3 * Bluetooth HCI UART driver for Intel devices
5 * Copyright (C) 2015 Intel Corporation
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
43 #define STATE_BOOTLOADER 0
44 #define STATE_DOWNLOADING 1
45 #define STATE_FIRMWARE_LOADED 2
46 #define STATE_FIRMWARE_FAILED 3
47 #define STATE_BOOTING 4
48 #define STATE_LPM_ENABLED 5
49 #define STATE_TX_ACTIVE 6
50 #define STATE_SUSPENDED 7
51 #define STATE_LPM_TRANSACTION 8
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
62 #define LPM_SUSPEND_DELAY_MS 1000
71 struct list_head list
;
72 struct platform_device
*pdev
;
73 struct gpio_desc
*reset
;
79 static LIST_HEAD(intel_device_list
);
80 static DEFINE_MUTEX(intel_device_list_lock
);
83 struct sk_buff
*rx_skb
;
84 struct sk_buff_head txq
;
85 struct work_struct busy_work
;
90 static u8
intel_convert_speed(unsigned int speed
)
122 static int intel_wait_booting(struct hci_uart
*hu
)
124 struct intel_data
*intel
= hu
->priv
;
127 err
= wait_on_bit_timeout(&intel
->flags
, STATE_BOOTING
,
129 msecs_to_jiffies(1000));
132 bt_dev_err(hu
->hdev
, "Device boot interrupted");
137 bt_dev_err(hu
->hdev
, "Device boot timeout");
145 static int intel_wait_lpm_transaction(struct hci_uart
*hu
)
147 struct intel_data
*intel
= hu
->priv
;
150 err
= wait_on_bit_timeout(&intel
->flags
, STATE_LPM_TRANSACTION
,
152 msecs_to_jiffies(1000));
155 bt_dev_err(hu
->hdev
, "LPM transaction interrupted");
160 bt_dev_err(hu
->hdev
, "LPM transaction timeout");
167 static int intel_lpm_suspend(struct hci_uart
*hu
)
169 static const u8 suspend
[] = { 0x01, 0x01, 0x01 };
170 struct intel_data
*intel
= hu
->priv
;
173 if (!test_bit(STATE_LPM_ENABLED
, &intel
->flags
) ||
174 test_bit(STATE_SUSPENDED
, &intel
->flags
))
177 if (test_bit(STATE_TX_ACTIVE
, &intel
->flags
))
180 bt_dev_dbg(hu
->hdev
, "Suspending");
182 skb
= bt_skb_alloc(sizeof(suspend
), GFP_KERNEL
);
184 bt_dev_err(hu
->hdev
, "Failed to alloc memory for LPM packet");
188 skb_put_data(skb
, suspend
, sizeof(suspend
));
189 hci_skb_pkt_type(skb
) = HCI_LPM_PKT
;
191 set_bit(STATE_LPM_TRANSACTION
, &intel
->flags
);
193 /* LPM flow is a priority, enqueue packet at list head */
194 skb_queue_head(&intel
->txq
, skb
);
195 hci_uart_tx_wakeup(hu
);
197 intel_wait_lpm_transaction(hu
);
198 /* Even in case of failure, continue and test the suspended flag */
200 clear_bit(STATE_LPM_TRANSACTION
, &intel
->flags
);
202 if (!test_bit(STATE_SUSPENDED
, &intel
->flags
)) {
203 bt_dev_err(hu
->hdev
, "Device suspend error");
207 bt_dev_dbg(hu
->hdev
, "Suspended");
209 hci_uart_set_flow_control(hu
, true);
214 static int intel_lpm_resume(struct hci_uart
*hu
)
216 struct intel_data
*intel
= hu
->priv
;
219 if (!test_bit(STATE_LPM_ENABLED
, &intel
->flags
) ||
220 !test_bit(STATE_SUSPENDED
, &intel
->flags
))
223 bt_dev_dbg(hu
->hdev
, "Resuming");
225 hci_uart_set_flow_control(hu
, false);
227 skb
= bt_skb_alloc(0, GFP_KERNEL
);
229 bt_dev_err(hu
->hdev
, "Failed to alloc memory for LPM packet");
233 hci_skb_pkt_type(skb
) = HCI_LPM_WAKE_PKT
;
235 set_bit(STATE_LPM_TRANSACTION
, &intel
->flags
);
237 /* LPM flow is a priority, enqueue packet at list head */
238 skb_queue_head(&intel
->txq
, skb
);
239 hci_uart_tx_wakeup(hu
);
241 intel_wait_lpm_transaction(hu
);
242 /* Even in case of failure, continue and test the suspended flag */
244 clear_bit(STATE_LPM_TRANSACTION
, &intel
->flags
);
246 if (test_bit(STATE_SUSPENDED
, &intel
->flags
)) {
247 bt_dev_err(hu
->hdev
, "Device resume error");
251 bt_dev_dbg(hu
->hdev
, "Resumed");
255 #endif /* CONFIG_PM */
257 static int intel_lpm_host_wake(struct hci_uart
*hu
)
259 static const u8 lpm_resume_ack
