1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/bootmem.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
20 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
21 #include <asm/traps.h> /* dotraplinkage, ... */
22 #include <asm/pgalloc.h> /* pgd_*(), ... */
23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
24 #include <asm/vsyscall.h> /* emulate_vsyscall */
25 #include <asm/vm86.h> /* struct vm86 */
26 #include <asm/mmu_context.h> /* vma_pkey() */
27 #include <asm/sections.h>
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/exceptions.h>
33 * Returns 0 if mmiotrace is disabled, or if the fault is not
34 * handled by mmiotrace:
36 static nokprobe_inline
int
37 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
39 if (unlikely(is_kmmio_active()))
40 if (kmmio_handler(regs
, addr
) == 1)
45 static nokprobe_inline
int kprobes_fault(struct pt_regs
*regs
)
49 /* kprobe_running() needs smp_processor_id() */
50 if (kprobes_built_in() && !user_mode(regs
)) {
52 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
65 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
66 * Check that here and ignore it.
70 * Sometimes the CPU reports invalid exceptions on prefetch.
71 * Check that here and ignore it.
73 * Opcode checker based on code by Richard Brunner.
76 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
77 unsigned char opcode
, int *prefetch
)
79 unsigned char instr_hi
= opcode
& 0xf0;
80 unsigned char instr_lo
= opcode
& 0x0f;
86 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
87 * In X86_64 long mode, the CPU will signal invalid
88 * opcode if some of these prefixes are present so
89 * X86_64 will never get here anyway
91 return ((instr_lo
& 7) == 0x6);
95 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
96 * Need to figure out under what instruction mode the
97 * instruction was issued. Could check the LDT for lm,
98 * but for now it's good enough to assume that long
99 * mode only uses well known segments or kernel.
101 return (!user_mode(regs
) || user_64bit_mode(regs
));
104 /* 0x64 thru 0x67 are valid prefixes in all modes. */
105 return (instr_lo
& 0xC) == 0x4;
107 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
108 return !instr_lo
|| (instr_lo
>>1) == 1;
110 /* Prefetch instruction is 0x0F0D or 0x0F18 */
111 if (probe_kernel_address(instr
, opcode
))
114 *prefetch
= (instr_lo
== 0xF) &&
115 (opcode
== 0x0D || opcode
== 0x18);
123 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
125 unsigned char *max_instr
;
126 unsigned char *instr
;
130 * If it was a exec (instruction fetch) fault on NX page, then
131 * do not ignore the fault:
133 if (error_code
& X86_PF_INSTR
)
136 instr
= (void *)convert_ip_to_linear(current
, regs
);
137 max_instr
= instr
+ 15;
139 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE_MAX
)
142 while (instr
< max_instr
) {
143 unsigned char opcode
;
145 if (probe_kernel_address(instr
, opcode
))
150 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
157 * A protection key fault means that the PKRU value did not allow
158 * access to some PTE. Userspace can figure out what PKRU was
159 * from the XSAVE state, and this function fills out a field in
160 * siginfo so userspace can discover which protection key was set
163 * If we get here, we know that the hardware signaled a X86_PF_PK
164 * fault and that there was a VMA once we got in the fault
165 * handler. It does *not* guarantee that the VMA we find here
166 * was the one that we faulted on.
168 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
169 * 2. T1 : set PKRU to deny access to pkey=4, touches page
171 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
172 * 5. T1 : enters fault handler, takes mmap_sem, etc...
173 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
174 * faulted on a pte with its pkey=4.
176 static void fill_sig_info_pkey(int si_signo
, int si_code
, siginfo_t
*info
,
179 /* This is effectively an #ifdef */
180 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
183 /* Fault not from Protection Keys: nothing to do */
184 if ((si_code
!= SEGV_PKUERR
) || (si_signo
!= SIGSEGV
))
187 * force_sig_info_fault() is called from a number of
188 * contexts, some of which have a VMA and some of which
189 * do not. The X86_PF_PK handing happens after we have a
190 * valid VMA, so we should never reach this without a
194 WARN_ONCE(1, "PKU fault with no VMA passed in");
199 * si_pkey should be thought of as a strong hint, but not
200 * absolutely guranteed to be 100% accurate because of
201 * the race explained above.
