1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/tick.h>
25 #include <linux/cpuidle.h>
26 #include <trace/events/power.h>
27 #include <linux/hw_breakpoint.h>
30 #include <asm/syscalls.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
36 #include <asm/tlbflush.h>
39 #include <asm/switch_to.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
47 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
48 * no more per-task TSS's. The TSS size is kept cacheline-aligned
49 * so they are allowed to end up in the .data..cacheline_aligned
50 * section. Since TSS's are completely CPU-local, we want them
51 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
53 __visible
DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct
, cpu_tss_rw
) = {
56 * .sp0 is only used when entering ring 0 from a lower
57 * privilege level. Since the init task never runs anything
58 * but ring 0 code, there is no need for a valid value here.
61 .sp0
= (1UL << (BITS_PER_LONG
-1)) + 1,
65 * .sp1 is cpu_current_top_of_stack. The init task never
66 * runs user code, but cpu_current_top_of_stack should still
67 * be well defined before the first context switch.
69 .sp1
= TOP_OF_INIT_STACK
,
75 .io_bitmap_base
= INVALID_IO_BITMAP_OFFSET
,
80 * Note that the .io_bitmap member must be extra-big. This is because
81 * the CPU will access an additional byte beyond the end of the IO
82 * permission bitmap. The extra byte must be all 1 bits, and must
83 * be within the limit.
85 .io_bitmap
= { [0 ... IO_BITMAP_LONGS
] = ~0 },
88 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw
);
90 DEFINE_PER_CPU(bool, __tss_limit_invalid
);
91 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid
);
94 * this gets called so that we can store lazy state into memory and copy the
95 * current task into the new thread.
97 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
99 memcpy(dst
, src
, arch_task_struct_size
);
101 dst
->thread
.vm86
= NULL
;
104 return fpu__copy(&dst
->thread
.fpu
, &src
->thread
.fpu
);
108 * Free current thread data structures etc..
110 void exit_thread(struct task_struct
*tsk
)
112 struct thread_struct
*t
= &tsk
->thread
;
113 unsigned long *bp
= t
->io_bitmap_ptr
;
114 struct fpu
*fpu
= &t
->fpu
;
117 struct tss_struct
*tss
= &per_cpu(cpu_tss_rw
, get_cpu());
119 t
->io_bitmap_ptr
= NULL
;
120 clear_thread_flag(TIF_IO_BITMAP
);
122 * Careful, clear this in the TSS too:
124 memset(tss
->io_bitmap
, 0xff, t
->io_bitmap_max
);
125 t
->io_bitmap_max
= 0;
135 void flush_thread(void)
137 struct task_struct
*tsk
= current
;
139 flush_ptrace_hw_breakpoint(tsk
);
140 memset(tsk
->thread
.tls_array
, 0, sizeof(tsk
->thread
.tls_array
));
142 fpu__clear(&tsk
->thread
.fpu
);
145 void disable_TSC(void)
148 if (!test_and_set_thread_flag(TIF_NOTSC
))
150 * Must flip the CPU state synchronously with
151 * TIF_NOTSC in the current running context.
153 cr4_set_bits(X86_CR4_TSD
);
157 static void enable_TSC(void)
160 if (test_and_clear_thread_flag(TIF_NOTSC
))
162 * Must flip the CPU state synchronously with
163 * TIF_NOTSC in the current running context.
165 cr4_clear_bits(X86_CR4_TSD
);
169 int get_tsc_mode(unsigned long adr
)
173 if (test_thread_flag(TIF_NOTSC
))
174 val
= PR_TSC_SIGSEGV
;
178 return put_user(val
, (unsigned int __user
*)adr
);
181 int set_tsc_mode(unsigned int val
)
183 if (val
== PR_TSC_SIGSEGV
)
185 else if (val
== PR_TSC_ENABLE
)
193 DEFINE_PER_CPU(u64
, msr_misc_features_shadow
);
195 static void set_cpuid_faulting(bool on
)
199 msrval
= this_cpu_read(msr_misc_features_shadow
);
200 msrval
&= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
;
201 msrval
|= (on
<< MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT
);
202 this_cpu_write(msr_misc_features_shadow
, msrval
);
203 wrmsrl(MSR_MISC_FEATURES_ENABLES
, msrval
);
206 static void disable_cpuid(void)
209 if (!test_and_set_thread_flag(TIF_NOCPUID
)) {
211 * Must flip the CPU state synchronously with
212 * TIF_NOCPUID in the current running context.
