x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / block / blk-mq.c
blobeac4448047366bb60db76788833f6e5b977dd467
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
40 static void blk_mq_poll_stats_start(struct request_queue *q);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 int ddir, bytes, bucket;
47 ddir = rq_data_dir(rq);
48 bytes = blk_rq_bytes(rq);
50 bucket = ddir + 2*(ilog2(bytes) - 9);
52 if (bucket < 0)
53 return -1;
54 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
55 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 return bucket;
61 * Check if any of the ctx's have pending work in this hardware queue
63 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 return sbitmap_any_bit_set(&hctx->ctx_map) ||
66 !list_empty_careful(&hctx->dispatch) ||
67 blk_mq_sched_has_work(hctx);
71 * Mark this ctx as having pending work in this hardware queue
73 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
76 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
77 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
83 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 struct mq_inflight {
87 struct hd_struct *part;
88 unsigned int *inflight;
91 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
92 struct request *rq, void *priv,
93 bool reserved)
95 struct mq_inflight *mi = priv;
97 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
98 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
122 struct request *rq, void *priv,
123 bool reserved)
125 struct mq_inflight *mi = priv;
127 if (rq->part == mi->part)
128 mi->inflight[rq_data_dir(rq)]++;
131 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
132 unsigned int inflight[2])
134 struct mq_inflight mi = { .part = part, .inflight = inflight, };
136 inflight[0] = inflight[1] = 0;
137 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
140 void blk_freeze_queue_start(struct request_queue *q)
142 int freeze_depth;
144 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
145 if (freeze_depth == 1) {
146 percpu_ref_kill(&q->q_usage_counter);
147 blk_mq_run_hw_queues(q, false);
150 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
152 void blk_mq_freeze_queue_wait(struct request_queue *q)
154 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
156 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
158 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
159 unsigned long timeout)
161 return wait_event_timeout(q->mq_freeze_wq,
162 percpu_ref_is_zero(&q->q_usage_counter),
163 timeout);
165 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
168 * Guarantee no request is in use, so we can change any data structure of
169 * the queue afterward.
171 void blk_freeze_queue(struct request_queue *q)
174 * In the !blk_mq case we are only calling this to kill the
175 * q_usage_counter, otherwise this increases the freeze depth
176 * and waits for it to return to zero. For this reason there is
177 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
178 * exported to drivers as the only user for unfreeze is blk_mq.
180 blk_freeze_queue_start(q);
181 if (!q->mq_ops)
182 blk_drain_queue(q);
183 blk_mq_freeze_queue_wait(q);
186 void blk_mq_freeze_queue(struct request_queue *q)
189 * ...just an alias to keep freeze and unfreeze actions balanced
190 * in the blk_mq_* namespace
192 blk_freeze_queue(q);
194 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
196 void blk_mq_unfreeze_queue(struct request_queue *q)
198 int freeze_depth;
200 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
201 WARN_ON_ONCE(freeze_depth < 0);
202 if (!freeze_depth) {
203 percpu_ref_reinit(&q->q_usage_counter);
204 wake_up_all(&q->mq_freeze_wq);
207 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
211 * mpt3sas driver such that this function can be removed.
213 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
215 unsigned long flags;
217 spin_lock_irqsave(q->queue_lock, flags);
218 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
219 spin_unlock_irqrestore(q->queue_lock, flags);
221 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
225 * @q: request queue.
227 * Note: this function does not prevent that the struct request end_io()
228 * callback function is invoked. Once this function is returned, we make
229 * sure no dispatch can happen until the queue is unquiesced via
230 * blk_mq_unquiesce_queue().
232 void blk_mq_quiesce_queue(struct request_queue *q)
234 struct blk_mq_hw_ctx *hctx;
235 unsigned int i;
236 bool rcu = false;
238 blk_mq_quiesce_queue_nowait(q);
240 queue_for_each_hw_ctx(q, hctx, i) {
241 if (hctx->flags & BLK_MQ_F_BLOCKING)
242 synchronize_srcu(hctx->queue_rq_srcu);
243 else
244 rcu = true;
246 if (rcu)
247 synchronize_rcu();
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253 * @q: request queue.
255 * This function recovers queue into the state before quiescing
256 * which is done by blk_mq_quiesce_queue.
258 void blk_mq_unquiesce_queue(struct request_queue *q)
260 unsigned long flags;
262 spin_lock_irqsave(q->queue_lock, flags);
263 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
264 spin_unlock_irqrestore(q->queue_lock, flags);
266 /* dispatch requests which are inserted during quiescing */
267 blk_mq_run_hw_queues(q, true);
269 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
271 void blk_mq_wake_waiters(struct request_queue *q)
273 struct blk_mq_hw_ctx *hctx;
274 unsigned int i;
276 queue_for_each_hw_ctx(q, hctx, i)
277 if (blk_mq_hw_queue_mapped(hctx))
278 blk_mq_tag_wakeup_all(hctx->tags, true);
281 * If we are called because the queue has now been marked as
282 * dying, we need to ensure that processes currently waiting on
283 * the queue are notified as well.
285 wake_up_all(&q->mq_freeze_wq);
288 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
290 return blk_mq_has_free_tags(hctx->tags);
292 EXPORT_SYMBOL(blk_mq_can_queue);
294 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
295 unsigned int tag, unsigned int op)
297 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
298 struct request *rq = tags->static_rqs[tag];
300 rq->rq_flags = 0;
302 if (data->flags & BLK_MQ_REQ_INTERNAL) {
303 rq->tag = -1;
304 rq->internal_tag = tag;
305 } else {
306 if (blk_mq_tag_busy(data->hctx)) {
307 rq->rq_flags = RQF_MQ_INFLIGHT;
308 atomic_inc(&data->hctx->nr_active);
310 rq->tag = tag;
311 rq->internal_tag = -1;
312 data->hctx->tags->rqs[rq->tag] = rq;
315 INIT_LIST_HEAD(&rq->queuelist);
316 /* csd/requeue_work/fifo_time is initialized before use */
317 rq->q = data->q;
318 rq->mq_ctx = data->ctx;
319 rq->cmd_flags = op;
320 if (blk_queue_io_stat(data->q))
321 rq->rq_flags |= RQF_IO_STAT;
322 /* do not touch atomic flags, it needs atomic ops against the timer */
323 rq->cpu = -1;
324 INIT_HLIST_NODE(&rq->hash);
325 RB_CLEAR_NODE(&rq->rb_node);
326 rq->rq_disk = NULL;
327 rq->part = NULL;
328 rq->start_time = jiffies;
329 #ifdef CONFIG_BLK_CGROUP
330 rq->rl = NULL;
331 set_start_time_ns(rq);
332 rq->io_start_time_ns = 0;
333 #endif
334 rq->nr_phys_segments = 0;
335 #if defined(CONFIG_BLK_DEV_INTEGRITY)
336 rq->nr_integrity_segments = 0;
337 #endif
338 rq->special = NULL;
339 /* tag was already set */
340 rq->extra_len = 0;
342 INIT_LIST_HEAD(&rq->timeout_list);
343 rq->timeout = 0;
345 rq->end_io = NULL;
346 rq->end_io_data = NULL;
347 rq->next_rq = NULL;
349 data->ctx->rq_dispatched[op_is_sync(op)]++;
350 return rq;
353 static struct request *blk_mq_get_request(struct request_queue *q,
354 struct bio *bio, unsigned int op,
355 struct blk_mq_alloc_data *data)
357 struct elevator_queue *e = q->elevator;
358 struct request *rq;
359 unsigned int tag;
360 struct blk_mq_ctx *local_ctx = NULL;
362 blk_queue_enter_live(q);
363 data->q = q;
364 if (likely(!data->ctx))
365 data->ctx = local_ctx = blk_mq_get_ctx(q);
366 if (likely(!data->hctx))
367 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
368 if (op & REQ_NOWAIT)
369 data->flags |= BLK_MQ_REQ_NOWAIT;
371 if (e) {
372 data->flags |= BLK_MQ_REQ_INTERNAL;
375 * Flush requests are special and go directly to the
376 * dispatch list.
378 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
379 e->type->ops.mq.limit_depth(op, data);
382 tag = blk_mq_get_tag(data);
383 if (tag == BLK_MQ_TAG_FAIL) {
384 if (local_ctx) {
385 blk_mq_put_ctx(local_ctx);
386 data->ctx = NULL;
388 blk_queue_exit(q);
389 return NULL;
392 rq = blk_mq_rq_ctx_init(data, tag, op);
393 if (!op_is_flush(op)) {
394 rq->elv.icq = NULL;
395 if (e && e->type->ops.mq.prepare_request) {
396 if (e->type->icq_cache && rq_ioc(bio))
397 blk_mq_sched_assign_ioc(rq, bio);
399 e->type->ops.mq.prepare_request(rq, bio);
400 rq->rq_flags |= RQF_ELVPRIV;
403 data->hctx->queued++;
404 return rq;
407 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
408 unsigned int flags)
410 struct blk_mq_alloc_data alloc_data = { .flags = flags };
411 struct request *rq;
412 int ret;
414 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
415 if (ret)
416 return ERR_PTR(ret);
418 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
419 blk_queue_exit(q);
421 if (!rq)
422 return ERR_PTR(-EWOULDBLOCK);
424 blk_mq_put_ctx(alloc_data.ctx);
426 rq->__data_len = 0;
427 rq->__sector = (sector_t) -1;
428 rq->bio = rq->biotail = NULL;
429 return rq;
431 EXPORT_SYMBOL(blk_mq_alloc_request);
433 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
434 unsigned int op, unsigned int flags, unsigned int hctx_idx)
436 struct blk_mq_alloc_data alloc_data = { .flags = flags };
437 struct request *rq;
438 unsigned int cpu;
439 int ret;
442 * If the tag allocator sleeps we could get an allocation for a
443 * different hardware context. No need to complicate the low level
444 * allocator for this for the rare use case of a command tied to
445 * a specific queue.