203 info
->si_pkey
= *pkey
;
207 force_sig_info_fault(int si_signo
, int si_code
, unsigned long address
,
208 struct task_struct
*tsk
, u32
*pkey
, int fault
)
213 info
.si_signo
= si_signo
;
215 info
.si_code
= si_code
;
216 info
.si_addr
= (void __user
*)address
;
217 if (fault
& VM_FAULT_HWPOISON_LARGE
)
218 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
219 if (fault
& VM_FAULT_HWPOISON
)
221 info
.si_addr_lsb
= lsb
;
223 fill_sig_info_pkey(si_signo
, si_code
, &info
, pkey
);
225 force_sig_info(si_signo
, &info
, tsk
);
228 DEFINE_SPINLOCK(pgd_lock
);
232 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
234 unsigned index
= pgd_index(address
);
241 pgd_k
= init_mm
.pgd
+ index
;
243 if (!pgd_present(*pgd_k
))
247 * set_pgd(pgd, *pgd_k); here would be useless on PAE
248 * and redundant with the set_pmd() on non-PAE. As would
251 p4d
= p4d_offset(pgd
, address
);
252 p4d_k
= p4d_offset(pgd_k
, address
);
253 if (!p4d_present(*p4d_k
))
256 pud
= pud_offset(p4d
, address
);
257 pud_k
= pud_offset(p4d_k
, address
);
258 if (!pud_present(*pud_k
))
261 pmd
= pmd_offset(pud
, address
);
262 pmd_k
= pmd_offset(pud_k
, address
);
263 if (!pmd_present(*pmd_k
))
266 if (!pmd_present(*pmd
))
267 set_pmd(pmd
, *pmd_k
);
269 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
274 void vmalloc_sync_all(void)
276 unsigned long address
;
278 if (SHARED_KERNEL_PMD
)
281 for (address
= VMALLOC_START
& PMD_MASK
;
282 address
>= TASK_SIZE_MAX
&& address
< FIXADDR_TOP
;
283 address
+= PMD_SIZE
) {
286 spin_lock(&pgd_lock
);
287 list_for_each_entry(page
, &pgd_list
, lru
) {
288 spinlock_t
*pgt_lock
;
291 /* the pgt_lock only for Xen */
292 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
295 ret
= vmalloc_sync_one(page_address(page
), address
);
296 spin_unlock(pgt_lock
);
301 spin_unlock(&pgd_lock
);
308 * Handle a fault on the vmalloc or module mapping area
310 static noinline
int vmalloc_fault(unsigned long address
)
312 unsigned long pgd_paddr
;
316 /* Make sure we are in vmalloc area: */
317 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
321 * Synchronize this task's top level page-table
322 * with the 'reference' page table.
324 * Do _not_ use "current" here. We might be inside
325 * an interrupt in the middle of a task switch..
327 pgd_paddr
= read_cr3_pa();
328 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
332 if (pmd_large(*pmd_k
))
335 pte_k
= pte_offset_kernel(pmd_k
, address
);
336 if (!pte_present(*pte_k
))
341 NOKPROBE_SYMBOL(vmalloc_fault
);
344 * Did it hit the DOS screen memory VA from vm86 mode?
347 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
348 struct task_struct
*tsk
)
353 if (!v8086_mode(regs
) || !tsk
->thread
.vm86
)
356 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
358 tsk
->thread
.vm86
->screen_bitmap
|= 1 << bit
;
362 static bool low_pfn(unsigned long pfn
)
364 return pfn
< max_low_pfn
;
367 static void dump_pagetable(unsigned long address
)
369 pgd_t
*base
= __va(read_cr3_pa());
370 pgd_t
*pgd
= &base
[pgd_index(address
)];
376 #ifdef CONFIG_X86_PAE
377 pr_info("*pdpt = %016Lx ", pgd_val(*pgd
));
378 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
380 #define pr_pde pr_cont
382 #define pr_pde pr_info
384 p4d
= p4d_offset(pgd
, address
);
385 pud
= pud_offset(p4d
, address
);
386 pmd
= pmd_offset(pud
, address
);
387 pr_pde("*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
391 * We must not directly access the pte in the highpte
392 * case if the page table is located in highmem.
393 * And let's rather not kmap-atomic the pte, just in case
394 * it's allocated already:
396 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
399 pte
= pte_offset_kernel(pmd
, address
);
400 pr_cont("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
405 #else /* CONFIG_X86_64: */
407 void vmalloc_sync_all(void)
409 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
);
415 * Handle a fault on the vmalloc area
417 static noinline
int vmalloc_fault(unsigned long address
)
419 pgd_t
*pgd
, *pgd_ref
;
420 p4d_t
*p4d
, *p4d_ref
;
421 pud_t
*pud
, *pud_ref
;
422 pmd_t
*pmd
, *pmd_ref
;
423 pte_t
*pte
, *pte_ref
;
425 /* Make sure we are in vmalloc area: */
426 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
429 WARN_ON_ONCE(in_nmi());
432 * Copy kernel mappings over when needed. This can also
433 * happen within a race in page table update. In the later
436 pgd
= (pgd_t
*)__va(read_cr3_pa()) + pgd_index(address
);
437 pgd_ref
= pgd_offset_k(address
);
438 if (pgd_none(*pgd_ref
))
441 if (pgd_none(*pgd
)) {
442 set_pgd(pgd
, *pgd_ref
);
443 arch_flush_lazy_mmu_mode();
444 } else if (CONFIG_PGTABLE_LEVELS
> 4) {
446 * With folded p4d, pgd_none() is always false, so the pgd may
447 * point to an empty page table entry and pgd_page_vaddr()
448 * will return garbage.