214 set_cpuid_faulting(true);
219 static void enable_cpuid(void)
222 if (test_and_clear_thread_flag(TIF_NOCPUID
)) {
224 * Must flip the CPU state synchronously with
225 * TIF_NOCPUID in the current running context.
227 set_cpuid_faulting(false);
232 static int get_cpuid_mode(void)
234 return !test_thread_flag(TIF_NOCPUID
);
237 static int set_cpuid_mode(struct task_struct
*task
, unsigned long cpuid_enabled
)
239 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT
))
251 * Called immediately after a successful exec.
253 void arch_setup_new_exec(void)
255 /* If cpuid was previously disabled for this task, re-enable it. */
256 if (test_thread_flag(TIF_NOCPUID
))
260 static inline void switch_to_bitmap(struct thread_struct
*prev
,
261 struct thread_struct
*next
,
262 unsigned long tifp
, unsigned long tifn
)
264 struct tss_struct
*tss
= this_cpu_ptr(&cpu_tss_rw
);
266 if (tifn
& _TIF_IO_BITMAP
) {
268 * Copy the relevant range of the IO bitmap.
269 * Normally this is 128 bytes or less:
271 memcpy(tss
->io_bitmap
, next
->io_bitmap_ptr
,
272 max(prev
->io_bitmap_max
, next
->io_bitmap_max
));
274 * Make sure that the TSS limit is correct for the CPU
275 * to notice the IO bitmap.
278 } else if (tifp
& _TIF_IO_BITMAP
) {
280 * Clear any possible leftover bits:
282 memset(tss
->io_bitmap
, 0xff, prev
->io_bitmap_max
);
289 struct ssb_state
*shared_state
;
291 unsigned int disable_state
;
292 unsigned long local_state
;
297 static DEFINE_PER_CPU(struct ssb_state
, ssb_state
);
299 void speculative_store_bypass_ht_init(void)
301 struct ssb_state
*st
= this_cpu_ptr(&ssb_state
);
302 unsigned int this_cpu
= smp_processor_id();
308 * Shared state setup happens once on the first bringup
309 * of the CPU. It's not destroyed on CPU hotunplug.
311 if (st
->shared_state
)
314 raw_spin_lock_init(&st
->lock
);
317 * Go over HT siblings and check whether one of them has set up the
318 * shared state pointer already.
320 for_each_cpu(cpu
, topology_sibling_cpumask(this_cpu
)) {
324 if (!per_cpu(ssb_state
, cpu
).shared_state
)
327 /* Link it to the state of the sibling: */
328 st
->shared_state
= per_cpu(ssb_state
, cpu
).shared_state
;
333 * First HT sibling to come up on the core. Link shared state of
334 * the first HT sibling to itself. The siblings on the same core
335 * which come up later will see the shared state pointer and link
336 * themself to the state of this CPU.
338 st
->shared_state
= st
;
342 * Logic is: First HT sibling enables SSBD for both siblings in the core
343 * and last sibling to disable it, disables it for the whole core. This how
344 * MSR_SPEC_CTRL works in "hardware":
346 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
348 static __always_inline
void amd_set_core_ssb_state(unsigned long tifn
)
350 struct ssb_state
*st
= this_cpu_ptr(&ssb_state
);
351 u64 msr
= x86_amd_ls_cfg_base
;
353 if (!static_cpu_has(X86_FEATURE_ZEN
)) {
354 msr
|= ssbd_tif_to_amd_ls_cfg(tifn
);
355 wrmsrl(MSR_AMD64_LS_CFG
, msr
);
359 if (tifn
& _TIF_SSBD
) {
361 * Since this can race with prctl(), block reentry on the
364 if (__test_and_set_bit(LSTATE_SSB
, &st
->local_state
))
367 msr
|= x86_amd_ls_cfg_ssbd_mask
;
369 raw_spin_lock(&st
->shared_state
->lock
);
370 /* First sibling enables SSBD: */
371 if (!st
->shared_state
->disable_state
)
372 wrmsrl(MSR_AMD64_LS_CFG
, msr
);
373 st
->shared_state
->disable_state
++;
374 raw_spin_unlock(&st
->shared_state
->lock
);
376 if (!__test_and_clear_bit(LSTATE_SSB
, &st
->local_state
))
379 raw_spin_lock(&st
->shared_state
->lock
);
380 st
->shared_state
->disable_state
--;
381 if (!st
->shared_state
->disable_state
)
382 wrmsrl(MSR_AMD64_LS_CFG
, msr
);
383 raw_spin_unlock(&st
->shared_state
->lock
);
387 static __always_inline
void amd_set_core_ssb_state(unsigned long tifn
)
389 u64 msr
= x86_amd_ls_cfg_base
| ssbd_tif_to_amd_ls_cfg(tifn
);
391 wrmsrl(MSR_AMD64_LS_CFG
, msr
);
395 static __always_inline
void amd_set_ssb_virt_state(unsigned long tifn
)
398 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
399 * so ssbd_tif_to_spec_ctrl() just works.