447 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
448 return ERR_PTR(-EINVAL);
450 if (hctx_idx >= q->nr_hw_queues)
451 return ERR_PTR(-EIO);
453 ret = blk_queue_enter(q, true);
454 if (ret)
455 return ERR_PTR(ret);
458 * Check if the hardware context is actually mapped to anything.
459 * If not tell the caller that it should skip this queue.
461 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
462 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
463 blk_queue_exit(q);
464 return ERR_PTR(-EXDEV);
466 cpu = cpumask_first(alloc_data.hctx->cpumask);
467 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
469 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
470 blk_queue_exit(q);
472 if (!rq)
473 return ERR_PTR(-EWOULDBLOCK);
475 return rq;
477 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
479 void blk_mq_free_request(struct request *rq)
481 struct request_queue *q = rq->q;
482 struct elevator_queue *e = q->elevator;
483 struct blk_mq_ctx *ctx = rq->mq_ctx;
484 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
485 const int sched_tag = rq->internal_tag;
487 if (rq->rq_flags & RQF_ELVPRIV) {
488 if (e && e->type->ops.mq.finish_request)
489 e->type->ops.mq.finish_request(rq);
490 if (rq->elv.icq) {
491 put_io_context(rq->elv.icq->ioc);
492 rq->elv.icq = NULL;
496 ctx->rq_completed[rq_is_sync(rq)]++;
497 if (rq->rq_flags & RQF_MQ_INFLIGHT)
498 atomic_dec(&hctx->nr_active);
500 wbt_done(q->rq_wb, &rq->issue_stat);
502 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
503 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
504 if (rq->tag != -1)
505 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
506 if (sched_tag != -1)
507 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
508 blk_mq_sched_restart(hctx);
509 blk_queue_exit(q);
511 EXPORT_SYMBOL_GPL(blk_mq_free_request);
513 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
515 blk_account_io_done(rq);
517 if (rq->end_io) {
518 wbt_done(rq->q->rq_wb, &rq->issue_stat);
519 rq->end_io(rq, error);
520 } else {
521 if (unlikely(blk_bidi_rq(rq)))
522 blk_mq_free_request(rq->next_rq);
523 blk_mq_free_request(rq);
526 EXPORT_SYMBOL(__blk_mq_end_request);
528 void blk_mq_end_request(struct request *rq, blk_status_t error)
530 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
531 BUG();
532 __blk_mq_end_request(rq, error);
534 EXPORT_SYMBOL(blk_mq_end_request);
536 static void __blk_mq_complete_request_remote(void *data)
538 struct request *rq = data;
540 rq->q->softirq_done_fn(rq);
543 static void __blk_mq_complete_request(struct request *rq)
545 struct blk_mq_ctx *ctx = rq->mq_ctx;
546 bool shared = false;
547 int cpu;
549 if (rq->internal_tag != -1)
550 blk_mq_sched_completed_request(rq);
551 if (rq->rq_flags & RQF_STATS) {
552 blk_mq_poll_stats_start(rq->q);
553 blk_stat_add(rq);
556 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
557 rq->q->softirq_done_fn(rq);
558 return;
561 cpu = get_cpu();
562 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
563 shared = cpus_share_cache(cpu, ctx->cpu);
565 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
566 rq->csd.func = __blk_mq_complete_request_remote;
567 rq->csd.info = rq;
568 rq->csd.flags = 0;
569 smp_call_function_single_async(ctx->cpu, &rq->csd);
570 } else {
571 rq->q->softirq_done_fn(rq);
573 put_cpu();
577 * blk_mq_complete_request - end I/O on a request
578 * @rq: the request being processed
580 * Description:
581 * Ends all I/O on a request. It does not handle partial completions.
582 * The actual completion happens out-of-order, through a IPI handler.
584 void blk_mq_complete_request(struct request *rq)
586 struct request_queue *q = rq->q;
588 if (unlikely(blk_should_fake_timeout(q)))
589 return;
590 if (!blk_mark_rq_complete(rq))
591 __blk_mq_complete_request(rq);
593 EXPORT_SYMBOL(blk_mq_complete_request);
595 int blk_mq_request_started(struct request *rq)
597 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
599 EXPORT_SYMBOL_GPL(blk_mq_request_started);
601 void blk_mq_start_request(struct request *rq)
603 struct request_queue *q = rq->q;
605 blk_mq_sched_started_request(rq);
607 trace_block_rq_issue(q, rq);
609 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
610 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
611 rq->rq_flags |= RQF_STATS;
612 wbt_issue(q->rq_wb, &rq->issue_stat);
615 blk_add_timer(rq);
618 * Ensure that ->deadline is visible before set the started
619 * flag and clear the completed flag.
621 smp_mb__before_atomic();
624 * Mark us as started and clear complete. Complete might have been
625 * set if requeue raced with timeout, which then marked it as
626 * complete. So be sure to clear complete again when we start
627 * the request, otherwise we'll ignore the completion event.
629 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
630 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
631 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
632 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
634 if (q->dma_drain_size && blk_rq_bytes(rq)) {
636 * Make sure space for the drain appears. We know we can do
637 * this because max_hw_segments has been adjusted to be one
638 * fewer than the device can handle.
640 rq->nr_phys_segments++;
643 EXPORT_SYMBOL(blk_mq_start_request);
646 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
647 * flag isn't set yet, so there may be race with timeout handler,
648 * but given rq->deadline is just set in .queue_rq() under
649 * this situation, the race won't be possible in reality because
650 * rq->timeout should be set as big enough to cover the window
651 * between blk_mq_start_request() called from .queue_rq() and
652 * clearing REQ_ATOM_STARTED here.
654 static void __blk_mq_requeue_request(struct request *rq)
656 struct request_queue *q = rq->q;
658 trace_block_rq_requeue(q, rq);
659 wbt_requeue(q->rq_wb, &rq->issue_stat);
661 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
662 if (q->dma_drain_size && blk_rq_bytes(rq))
663 rq->nr_phys_segments--;
667 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
669 __blk_mq_requeue_request(rq);
671 /* this request will be re-inserted to io scheduler queue */
672 blk_mq_sched_requeue_request(rq);
674 BUG_ON(blk_queued_rq(rq));
675 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
677 EXPORT_SYMBOL(blk_mq_requeue_request);
679 static void blk_mq_requeue_work(struct work_struct *work)
681 struct request_queue *q =
682 container_of(work, struct request_queue, requeue_work.work);
683 LIST_HEAD(rq_list);
684 struct request *rq, *next;
686 spin_lock_irq(&q->requeue_lock);
687 list_splice_init(&q->requeue_list, &rq_list);
688 spin_unlock_irq(&q->requeue_lock);
690 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
691 if (!(rq->rq_flags & RQF_SOFTBARRIER))
692 continue;
694 rq->rq_flags &= ~RQF_SOFTBARRIER;
695 list_del_init(&rq->queuelist);
696 blk_mq_sched_insert_request(rq, true, false, false, true);
699 while (!list_empty(&rq_list)) {
700 rq = list_entry(rq_list.next, struct request, queuelist);
701 list_del_init(&rq->queuelist);
702 blk_mq_sched_insert_request(rq, false, false, false, true);
705 blk_mq_run_hw_queues(q, false);
708 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
709 bool kick_requeue_list)
711 struct request_queue *q = rq->q;
712 unsigned long flags;
715 * We abuse this flag that is otherwise used by the I/O scheduler to
716 * request head insertation from the workqueue.
718 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
720 spin_lock_irqsave(&q->requeue_lock, flags);
721 if (at_head) {
722 rq->rq_flags |= RQF_SOFTBARRIER;
723 list_add(&rq->queuelist, &q->requeue_list);
724 } else {
725 list_add_tail(&rq->queuelist, &q->requeue_list);
727 spin_unlock_irqrestore(&q->requeue_lock, flags);
729 if (kick_requeue_list)
730 blk_mq_kick_requeue_list(q);
732 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
734 void blk_mq_kick_requeue_list(struct request_queue *q)
736 kblockd_schedule_delayed_work(&q->requeue_work, 0);
738 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
740 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
741 unsigned long msecs)
743 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
744 msecs_to_jiffies(msecs));
746 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
748 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
750 if (tag < tags->nr_tags) {
751 prefetch(tags->rqs[tag]);
752 return tags->rqs[tag];
755 return NULL;
757 EXPORT_SYMBOL(blk_mq_tag_to_rq);
759 struct blk_mq_timeout_data {
760 unsigned long next;
761 unsigned int next_set;
764 void blk_mq_rq_timed_out(struct request *req, bool reserved)
766 const struct blk_mq_ops *ops = req->q->mq_ops;
767 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
770 * We know that complete is set at this point. If STARTED isn't set
771 * anymore, then the request isn't active and the "timeout" should
772 * just be ignored. This can happen due to the bitflag ordering.