450 * We will do the correct sanity check on the p4d level.
452 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
455 /* With 4-level paging, copying happens on the p4d level. */
456 p4d
= p4d_offset(pgd
, address
);
457 p4d_ref
= p4d_offset(pgd_ref
, address
);
458 if (p4d_none(*p4d_ref
))
461 if (p4d_none(*p4d
)) {
462 set_p4d(p4d
, *p4d_ref
);
463 arch_flush_lazy_mmu_mode();
465 BUG_ON(p4d_pfn(*p4d
) != p4d_pfn(*p4d_ref
));
469 * Below here mismatches are bugs because these lower tables
473 pud
= pud_offset(p4d
, address
);
474 pud_ref
= pud_offset(p4d_ref
, address
);
475 if (pud_none(*pud_ref
))
478 if (pud_none(*pud
) || pud_pfn(*pud
) != pud_pfn(*pud_ref
))
484 pmd
= pmd_offset(pud
, address
);
485 pmd_ref
= pmd_offset(pud_ref
, address
);
486 if (pmd_none(*pmd_ref
))
489 if (pmd_none(*pmd
) || pmd_pfn(*pmd
) != pmd_pfn(*pmd_ref
))
495 pte_ref
= pte_offset_kernel(pmd_ref
, address
);
496 if (!pte_present(*pte_ref
))
499 pte
= pte_offset_kernel(pmd
, address
);
502 * Don't use pte_page here, because the mappings can point
503 * outside mem_map, and the NUMA hash lookup cannot handle
506 if (!pte_present(*pte
) || pte_pfn(*pte
) != pte_pfn(*pte_ref
))
511 NOKPROBE_SYMBOL(vmalloc_fault
);
513 #ifdef CONFIG_CPU_SUP_AMD
514 static const char errata93_warning
[] =
516 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
517 "******* Working around it, but it may cause SEGVs or burn power.\n"
518 "******* Please consider a BIOS update.\n"
519 "******* Disabling USB legacy in the BIOS may also help.\n";
523 * No vm86 mode in 64-bit mode:
526 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
527 struct task_struct
*tsk
)
531 static int bad_address(void *p
)
535 return probe_kernel_address((unsigned long *)p
, dummy
);
538 static void dump_pagetable(unsigned long address
)
540 pgd_t
*base
= __va(read_cr3_pa());
541 pgd_t
*pgd
= base
+ pgd_index(address
);
547 if (bad_address(pgd
))
550 pr_info("PGD %lx ", pgd_val(*pgd
));
552 if (!pgd_present(*pgd
))
555 p4d
= p4d_offset(pgd
, address
);
556 if (bad_address(p4d
))
559 pr_cont("P4D %lx ", p4d_val(*p4d
));
560 if (!p4d_present(*p4d
) || p4d_large(*p4d
))
563 pud
= pud_offset(p4d
, address
);
564 if (bad_address(pud
))
567 pr_cont("PUD %lx ", pud_val(*pud
));
568 if (!pud_present(*pud
) || pud_large(*pud
))
571 pmd
= pmd_offset(pud
, address
);
572 if (bad_address(pmd
))
575 pr_cont("PMD %lx ", pmd_val(*pmd
));
576 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
579 pte
= pte_offset_kernel(pmd
, address
);
580 if (bad_address(pte
))
583 pr_cont("PTE %lx", pte_val(*pte
));
591 #endif /* CONFIG_X86_64 */
594 * Workaround for K8 erratum #93 & buggy BIOS.
596 * BIOS SMM functions are required to use a specific workaround
597 * to avoid corruption of the 64bit RIP register on C stepping K8.
599 * A lot of BIOS that didn't get tested properly miss this.
601 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
602 * Try to work around it here.
604 * Note we only handle faults in kernel here.
605 * Does nothing on 32-bit.
