x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / arch / x86 / platform / efi / efi_64.c
blobae369c2bbc3ebbf508e7c64bd32a8a9e77950848
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * x86_64 specific EFI support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
6 * Copyright (C) 2005-2008 Intel Co.
7 * Fenghua Yu <fenghua.yu@intel.com>
8 * Bibo Mao <bibo.mao@intel.com>
9 * Chandramouli Narayanan <mouli@linux.intel.com>
10 * Huang Ying <ying.huang@intel.com>
12 * Code to convert EFI to E820 map has been implemented in elilo bootloader
13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14 * is setup appropriately for EFI runtime code.
15 * - mouli 06/14/2007.
19 #define pr_fmt(fmt) "efi: " fmt
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/bootmem.h>
27 #include <linux/ioport.h>
28 #include <linux/init.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/efi.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
37 #include <asm/setup.h>
38 #include <asm/page.h>
39 #include <asm/e820/api.h>
40 #include <asm/pgtable.h>
41 #include <asm/tlbflush.h>
42 #include <asm/proto.h>
43 #include <asm/efi.h>
44 #include <asm/cacheflush.h>
45 #include <asm/fixmap.h>
46 #include <asm/realmode.h>
47 #include <asm/time.h>
48 #include <asm/pgalloc.h>
51 * We allocate runtime services regions top-down, starting from -4G, i.e.
52 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
54 static u64 efi_va = EFI_VA_START;
56 struct efi_scratch efi_scratch;
58 static void __init early_code_mapping_set_exec(int executable)
60 efi_memory_desc_t *md;
62 if (!(__supported_pte_mask & _PAGE_NX))
63 return;
65 /* Make EFI service code area executable */
66 for_each_efi_memory_desc(md) {
67 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
68 md->type == EFI_BOOT_SERVICES_CODE)
69 efi_set_executable(md, executable);
73 pgd_t * __init efi_call_phys_prolog(void)
75 unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
76 pgd_t *save_pgd, *pgd_k, *pgd_efi;
77 p4d_t *p4d, *p4d_k, *p4d_efi;
78 pud_t *pud;
80 int pgd;
81 int n_pgds, i, j;
83 if (!efi_enabled(EFI_OLD_MEMMAP)) {
84 save_pgd = (pgd_t *)__read_cr3();
85 write_cr3((unsigned long)efi_scratch.efi_pgt);
86 goto out;
89 early_code_mapping_set_exec(1);
91 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
92 save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
95 * Build 1:1 identity mapping for efi=old_map usage. Note that
96 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
97 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
98 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
99 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
100 * This means here we can only reuse the PMD tables of the direct mapping.
102 for (pgd = 0; pgd < n_pgds; pgd++) {
103 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
104 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
105 pgd_efi = pgd_offset_k(addr_pgd);
106 save_pgd[pgd] = *pgd_efi;
108 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
109 if (!p4d) {
110 pr_err("Failed to allocate p4d table!\n");
111 goto out;
114 for (i = 0; i < PTRS_PER_P4D; i++) {
115 addr_p4d = addr_pgd + i * P4D_SIZE;
116 p4d_efi = p4d + p4d_index(addr_p4d);
118 pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
119 if (!pud) {
120 pr_err("Failed to allocate pud table!\n");
121 goto out;
124 for (j = 0; j < PTRS_PER_PUD; j++) {
125 addr_pud = addr_p4d + j * PUD_SIZE;
127 if (addr_pud > (max_pfn << PAGE_SHIFT))
128 break;
130 vaddr = (unsigned long)__va(addr_pud);
132 pgd_k = pgd_offset_k(vaddr);
133 p4d_k = p4d_offset(pgd_k, vaddr);
134 pud[j] = *pud_offset(p4d_k, vaddr);
137 pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX;
140 out:
141 __flush_tlb_all();
143 return save_pgd;
146 void __init efi_call_phys_epilog(pgd_t *save_pgd)
149 * After the lock is released, the original page table is restored.
