x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / arch / x86 / mm / extable.c
blob9fe656c42aa5b16560e139cebba247ca52756c80
1 #include <linux/extable.h>
2 #include <linux/uaccess.h>
3 #include <linux/sched/debug.h>
4 #include <xen/xen.h>
6 #include <asm/fpu/internal.h>
7 #include <asm/traps.h>
8 #include <asm/kdebug.h>
10 typedef bool (*ex_handler_t)(const struct exception_table_entry *,
11 struct pt_regs *, int);
13 static inline unsigned long
14 ex_fixup_addr(const struct exception_table_entry *x)
16 return (unsigned long)&x->fixup + x->fixup;
18 static inline ex_handler_t
19 ex_fixup_handler(const struct exception_table_entry *x)
21 return (ex_handler_t)((unsigned long)&x->handler + x->handler);
24 bool ex_handler_default(const struct exception_table_entry *fixup,
25 struct pt_regs *regs, int trapnr)
27 regs->ip = ex_fixup_addr(fixup);
28 return true;
30 EXPORT_SYMBOL(ex_handler_default);
32 bool ex_handler_fault(const struct exception_table_entry *fixup,
33 struct pt_regs *regs, int trapnr)
35 regs->ip = ex_fixup_addr(fixup);
36 regs->ax = trapnr;
37 return true;
39 EXPORT_SYMBOL_GPL(ex_handler_fault);
42 * Handler for UD0 exception following a failed test against the
43 * result of a refcount inc/dec/add/sub.
45 bool ex_handler_refcount(const struct exception_table_entry *fixup,
46 struct pt_regs *regs, int trapnr)
48 /* First unconditionally saturate the refcount. */
49 *(int *)regs->cx = INT_MIN / 2;
52 * Strictly speaking, this reports the fixup destination, not
53 * the fault location, and not the actually overflowing
54 * instruction, which is the instruction before the "js", but
55 * since that instruction could be a variety of lengths, just
56 * report the location after the overflow, which should be close
57 * enough for finding the overflow, as it's at least back in
58 * the function, having returned from .text.unlikely.
60 regs->ip = ex_fixup_addr(fixup);
63 * This function has been called because either a negative refcount
64 * value was seen by any of the refcount functions, or a zero
65 * refcount value was seen by refcount_dec().
67 * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result
68 * wrapped around) will be set. Additionally, seeing the refcount
69 * reach 0 will set ZF (Zero Flag: result was zero). In each of
70 * these cases we want a report, since it's a boundary condition.
71 * The SF case is not reported since it indicates post-boundary
72 * manipulations below zero or above INT_MAX. And if none of the
73 * flags are set, something has gone very wrong, so report it.
75 if (regs->flags & (X86_EFLAGS_OF | X86_EFLAGS_ZF)) {
76 bool zero = regs->flags & X86_EFLAGS_ZF;
78 refcount_error_report(regs, zero ? "hit zero" : "overflow");
79 } else if ((regs->flags & X86_EFLAGS_SF) == 0) {
80 /* Report if none of OF, ZF, nor SF are set. */
81 refcount_error_report(regs, "unexpected saturation");
84 return true;
86 EXPORT_SYMBOL(ex_handler_refcount);
89 * Handler for when we fail to restore a task's FPU state. We should never get
90 * here because the FPU state of a task using the FPU (task->thread.fpu.state)
91 * should always be valid. However, past bugs have allowed userspace to set
92 * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
93 * These caused XRSTOR to fail when switching to the task, leaking the FPU
94 * registers of the task previously executing on the CPU. Mitigate this class
95 * of vulnerability by restoring from the initial state (essentially, zeroing
96 * out all the FPU registers) if we can't restore from the task's FPU state.