607 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
609 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
610 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
611 || boot_cpu_data
.x86
!= 0xf)
614 if (address
!= regs
->ip
)
617 if ((address
>> 32) != 0)
620 address
|= 0xffffffffUL
<< 32;
621 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
622 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
623 printk_once(errata93_warning
);
632 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
633 * to illegal addresses >4GB.
635 * We catch this in the page fault handler because these addresses
636 * are not reachable. Just detect this case and return. Any code
637 * segment in LDT is compatibility mode.
639 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
642 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
648 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
650 #ifdef CONFIG_X86_F00F_BUG
654 * Pentium F0 0F C7 C8 bug workaround:
656 if (boot_cpu_has_bug(X86_BUG_F00F
)) {
657 nr
= (address
- idt_descr
.address
) >> 3;
660 do_invalid_op(regs
, 0);
668 static const char nx_warning
[] = KERN_CRIT
669 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
670 static const char smep_warning
[] = KERN_CRIT
671 "unable to execute userspace code (SMEP?) (uid: %d)\n";
674 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
675 unsigned long address
)
677 if (!oops_may_print())
680 if (error_code
& X86_PF_INSTR
) {
685 pgd
= __va(read_cr3_pa());
686 pgd
+= pgd_index(address
);
688 pte
= lookup_address_in_pgd(pgd
, address
, &level
);
690 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
691 printk(nx_warning
, from_kuid(&init_user_ns
, current_uid()));
692 if (pte
&& pte_present(*pte
) && pte_exec(*pte
) &&
693 (pgd_flags(*pgd
) & _PAGE_USER
) &&
694 (__read_cr4() & X86_CR4_SMEP
))
695 printk(smep_warning
, from_kuid(&init_user_ns
, current_uid()));
698 printk(KERN_ALERT
"BUG: unable to handle kernel ");
699 if (address
< PAGE_SIZE
)
700 printk(KERN_CONT
"NULL pointer dereference");
702 printk(KERN_CONT
"paging request");
704 printk(KERN_CONT
" at %p\n", (void *) address
);
705 printk(KERN_ALERT
"IP: %pS\n", (void *)regs
->ip
);
707 dump_pagetable(address
);
711 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
712 unsigned long address
)
714 struct task_struct
*tsk
;
718 flags
= oops_begin();
722 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
724 dump_pagetable(address
);
726 tsk
->thread
.cr2
= address
;
727 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
728 tsk
->thread
.error_code
= error_code
;
730 if (__die("Bad pagetable", regs
, error_code
))
733 oops_end(flags
, regs
, sig
);
737 no_context(struct pt_regs
*regs
, unsigned long error_code
,
738 unsigned long address
, int signal
, int si_code
)
740 struct task_struct
*tsk
= current
;
744 /* Are we prepared to handle this kernel fault? */
745 if (fixup_exception(regs
, X86_TRAP_PF
)) {
747 * Any interrupt that takes a fault gets the fixup. This makes
748 * the below recursive fault logic only apply to a faults from
755 * Per the above we're !in_interrupt(), aka. task context.
757 * In this case we need to make sure we're not recursively
758 * faulting through the emulate_vsyscall() logic.
760 if (current
->thread
.sig_on_uaccess_err
&& signal
) {
761 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
762 tsk
->thread
.error_code
= error_code
| X86_PF_USER
;
763 tsk
->thread
.cr2
= address
;
765 /* XXX: hwpoison faults will set the wrong code. */
766 force_sig_info_fault(signal
, si_code
, address
,
771 * Barring that, we can do the fixup and be happy.
776 #ifdef CONFIG_VMAP_STACK
778 * Stack overflow? During boot, we can fault near the initial
779 * stack in the direct map, but that's not an overflow -- check
780 * that we're in vmalloc space to avoid this.
782 if (is_vmalloc_addr((void *)address
) &&
783 (((unsigned long)tsk
->stack
- 1 - address
< PAGE_SIZE
) ||
784 address
- ((unsigned long)tsk
->stack
+ THREAD_SIZE
) < PAGE_SIZE
)) {
785 unsigned long stack
= this_cpu_read(orig_ist
.ist
[DOUBLEFAULT_STACK
]) - sizeof(void *);
787 * We're likely to be running with very little stack space
788 * left. It's plausible that we'd hit this condition but
789 * double-fault even before we get this far, in which case
790 * we're fine: the double-fault handler will deal with it.
792 * We don't want to make it all the way into the oops code
793 * and then double-fault, though, because we're likely to
794 * break the console driver and lose most of the stack dump.