151 int pgd_idx, i;
152 int nr_pgds;
153 pgd_t *pgd;
154 p4d_t *p4d;
155 pud_t *pud;
157 if (!efi_enabled(EFI_OLD_MEMMAP)) {
158 write_cr3((unsigned long)save_pgd);
159 __flush_tlb_all();
160 return;
163 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
165 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
166 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
167 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
169 if (!pgd_present(*pgd))
170 continue;
172 for (i = 0; i < PTRS_PER_P4D; i++) {
173 p4d = p4d_offset(pgd,
174 pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
176 if (!p4d_present(*p4d))
177 continue;
179 pud = (pud_t *)p4d_page_vaddr(*p4d);
180 pud_free(&init_mm, pud);
183 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
184 p4d_free(&init_mm, p4d);
187 kfree(save_pgd);
189 __flush_tlb_all();
190 early_code_mapping_set_exec(0);
193 static pgd_t *efi_pgd;
196 * We need our own copy of the higher levels of the page tables
197 * because we want to avoid inserting EFI region mappings (EFI_VA_END
198 * to EFI_VA_START) into the standard kernel page tables. Everything
199 * else can be shared, see efi_sync_low_kernel_mappings().
201 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
202 * allocation.
204 int __init efi_alloc_page_tables(void)
206 pgd_t *pgd;
207 p4d_t *p4d;
208 pud_t *pud;
209 gfp_t gfp_mask;
211 if (efi_enabled(EFI_OLD_MEMMAP))
212 return 0;
214 gfp_mask = GFP_KERNEL | __GFP_ZERO;
215 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
216 if (!efi_pgd)
217 return -ENOMEM;
219 pgd = efi_pgd + pgd_index(EFI_VA_END);
220 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
221 if (!p4d) {
222 free_page((unsigned long)efi_pgd);
223 return -ENOMEM;
226 pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
227 if (!pud) {
228 if (CONFIG_PGTABLE_LEVELS > 4)
229 free_page((unsigned long) pgd_page_vaddr(*pgd));
230 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
231 return -ENOMEM;
234 return 0;
238 * Add low kernel mappings for passing arguments to EFI functions.
240 void efi_sync_low_kernel_mappings(void)
242 unsigned num_entries;
243 pgd_t *pgd_k, *pgd_efi;
244 p4d_t *p4d_k, *p4d_efi;
245 pud_t *pud_k, *pud_efi;
247 if (efi_enabled(EFI_OLD_MEMMAP))
248 return;
251 * We can share all PGD entries apart from the one entry that
252 * covers the EFI runtime mapping space.
254 * Make sure the EFI runtime region mappings are guaranteed to
255 * only span a single PGD entry and that the entry also maps
256 * other important kernel regions.
258 BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
259 BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
260 (EFI_VA_END & PGDIR_MASK));
262 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
263 pgd_k = pgd_offset_k(PAGE_OFFSET);
265 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
266 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
269 * As with PGDs, we share all P4D entries apart from the one entry
270 * that covers the EFI runtime mapping space.
272 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
273 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
275 pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
276 pgd_k = pgd_offset_k(EFI_VA_END);
277 p4d_efi = p4d_offset(pgd_efi, 0);
278 p4d_k = p4d_offset(pgd_k, 0);
280 num_entries = p4d_index(EFI_VA_END);
281 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
284 * We share all the PUD entries apart from those that map the
285 * EFI regions. Copy around them.
287 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
288 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
290 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
291 p4d_k = p4d_offset(pgd_k, EFI_VA_END);
292 pud_efi = pud_offset(p4d_efi, 0);
293 pud_k = pud_offset(p4d_k, 0);
295 num_entries = pud_index(EFI_VA_END);
296 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
298 pud_efi = pud_offset(p4d_efi, EFI_VA_START);
299 pud_k = pud_offset(p4d_k, EFI_VA_START);
301 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
302 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
306 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
308 static inline phys_addr_t
309 virt_to_phys_or_null_size(void *va, unsigned long size)
311 bool bad_size;
313 if (!va)
314 return 0;
316 if (virt_addr_valid(va))
317 return virt_to_phys(va);
320 * A fully aligned variable on the stack is guaranteed not to
321 * cross a page bounary. Try to catch strings on the stack by
322 * checking that 'size' is a power of two.