401 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL
, ssbd_tif_to_spec_ctrl(tifn
));
405 * Update the MSRs managing speculation control, during context switch.
407 * tifp: Previous task's thread flags
408 * tifn: Next task's thread flags
410 static __always_inline
void __speculation_ctrl_update(unsigned long tifp
,
413 unsigned long tif_diff
= tifp
^ tifn
;
414 u64 msr
= x86_spec_ctrl_base
;
418 * If TIF_SSBD is different, select the proper mitigation
419 * method. Note that if SSBD mitigation is disabled or permanentely
420 * enabled this branch can't be taken because nothing can set
423 if (tif_diff
& _TIF_SSBD
) {
424 if (static_cpu_has(X86_FEATURE_VIRT_SSBD
)) {
425 amd_set_ssb_virt_state(tifn
);
426 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD
)) {
427 amd_set_core_ssb_state(tifn
);
428 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD
) ||
429 static_cpu_has(X86_FEATURE_AMD_SSBD
)) {
430 msr
|= ssbd_tif_to_spec_ctrl(tifn
);
436 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
437 * otherwise avoid the MSR write.
439 if (IS_ENABLED(CONFIG_SMP
) &&
440 static_branch_unlikely(&switch_to_cond_stibp
)) {
441 updmsr
|= !!(tif_diff
& _TIF_SPEC_IB
);
442 msr
|= stibp_tif_to_spec_ctrl(tifn
);
446 wrmsrl(MSR_IA32_SPEC_CTRL
, msr
);
449 static unsigned long speculation_ctrl_update_tif(struct task_struct
*tsk
)
451 if (test_and_clear_tsk_thread_flag(tsk
, TIF_SPEC_FORCE_UPDATE
)) {
452 if (task_spec_ssb_disable(tsk
))
453 set_tsk_thread_flag(tsk
, TIF_SSBD
);
455 clear_tsk_thread_flag(tsk
, TIF_SSBD
);
457 if (task_spec_ib_disable(tsk
))
458 set_tsk_thread_flag(tsk
, TIF_SPEC_IB
);
460 clear_tsk_thread_flag(tsk
, TIF_SPEC_IB
);
462 /* Return the updated threadinfo flags*/
463 return task_thread_info(tsk
)->flags
;
466 void speculation_ctrl_update(unsigned long tif
)
470 /* Forced update. Make sure all relevant TIF flags are different */
471 local_irq_save(flags
);
472 __speculation_ctrl_update(~tif
, tif
);
473 local_irq_restore(flags
);
476 /* Called from seccomp/prctl update */
477 void speculation_ctrl_update_current(void)
480 speculation_ctrl_update(speculation_ctrl_update_tif(current
));
484 void __switch_to_xtra(struct task_struct
*prev_p
, struct task_struct
*next_p
)
486 struct thread_struct
*prev
, *next
;
487 unsigned long tifp
, tifn
;
489 prev
= &prev_p
->thread
;
490 next
= &next_p
->thread
;
492 tifn
= READ_ONCE(task_thread_info(next_p
)->flags
);
493 tifp
= READ_ONCE(task_thread_info(prev_p
)->flags
);
494 switch_to_bitmap(prev
, next
, tifp
, tifn
);
496 propagate_user_return_notify(prev_p
, next_p
);
498 if ((tifp
& _TIF_BLOCKSTEP
|| tifn
& _TIF_BLOCKSTEP
) &&
499 arch_has_block_step()) {
500 unsigned long debugctl
, msk
;
502 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
503 debugctl
&= ~DEBUGCTLMSR_BTF
;
504 msk
= tifn
& _TIF_BLOCKSTEP
;
505 debugctl
|= (msk
>> TIF_BLOCKSTEP
) << DEBUGCTLMSR_BTF_SHIFT
;
506 wrmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
509 if ((tifp
^ tifn
) & _TIF_NOTSC
)
510 cr4_toggle_bits(X86_CR4_TSD
);
512 if ((tifp
^ tifn
) & _TIF_NOCPUID
)
513 set_cpuid_faulting(!!(tifn
& _TIF_NOCPUID
));