773 * Timeout first checks if STARTED is set, and if it is, assumes
774 * the request is active. But if we race with completion, then
775 * both flags will get cleared. So check here again, and ignore
776 * a timeout event with a request that isn't active.
778 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
779 return;
781 if (ops->timeout)
782 ret = ops->timeout(req, reserved);
784 switch (ret) {
785 case BLK_EH_HANDLED:
786 __blk_mq_complete_request(req);
787 break;
788 case BLK_EH_RESET_TIMER:
789 blk_add_timer(req);
790 blk_clear_rq_complete(req);
791 break;
792 case BLK_EH_NOT_HANDLED:
793 break;
794 default:
795 printk(KERN_ERR "block: bad eh return: %d\n", ret);
796 break;
800 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
801 struct request *rq, void *priv, bool reserved)
803 struct blk_mq_timeout_data *data = priv;
805 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
806 return;
809 * The rq being checked may have been freed and reallocated
810 * out already here, we avoid this race by checking rq->deadline
811 * and REQ_ATOM_COMPLETE flag together:
813 * - if rq->deadline is observed as new value because of
814 * reusing, the rq won't be timed out because of timing.
815 * - if rq->deadline is observed as previous value,
816 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
817 * because we put a barrier between setting rq->deadline
818 * and clearing the flag in blk_mq_start_request(), so
819 * this rq won't be timed out too.
821 if (time_after_eq(jiffies, rq->deadline)) {
822 if (!blk_mark_rq_complete(rq))
823 blk_mq_rq_timed_out(rq, reserved);
824 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
825 data->next = rq->deadline;
826 data->next_set = 1;
830 static void blk_mq_timeout_work(struct work_struct *work)
832 struct request_queue *q =
833 container_of(work, struct request_queue, timeout_work);
834 struct blk_mq_timeout_data data = {
835 .next = 0,
836 .next_set = 0,
838 int i;
840 /* A deadlock might occur if a request is stuck requiring a
841 * timeout at the same time a queue freeze is waiting
842 * completion, since the timeout code would not be able to
843 * acquire the queue reference here.
845 * That's why we don't use blk_queue_enter here; instead, we use
846 * percpu_ref_tryget directly, because we need to be able to
847 * obtain a reference even in the short window between the queue
848 * starting to freeze, by dropping the first reference in
849 * blk_freeze_queue_start, and the moment the last request is
850 * consumed, marked by the instant q_usage_counter reaches
851 * zero.
853 if (!percpu_ref_tryget(&q->q_usage_counter))
854 return;
856 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
858 if (data.next_set) {
859 data.next = blk_rq_timeout(round_jiffies_up(data.next));
860 mod_timer(&q->timeout, data.next);
861 } else {
862 struct blk_mq_hw_ctx *hctx;
864 queue_for_each_hw_ctx(q, hctx, i) {
865 /* the hctx may be unmapped, so check it here */
866 if (blk_mq_hw_queue_mapped(hctx))
867 blk_mq_tag_idle(hctx);
870 blk_queue_exit(q);
873 struct flush_busy_ctx_data {
874 struct blk_mq_hw_ctx *hctx;
875 struct list_head *list;
878 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
880 struct flush_busy_ctx_data *flush_data = data;
881 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
882 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
884 sbitmap_clear_bit(sb, bitnr);
885 spin_lock(&ctx->lock);
886 list_splice_tail_init(&ctx->rq_list, flush_data->list);
887 spin_unlock(&ctx->lock);
888 return true;
892 * Process software queues that have been marked busy, splicing them
893 * to the for-dispatch
895 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
897 struct flush_busy_ctx_data data = {
898 .hctx = hctx,
899 .list = list,
902 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
904 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
906 static inline unsigned int queued_to_index(unsigned int queued)
908 if (!queued)
909 return 0;
911 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
914 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
915 bool wait)
917 struct blk_mq_alloc_data data = {
918 .q = rq->q,
919 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
920 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
923 might_sleep_if(wait);
925 if (rq->tag != -1)
926 goto done;
928 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
929 data.flags |= BLK_MQ_REQ_RESERVED;
931 rq->tag = blk_mq_get_tag(&data);
932 if (rq->tag >= 0) {
933 if (blk_mq_tag_busy(data.hctx)) {
934 rq->rq_flags |= RQF_MQ_INFLIGHT;
935 atomic_inc(&data.hctx->nr_active);
937 data.hctx->tags->rqs[rq->tag] = rq;
940 done:
941 if (hctx)
942 *hctx = data.hctx;
943 return rq->tag != -1;
946 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
947 struct request *rq)
949 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
950 rq->tag = -1;
952 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
953 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
954 atomic_dec(&hctx->nr_active);
958 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
959 struct request *rq)
961 if (rq->tag == -1 || rq->internal_tag == -1)
962 return;
964 __blk_mq_put_driver_tag(hctx, rq);
967 static void blk_mq_put_driver_tag(struct request *rq)
969 struct blk_mq_hw_ctx *hctx;
971 if (rq->tag == -1 || rq->internal_tag == -1)
972 return;
974 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
975 __blk_mq_put_driver_tag(hctx, rq);
979 * If we fail getting a driver tag because all the driver tags are already
980 * assigned and on the dispatch list, BUT the first entry does not have a
981 * tag, then we could deadlock. For that case, move entries with assigned
982 * driver tags to the front, leaving the set of tagged requests in the
983 * same order, and the untagged set in the same order.
985 static bool reorder_tags_to_front(struct list_head *list)
987 struct request *rq, *tmp, *first = NULL;
989 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
990 if (rq == first)
991 break;
992 if (rq->tag != -1) {
993 list_move(&rq->queuelist, list);
994 if (!first)
995 first = rq;
999 return first != NULL;
1002 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1003 void *key)
1005 struct blk_mq_hw_ctx *hctx;
1007 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1009 list_del(&wait->entry);
1010 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
1011 blk_mq_run_hw_queue(hctx, true);
1012 return 1;
1015 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
1017 struct sbq_wait_state *ws;
1020 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
1021 * The thread which wins the race to grab this bit adds the hardware
1022 * queue to the wait queue.
1024 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
1025 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
1026 return false;
1028 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
1029 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
1032 * As soon as this returns, it's no longer safe to fiddle with
1033 * hctx->dispatch_wait, since a completion can wake up the wait queue
1034 * and unlock the bit.
1036 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
1037 return true;
1040 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
1042 struct blk_mq_hw_ctx *hctx;
1043 struct request *rq;
1044 int errors, queued;
1046 if (list_empty(list))
1047 return false;
1050 * Now process all the entries, sending them to the driver.
1052 errors = queued = 0;
1053 do {
1054 struct blk_mq_queue_data bd;
1055 blk_status_t ret;
1057 rq = list_first_entry(list, struct request, queuelist);
1058 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1059 if (!queued && reorder_tags_to_front(list))
1060 continue;
1063 * The initial allocation attempt failed, so we need to
1064 * rerun the hardware queue when a tag is freed.
1066 if (!blk_mq_dispatch_wait_add(hctx))
1067 break;
1070 * It's possible that a tag was freed in the window
1071 * between the allocation failure and adding the
1072 * hardware queue to the wait queue.
1074 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1075 break;
1078 list_del_init(&rq->queuelist);
1080 bd.rq = rq;
1083 * Flag last if we have no more requests, or if we have more
1084 * but can't assign a driver tag to it.
1086 if (list_empty(list))
1087 bd.last = true;
1088 else {
1089 struct request *nxt;
1091 nxt = list_first_entry(list, struct request, queuelist);
1092 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1095 ret = q->mq_ops->queue_rq(hctx, &bd);
1096 if (ret == BLK_STS_RESOURCE) {
1097 blk_mq_put_driver_tag_hctx(hctx, rq);
1098 list_add(&rq->queuelist, list);
1099 __blk_mq_requeue_request(rq);
1100 break;
1103 if (unlikely(ret != BLK_STS_OK)) {
1104 errors++;
1105 blk_mq_end_request(rq, BLK_STS_IOERR);
1106 continue;
1109 queued++;
1110 } while (!list_empty(list));
1112 hctx->dispatched[queued_to_index(queued)]++;
1115 * Any items that need requeuing? Stuff them into hctx->dispatch,
1116 * that is where we will continue on next queue run.
1118 if (!list_empty(list)) {
1120 * If an I/O scheduler has been configured and we got a driver
1121 * tag for the next request already, free it again.
1123 rq = list_first_entry(list, struct request, queuelist);
1124 blk_mq_put_driver_tag(rq);
1126 spin_lock(&hctx->lock);
1127 list_splice_init(list, &hctx->dispatch);
1128 spin_unlock(&hctx->lock);
1131 * If SCHED_RESTART was set by the caller of this function and
1132 * it is no longer set that means that it was cleared by another
1133 * thread and hence that a queue rerun is needed.
1135 * If TAG_WAITING is set that means that an I/O scheduler has
1136 * been configured and another thread is waiting for a driver
1137 * tag. To guarantee fairness, do not rerun this hardware queue
1138 * but let the other thread grab the driver tag.
