exception(regs
, trapnr
))
1056 * fixup routine could not handle it,
1057 * Let do_page_fault() fix it.
1063 NOKPROBE_SYMBOL(kprobe_fault_handler
);
1066 * Wrapper routine for handling exceptions.
1068 int kprobe_exceptions_notify(struct notifier_block
*self
, unsigned long val
,
1071 struct die_args
*args
= data
;
1072 int ret
= NOTIFY_DONE
;
1074 if (args
->regs
&& user_mode(args
->regs
))
1077 if (val
== DIE_GPF
) {
1079 * To be potentially processing a kprobe fault and to
1080 * trust the result from kprobe_running(), we have
1081 * be non-preemptible.
1083 if (!preemptible() && kprobe_running() &&
1084 kprobe_fault_handler(args
->regs
, args
->trapnr
))
1089 NOKPROBE_SYMBOL(kprobe_exceptions_notify
);
1091 int setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1093 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
1095 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1097 kcb
->jprobe_saved_regs
= *regs
;
1098 kcb
->jprobe_saved_sp
= stack_addr(regs
);
1099 addr
= (unsigned long)(kcb
->jprobe_saved_sp
);
1102 * As Linus pointed out, gcc assumes that the callee
1103 * owns the argument space and could overwrite it, e.g.
1104 * tailcall optimization. So, to be absolutely safe
1105 * we also save and restore enough stack bytes to cover
1106 * the argument area.
1107 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1108 * raw stack chunk with redzones:
1110 __memcpy(kcb
->jprobes_stack
, (kprobe_opcode_t
*)addr
, MIN_STACK_SIZE(addr
));
1111 regs
->ip
= (unsigned long)(jp
->entry
);
1114 * jprobes use jprobe_return() which skips the normal return
1115 * path of the function, and this messes up the accounting of the
1116 * function graph tracer to get messed up.
1118 * Pause function graph tracing while performing the jprobe function.
1120 pause_graph_tracing();
1123 NOKPROBE_SYMBOL(setjmp_pre_handler
);
1125 void jprobe_return(void)
1127 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1129 /* Unpoison stack redzones in the frames we are going to jump over. */
1130 kasan_unpoison_stack_above_sp_to(kcb
->jprobe_saved_sp
);
1133 #ifdef CONFIG_X86_64
1134 " xchg %%rbx,%%rsp \n"
1136 " xchgl %%ebx,%%esp \n"
1139 " .globl jprobe_return_end\n"
1140 " jprobe_return_end: \n"
1142 (kcb
->jprobe_saved_sp
):"memory");
1144 NOKPROBE_SYMBOL(jprobe_return
);
1145 NOKPROBE_SYMBOL(jprobe_return_end
);
1147 int longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1149 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1150 u8
*addr
= (u8
*) (regs
->ip
- 1);
1151 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
1152 void *saved_sp
= kcb
->jprobe_saved_sp
;
1154 if ((addr
> (u8
*) jprobe_return
) &&
1155 (addr
< (u8
*) jprobe_return_end
)) {
1156 if (stack_addr(regs
) != saved_sp
) {
1157 struct pt_regs
*saved_regs
= &kcb
->jprobe_saved_regs
;
1159 "current sp %p does not match saved sp %p\n",
1160 stack_addr(regs
), saved_sp
);
1161 printk(KERN_ERR
"Saved registers for jprobe %p\n", jp
);
1162 show_regs(saved_regs
);
1163 printk(KERN_ERR
"Current registers\n");
1167 /* It's OK to start function graph tracing again */
1168 unpause_graph_tracing();
1169 *regs
= kcb
->jprobe_saved_regs
;
1170 __memcpy(saved_sp
, kcb
->jprobes_stack
, MIN_STACK_SIZE(saved_sp
));
1171 preempt_enable_no_resched();
1176 NOKPROBE_SYMBOL(longjmp_break_handler
);
1178 bool arch_within_kprobe_blacklist(unsigned long addr
)
1180 bool is_in_entry_trampoline_section
= false;
1182 #ifdef CONFIG_X86_64
1183 is_in_entry_trampoline_section
=
1184 (addr
>= (unsigned long)__entry_trampoline_start
&&
1185 addr
< (unsigned long)__entry_trampoline_end
);
1187 return (addr
>= (unsigned long)__kprobes_text_start
&&
1188 addr
< (unsigned long)__kprobes_text_end
) ||
1189 (addr
>= (unsigned long)__entry_text_start
&&
1190 addr
< (unsigned long)__entry_text_end
) ||
1191 is_in_entry_trampoline_section
;
1194 int __init
arch_init_kprobes(void)
1199 int arch_trampoline_kprobe(struct kprobe
*p
)