[] = { LPM_OP_RESUME_ACK
, 0x00 };
260 struct intel_data
*intel
= hu
->priv
;
263 hci_uart_set_flow_control(hu
, false);
265 clear_bit(STATE_SUSPENDED
, &intel
->flags
);
267 skb
= bt_skb_alloc(sizeof(lpm_resume_ack
), GFP_KERNEL
);
269 bt_dev_err(hu
->hdev
, "Failed to alloc memory for LPM packet");
273 skb_put_data(skb
, lpm_resume_ack
, sizeof(lpm_resume_ack
));
274 hci_skb_pkt_type(skb
) = HCI_LPM_PKT
;
276 /* LPM flow is a priority, enqueue packet at list head */
277 skb_queue_head(&intel
->txq
, skb
);
278 hci_uart_tx_wakeup(hu
);
280 bt_dev_dbg(hu
->hdev
, "Resumed by controller");
285 static irqreturn_t
intel_irq(int irq
, void *dev_id
)
287 struct intel_device
*idev
= dev_id
;
289 dev_info(&idev
->pdev
->dev
, "hci_intel irq\n");
291 mutex_lock(&idev
->hu_lock
);
293 intel_lpm_host_wake(idev
->hu
);
294 mutex_unlock(&idev
->hu_lock
);
296 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
297 pm_runtime_get(&idev
->pdev
->dev
);
298 pm_runtime_mark_last_busy(&idev
->pdev
->dev
);
299 pm_runtime_put_autosuspend(&idev
->pdev
->dev
);
304 static int intel_set_power(struct hci_uart
*hu
, bool powered
)
312 mutex_lock(&intel_device_list_lock
);
314 list_for_each(p
, &intel_device_list
) {
315 struct intel_device
*idev
= list_entry(p
, struct intel_device
,
318 /* tty device and pdev device should share the same parent
319 * which is the UART port.
321 if (hu
->tty
->dev
->parent
!= idev
->pdev
->dev
.parent
)
329 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
330 hu
, dev_name(&idev
->pdev
->dev
), powered
);
332 gpiod_set_value(idev
->reset
, powered
);
334 /* Provide to idev a hu reference which is used to run LPM
335 * transactions (lpm suspend/resume) from PM callbacks.
336 * hu needs to be protected against concurrent removing during
339 mutex_lock(&idev
->hu_lock
);
340 idev
->hu
= powered
? hu
: NULL
;
341 mutex_unlock(&idev
->hu_lock
);
346 if (powered
&& device_can_wakeup(&idev
->pdev
->dev
)) {
347 err
= devm_request_threaded_irq(&idev
->pdev
->dev
,
351 "bt-host-wake", idev
);
353 BT_ERR("hu %p, unable to allocate irq-%d",
358 device_wakeup_enable(&idev
->pdev
->dev
);
360 pm_runtime_set_active(&idev
->pdev
->dev
);
361 pm_runtime_use_autosuspend(&idev
->pdev
->dev
);
362 pm_runtime_set_autosuspend_delay(&idev
->pdev
->dev
,
363 LPM_SUSPEND_DELAY_MS
);
364 pm_runtime_enable(&idev
->pdev
->dev
);
365 } else if (!powered
&& device_may_wakeup(&idev
->pdev
->dev
)) {
366 devm_free_irq(&idev
->pdev
->dev
, idev
->irq
, idev
);
367 device_wakeup_disable(&idev
->pdev
->dev
);
369 pm_runtime_disable(&idev
->pdev
->dev
);
373 mutex_unlock(&intel_device_list_lock
);
378 static void intel_busy_work(struct work_struct
*work
)
381 struct intel_data
*intel
= container_of(work
, struct intel_data
,
384 if (!intel
->hu
->tty
->dev
)
387 /* Link is busy, delay the suspend */
388 mutex_lock(&intel_device_list_lock
);
389 list_for_each(p
, &intel_device_list
) {
390 struct intel_device
*idev
= list_entry(p
, struct intel_device
,
393 if (intel
->hu
->tty
->dev
->parent
== idev
->pdev
->dev
.parent
) {
394 pm_runtime_get(&idev
->pdev
->dev
);
395 pm_runtime_mark_last_busy(&idev
->pdev
->dev
);
396 pm_runtime_put_autosuspend(&idev
->pdev
->dev
);
400 mutex_unlock(&intel_device_list_lock
);
403 static int intel_open(struct hci_uart
*hu
)
405 struct intel_data
*intel
;
409 intel
= kzalloc(sizeof(*intel
), GFP_KERNEL
);
413 skb_queue_head_init(&intel
->txq
);
414 INIT_WORK(&intel
->busy_work
, intel_busy_work
);
420 if (!intel_set_power(hu
, true))
421 set_bit(STATE_BOOTING
, &intel
->flags
);
426 static int intel_close(struct hci_uart
*hu
)
428 struct intel_data