1140 * If no I/O scheduler has been configured it is possible that
1141 * the hardware queue got stopped and restarted before requests
1142 * were pushed back onto the dispatch list. Rerun the queue to
1143 * avoid starvation. Notes:
1144 * - blk_mq_run_hw_queue() checks whether or not a queue has
1145 * been stopped before rerunning a queue.
1146 * - Some but not all block drivers stop a queue before
1147 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1148 * and dm-rq.
1150 if (!blk_mq_sched_needs_restart(hctx) &&
1151 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1152 blk_mq_run_hw_queue(hctx, true);
1155 return (queued + errors) != 0;
1158 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1160 int srcu_idx;
1163 * We should be running this queue from one of the CPUs that
1164 * are mapped to it.
1166 * There are at least two related races now between setting
1167 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1168 * __blk_mq_run_hw_queue():
1170 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1171 * but later it becomes online, then this warning is harmless
1172 * at all
1174 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1175 * but later it becomes offline, then the warning can't be
1176 * triggered, and we depend on blk-mq timeout handler to
1177 * handle dispatched requests to this hctx
1179 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1180 cpu_online(hctx->next_cpu)) {
1181 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1182 raw_smp_processor_id(),
1183 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1184 dump_stack();
1188 * We can't run the queue inline with ints disabled. Ensure that
1189 * we catch bad users of this early.
1191 WARN_ON_ONCE(in_interrupt());
1193 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1194 rcu_read_lock();
1195 blk_mq_sched_dispatch_requests(hctx);
1196 rcu_read_unlock();
1197 } else {
1198 might_sleep();
1200 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1201 blk_mq_sched_dispatch_requests(hctx);
1202 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1207 * It'd be great if the workqueue API had a way to pass
1208 * in a mask and had some smarts for more clever placement.
1209 * For now we just round-robin here, switching for every
1210 * BLK_MQ_CPU_WORK_BATCH queued items.
1212 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1214 if (hctx->queue->nr_hw_queues == 1)
1215 return WORK_CPU_UNBOUND;
1217 if (--hctx->next_cpu_batch <= 0) {
1218 int next_cpu;
1220 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1221 if (next_cpu >= nr_cpu_ids)
1222 next_cpu = cpumask_first(hctx->cpumask);
1224 hctx->next_cpu = next_cpu;
1225 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1228 return hctx->next_cpu;
1231 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1232 unsigned long msecs)
1234 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1235 return;
1237 if (unlikely(blk_mq_hctx_stopped(hctx)))
1238 return;
1240 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1241 int cpu = get_cpu();
1242 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1243 __blk_mq_run_hw_queue(hctx);
1244 put_cpu();
1245 return;
1248 put_cpu();
1251 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1252 &hctx->run_work,
1253 msecs_to_jiffies(msecs));
1256 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1258 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1260 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1262 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1264 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1266 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1268 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1270 struct blk_mq_hw_ctx *hctx;
1271 int i;
1273 queue_for_each_hw_ctx(q, hctx, i) {
1274 if (!blk_mq_hctx_has_pending(hctx) ||
1275 blk_mq_hctx_stopped(hctx))
1276 continue;
1278 blk_mq_run_hw_queue(hctx, async);
1281 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1284 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1285 * @q: request queue.
1287 * The caller is responsible for serializing this function against
1288 * blk_mq_{start,stop}_hw_queue().
1290 bool blk_mq_queue_stopped(struct request_queue *q)
1292 struct blk_mq_hw_ctx *hctx;
1293 int i;
1295 queue_for_each_hw_ctx(q, hctx, i)
1296 if (blk_mq_hctx_stopped(hctx))
1297 return true;
1299 return false;
1301 EXPORT_SYMBOL(blk_mq_queue_stopped);
1304 * This function is often used for pausing .queue_rq() by driver when
1305 * there isn't enough resource or some conditions aren't satisfied, and
1306 * BLK_STS_RESOURCE is usually returned.
1308 * We do not guarantee that dispatch can be drained or blocked
1309 * after blk_mq_stop_hw_queue() returns. Please use
1310 * blk_mq_quiesce_queue() for that requirement.
1312 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1314 cancel_delayed_work(&hctx->run_work);
1316 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1318 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1321 * This function is often used for pausing .queue_rq() by driver when
1322 * there isn't enough resource or some conditions aren't satisfied, and
1323 * BLK_STS_RESOURCE is usually returned.
1325 * We do not guarantee that dispatch can be drained or blocked
1326 * after blk_mq_stop_hw_queues() returns. Please use
1327 * blk_mq_quiesce_queue() for that requirement.
1329 void blk_mq_stop_hw_queues(struct request_queue *q)
1331 struct blk_mq_hw_ctx *hctx;
1332 int i;
1334 queue_for_each_hw_ctx(q, hctx, i)
1335 blk_mq_stop_hw_queue(hctx);
1337 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1339 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1341 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1343 blk_mq_run_hw_queue(hctx, false);
1345 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1347 void blk_mq_start_hw_queues(struct request_queue *q)
1349 struct blk_mq_hw_ctx *hctx;
1350 int i;
1352 queue_for_each_hw_ctx(q, hctx, i)
1353 blk_mq_start_hw_queue(hctx);
1355 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1357 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1359 if (!blk_mq_hctx_stopped(hctx))
1360 return;
1362 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1363 blk_mq_run_hw_queue(hctx, async);
1365 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1367 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1369 struct blk_mq_hw_ctx *hctx;
1370 int i;
1372 queue_for_each_hw_ctx(q, hctx, i)
1373 blk_mq_start_stopped_hw_queue(hctx, async);
1375 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1377 static void blk_mq_run_work_fn(struct work_struct *work)
1379 struct blk_mq_hw_ctx *hctx;
1381 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1384 * If we are stopped, don't run the queue. The exception is if
1385 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1386 * the STOPPED bit and run it.
1388 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1389 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1390 return;
1392 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1393 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1396 __blk_mq_run_hw_queue(hctx);
1400 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1402 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1403 return;
1406 * Stop the hw queue, then modify currently delayed work.
1407 * This should prevent us from running the queue prematurely.
1408 * Mark the queue as auto-clearing STOPPED when it runs.
1410 blk_mq_stop_hw_queue(hctx);
1411 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1412 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1413 &hctx->run_work,
1414 msecs_to_jiffies(msecs));
1416 EXPORT_SYMBOL(blk_mq_delay_queue);
1418 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1419 struct request *rq,
1420 bool at_head)
1422 struct blk_mq_ctx *ctx = rq->mq_ctx;
1424 lockdep_assert_held(&ctx->lock);
1426 trace_block_rq_insert(hctx->queue, rq);
1428 if (at_head)
1429 list_add(&rq->queuelist, &ctx->rq_list);
1430 else
1431 list_add_tail(&rq->queuelist, &ctx->rq_list);
1434 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1435 bool at_head)
1437 struct blk_mq_ctx *ctx = rq->mq_ctx;
1439 lockdep_assert_held(&ctx->lock);
1441 __blk_mq_insert_req_list(hctx, rq, at_head);
1442 blk_mq_hctx_mark_pending(hctx, ctx);
1446 * Should only be used carefully, when the caller knows we want to
1447 * bypass a potential IO scheduler on the target device.
1449 void blk_mq_request_bypass_insert(struct request *rq)
1451 struct blk_mq_ctx *ctx = rq->mq_ctx;
1452 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1454 spin_lock(&hctx->lock);
1455 list_add_tail(&rq->queuelist, &hctx->dispatch);
1456 spin_unlock(&hctx->lock);
1458 blk_mq_run_hw_queue(hctx, false);
1461 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1462 struct list_head *list)
1466 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1467 * offline now
1469 spin_lock(&ctx->lock);
1470 while (!list_empty(list)) {
1471 struct request *rq;
1473 rq = list_first_entry(list, struct request, queuelist);
1474 BUG_ON(rq->mq_ctx != ctx);
1475 list_del_init(&rq->queuelist);
1476 __blk_mq_insert_req_list(hctx, rq, false);
1478 blk_mq_hctx_mark_pending(hctx, ctx);
1479 spin_unlock(&ctx->lock);
1482 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1484 struct request *rqa = container_of(a, struct request, queuelist);
1485 struct request *rqb = container_of(b, struct request, queuelist);
1487 return !(rqa->mq_ctx < rqb->mq_ctx ||
1488 (rqa->mq_ctx == rqb->mq_ctx &&
1489 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1492 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1494 struct blk_mq_ctx *this_ctx;
1495 struct request_queue *this_q;
1496 struct request *rq;
1497 LIST_HEAD(list);
1498 LIST_HEAD(ctx_list);
1499 unsigned int depth;
1501 list_splice_init(&plug->mq_list, &list);
1503 list_sort(NULL, &list, plug_ctx_cmp);
1505 this_q = NULL;
1506 this_ctx = NULL;
1507 depth = 0;
1509 while (!list_empty(&list)) {
1510 rq = list_entry_rq(list.next);
1511 list_del_init(&rq->queuelist);
1512 BUG_ON(!rq->q);
1513 if (rq->mq_ctx != this_ctx) {
1514 if (this_ctx) {
1515 trace_block_unplug(this_q, depth, !from_schedule);
1516 blk_mq_sched_insert_requests(this_q, this_ctx,
1517 &ctx_list,
1518 from_schedule);
1521 this_ctx = rq->mq_ctx;
1522 this_q = rq->q;
1523 depth = 0;
1526 depth++;
1527 list_add_tail(&rq->queuelist, &ctx_list);
1531 * If 'this_ctx' is set, we know we have entries to complete
1532 * on 'ctx_list'. Do those.