324 bad_size = size > PAGE_SIZE || !is_power_of_2(size);
326 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
328 return slow_virt_to_phys(va);
331 #define virt_to_phys_or_null(addr) \
332 virt_to_phys_or_null_size((addr), sizeof(*(addr)))
334 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
336 unsigned long pfn, text, pf;
337 struct page *page;
338 unsigned npages;
339 pgd_t *pgd;
341 if (efi_enabled(EFI_OLD_MEMMAP))
342 return 0;
345 * Since the PGD is encrypted, set the encryption mask so that when
346 * this value is loaded into cr3 the PGD will be decrypted during
347 * the pagetable walk.
349 efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd);
350 pgd = efi_pgd;
353 * It can happen that the physical address of new_memmap lands in memory
354 * which is not mapped in the EFI page table. Therefore we need to go
355 * and ident-map those pages containing the map before calling
356 * phys_efi_set_virtual_address_map().
358 pfn = pa_memmap >> PAGE_SHIFT;
359 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
360 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
361 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
362 return 1;
365 efi_scratch.use_pgd = true;
368 * Certain firmware versions are way too sentimential and still believe
369 * they are exclusive and unquestionable owners of the first physical page,
370 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
371 * (but then write-access it later during SetVirtualAddressMap()).
373 * Create a 1:1 mapping for this page, to avoid triple faults during early
374 * boot with such firmware. We are free to hand this page to the BIOS,
375 * as trim_bios_range() will reserve the first page and isolate it away
376 * from memory allocators anyway.
378 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
379 pr_err("Failed to create 1:1 mapping for the first page!\n");
380 return 1;
384 * When making calls to the firmware everything needs to be 1:1
385 * mapped and addressable with 32-bit pointers. Map the kernel
386 * text and allocate a new stack because we can't rely on the
387 * stack pointer being < 4GB.
389 if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
390 return 0;
392 page = alloc_page(GFP_KERNEL|__GFP_DMA32);
393 if (!page)
394 panic("Unable to allocate EFI runtime stack < 4GB\n");
396 efi_scratch.phys_stack = virt_to_phys(page_address(page));
397 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
399 npages = (_etext - _text) >> PAGE_SHIFT;
400 text = __pa(_text);
401 pfn = text >> PAGE_SHIFT;
403 pf = _PAGE_RW | _PAGE_ENC;
404 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
405 pr_err("Failed to map kernel text 1:1\n");
406 return 1;
409 return 0;
412 static void __init __map_region(efi_memory_desc_t *md, u64 va)
414 unsigned long flags = _PAGE_RW;
415 unsigned long pfn;
416 pgd_t *pgd = efi_pgd;
418 if (!(md->attribute & EFI_MEMORY_WB))
419 flags |= _PAGE_PCD;
421 pfn = md->phys_addr >> PAGE_SHIFT;
422 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
423 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
424 md->phys_addr, va);
427 void __init efi_map_region(efi_memory_desc_t *md)
429 unsigned long size = md->num_pages << PAGE_SHIFT;
430 u64 pa = md->phys_addr;
432 if (efi_enabled(EFI_OLD_MEMMAP))
433 return old_map_region(md);
436 * Make sure the 1:1 mappings are present as a catch-all for b0rked
437 * firmware which doesn't update all internal pointers after switching
438 * to virtual mode and would otherwise crap on us.
440 __map_region(md, md->phys_addr);
443 * Enforce the 1:1 mapping as the default virtual address when
444 * booting in EFI mixed mode, because even though we may be
445 * running a 64-bit kernel, the firmware may only be 32-bit.