796 asm volatile ("movq %[stack], %%rsp\n\t"
797 "call handle_stack_overflow\n\t"
799 : ASM_CALL_CONSTRAINT
800 : "D" ("kernel stack overflow (page fault)"),
801 "S" (regs
), "d" (address
),
802 [stack
] "rm" (stack
));
810 * Valid to do another page fault here, because if this fault
811 * had been triggered by is_prefetch fixup_exception would have
816 * Hall of shame of CPU/BIOS bugs.
818 if (is_prefetch(regs
, error_code
, address
))
821 if (is_errata93(regs
, address
))
825 * Oops. The kernel tried to access some bad page. We'll have to
826 * terminate things with extreme prejudice:
828 flags
= oops_begin();
830 show_fault_oops(regs
, error_code
, address
);
832 if (task_stack_end_corrupted(tsk
))
833 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
835 tsk
->thread
.cr2
= address
;
836 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
837 tsk
->thread
.error_code
= error_code
;
840 if (__die("Oops", regs
, error_code
))
843 /* Executive summary in case the body of the oops scrolled away */
844 printk(KERN_DEFAULT
"CR2: %016lx\n", address
);
846 oops_end(flags
, regs
, sig
);
850 * Print out info about fatal segfaults, if the show_unhandled_signals
854 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
855 unsigned long address
, struct task_struct
*tsk
)
857 if (!unhandled_signal(tsk
, SIGSEGV
))
860 if (!printk_ratelimit())
863 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
864 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
865 tsk
->comm
, task_pid_nr(tsk
), address
,
866 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
868 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
870 printk(KERN_CONT
"\n");
874 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
875 unsigned long address
, u32
*pkey
, int si_code
)
877 struct task_struct
*tsk
= current
;
879 /* User mode accesses just cause a SIGSEGV */
880 if (error_code
& X86_PF_USER
) {
882 * It's possible to have interrupts off here:
887 * Valid to do another page fault here because this one came
890 if (is_prefetch(regs
, error_code
, address
))
893 if (is_errata100(regs
, address
))
898 * Instruction fetch faults in the vsyscall page might need
901 if (unlikely((error_code
& X86_PF_INSTR
) &&
902 ((address
& ~0xfff) == VSYSCALL_ADDR
))) {
903 if (emulate_vsyscall(regs
, address
))
909 * To avoid leaking information about the kernel page table
910 * layout, pretend that user-mode accesses to kernel addresses
911 * are always protection faults.
913 if (address
>= TASK_SIZE_MAX
)
914 error_code
|= X86_PF_PROT
;
916 if (likely(show_unhandled_signals
))
917 show_signal_msg(regs
, error_code
, address
, tsk
);
919 tsk
->thread
.cr2
= address
;
920 tsk
->thread
.error_code
= error_code
;
921 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
923 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
, pkey
, 0);
928 if (is_f00f_bug(regs
, address
))
931 no_context(regs
, error_code
, address
, SIGSEGV
, si_code
);
935 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
936 unsigned long address
, u32
*pkey
)
938 __bad_area_nosemaphore(regs
, error_code
, address
, pkey
, SEGV_MAPERR
);
942 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
943 unsigned long address
, struct vm_area_struct
*vma
, int si_code
)
945 struct mm_struct
*mm
= current
->mm
;
949 pkey
= vma_pkey(vma
);
952 * Something tried to access memory that isn't in our memory map..
953 * Fix it, but check if it's kernel or user first..
955 up_read(&mm
->mmap_sem
);
957 __bad_area_nosemaphore(regs
, error_code
, address
,
958 (vma
) ? &pkey
: NULL
, si_code
);
962 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
964 __bad_area(regs
, error_code
, address
, NULL
, SEGV_MAPERR
);
967 static inline bool bad_area_access_from_pkeys(unsigned long error_code
,
968 struct vm_area_struct
*vma
)
970 /* This code is always called on the current mm */
971 bool foreign
= false;
973 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
975 if (error_code
& X86_PF_PK
)
977 /* this checks permission keys on the VMA: */
978 if (!arch_vma_access_permitted(vma
, (error_code
& X86_PF_WRITE
),
979 (error_code
& X86_PF_INSTR
), foreign
))
985 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
986 unsigned long address
, struct vm_area_struct
*vma
)
989 * This OSPKE check is not strictly necessary at runtime.
990 * But, doing it this way allows compiler optimizations
991 * if pkeys are compiled out.