1534 if (this_ctx) {
1535 trace_block_unplug(this_q, depth, !from_schedule);
1536 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1537 from_schedule);
1541 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1543 blk_init_request_from_bio(rq, bio);
1545 blk_account_io_start(rq, true);
1548 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1550 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1551 !blk_queue_nomerges(hctx->queue);
1554 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1555 struct blk_mq_ctx *ctx,
1556 struct request *rq)
1558 spin_lock(&ctx->lock);
1559 __blk_mq_insert_request(hctx, rq, false);
1560 spin_unlock(&ctx->lock);
1563 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1565 if (rq->tag != -1)
1566 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1568 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1571 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1572 struct request *rq,
1573 blk_qc_t *cookie, bool may_sleep)
1575 struct request_queue *q = rq->q;
1576 struct blk_mq_queue_data bd = {
1577 .rq = rq,
1578 .last = true,
1580 blk_qc_t new_cookie;
1581 blk_status_t ret;
1582 bool run_queue = true;
1584 /* RCU or SRCU read lock is needed before checking quiesced flag */
1585 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1586 run_queue = false;
1587 goto insert;
1590 if (q->elevator)
1591 goto insert;
1593 if (!blk_mq_get_driver_tag(rq, NULL, false))
1594 goto insert;
1596 new_cookie = request_to_qc_t(hctx, rq);
1599 * For OK queue, we are done. For error, kill it. Any other
1600 * error (busy), just add it to our list as we previously
1601 * would have done
1603 ret = q->mq_ops->queue_rq(hctx, &bd);
1604 switch (ret) {
1605 case BLK_STS_OK:
1606 *cookie = new_cookie;
1607 return;
1608 case BLK_STS_RESOURCE:
1609 __blk_mq_requeue_request(rq);
1610 goto insert;
1611 default:
1612 *cookie = BLK_QC_T_NONE;
1613 blk_mq_end_request(rq, ret);
1614 return;
1617 insert:
1618 blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1621 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1622 struct request *rq, blk_qc_t *cookie)
1624 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1625 rcu_read_lock();
1626 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1627 rcu_read_unlock();
1628 } else {
1629 unsigned int srcu_idx;
1631 might_sleep();
1633 srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1634 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1635 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1639 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1641 const int is_sync = op_is_sync(bio->bi_opf);
1642 const int is_flush_fua = op_is_flush(bio->bi_opf);
1643 struct blk_mq_alloc_data data = { .flags = 0 };
1644 struct request *rq;
1645 unsigned int request_count = 0;
1646 struct blk_plug *plug;
1647 struct request *same_queue_rq = NULL;
1648 blk_qc_t cookie;
1649 unsigned int wb_acct;
1651 blk_queue_bounce(q, &bio);
1653 blk_queue_split(q, &bio);
1655 if (!bio_integrity_prep(bio))
1656 return BLK_QC_T_NONE;
1658 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1659 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1660 return BLK_QC_T_NONE;
1662 if (blk_mq_sched_bio_merge(q, bio))
1663 return BLK_QC_T_NONE;
1665 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1667 trace_block_getrq(q, bio, bio->bi_opf);
1669 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1670 if (unlikely(!rq)) {
1671 __wbt_done(q->rq_wb, wb_acct);
1672 if (bio->bi_opf & REQ_NOWAIT)
1673 bio_wouldblock_error(bio);
1674 return BLK_QC_T_NONE;
1677 wbt_track(&rq->issue_stat, wb_acct);
1679 cookie = request_to_qc_t(data.hctx, rq);
1681 plug = current->plug;
1682 if (unlikely(is_flush_fua)) {
1683 blk_mq_put_ctx(data.ctx);
1684 blk_mq_bio_to_request(rq, bio);
1685 if (q->elevator) {
1686 blk_mq_sched_insert_request(rq, false, true, true,
1687 true);
1688 } else {
1689 blk_insert_flush(rq);
1690 blk_mq_run_hw_queue(data.hctx, true);
1692 } else if (plug && q->nr_hw_queues == 1) {
1693 struct request *last = NULL;
1695 blk_mq_put_ctx(data.ctx);
1696 blk_mq_bio_to_request(rq, bio);
1699 * @request_count may become stale because of schedule
1700 * out, so check the list again.
1702 if (list_empty(&plug->mq_list))
1703 request_count = 0;
1704 else if (blk_queue_nomerges(q))
1705 request_count = blk_plug_queued_count(q);
1707 if (!request_count)
1708 trace_block_plug(q);
1709 else
1710 last = list_entry_rq(plug->mq_list.prev);
1712 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1713 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1714 blk_flush_plug_list(plug, false);
1715 trace_block_plug(q);
1718 list_add_tail(&rq->queuelist, &plug->mq_list);
1719 } else if (plug && !blk_queue_nomerges(q)) {
1720 blk_mq_bio_to_request(rq, bio);
1723 * We do limited plugging. If the bio can be merged, do that.
1724 * Otherwise the existing request in the plug list will be
1725 * issued. So the plug list will have one request at most
1726 * The plug list might get flushed before this. If that happens,
1727 * the plug list is empty, and same_queue_rq is invalid.
1729 if (list_empty(&plug->mq_list))
1730 same_queue_rq = NULL;
1731 if (same_queue_rq)
1732 list_del_init(&same_queue_rq->queuelist);
1733 list_add_tail(&rq->queuelist, &plug->mq_list);
1735 blk_mq_put_ctx(data.ctx);
1737 if (same_queue_rq) {
1738 data.hctx = blk_mq_map_queue(q,
1739 same_queue_rq->mq_ctx->cpu);
1740 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1741 &cookie);
1743 } else if (q->nr_hw_queues > 1 && is_sync) {
1744 blk_mq_put_ctx(data.ctx);
1745 blk_mq_bio_to_request(rq, bio);
1746 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1747 } else if (q->elevator) {
1748 blk_mq_put_ctx(data.ctx);
1749 blk_mq_bio_to_request(rq, bio);
1750 blk_mq_sched_insert_request(rq, false, true, true, true);
1751 } else {
1752 blk_mq_put_ctx(data.ctx);
1753 blk_mq_bio_to_request(rq, bio);
1754 blk_mq_queue_io(data.hctx, data.ctx, rq);
1755 blk_mq_run_hw_queue(data.hctx, true);
1758 return cookie;
1761 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1762 unsigned int hctx_idx)
1764 struct page *page;
1766 if (tags->rqs && set->ops->exit_request) {
1767 int i;
1769 for (i = 0; i < tags->nr_tags; i++) {
1770 struct request *rq = tags->static_rqs[i];
1772 if (!rq)
1773 continue;
1774 set->ops->exit_request(set, rq, hctx_idx);
1775 tags->static_rqs[i] = NULL;
1779 while (!list_empty(&tags->page_list)) {
1780 page = list_first_entry(&tags->page_list, struct page, lru);
1781 list_del_init(&page->lru);
1783 * Remove kmemleak object previously allocated in
1784 * blk_mq_init_rq_map().
1786 kmemleak_free(page_address(page));
1787 __free_pages(page, page->private);
1791 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1793 kfree(tags->rqs);
1794 tags->rqs = NULL;
1795 kfree(tags->static_rqs);
1796 tags->static_rqs = NULL;
1798 blk_mq_free_tags(tags);
1801 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1802 unsigned int hctx_idx,
1803 unsigned int nr_tags,
1804 unsigned int reserved_tags)
1806 struct blk_mq_tags *tags;
1807 int node;
1809 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1810 if (node == NUMA_NO_NODE)
1811 node = set->numa_node;
1813 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1814 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1815 if (!tags)
1816 return NULL;
1818 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1819 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1820 node);
1821 if (!tags->rqs) {
1822 blk_mq_free_tags(tags);
1823 return NULL;
1826 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1827 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1828 node);
1829 if (!tags->static_rqs) {
1830 kfree(tags->rqs);
1831 blk_mq_free_tags(tags);
1832 return NULL;
1835 return tags;
1838 static size_t order_to_size(unsigned int order)
1840 return (size_t)PAGE_SIZE << order;
1843 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1844 unsigned int hctx_idx, unsigned int depth)
1846 unsigned int i, j, entries_per_page, max_order = 4;
1847 size_t rq_size, left;
1848 int node;
1850 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1851 if (node == NUMA_NO_NODE)
1852 node = set->numa_node;
1854 INIT_LIST_HEAD(&tags->page_list);
1857 * rq_size is the size of the request plus driver payload, rounded
1858 * to the cacheline size
1860 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1861 cache_line_size());
1862 left = rq_size * depth;
1864 for (i = 0; i < depth; ) {
1865 int this_order = max_order;
1866 struct page *page;
1867 int to_do;
1868 void *p;
1870 while (this_order && left < order_to_size(this_order - 1))
1871 this_order--;
1873 do {
1874 page = alloc_pages_node(node,
1875 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1876 this_order);
1877 if (page)
1878 break;
1879 if (!this_order--)
1880 break;
1881 if (order_to_size(this_order) < rq_size)
1882 break;
1883 } while (1);
1885 if (!page)
1886 goto fail;
1888 page->private = this_order;
1889 list_add_tail(&page->lru, &tags->page_list);
1891 p = page_address(page);
1893 * Allow kmemleak to scan these pages as they contain pointers
1894 * to additional allocations like via ops->init_request().