*intel
= hu
->priv
;
432 cancel_work_sync(&intel
->busy_work
);
434 intel_set_power(hu
, false);
436 skb_queue_purge(&intel
->txq
);
437 kfree_skb(intel
->rx_skb
);
444 static int intel_flush(struct hci_uart
*hu
)
446 struct intel_data
*intel
= hu
->priv
;
450 skb_queue_purge(&intel
->txq
);
455 static int inject_cmd_complete(struct hci_dev
*hdev
, __u16 opcode
)
458 struct hci_event_hdr
*hdr
;
459 struct hci_ev_cmd_complete
*evt
;
461 skb
= bt_skb_alloc(sizeof(*hdr
) + sizeof(*evt
) + 1, GFP_ATOMIC
);
465 hdr
= skb_put(skb
, sizeof(*hdr
));
466 hdr
->evt
= HCI_EV_CMD_COMPLETE
;
467 hdr
->plen
= sizeof(*evt
) + 1;
469 evt
= skb_put(skb
, sizeof(*evt
));
471 evt
->opcode
= cpu_to_le16(opcode
);
473 skb_put_u8(skb
, 0x00);
475 hci_skb_pkt_type(skb
) = HCI_EVENT_PKT
;
477 return hci_recv_frame(hdev
, skb
);
480 static int intel_set_baudrate(struct hci_uart
*hu
, unsigned int speed
)
482 struct intel_data
*intel
= hu
->priv
;
483 struct hci_dev
*hdev
= hu
->hdev
;
484 u8 speed_cmd
[] = { 0x06, 0xfc, 0x01, 0x00 };
488 /* This can be the first command sent to the chip, check
489 * that the controller is ready.
491 err
= intel_wait_booting(hu
);
493 clear_bit(STATE_BOOTING
, &intel
->flags
);
495 /* In case of timeout, try to continue anyway */
496 if (err
&& err
!= -ETIMEDOUT
)
499 bt_dev_info(hdev
, "Change controller speed to %d", speed
);
501 speed_cmd
[3] = intel_convert_speed(speed
);
502 if (speed_cmd
[3] == 0xff) {
503 bt_dev_err(hdev
, "Unsupported speed");
507 /* Device will not accept speed change if Intel version has not been
508 * previously requested.
510 skb
= __hci_cmd_sync(hdev
, 0xfc05, 0, NULL
, HCI_CMD_TIMEOUT
);
512 bt_dev_err(hdev
, "Reading Intel version information failed (%ld)",
518 skb
= bt_skb_alloc(sizeof(speed_cmd
), GFP_KERNEL
);
520 bt_dev_err(hdev
, "Failed to alloc memory for baudrate packet");
524 skb_put_data(skb
, speed_cmd
, sizeof(speed_cmd
));
525 hci_skb_pkt_type(skb
) = HCI_COMMAND_PKT
;
527 hci_uart_set_flow_control(hu
, true);
529 skb_queue_tail(&intel
->txq
, skb
);
530 hci_uart_tx_wakeup(hu
);
532 /* wait 100ms to change baudrate on controller side */
535 hci_uart_set_baudrate(hu
, speed
);
536 hci_uart_set_flow_control(hu
, false);
541 static int intel_setup(struct hci_uart
*hu
)
543 static const u8 reset_param
[] = { 0x00, 0x01, 0x00, 0x01,
544 0x00, 0x08, 0x04, 0x00 };
545 struct intel_data
*intel
= hu
->priv
;
546 struct hci_dev
*hdev
= hu
->hdev
;
548 struct intel_version ver
;
549 struct intel_boot_params
*params
;
551 const struct firmware
*fw
;
555 ktime_t calltime
, delta
, rettime
;
556 unsigned long long duration
;
557 unsigned int init_speed
, oper_speed
;
558 int speed_change
= 0;
561 bt_dev_dbg(hdev
, "start intel_setup");
563 hu
->hdev
->set_diag
= btintel_set_diag
;
564 hu
->hdev
->set_bdaddr
= btintel_set_bdaddr
;
566 calltime
= ktime_get();
569 init_speed
= hu
->init_speed
;
571 init_speed
= hu
->proto
->init_speed
;
574 oper_speed
= hu
->oper_speed
;
576 oper_speed
= hu
->proto
->oper_speed
;
578 if (oper_speed
&& init_speed
&& oper_speed
!= init_speed
)
581 /* Check that the controller is ready */
582 err
= intel_wait_booting(hu
);
584 clear_bit(STATE_BOOTING
, &intel
->flags
);
586 /* In case of timeout, try to continue anyway */
587 if (err
&& err
!= -ETIMEDOUT
)
590 set_bit(STATE_BOOTLOADER
, &intel
->flags
);
592 /* Read the Intel version information to determine if the device
593 * is in bootloader mode or if it already has operational firmware
596 err
= btintel_read_version(hdev
, &ver
);
600 /* The hardware platform number has a fixed value of 0x37 and
601 * for now only accept this single value.