993 if (bad_area_access_from_pkeys(error_code
, vma
))
994 __bad_area(regs
, error_code
, address
, vma
, SEGV_PKUERR
);
996 __bad_area(regs
, error_code
, address
, vma
, SEGV_ACCERR
);
1000 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
1001 u32
*pkey
, unsigned int fault
)
1003 struct task_struct
*tsk
= current
;
1004 int code
= BUS_ADRERR
;
1006 /* Kernel mode? Handle exceptions or die: */
1007 if (!(error_code
& X86_PF_USER
)) {
1008 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
1012 /* User-space => ok to do another page fault: */
1013 if (is_prefetch(regs
, error_code
, address
))
1016 tsk
->thread
.cr2
= address
;
1017 tsk
->thread
.error_code
= error_code
;
1018 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
1020 #ifdef CONFIG_MEMORY_FAILURE
1021 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
1023 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1024 tsk
->comm
, tsk
->pid
, address
);
1025 code
= BUS_MCEERR_AR
;
1028 force_sig_info_fault(SIGBUS
, code
, address
, tsk
, pkey
, fault
);
1031 static noinline
void
1032 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
1033 unsigned long address
, u32
*pkey
, unsigned int fault
)
1035 if (fatal_signal_pending(current
) && !(error_code
& X86_PF_USER
)) {
1036 no_context(regs
, error_code
, address
, 0, 0);
1040 if (fault
& VM_FAULT_OOM
) {
1041 /* Kernel mode? Handle exceptions or die: */
1042 if (!(error_code
& X86_PF_USER
)) {
1043 no_context(regs
, error_code
, address
,
1044 SIGSEGV
, SEGV_MAPERR
);
1049 * We ran out of memory, call the OOM killer, and return the
1050 * userspace (which will retry the fault, or kill us if we got
1053 pagefault_out_of_memory();
1055 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
1056 VM_FAULT_HWPOISON_LARGE
))
1057 do_sigbus(regs
, error_code
, address
, pkey
, fault
);
1058 else if (fault
& VM_FAULT_SIGSEGV
)
1059 bad_area_nosemaphore(regs
, error_code
, address
, pkey
);
1065 static int spurious_fault_check(unsigned long error_code
, pte_t
*pte
)
1067 if ((error_code
& X86_PF_WRITE
) && !pte_write(*pte
))
1070 if ((error_code
& X86_PF_INSTR
) && !pte_exec(*pte
))
1073 * Note: We do not do lazy flushing on protection key
1074 * changes, so no spurious fault will ever set X86_PF_PK.
1076 if ((error_code
& X86_PF_PK
))
1083 * Handle a spurious fault caused by a stale TLB entry.
1085 * This allows us to lazily refresh the TLB when increasing the
1086 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1087 * eagerly is very expensive since that implies doing a full
1088 * cross-processor TLB flush, even if no stale TLB entries exist
1089 * on other processors.
1091 * Spurious faults may only occur if the TLB contains an entry with
1092 * fewer permission than the page table entry. Non-present (P = 0)
1093 * and reserved bit (R = 1) faults are never spurious.
1095 * There are no security implications to leaving a stale TLB when
1096 * increasing the permissions on a page.
1098 * Returns non-zero if a spurious fault was handled, zero otherwise.
1100 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1101 * (Optional Invalidation).
1104 spurious_fault(unsigned long error_code
, unsigned long address
)
1114 * Only writes to RO or instruction fetches from NX may cause
1117 * These could be from user or supervisor accesses but the TLB
1118 * is only lazily flushed after a kernel mapping protection
1119 * change, so user accesses are not expected to cause spurious
1122 if (error_code
!= (X86_PF_WRITE
| X86_PF_PROT
) &&
1123 error_code
!= (X86_PF_INSTR
| X86_PF_PROT
))
1126 pgd
= init_mm
.pgd
+ pgd_index(address
);
1127 if (!pgd_present(*pgd
))
1130 p4d
= p4d_offset(pgd
, address
);
1131 if (!p4d_present(*p4d
))
1134 if (p4d_large(*p4d
))
1135 return spurious_fault_check(error_code
, (pte_t
*) p4d
);
1137 pud
= pud_offset(p4d
, address
);
1138 if (!pud_present(*pud
))
1141 if (pud_large(*pud
))
1142 return spurious_fault_check(error_code
, (pte_t
*) pud
);
1144 pmd
= pmd_offset(pud
, address
);
1145 if (!pmd_present(*pmd
))
1148 if (pmd_large(*pmd
))
1149 return spurious_fault_check(error_code
, (pte_t
*) pmd
);
1151 pte
= pte_offset_kernel(pmd
, address
);
1152 if (!pte_present(*pte
))
1155 ret
= spurious_fault_check(error_code
, pte
);
1160 * Make sure we have permissions in PMD.