447 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
448 md->virt_addr = md->phys_addr;
449 return;
452 efi_va -= size;
454 /* Is PA 2M-aligned? */
455 if (!(pa & (PMD_SIZE - 1))) {
456 efi_va &= PMD_MASK;
457 } else {
458 u64 pa_offset = pa & (PMD_SIZE - 1);
459 u64 prev_va = efi_va;
461 /* get us the same offset within this 2M page */
462 efi_va = (efi_va & PMD_MASK) + pa_offset;
464 if (efi_va > prev_va)
465 efi_va -= PMD_SIZE;
468 if (efi_va < EFI_VA_END) {
469 pr_warn(FW_WARN "VA address range overflow!\n");
470 return;
473 /* Do the VA map */
474 __map_region(md, efi_va);
475 md->virt_addr = efi_va;
479 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
480 * md->virt_addr is the original virtual address which had been mapped in kexec
481 * 1st kernel.
483 void __init efi_map_region_fixed(efi_memory_desc_t *md)
485 __map_region(md, md->phys_addr);
486 __map_region(md, md->virt_addr);
489 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
490 u32 type, u64 attribute)
492 unsigned long last_map_pfn;
494 if (type == EFI_MEMORY_MAPPED_IO)
495 return ioremap(phys_addr, size);
497 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
498 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
499 unsigned long top = last_map_pfn << PAGE_SHIFT;
500 efi_ioremap(top, size - (top - phys_addr), type, attribute);
503 if (!(attribute & EFI_MEMORY_WB))
504 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
506 return (void __iomem *)__va(phys_addr);
509 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
511 efi_setup = phys_addr + sizeof(struct setup_data);
514 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
516 unsigned long pfn;
517 pgd_t *pgd = efi_pgd;
518 int err1, err2;
520 /* Update the 1:1 mapping */
521 pfn = md->phys_addr >> PAGE_SHIFT;
522 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
523 if (err1) {
524 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
525 md->phys_addr, md->virt_addr);
528 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
529 if (err2) {
530 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
531 md->phys_addr, md->virt_addr);
534 return err1 || err2;
537 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
539 unsigned long pf = 0;
541 if (md->attribute & EFI_MEMORY_XP)
542 pf |= _PAGE_NX;
544 if (!(md->attribute & EFI_MEMORY_RO))
545 pf |= _PAGE_RW;
547 return efi_update_mappings(md, pf);
550 void __init efi_runtime_update_mappings(void)
552 efi_memory_desc_t *md;
554 if (efi_enabled(EFI_OLD_MEMMAP)) {
555 if (__supported_pte_mask & _PAGE_NX)
556 runtime_code_page_mkexec();
557 return;
561 * Use the EFI Memory Attribute Table for mapping permissions if it
562 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
564 if (efi_enabled(EFI_MEM_ATTR)) {
565 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
566 return;
570 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
571 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
572 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
573 * published by the firmware. Even if we find a buggy implementation of
574 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
575 * EFI_PROPERTIES_TABLE, because of the same reason.
578 if (!efi_enabled(EFI_NX_PE_DATA))
579 return;
581 for_each_efi_memory_desc(md) {
582 unsigned long pf = 0;
584 if (!(md->attribute & EFI_MEMORY_RUNTIME))
585 continue;
587 if (!(md->attribute & EFI_MEMORY_WB))
588 pf |= _PAGE_PCD;
590 if ((md->attribute & EFI_MEMORY_XP) ||
591 (md->type == EFI_RUNTIME_SERVICES_DATA))
592 pf |= _PAGE_NX;
594 if (!(md->attribute & EFI_MEMORY_RO) &&
595 (md->type != EFI_RUNTIME_SERVICES_CODE))
596 pf |= _PAGE_RW;
598 efi_update_mappings(md, pf);
602 void __init efi_dump_pagetable(void)
604 #ifdef CONFIG_EFI_PGT_DUMP
605 if (efi_enabled(EFI_OLD_MEMMAP))
606 ptdump_walk_pgd_level(NULL, swapper_pg_dir);
607 else
608 ptdump_walk_pgd_level(NULL, efi_pgd);
609 #endif
612 #ifdef CONFIG_EFI_MIXED
613 extern efi_status_t efi64_thunk(u32, ...);
615 #define runtime_service32(func) \
616 ({ \
617 u32 table = (u32)(unsigned long)efi.systab; \
618 u32 *rt, *___f; \
620 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \
621 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
622 *___f; \
626 * Switch to the EFI page tables early so that we can access the 1:1
627 * runtime services mappings which are not mapped in any other page
628 * tables. This function must be called before runtime_service32().