98 bool ex_handler_fprestore(const struct exception_table_entry *fixup,
99 struct pt_regs *regs, int trapnr)
101 regs->ip = ex_fixup_addr(fixup);
103 WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
104 (void *)instruction_pointer(regs));
106 __copy_kernel_to_fpregs(&init_fpstate, -1);
107 return true;
109 EXPORT_SYMBOL_GPL(ex_handler_fprestore);
111 bool ex_handler_ext(const struct exception_table_entry *fixup,
112 struct pt_regs *regs, int trapnr)
114 /* Special hack for uaccess_err */
115 current->thread.uaccess_err = 1;
116 regs->ip = ex_fixup_addr(fixup);
117 return true;
119 EXPORT_SYMBOL(ex_handler_ext);
121 bool ex_handler_rdmsr_unsafe(const struct exception_table_entry *fixup,
122 struct pt_regs *regs, int trapnr)
124 if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pF)\n",
125 (unsigned int)regs->cx, regs->ip, (void *)regs->ip))
126 show_stack_regs(regs);
128 /* Pretend that the read succeeded and returned 0. */
129 regs->ip = ex_fixup_addr(fixup);
130 regs->ax = 0;
131 regs->dx = 0;
132 return true;
134 EXPORT_SYMBOL(ex_handler_rdmsr_unsafe);
136 bool ex_handler_wrmsr_unsafe(const struct exception_table_entry *fixup,
137 struct pt_regs *regs, int trapnr)
139 if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pF)\n",
140 (unsigned int)regs->cx, (unsigned int)regs->dx,
141 (unsigned int)regs->ax, regs->ip, (void *)regs->ip))
142 show_stack_regs(regs);
144 /* Pretend that the write succeeded. */
145 regs->ip = ex_fixup_addr(fixup);
146 return true;
148 EXPORT_SYMBOL(ex_handler_wrmsr_unsafe);
150 bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
151 struct pt_regs *regs, int trapnr)
153 if (static_cpu_has(X86_BUG_NULL_SEG))
154 asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
155 asm volatile ("mov %0, %%fs" : : "rm" (0));
156 return ex_handler_default(fixup, regs, trapnr);
158 EXPORT_SYMBOL(ex_handler_clear_fs);
160 bool ex_has_fault_handler(unsigned long ip)
162 const struct exception_table_entry *e;
163 ex_handler_t handler;
165 e = search_exception_tables(ip);
166 if (!e)
167 return false;
168 handler = ex_fixup_handler(e);
170 return handler == ex_handler_fault;
173 int fixup_exception(struct pt_regs *regs, int trapnr)
175 const struct exception_table_entry *e;
176 ex_handler_t handler;
178 #ifdef CONFIG_PNPBIOS
179 if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
180 extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
181 extern u32 pnp_bios_is_utter_crap;
182 pnp_bios_is_utter_crap = 1;
183 printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
184 __asm__ volatile(
185 "movl %0, %%esp\n\t"
186 "jmp *%1\n\t"
187 : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
188 panic("do_trap: can't hit this");
190 #endif
192 e = search_exception_tables(regs->ip);
193 if (!e)
194 return 0;
196 handler = ex_fixup_handler(e);
197 return handler(e, regs, trapnr);
200 extern unsigned int early_recursion_flag;
202 /* Restricted version used during very early boot */
203 void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
205 /* Ignore early NMIs. */
206 if (trapnr == X86_TRAP_NMI)
207 return;
209 if (early_recursion_flag > 2)
210 goto halt_loop;
213 * Old CPUs leave the high bits of CS on the stack
214 * undefined. I'm not sure which CPUs do this, but at least
215 * the 486 DX works this way.
216 * Xen pv domains are not using the default __KERNEL_CS.
218 if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
219 goto fail;
222 * The full exception fixup machinery is available as soon as
223 * the early IDT is loaded. This means that it is the
224 * responsibility of extable users to either function correctly
225 * when handlers are invoked early or to simply avoid causing
226 * exceptions before they're ready to handle them.
228 * This is better than filtering which handlers can be used,
229 * because refusing to call a handler here is guaranteed to
230 * result in a hard-to-debug panic.
232 * Keep in mind that not all vectors actually get here. Early
233 * fage faults, for example, are special.
235 if (fixup_exception(regs, trapnr))
236 return;
238 if (fixup_bug(regs, trapnr))
239 return;
241 fail:
242 early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
243 (unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
244 regs->orig_ax, read_cr2());
246 show_regs(regs);
248 halt_loop:
249 while (true)
250 halt();