515 if (likely(!((tifp
| tifn
) & _TIF_SPEC_FORCE_UPDATE
))) {
516 __speculation_ctrl_update(tifp
, tifn
);
518 speculation_ctrl_update_tif(prev_p
);
519 tifn
= speculation_ctrl_update_tif(next_p
);
521 /* Enforce MSR update to ensure consistent state */
522 __speculation_ctrl_update(~tifn
, tifn
);
527 * Idle related variables and functions
529 unsigned long boot_option_idle_override
= IDLE_NO_OVERRIDE
;
530 EXPORT_SYMBOL(boot_option_idle_override
);
532 static void (*x86_idle
)(void);
535 static inline void play_dead(void)
541 void arch_cpu_idle_enter(void)
543 tsc_verify_tsc_adjust(false);
547 void arch_cpu_idle_dead(void)
553 * Called from the generic idle code.
555 void arch_cpu_idle(void)
561 * We use this if we don't have any better idle routine..
563 void __cpuidle
default_idle(void)
565 trace_cpu_idle_rcuidle(1, smp_processor_id());
567 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT
, smp_processor_id());
569 #ifdef CONFIG_APM_MODULE
570 EXPORT_SYMBOL(default_idle
);
574 bool xen_set_default_idle(void)
576 bool ret
= !!x86_idle
;
578 x86_idle
= default_idle
;
584 void stop_this_cpu(void *dummy
)
590 set_cpu_online(smp_processor_id(), false);
591 disable_local_APIC();
592 mcheck_cpu_clear(this_cpu_ptr(&cpu_info
));
595 * Use wbinvd on processors that support SME. This provides support
596 * for performing a successful kexec when going from SME inactive
597 * to SME active (or vice-versa). The cache must be cleared so that
598 * if there are entries with the same physical address, both with and
599 * without the encryption bit, they don't race each other when flushed
600 * and potentially end up with the wrong entry being committed to
603 if (boot_cpu_has(X86_FEATURE_SME
))
607 * Use native_halt() so that memory contents don't change
608 * (stack usage and variables) after possibly issuing the
609 * native_wbinvd() above.
616 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
617 * states (local apic timer and TSC stop).
619 static void amd_e400_idle(void)
622 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
623 * gets set after static_cpu_has() places have been converted via
626 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E
)) {
631 tick_broadcast_enter();
636 * The switch back from broadcast mode needs to be called with
637 * interrupts disabled.
640 tick_broadcast_exit();
645 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
646 * We can't rely on cpuidle installing MWAIT, because it will not load
647 * on systems that support only C1 -- so the boot default must be MWAIT.
649 * Some AMD machines are the opposite, they depend on using HALT.
651 * So for default C1, which is used during boot until cpuidle loads,
652 * use MWAIT-C1 on Intel HW that has it, else use HALT.
654 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86
*c
)
656 if (c
->x86_vendor
!= X86_VENDOR_INTEL
)
659 if (!cpu_has(c
, X86_FEATURE_MWAIT
) || static_cpu_has_bug(X86_BUG_MONITOR
))
666 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
667 * with interrupts enabled and no flags, which is backwards compatible with the
668 * original MWAIT implementation.