630 * Also, disable interrupts because the IDT points to 64-bit handlers,
631 * which aren't going to function correctly when we switch to 32-bit.
633 #define efi_thunk(f, ...) \
634 ({ \
635 efi_status_t __s; \
636 unsigned long __flags; \
637 u32 __func; \
639 local_irq_save(__flags); \
640 arch_efi_call_virt_setup(); \
642 __func = runtime_service32(f); \
643 __s = efi64_thunk(__func, __VA_ARGS__); \
645 arch_efi_call_virt_teardown(); \
646 local_irq_restore(__flags); \
648 __s; \
651 efi_status_t efi_thunk_set_virtual_address_map(
652 void *phys_set_virtual_address_map,
653 unsigned long memory_map_size,
654 unsigned long descriptor_size,
655 u32 descriptor_version,
656 efi_memory_desc_t *virtual_map)
658 efi_status_t status;
659 unsigned long flags;
660 u32 func;
662 efi_sync_low_kernel_mappings();
663 local_irq_save(flags);
665 efi_scratch.prev_cr3 = __read_cr3();
666 write_cr3((unsigned long)efi_scratch.efi_pgt);
667 __flush_tlb_all();
669 func = (u32)(unsigned long)phys_set_virtual_address_map;
670 status = efi64_thunk(func, memory_map_size, descriptor_size,
671 descriptor_version, virtual_map);
673 write_cr3(efi_scratch.prev_cr3);
674 __flush_tlb_all();
675 local_irq_restore(flags);
677 return status;
680 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
682 efi_status_t status;
683 u32 phys_tm, phys_tc;
685 spin_lock(&rtc_lock);
687 phys_tm = virt_to_phys_or_null(tm);
688 phys_tc = virt_to_phys_or_null(tc);
690 status = efi_thunk(get_time, phys_tm, phys_tc);
692 spin_unlock(&rtc_lock);
694 return status;
697 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
699 efi_status_t status;
700 u32 phys_tm;
702 spin_lock(&rtc_lock);
704 phys_tm = virt_to_phys_or_null(tm);
706 status = efi_thunk(set_time, phys_tm);
708 spin_unlock(&rtc_lock);
710 return status;
713 static efi_status_t
714 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
715 efi_time_t *tm)
717 efi_status_t status;
718 u32 phys_enabled, phys_pending, phys_tm;
720 spin_lock(&rtc_lock);
722 phys_enabled = virt_to_phys_or_null(enabled);
723 phys_pending = virt_to_phys_or_null(pending);
724 phys_tm = virt_to_phys_or_null(tm);
726 status = efi_thunk(get_wakeup_time, phys_enabled,
727 phys_pending, phys_tm);
729 spin_unlock(&rtc_lock);
731 return status;
734 static efi_status_t
735 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
737 efi_status_t status;
738 u32 phys_tm;
740 spin_lock(&rtc_lock);
742 phys_tm = virt_to_phys_or_null(tm);
744 status = efi_thunk(set_wakeup_time, enabled, phys_tm);
746 spin_unlock(&rtc_lock);
748 return status;
751 static unsigned long efi_name_size(efi_char16_t *name)
753 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
756 static efi_status_t
757 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
758 u32 *attr, unsigned long *data_size, void *data)
760 efi_status_t status;
761 u32 phys_name, phys_vendor, phys_attr;
762 u32 phys_data_size, phys_data;
764 phys_data_size = virt_to_phys_or_null(data_size);
765 phys_vendor = virt_to_phys_or_null(vendor);
766 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
767 phys_attr = virt_to_phys_or_null(attr);
768 phys_data = virt_to_phys_or_null_size(data, *data_size);
770 status = efi_thunk(get_variable, phys_name, phys_vendor,
771 phys_attr, phys_data_size, phys_data);
773 return status;
776 static efi_status_t
777 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