1896 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1897 entries_per_page = order_to_size(this_order) / rq_size;
1898 to_do = min(entries_per_page, depth - i);
1899 left -= to_do * rq_size;
1900 for (j = 0; j < to_do; j++) {
1901 struct request *rq = p;
1903 tags->static_rqs[i] = rq;
1904 if (set->ops->init_request) {
1905 if (set->ops->init_request(set, rq, hctx_idx,
1906 node)) {
1907 tags->static_rqs[i] = NULL;
1908 goto fail;
1912 p += rq_size;
1913 i++;
1916 return 0;
1918 fail:
1919 blk_mq_free_rqs(set, tags, hctx_idx);
1920 return -ENOMEM;
1924 * 'cpu' is going away. splice any existing rq_list entries from this
1925 * software queue to the hw queue dispatch list, and ensure that it
1926 * gets run.
1928 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1930 struct blk_mq_hw_ctx *hctx;
1931 struct blk_mq_ctx *ctx;
1932 LIST_HEAD(tmp);
1934 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1935 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1937 spin_lock(&ctx->lock);
1938 if (!list_empty(&ctx->rq_list)) {
1939 list_splice_init(&ctx->rq_list, &tmp);
1940 blk_mq_hctx_clear_pending(hctx, ctx);
1942 spin_unlock(&ctx->lock);
1944 if (list_empty(&tmp))
1945 return 0;
1947 spin_lock(&hctx->lock);
1948 list_splice_tail_init(&tmp, &hctx->dispatch);
1949 spin_unlock(&hctx->lock);
1951 blk_mq_run_hw_queue(hctx, true);
1952 return 0;
1955 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1957 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1958 &hctx->cpuhp_dead);
1961 /* hctx->ctxs will be freed in queue's release handler */
1962 static void blk_mq_exit_hctx(struct request_queue *q,
1963 struct blk_mq_tag_set *set,
1964 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1966 blk_mq_debugfs_unregister_hctx(hctx);
1968 if (blk_mq_hw_queue_mapped(hctx))
1969 blk_mq_tag_idle(hctx);
1971 if (set->ops->exit_request)
1972 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1974 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1976 if (set->ops->exit_hctx)
1977 set->ops->exit_hctx(hctx, hctx_idx);
1979 if (hctx->flags & BLK_MQ_F_BLOCKING)
1980 cleanup_srcu_struct(hctx->queue_rq_srcu);
1982 blk_mq_remove_cpuhp(hctx);
1983 blk_free_flush_queue(hctx->fq);
1984 sbitmap_free(&hctx->ctx_map);
1987 static void blk_mq_exit_hw_queues(struct request_queue *q,
1988 struct blk_mq_tag_set *set, int nr_queue)
1990 struct blk_mq_hw_ctx *hctx;
1991 unsigned int i;
1993 queue_for_each_hw_ctx(q, hctx, i) {
1994 if (i == nr_queue)
1995 break;
1996 blk_mq_exit_hctx(q, set, hctx, i);
2000 static int blk_mq_init_hctx(struct request_queue *q,
2001 struct blk_mq_tag_set *set,
2002 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2004 int node;
2006 node = hctx->numa_node;
2007 if (node == NUMA_NO_NODE)
2008 node = hctx->numa_node = set->numa_node;
2010 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2011 spin_lock_init(&hctx->lock);
2012 INIT_LIST_HEAD(&hctx->dispatch);
2013 hctx->queue = q;
2014 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2016 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2018 hctx->tags = set->tags[hctx_idx];
2021 * Allocate space for all possible cpus to avoid allocation at
2022 * runtime
2024 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
2025 GFP_KERNEL, node);
2026 if (!hctx->ctxs)
2027 goto unregister_cpu_notifier;
2029 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2030 node))
2031 goto free_ctxs;
2033 hctx->nr_ctx = 0;
2035 if (set->ops->init_hctx &&
2036 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2037 goto free_bitmap;
2039 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2040 goto exit_hctx;
2042 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2043 if (!hctx->fq)
2044 goto sched_exit_hctx;
2046 if (set->ops->init_request &&
2047 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2048 node))
2049 goto free_fq;
2051 if (hctx->flags & BLK_MQ_F_BLOCKING)
2052 init_srcu_struct(hctx->queue_rq_srcu);
2054 blk_mq_debugfs_register_hctx(q, hctx);
2056 return 0;
2058 free_fq:
2059 kfree(hctx->fq);
2060 sched_exit_hctx:
2061 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2062 exit_hctx:
2063 if (set->ops->exit_hctx)
2064 set->ops->exit_hctx(hctx, hctx_idx);
2065 free_bitmap:
2066 sbitmap_free(&hctx->ctx_map);
2067 free_ctxs:
2068 kfree(hctx->ctxs);
2069 unregister_cpu_notifier:
2070 blk_mq_remove_cpuhp(hctx);
2071 return -1;
2074 static void blk_mq_init_cpu_queues(struct request_queue *q,
2075 unsigned int nr_hw_queues)
2077 unsigned int i;
2079 for_each_possible_cpu(i) {
2080 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2081 struct blk_mq_hw_ctx *hctx;
2083 __ctx->cpu = i;
2084 spin_lock_init(&__ctx->lock);
2085 INIT_LIST_HEAD(&__ctx->rq_list);
2086 __ctx->queue = q;
2088 /* If the cpu isn't present, the cpu is mapped to first hctx */
2089 if (!cpu_present(i))
2090 continue;
2092 hctx = blk_mq_map_queue(q, i);
2095 * Set local node, IFF we have more than one hw queue. If
2096 * not, we remain on the home node of the device
2098 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2099 hctx->numa_node = local_memory_node(cpu_to_node(i));
2103 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2105 int ret = 0;
2107 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2108 set->queue_depth, set->reserved_tags);
2109 if (!set->tags[hctx_idx])
2110 return false;
2112 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2113 set->queue_depth);
2114 if (!ret)
2115 return true;
2117 blk_mq_free_rq_map(set->tags[hctx_idx]);
2118 set->tags[hctx_idx] = NULL;
2119 return false;
2122 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2123 unsigned int hctx_idx)
2125 if (set->tags[hctx_idx]) {
2126 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2127 blk_mq_free_rq_map(set->tags[hctx_idx]);
2128 set->tags[hctx_idx] = NULL;
2132 static void blk_mq_map_swqueue(struct request_queue *q)
2134 unsigned int i, hctx_idx;
2135 struct blk_mq_hw_ctx *hctx;
2136 struct blk_mq_ctx *ctx;
2137 struct blk_mq_tag_set *set = q->tag_set;
2140 * Avoid others reading imcomplete hctx->cpumask through sysfs
2142 mutex_lock(&q->sysfs_lock);
2144 queue_for_each_hw_ctx(q, hctx, i) {
2145 cpumask_clear(hctx->cpumask);
2146 hctx->nr_ctx = 0;
2150 * Map software to hardware queues.
2152 * If the cpu isn't present, the cpu is mapped to first hctx.
2154 for_each_present_cpu(i) {
2155 hctx_idx = q->mq_map[i];
2156 /* unmapped hw queue can be remapped after CPU topo changed */
2157 if (!set->tags[hctx_idx] &&
2158 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2160 * If tags initialization fail for some hctx,
2161 * that hctx won't be brought online. In this
2162 * case, remap the current ctx to hctx[0] which
2163 * is guaranteed to always have tags allocated
2165 q->mq_map[i] = 0;
2168 ctx = per_cpu_ptr(q->queue_ctx, i);
2169 hctx = blk_mq_map_queue(q, i);
2171 cpumask_set_cpu(i, hctx->cpumask);
2172 ctx->index_hw = hctx->nr_ctx;
2173 hctx->ctxs[hctx->nr_ctx++] = ctx;
2176 mutex_unlock(&q->sysfs_lock);
2178 queue_for_each_hw_ctx(q, hctx, i) {
2180 * If no software queues are mapped to this hardware queue,
2181 * disable it and free the request entries.
2183 if (!hctx->nr_ctx) {
2184 /* Never unmap queue 0. We need it as a
2185 * fallback in case of a new remap fails
2186 * allocation
2188 if (i && set->tags[i])
2189 blk_mq_free_map_and_requests(set, i);
2191 hctx->tags = NULL;
2192 continue;
2195 hctx->tags = set->tags[i];
2196 WARN_ON(!hctx->tags);
2199 * Set the map size to the number of mapped software queues.
2200 * This is more accurate and more efficient than looping
2201 * over all possibly mapped software queues.
2203 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2206 * Initialize batch roundrobin counts
2208 hctx->next_cpu = cpumask_first(hctx->cpumask);
2209 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2214 * Caller needs to ensure that we're either frozen/quiesced, or that
2215 * the queue isn't live yet.
