x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / arch / x86 / mm / hugetlbpage.c
blob8ae0000cbdb34d8c6db0efacc566fb3a5b78d2d3
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * IA-32 Huge TLB Page Support for Kernel.
5 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
6 */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/hugetlb.h>
13 #include <linux/pagemap.h>
14 #include <linux/err.h>
15 #include <linux/sysctl.h>
16 #include <linux/compat.h>
17 #include <asm/mman.h>
18 #include <asm/tlb.h>
19 #include <asm/tlbflush.h>
20 #include <asm/pgalloc.h>
21 #include <asm/elf.h>
22 #include <asm/mpx.h>
24 #if 0 /* This is just for testing */
25 struct page *
26 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
28 unsigned long start = address;
29 int length = 1;
30 int nr;
31 struct page *page;
32 struct vm_area_struct *vma;
34 vma = find_vma(mm, addr);
35 if (!vma || !is_vm_hugetlb_page(vma))
36 return ERR_PTR(-EINVAL);
38 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
40 /* hugetlb should be locked, and hence, prefaulted */
41 WARN_ON(!pte || pte_none(*pte));
43 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
45 WARN_ON(!PageHead(page));
47 return page;
50 int pmd_huge(pmd_t pmd)
52 return 0;
55 int pud_huge(pud_t pud)
57 return 0;
60 #else
63 * pmd_huge() returns 1 if @pmd is hugetlb related entry, that is normal
64 * hugetlb entry or non-present (migration or hwpoisoned) hugetlb entry.
65 * Otherwise, returns 0.
67 int pmd_huge(pmd_t pmd)
69 return !pmd_none(pmd) &&
70 (pmd_val(pmd) & (_PAGE_PRESENT|_PAGE_PSE)) != _PAGE_PRESENT;
73 int pud_huge(pud_t pud)
75 return !!(pud_val(pud) & _PAGE_PSE);
77 #endif
79 #ifdef CONFIG_HUGETLB_PAGE
80 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
81 unsigned long addr, unsigned long len,
82 unsigned long pgoff, unsigned long flags)
84 struct hstate *h = hstate_file(file);
85 struct vm_unmapped_area_info info;
87 info.flags = 0;
88 info.length = len;
89 info.low_limit = get_mmap_base(1);
92 * If hint address is above DEFAULT_MAP_WINDOW, look for unmapped area
93 * in the full address space.
95 info.high_limit = in_compat_syscall() ?
96 task_size_32bit() : task_size_64bit(addr > DEFAULT_MAP_WINDOW);
98 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
99 info.align_offset = 0;
100 return vm_unmapped_area(&info);
103 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
104 unsigned long addr, unsigned long len,
105 unsigned long pgoff, unsigned long flags)
107 struct hstate *h = hstate_file(file);
108 struct vm_unmapped_area_info info;
110 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
111 info.length = len;
112 info.low_limit = PAGE_SIZE;
113 info.high_limit = get_mmap_base(0);
116 * If hint address is above DEFAULT_MAP_WINDOW, look for unmapped area
117 * in the full address space.
119 if (addr > DEFAULT_MAP_WINDOW && !in_compat_syscall())
120 info.high_limit += TASK_SIZE_MAX - DEFAULT_MAP_WINDOW;
122 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
123 info.align_offset = 0;
124 addr = vm_unmapped_area(&info);
127 * A failed mmap() very likely causes application failure,
128 * so fall back to the bottom-up function here. This scenario
129 * can happen with large stack limits and large mmap()
130 * allocations.
132 if (addr & ~PAGE_MASK) {
133 VM_BUG_ON(addr != -ENOMEM);
134 info.flags = 0;
135 info.low_limit = TASK_UNMAPPED_BASE;
136 info.high_limit = TASK_SIZE_LOW;
137 addr = vm_unmapped_area(&info);
140 return addr;
143 unsigned long
144 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
145 unsigned long len, unsigned long pgoff, unsigned long flags)
147 struct hstate *h = hstate_file(file);
148 struct mm_struct *mm = current->mm;
149 struct vm_area_struct *vma;
151 if (len & ~huge_page_mask(h))
152 return -EINVAL;
154 addr = mpx_unmapped_area_check(addr, len, flags);
155 if (IS_ERR_VALUE(addr))
156 return addr;
158 if (len > TASK_SIZE)
159 return -ENOMEM;
161 if (flags & MAP_FIXED) {
162 if (prepare_hugepage_range(file, addr, len))
163 return -EINVAL;
164 return addr;
167 if (addr) {
168 addr = ALIGN(addr, huge_page_size(h));
169 vma = find_vma(mm, addr);
170 if (TASK_SIZE - len >= addr &&
171 (!vma || addr + len <= vm_start_gap(vma)))
172 return addr;
174 if (mm->get_unmapped_area == arch_get_unmapped_area)
175 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
176 pgoff, flags);
177 else
178 return hugetlb_get_unmapped_area_topdown(file, addr, len,
179 pgoff, flags);
181 #endif /* CONFIG_HUGETLB_PAGE */
183 #ifdef CONFIG_X86_64
184 static __init int setup_hugepagesz(char *opt)
186 unsigned long ps = memparse(opt, &opt);
187 if (ps == PMD_SIZE) {
188 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
189 } else if (ps == PUD_SIZE && boot_cpu_has(X86_FEATURE_GBPAGES)) {
190 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
191 } else {
192 hugetlb_bad_size();
193 printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
194 ps >> 20);
195 return 0;
197 return 1;
199 __setup("hugepagesz=", setup_hugepagesz);
201 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
202 static __init int gigantic_pages_init(void)
204 /* With compaction or CMA we can allocate gigantic pages at runtime */
205 if (boot_cpu_has(X86_FEATURE_GBPAGES) && !size_to_hstate(1UL << PUD_SHIFT))
206 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
207 return 0;
209 arch_initcall(gigantic_pages_init);
210 #endif
211 #endif