1161 * If not, then there's a bug in the page tables:
1163 ret
= spurious_fault_check(error_code
, (pte_t
*) pmd
);
1164 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
1168 NOKPROBE_SYMBOL(spurious_fault
);
1170 int show_unhandled_signals
= 1;
1173 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
1175 /* This is only called for the current mm, so: */
1176 bool foreign
= false;
1179 * Read or write was blocked by protection keys. This is
1180 * always an unconditional error and can never result in
1181 * a follow-up action to resolve the fault, like a COW.
1183 if (error_code
& X86_PF_PK
)
1187 * Make sure to check the VMA so that we do not perform
1188 * faults just to hit a X86_PF_PK as soon as we fill in a
1191 if (!arch_vma_access_permitted(vma
, (error_code
& X86_PF_WRITE
),
1192 (error_code
& X86_PF_INSTR
), foreign
))
1195 if (error_code
& X86_PF_WRITE
) {
1196 /* write, present and write, not present: */
1197 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
1202 /* read, present: */
1203 if (unlikely(error_code
& X86_PF_PROT
))
1206 /* read, not present: */
1207 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
1213 static int fault_in_kernel_space(unsigned long address
)
1215 return address
>= TASK_SIZE_MAX
;
1218 static inline bool smap_violation(int error_code
, struct pt_regs
*regs
)
1220 if (!IS_ENABLED(CONFIG_X86_SMAP
))
1223 if (!static_cpu_has(X86_FEATURE_SMAP
))
1226 if (error_code
& X86_PF_USER
)
1229 if (!user_mode(regs
) && (regs
->flags
& X86_EFLAGS_AC
))
1236 * This routine handles page faults. It determines the address,
1237 * and the problem, and then passes it off to one of the appropriate
1240 static noinline
void
1241 __do_page_fault(struct pt_regs
*regs
, unsigned long error_code
,
1242 unsigned long address
)
1244 struct vm_area_struct
*vma
;
1245 struct task_struct
*tsk
;
1246 struct mm_struct
*mm
;
1247 int fault
, major
= 0;
1248 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1254 prefetchw(&mm
->mmap_sem
);
1256 if (unlikely(kmmio_fault(regs
, address
)))
1260 * We fault-in kernel-space virtual memory on-demand. The
1261 * 'reference' page table is init_mm.pgd.
1263 * NOTE! We MUST NOT take any locks for this case. We may
1264 * be in an interrupt or a critical region, and should
1265 * only copy the information from the master page table,
1268 * This verifies that the fault happens in kernel space
1269 * (error_code & 4) == 0, and that the fault was not a
1270 * protection error (error_code & 9) == 0.
1272 if (unlikely(fault_in_kernel_space(address
))) {
1273 if (!(error_code
& (X86_PF_RSVD
| X86_PF_USER
| X86_PF_PROT
))) {
1274 if (vmalloc_fault(address
) >= 0)
1278 /* Can handle a stale RO->RW TLB: */
1279 if (spurious_fault(error_code
, address
))
1282 /* kprobes don't want to hook the spurious faults: */
1283 if (kprobes_fault(regs
))
1286 * Don't take the mm semaphore here. If we fixup a prefetch
1287 * fault we could otherwise deadlock:
1289 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1294 /* kprobes don't want to hook the spurious faults: */
1295 if (unlikely(kprobes_fault(regs
)))
1298 if (unlikely(error_code
& X86_PF_RSVD
))
1299 pgtable_bad(regs
, error_code
, address
);
1301 if (unlikely(smap_violation(error_code
, regs
))) {
1302 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1307 * If we're in an interrupt, have no user context or are running
1308 * in a region with pagefaults disabled then we must not take the fault
1310 if (unlikely(faulthandler_disabled() || !mm
)) {
1311 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1316 * It's safe to allow irq's after cr2 has been saved and the
1317 * vmalloc fault has been handled.
1319 * User-mode registers count as a user access even for any
1320 * potential system fault or CPU buglet:
1322 if (user_mode(regs
)) {
1324 error_code
|= X86_PF_USER
;
1325 flags
|= FAULT_FLAG_USER
;
1327 if (regs
->flags
& X86_EFLAGS_IF
)
1331 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
1333 if (error_code
& X86_PF_WRITE
)
1334 flags
|= FAULT_FLAG_WRITE
;
1335 if (error_code
& X86_PF_INSTR
)
1336 flags
|= FAULT_FLAG_INSTRUCTION
;
1339 * When running in the kernel we expect faults to occur only to
1340 * addresses in user space. All other faults represent errors in
1341 * the kernel and should generate an OOPS. Unfortunately, in the
1342 * case of an erroneous fault occurring in a code path which already
1343 * holds mmap_sem we will deadlock attempting to validate the fault
1344 * against the address space. Luckily the kernel only validly
1345 * references user space from well defined areas of code, which are
1346 * listed in the exceptions table.