2217 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2219 struct blk_mq_hw_ctx *hctx;
2220 int i;
2222 queue_for_each_hw_ctx(q, hctx, i) {
2223 if (shared) {
2224 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2225 atomic_inc(&q->shared_hctx_restart);
2226 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2227 } else {
2228 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2229 atomic_dec(&q->shared_hctx_restart);
2230 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2235 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2236 bool shared)
2238 struct request_queue *q;
2240 lockdep_assert_held(&set->tag_list_lock);
2242 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2243 blk_mq_freeze_queue(q);
2244 queue_set_hctx_shared(q, shared);
2245 blk_mq_unfreeze_queue(q);
2249 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2251 struct blk_mq_tag_set *set = q->tag_set;
2253 mutex_lock(&set->tag_list_lock);
2254 list_del_rcu(&q->tag_set_list);
2255 if (list_is_singular(&set->tag_list)) {
2256 /* just transitioned to unshared */
2257 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2258 /* update existing queue */
2259 blk_mq_update_tag_set_depth(set, false);
2261 mutex_unlock(&set->tag_list_lock);
2262 synchronize_rcu();
2263 INIT_LIST_HEAD(&q->tag_set_list);
2266 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2267 struct request_queue *q)
2269 q->tag_set = set;
2271 mutex_lock(&set->tag_list_lock);
2273 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2274 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2275 set->flags |= BLK_MQ_F_TAG_SHARED;
2276 /* update existing queue */
2277 blk_mq_update_tag_set_depth(set, true);
2279 if (set->flags & BLK_MQ_F_TAG_SHARED)
2280 queue_set_hctx_shared(q, true);
2281 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2283 mutex_unlock(&set->tag_list_lock);
2287 * It is the actual release handler for mq, but we do it from
2288 * request queue's release handler for avoiding use-after-free
2289 * and headache because q->mq_kobj shouldn't have been introduced,
2290 * but we can't group ctx/kctx kobj without it.
2292 void blk_mq_release(struct request_queue *q)
2294 struct blk_mq_hw_ctx *hctx;
2295 unsigned int i;
2297 /* hctx kobj stays in hctx */
2298 queue_for_each_hw_ctx(q, hctx, i) {
2299 if (!hctx)
2300 continue;
2301 kobject_put(&hctx->kobj);
2304 q->mq_map = NULL;
2306 kfree(q->queue_hw_ctx);
2309 * release .mq_kobj and sw queue's kobject now because
2310 * both share lifetime with request queue.
2312 blk_mq_sysfs_deinit(q);
2314 free_percpu(q->queue_ctx);
2317 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2319 struct request_queue *uninit_q, *q;
2321 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2322 if (!uninit_q)
2323 return ERR_PTR(-ENOMEM);
2325 q = blk_mq_init_allocated_queue(set, uninit_q);
2326 if (IS_ERR(q))
2327 blk_cleanup_queue(uninit_q);
2329 return q;
2331 EXPORT_SYMBOL(blk_mq_init_queue);
2333 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2335 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2337 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2338 __alignof__(struct blk_mq_hw_ctx)) !=
2339 sizeof(struct blk_mq_hw_ctx));
2341 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2342 hw_ctx_size += sizeof(struct srcu_struct);
2344 return hw_ctx_size;
2347 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2348 struct request_queue *q)
2350 int i, j;
2351 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2353 blk_mq_sysfs_unregister(q);
2355 /* protect against switching io scheduler */
2356 mutex_lock(&q->sysfs_lock);
2357 for (i = 0; i < set->nr_hw_queues; i++) {
2358 int node;
2360 if (hctxs[i])
2361 continue;
2363 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2364 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2365 GFP_KERNEL, node);
2366 if (!hctxs[i])
2367 break;
2369 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2370 node)) {
2371 kfree(hctxs[i]);
2372 hctxs[i] = NULL;
2373 break;
2376 atomic_set(&hctxs[i]->nr_active, 0);
2377 hctxs[i]->numa_node = node;
2378 hctxs[i]->queue_num = i;
2380 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2381 free_cpumask_var(hctxs[i]->cpumask);
2382 kfree(hctxs[i]);
2383 hctxs[i] = NULL;
2384 break;
2386 blk_mq_hctx_kobj_init(hctxs[i]);
2388 for (j = i; j < q->nr_hw_queues; j++) {
2389 struct blk_mq_hw_ctx *hctx = hctxs[j];
2391 if (hctx) {
2392 if (hctx->tags)
2393 blk_mq_free_map_and_requests(set, j);
2394 blk_mq_exit_hctx(q, set, hctx, j);
2395 kobject_put(&hctx->kobj);
2396 hctxs[j] = NULL;
2400 q->nr_hw_queues = i;
2401 mutex_unlock(&q->sysfs_lock);
2402 blk_mq_sysfs_register(q);
2405 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2406 struct request_queue *q)
2408 /* mark the queue as mq asap */
2409 q->mq_ops = set->ops;
2411 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2412 blk_mq_poll_stats_bkt,
2413 BLK_MQ_POLL_STATS_BKTS, q);
2414 if (!q->poll_cb)
2415 goto err_exit;
2417 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2418 if (!q->queue_ctx)
2419 goto err_exit;
2421 /* init q->mq_kobj and sw queues' kobjects */
2422 blk_mq_sysfs_init(q);
2424 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2425 GFP_KERNEL, set->numa_node);
2426 if (!q->queue_hw_ctx)
2427 goto err_percpu;
2429 q->mq_map = set->mq_map;
2431 blk_mq_realloc_hw_ctxs(set, q);
2432 if (!q->nr_hw_queues)
2433 goto err_hctxs;
2435 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2436 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2438 q->nr_queues = nr_cpu_ids;
2440 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2442 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2443 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2445 q->sg_reserved_size = INT_MAX;
2447 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2448 INIT_LIST_HEAD(&q->requeue_list);
2449 spin_lock_init(&q->requeue_lock);
2451 blk_queue_make_request(q, blk_mq_make_request);
2454 * Do this after blk_queue_make_request() overrides it...
2456 q->nr_requests = set->queue_depth;
2459 * Default to classic polling
2461 q->poll_nsec = -1;
2463 if (set->ops->complete)
2464 blk_queue_softirq_done(q, set->ops->complete);
2466 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2467 blk_mq_add_queue_tag_set(set, q);
2468 blk_mq_map_swqueue(q);
2470 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2471 int ret;
2473 ret = blk_mq_sched_init(q);
2474 if (ret)
2475 return ERR_PTR(ret);
2478 return q;
2480 err_hctxs:
2481 kfree(q->queue_hw_ctx);
2482 err_percpu:
2483 free_percpu(q->queue_ctx);
2484 err_exit:
2485 q->mq_ops = NULL;
2486 return ERR_PTR(-ENOMEM);
2488 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2490 void blk_mq_free_queue(struct request_queue *q)
2492 struct blk_mq_tag_set *set = q->tag_set;
2494 blk_mq_del_queue_tag_set(q);
2495 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2498 /* Basically redo blk_mq_init_queue with queue frozen */
2499 static void blk_mq_queue_reinit(struct request_queue *q)
2501 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2503 blk_mq_debugfs_unregister_hctxs(q);
2504 blk_mq_sysfs_unregister(q);
2507 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2508 * we should change hctx numa_node according to new topology (this
2509 * involves free and re-allocate memory, worthy doing?)
2512 blk_mq_map_swqueue(q);
2514 blk_mq_sysfs_register(q);
2515 blk_mq_debugfs_register_hctxs(q);
2518 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2520 int i;
2522 for (i = 0; i < set->nr_hw_queues; i++)
2523 if (!__blk_mq_alloc_rq_map(set, i))
2524 goto out_unwind;
2526 return 0;
2528 out_unwind:
2529 while (--i >= 0)
2530 blk_mq_free_rq_map(set->tags[i]);
2532 return -ENOMEM;
2536 * Allocate the request maps associated with this tag_set. Note that this
2537 * may reduce the depth asked for, if memory is tight. set->queue_depth
2538 * will be updated to reflect the allocated depth.
2540 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2542 unsigned int depth;
2543 int err;
2545 depth = set->queue_depth;
2546 do {
2547 err = __blk_mq_alloc_rq_maps(set);
2548 if (!err)
2549 break;
2551 set->queue_depth >>= 1;
2552 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2553 err = -ENOMEM;
2554 break;
2556 } while (set->queue_depth);
2558 if (!set->queue_depth || err) {
2559 pr_err("blk-mq: failed to allocate request map\n");
2560 return -ENOMEM;
2563 if (depth != set->queue_depth)
2564 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2565 depth, set->queue_depth);
2567 return 0;
2570 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2572 if (set->ops->map_queues) {
2573 int cpu;
2575 * transport .map_queues is usually done in the following
2576 * way:
2578 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2579 * mask = get_cpu_mask(queue)
2580 * for_each_cpu(cpu, mask)
2581 * set->mq_map[cpu] = queue;
2584 * When we need to remap, the table has to be cleared for
2585 * killing stale mapping since one CPU may not be mapped
2586 * to any hw queue.
2588 for_each_possible_cpu(cpu)
2589 set->mq_map[cpu] = 0;
2591 return set->ops->map_queues(set);
2592 } else
2593 return blk_mq_map_queues(set);
2597 * Alloc a tag set to be associated with one or more request queues.