670 static __cpuidle
void mwait_idle(void)
672 if (!current_set_polling_and_test()) {
673 trace_cpu_idle_rcuidle(1, smp_processor_id());
674 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR
)) {
676 clflush((void *)¤t_thread_info()->flags
);
680 __monitor((void *)¤t_thread_info()->flags
, 0, 0);
685 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT
, smp_processor_id());
689 __current_clr_polling();
692 void select_idle_routine(const struct cpuinfo_x86
*c
)
695 if (boot_option_idle_override
== IDLE_POLL
&& smp_num_siblings
> 1)
696 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
698 if (x86_idle
|| boot_option_idle_override
== IDLE_POLL
)
701 if (boot_cpu_has_bug(X86_BUG_AMD_E400
)) {
702 pr_info("using AMD E400 aware idle routine\n");
703 x86_idle
= amd_e400_idle
;
704 } else if (prefer_mwait_c1_over_halt(c
)) {
705 pr_info("using mwait in idle threads\n");
706 x86_idle
= mwait_idle
;
708 x86_idle
= default_idle
;
711 void amd_e400_c1e_apic_setup(void)
713 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E
)) {
714 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
716 tick_broadcast_force();
721 void __init
arch_post_acpi_subsys_init(void)
725 if (!boot_cpu_has_bug(X86_BUG_AMD_E400
))
729 * AMD E400 detection needs to happen after ACPI has been enabled. If
730 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
731 * MSR_K8_INT_PENDING_MSG.
733 rdmsr(MSR_K8_INT_PENDING_MSG
, lo
, hi
);
734 if (!(lo
& K8_INTP_C1E_ACTIVE_MASK
))
737 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E
);
739 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC
))
740 mark_tsc_unstable("TSC halt in AMD C1E");
741 pr_info("System has AMD C1E enabled\n");
744 static int __init
idle_setup(char *str
)
749 if (!strcmp(str
, "poll")) {
750 pr_info("using polling idle threads\n");
751 boot_option_idle_override
= IDLE_POLL
;
752 cpu_idle_poll_ctrl(true);
753 } else if (!strcmp(str
, "halt")) {
755 * When the boot option of idle=halt is added, halt is
756 * forced to be used for CPU idle. In such case CPU C2/C3
757 * won't be used again.
758 * To continue to load the CPU idle driver, don't touch
759 * the boot_option_idle_override.
761 x86_idle
= default_idle
;
762 boot_option_idle_override
= IDLE_HALT
;
763 } else if (!strcmp(str
, "nomwait")) {
765 * If the boot option of "idle=nomwait" is added,
766 * it means that mwait will be disabled for CPU C2/C3
767 * states. In such case it won't touch the variable
768 * of boot_option_idle_override.
770 boot_option_idle_override
= IDLE_NOMWAIT
;
776 early_param("idle", idle_setup
);
778 unsigned long arch_align_stack(unsigned long sp
)
780 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
781 sp
-= get_random_int() % 8192;
785 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
787 return randomize_page(mm
->brk
, 0x02000000);
791 * Called from fs/proc with a reference on @p to find the function
792 * which called into schedule(). This needs to be done carefully
793 * because the task might wake up and we might look at a stack
796 unsigned long get_wchan(struct task_struct
*p
)
798 unsigned long start
, bottom
, top
, sp
, fp
, ip
, ret
= 0;
801 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
804 if (!try_get_task_stack(p
))
807 start
= (unsigned long)task_stack_page(p
);
812 * Layout of the stack page:
814 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
816 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
818 * ----------- bottom = start
820 * The tasks stack pointer points at the location where the
821 * framepointer is stored. The data on the stack is:
822 * ... IP FP ... IP FP
824 * We need to read FP and IP, so we need to adjust the upper
825 * bound by another unsigned long.
827 top
= start
+ THREAD_SIZE
- TOP_OF_KERNEL_STACK_PADDING
;
828 top
-= 2 * sizeof(unsigned long);
831 sp
= READ_ONCE(p
->thread
.sp
);
832 if (sp
< bottom
|| sp
> top
)
835 fp
= READ_ONCE_NOCHECK(((struct inactive_task_frame
*)sp
)->bp
);
837 if (fp
< bottom
|| fp
> top
)
839 ip
= READ_ONCE_NOCHECK(*(unsigned long *)(fp
+ sizeof(unsigned long)));
840 if (!in_sched_functions(ip
)) {
844 fp
= READ_ONCE_NOCHECK(*(unsigned long *)fp
);
845 } while (count
++ < 16 && p
->state
!= TASK_RUNNING
);
852 long do_arch_prctl_common(struct task_struct
*task
, int option
,
853 unsigned long cpuid_enabled
)
857 return get_cpuid_mode();
859 return set_cpuid_mode(task
, cpuid_enabled
);