1348 * As the vast majority of faults will be valid we will only perform
1349 * the source reference check when there is a possibility of a
1350 * deadlock. Attempt to lock the address space, if we cannot we then
1351 * validate the source. If this is invalid we can skip the address
1352 * space check, thus avoiding the deadlock:
1354 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1355 if (!(error_code
& X86_PF_USER
) &&
1356 !search_exception_tables(regs
->ip
)) {
1357 bad_area_nosemaphore(regs
, error_code
, address
, NULL
);
1361 down_read(&mm
->mmap_sem
);
1364 * The above down_read_trylock() might have succeeded in
1365 * which case we'll have missed the might_sleep() from
1371 vma
= find_vma(mm
, address
);
1372 if (unlikely(!vma
)) {
1373 bad_area(regs
, error_code
, address
);
1376 if (likely(vma
->vm_start
<= address
))
1378 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1379 bad_area(regs
, error_code
, address
);
1382 if (error_code
& X86_PF_USER
) {
1384 * Accessing the stack below %sp is always a bug.
1385 * The large cushion allows instructions like enter
1386 * and pusha to work. ("enter $65535, $31" pushes
1387 * 32 pointers and then decrements %sp by 65535.)
1389 if (unlikely(address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)) {
1390 bad_area(regs
, error_code
, address
);
1394 if (unlikely(expand_stack(vma
, address
))) {
1395 bad_area(regs
, error_code
, address
);
1400 * Ok, we have a good vm_area for this memory access, so
1401 * we can handle it..
1404 if (unlikely(access_error(error_code
, vma
))) {
1405 bad_area_access_error(regs
, error_code
, address
, vma
);
1410 * If for any reason at all we couldn't handle the fault,
1411 * make sure we exit gracefully rather than endlessly redo
1412 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1413 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1415 * Note that handle_userfault() may also release and reacquire mmap_sem
1416 * (and not return with VM_FAULT_RETRY), when returning to userland to
1417 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1418 * (potentially after handling any pending signal during the return to
1419 * userland). The return to userland is identified whenever
1420 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1421 * Thus we have to be careful about not touching vma after handling the
1422 * fault, so we read the pkey beforehand.
1424 pkey
= vma_pkey(vma
);
1425 fault
= handle_mm_fault(vma
, address
, flags
);
1426 major
|= fault
& VM_FAULT_MAJOR
;
1429 * If we need to retry the mmap_sem has already been released,
1430 * and if there is a fatal signal pending there is no guarantee
1431 * that we made any progress. Handle this case first.
1433 if (unlikely(fault
& VM_FAULT_RETRY
)) {
1434 /* Retry at most once */
1435 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1436 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1437 flags
|= FAULT_FLAG_TRIED
;
1438 if (!fatal_signal_pending(tsk
))
1442 /* User mode? Just return to handle the fatal exception */
1443 if (flags
& FAULT_FLAG_USER
)
1446 /* Not returning to user mode? Handle exceptions or die: */
1447 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
1451 up_read(&mm
->mmap_sem
);
1452 if (unlikely(fault
& VM_FAULT_ERROR
)) {
1453 mm_fault_error(regs
, error_code
, address
, &pkey
, fault
);
1458 * Major/minor page fault accounting. If any of the events
1459 * returned VM_FAULT_MAJOR, we account it as a major fault.
1463 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
1466 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
1469 check_v8086_mode(regs
, address
, tsk
);
1471 NOKPROBE_SYMBOL(__do_page_fault
);
1473 static nokprobe_inline
void
1474 trace_page_fault_entries(unsigned long address
, struct pt_regs
*regs
,
1475 unsigned long error_code
)
1477 if (user_mode(regs
))
1478 trace_page_fault_user(address
, regs
, error_code
);
1480 trace_page_fault_kernel(address
, regs
, error_code
);
1484 * We must have this function blacklisted from kprobes, tagged with notrace
1485 * and call read_cr2() before calling anything else. To avoid calling any
1486 * kind of tracing machinery before we've observed the CR2 value.
1488 * exception_{enter,exit}() contains all sorts of tracepoints.
1490 dotraplinkage
void notrace
1491 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
1493 unsigned long address
= read_cr2(); /* Get the faulting address */
1494 enum ctx_state prev_state
;
1496 prev_state
= exception_enter();
1497 if (trace_pagefault_enabled())
1498 trace_page_fault_entries(address
, regs
, error_code
);
1500 __do_page_fault(regs
, error_code
, address
);
1501 exception_exit(prev_state
);
1503 NOKPROBE_SYMBOL(do_page_fault
);