2598 * May fail with EINVAL for various error conditions. May adjust the
2599 * requested depth down, if if it too large. In that case, the set
2600 * value will be stored in set->queue_depth.
2602 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2604 int ret;
2606 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2608 if (!set->nr_hw_queues)
2609 return -EINVAL;
2610 if (!set->queue_depth)
2611 return -EINVAL;
2612 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2613 return -EINVAL;
2615 if (!set->ops->queue_rq)
2616 return -EINVAL;
2618 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2619 pr_info("blk-mq: reduced tag depth to %u\n",
2620 BLK_MQ_MAX_DEPTH);
2621 set->queue_depth = BLK_MQ_MAX_DEPTH;
2625 * If a crashdump is active, then we are potentially in a very
2626 * memory constrained environment. Limit us to 1 queue and
2627 * 64 tags to prevent using too much memory.
2629 if (is_kdump_kernel()) {
2630 set->nr_hw_queues = 1;
2631 set->queue_depth = min(64U, set->queue_depth);
2634 * There is no use for more h/w queues than cpus.
2636 if (set->nr_hw_queues > nr_cpu_ids)
2637 set->nr_hw_queues = nr_cpu_ids;
2639 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2640 GFP_KERNEL, set->numa_node);
2641 if (!set->tags)
2642 return -ENOMEM;
2644 ret = -ENOMEM;
2645 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2646 GFP_KERNEL, set->numa_node);
2647 if (!set->mq_map)
2648 goto out_free_tags;
2650 ret = blk_mq_update_queue_map(set);
2651 if (ret)
2652 goto out_free_mq_map;
2654 ret = blk_mq_alloc_rq_maps(set);
2655 if (ret)
2656 goto out_free_mq_map;
2658 mutex_init(&set->tag_list_lock);
2659 INIT_LIST_HEAD(&set->tag_list);
2661 return 0;
2663 out_free_mq_map:
2664 kfree(set->mq_map);
2665 set->mq_map = NULL;
2666 out_free_tags:
2667 kfree(set->tags);
2668 set->tags = NULL;
2669 return ret;
2671 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2673 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2675 int i;
2677 for (i = 0; i < nr_cpu_ids; i++)
2678 blk_mq_free_map_and_requests(set, i);
2680 kfree(set->mq_map);
2681 set->mq_map = NULL;
2683 kfree(set->tags);
2684 set->tags = NULL;
2686 EXPORT_SYMBOL(blk_mq_free_tag_set);
2688 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2690 struct blk_mq_tag_set *set = q->tag_set;
2691 struct blk_mq_hw_ctx *hctx;
2692 int i, ret;
2694 if (!set)
2695 return -EINVAL;
2697 blk_mq_freeze_queue(q);
2699 ret = 0;
2700 queue_for_each_hw_ctx(q, hctx, i) {
2701 if (!hctx->tags)
2702 continue;
2704 * If we're using an MQ scheduler, just update the scheduler
2705 * queue depth. This is similar to what the old code would do.
2707 if (!hctx->sched_tags) {
2708 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2709 min(nr, set->queue_depth),
2710 false);
2711 } else {
2712 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2713 nr, true);
2715 if (ret)
2716 break;
2719 if (!ret)
2720 q->nr_requests = nr;
2722 blk_mq_unfreeze_queue(q);
2724 return ret;
2727 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2728 int nr_hw_queues)
2730 struct request_queue *q;
2732 lockdep_assert_held(&set->tag_list_lock);
2734 if (nr_hw_queues > nr_cpu_ids)
2735 nr_hw_queues = nr_cpu_ids;
2736 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2737 return;
2739 list_for_each_entry(q, &set->tag_list, tag_set_list)
2740 blk_mq_freeze_queue(q);
2742 set->nr_hw_queues = nr_hw_queues;
2743 blk_mq_update_queue_map(set);
2744 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2745 blk_mq_realloc_hw_ctxs(set, q);
2746 blk_mq_queue_reinit(q);
2749 list_for_each_entry(q, &set->tag_list, tag_set_list)
2750 blk_mq_unfreeze_queue(q);
2753 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2755 mutex_lock(&set->tag_list_lock);
2756 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2757 mutex_unlock(&set->tag_list_lock);
2759 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2761 /* Enable polling stats and return whether they were already enabled. */
2762 static bool blk_poll_stats_enable(struct request_queue *q)
2764 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2765 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2766 return true;
2767 blk_stat_add_callback(q, q->poll_cb);
2768 return false;
2771 static void blk_mq_poll_stats_start(struct request_queue *q)
2774 * We don't arm the callback if polling stats are not enabled or the
2775 * callback is already active.
2777 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2778 blk_stat_is_active(q->poll_cb))
2779 return;
2781 blk_stat_activate_msecs(q->poll_cb, 100);
2784 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2786 struct request_queue *q = cb->data;
2787 int bucket;
2789 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2790 if (cb->stat[bucket].nr_samples)
2791 q->poll_stat[bucket] = cb->stat[bucket];
2795 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2796 struct blk_mq_hw_ctx *hctx,
2797 struct request *rq)
2799 unsigned long ret = 0;
2800 int bucket;
2803 * If stats collection isn't on, don't sleep but turn it on for
2804 * future users
2806 if (!blk_poll_stats_enable(q))
2807 return 0;
2810 * As an optimistic guess, use half of the mean service time
2811 * for this type of request. We can (and should) make this smarter.
2812 * For instance, if the completion latencies are tight, we can
2813 * get closer than just half the mean. This is especially
2814 * important on devices where the completion latencies are longer
2815 * than ~10 usec. We do use the stats for the relevant IO size
2816 * if available which does lead to better estimates.
2818 bucket = blk_mq_poll_stats_bkt(rq);
2819 if (bucket < 0)
2820 return ret;
2822 if (q->poll_stat[bucket].nr_samples)
2823 ret = (q->poll_stat[bucket].mean + 1) / 2;
2825 return ret;
2828 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2829 struct blk_mq_hw_ctx *hctx,
2830 struct request *rq)
2832 struct hrtimer_sleeper hs;
2833 enum hrtimer_mode mode;
2834 unsigned int nsecs;
2835 ktime_t kt;
2837 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2838 return false;
2841 * poll_nsec can be:
2843 * -1: don't ever hybrid sleep
2844 * 0: use half of prev avg
2845 * >0: use this specific value
2847 if (q->poll_nsec == -1)
2848 return false;
2849 else if (q->poll_nsec > 0)
2850 nsecs = q->poll_nsec;
2851 else
2852 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2854 if (!nsecs)
2855 return false;
2857 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2860 * This will be replaced with the stats tracking code, using
2861 * 'avg_completion_time / 2' as the pre-sleep target.
2863 kt = nsecs;
2865 mode = HRTIMER_MODE_REL;
2866 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2867 hrtimer_set_expires(&hs.timer, kt);
2869 hrtimer_init_sleeper(&hs, current);
2870 do {
2871 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2872 break;
2873 set_current_state(TASK_UNINTERRUPTIBLE);
2874 hrtimer_start_expires(&hs.timer, mode);
2875 if (hs.task)
2876 io_schedule();
2877 hrtimer_cancel(&hs.timer);
2878 mode = HRTIMER_MODE_ABS;
2879 } while (hs.task && !signal_pending(current));
2881 __set_current_state(TASK_RUNNING);
2882 destroy_hrtimer_on_stack(&hs.timer);
2883 return true;
2886 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2888 struct request_queue *q = hctx->queue;
2889 long state;
2892 * If we sleep, have the caller restart the poll loop to reset
2893 * the state. Like for the other success return cases, the
2894 * caller is responsible for checking if the IO completed. If
2895 * the IO isn't complete, we'll get called again and will go
2896 * straight to the busy poll loop.
2898 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2899 return true;
2901 hctx->poll_considered++;
2903 state = current->state;
2904 while (!need_resched()) {
2905 int ret;
2907 hctx->poll_invoked++;
2909 ret = q->mq_ops->poll(hctx, rq->tag);
2910 if (ret > 0) {
2911 hctx->poll_success++;
2912 set_current_state(TASK_RUNNING);
2913 return true;
2916 if (signal_pending_state(state, current))
2917 set_current_state(TASK_RUNNING);
2919 if (current->state == TASK_RUNNING)
2920 return true;
2921 if (ret < 0)
2922 break;
2923 cpu_relax();
2926 return false;
2929 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2931 struct blk_mq_hw_ctx *hctx;
2932 struct blk_plug *plug;
2933 struct request *rq;
2935 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2936 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2937 return false;
2939 plug = current->plug;
2940 if (plug)
2941 blk_flush_plug_list(plug, false);
2943 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2944 if (!blk_qc_t_is_internal(cookie))
2945 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2946 else {
2947 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2949 * With scheduling, if the request has completed, we'll
2950 * get a NULL return here, as we clear the sched tag when
2951 * that happens. The request still remains valid, like always,
2952 * so we should be safe with just the NULL check.
2954 if (!rq)
2955 return false;
2958 return __blk_mq_poll(hctx, rq);
2960 EXPORT_SYMBOL_GPL(blk_mq_poll);
2962 static int __init blk_mq_init(void)
2964 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2965 blk_mq_hctx_notify_dead);
2966 return 0;
2968 subsys_initcall(blk_mq_init);