778 u32 attr, unsigned long data_size, void *data)
780 u32 phys_name, phys_vendor, phys_data;
781 efi_status_t status;
783 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
784 phys_vendor = virt_to_phys_or_null(vendor);
785 phys_data = virt_to_phys_or_null_size(data, data_size);
787 /* If data_size is > sizeof(u32) we've got problems */
788 status = efi_thunk(set_variable, phys_name, phys_vendor,
789 attr, data_size, phys_data);
791 return status;
794 static efi_status_t
795 efi_thunk_get_next_variable(unsigned long *name_size,
796 efi_char16_t *name,
797 efi_guid_t *vendor)
799 efi_status_t status;
800 u32 phys_name_size, phys_name, phys_vendor;
802 phys_name_size = virt_to_phys_or_null(name_size);
803 phys_vendor = virt_to_phys_or_null(vendor);
804 phys_name = virt_to_phys_or_null_size(name, *name_size);
806 status = efi_thunk(get_next_variable, phys_name_size,
807 phys_name, phys_vendor);
809 return status;
812 static efi_status_t
813 efi_thunk_get_next_high_mono_count(u32 *count)
815 efi_status_t status;
816 u32 phys_count;
818 phys_count = virt_to_phys_or_null(count);
819 status = efi_thunk(get_next_high_mono_count, phys_count);
821 return status;
824 static void
825 efi_thunk_reset_system(int reset_type, efi_status_t status,
826 unsigned long data_size, efi_char16_t *data)
828 u32 phys_data;
830 phys_data = virt_to_phys_or_null_size(data, data_size);
832 efi_thunk(reset_system, reset_type, status, data_size, phys_data);
835 static efi_status_t
836 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
837 unsigned long count, unsigned long sg_list)
840 * To properly support this function we would need to repackage
841 * 'capsules' because the firmware doesn't understand 64-bit
842 * pointers.
844 return EFI_UNSUPPORTED;
847 static efi_status_t
848 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
849 u64 *remaining_space,
850 u64 *max_variable_size)
852 efi_status_t status;
853 u32 phys_storage, phys_remaining, phys_max;
855 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
856 return EFI_UNSUPPORTED;
858 phys_storage = virt_to_phys_or_null(storage_space);
859 phys_remaining = virt_to_phys_or_null(remaining_space);
860 phys_max = virt_to_phys_or_null(max_variable_size);
862 status = efi_thunk(query_variable_info, attr, phys_storage,
863 phys_remaining, phys_max);
865 return status;
868 static efi_status_t
869 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
870 unsigned long count, u64 *max_size,
871 int *reset_type)
874 * To properly support this function we would need to repackage
875 * 'capsules' because the firmware doesn't understand 64-bit
876 * pointers.
878 return EFI_UNSUPPORTED;
881 void efi_thunk_runtime_setup(void)
883 efi.get_time = efi_thunk_get_time;
884 efi.set_time = efi_thunk_set_time;
885 efi.get_wakeup_time = efi_thunk_get_wakeup_time;
886 efi.set_wakeup_time = efi_thunk_set_wakeup_time;
887 efi.get_variable = efi_thunk_get_variable;
888 efi.get_next_variable = efi_thunk_get_next_variable;
889 efi.set_variable = efi_thunk_set_variable;
890 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
891 efi.reset_system = efi_thunk_reset_system;
892 efi.query_variable_info = efi_thunk_query_variable_info;
893 efi.update_capsule = efi_thunk_update_capsule;
894 efi.query_capsule_caps = efi_thunk_query_capsule_caps;
896 #endif /* CONFIG_EFI_MIXED */