603 if (ver
.hw_platform
!= 0x37) {
604 bt_dev_err(hdev
, "Unsupported Intel hardware platform (%u)",
609 /* Check for supported iBT hardware variants of this firmware
612 * This check has been put in place to ensure correct forward
613 * compatibility options when newer hardware variants come along.
615 switch (ver
.hw_variant
) {
621 bt_dev_err(hdev
, "Unsupported Intel hardware variant (%u)",
626 btintel_version_info(hdev
, &ver
);
628 /* The firmware variant determines if the device is in bootloader
629 * mode or is running operational firmware. The value 0x06 identifies
630 * the bootloader and the value 0x23 identifies the operational
633 * When the operational firmware is already present, then only
634 * the check for valid Bluetooth device address is needed. This
635 * determines if the device will be added as configured or
636 * unconfigured controller.
638 * It is not possible to use the Secure Boot Parameters in this
639 * case since that command is only available in bootloader mode.
641 if (ver
.fw_variant
== 0x23) {
642 clear_bit(STATE_BOOTLOADER
, &intel
->flags
);
643 btintel_check_bdaddr(hdev
);
647 /* If the device is not in bootloader mode, then the only possible
648 * choice is to return an error and abort the device initialization.
650 if (ver
.fw_variant
!= 0x06) {
651 bt_dev_err(hdev
, "Unsupported Intel firmware variant (%u)",
656 /* Read the secure boot parameters to identify the operating
657 * details of the bootloader.
659 skb
= __hci_cmd_sync(hdev
, 0xfc0d, 0, NULL
, HCI_CMD_TIMEOUT
);
661 bt_dev_err(hdev
, "Reading Intel boot parameters failed (%ld)",
666 if (skb
->len
!= sizeof(*params
)) {
667 bt_dev_err(hdev
, "Intel boot parameters size mismatch");
672 params
= (struct intel_boot_params
*)skb
->data
;
673 if (params
->status
) {
674 bt_dev_err(hdev
, "Intel boot parameters command failure (%02x)",
676 err
= -bt_to_errno(params
->status
);
681 bt_dev_info(hdev
, "Device revision is %u",
682 le16_to_cpu(params
->dev_revid
));
684 bt_dev_info(hdev
, "Secure boot is %s",
685 params
->secure_boot
? "enabled" : "disabled");
687 bt_dev_info(hdev
, "Minimum firmware build %u week %u %u",
688 params
->min_fw_build_nn
, params
->min_fw_build_cw
,
689 2000 + params
->min_fw_build_yy
);
691 /* It is required that every single firmware fragment is acknowledged
692 * with a command complete event. If the boot parameters indicate
693 * that this bootloader does not send them, then abort the setup.
695 if (params
->limited_cce
!= 0x00) {
696 bt_dev_err(hdev
, "Unsupported Intel firmware loading method (%u)",
697 params
->limited_cce
);
702 /* If the OTP has no valid Bluetooth device address, then there will
703 * also be no valid address for the operational firmware.
705 if (!bacmp(¶ms
->otp_bdaddr
, BDADDR_ANY
)) {
706 bt_dev_info(hdev
, "No device address configured");
707 set_bit(HCI_QUIRK_INVALID_BDADDR
, &hdev
->quirks
);
710 /* With this Intel bootloader only the hardware variant and device
711 * revision information are used to select the right firmware.
713 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
715 * Currently the supported hardware variants are:
716 * 11 (0x0b) for iBT 3.0 (LnP/SfP)
718 snprintf(fwname
, sizeof(fwname
), "intel/ibt-%u-%u.sfi",
719 le16_to_cpu(ver
.hw_variant
),
720 le16_to_cpu(params
->dev_revid
));
722 err
= request_firmware(&fw
, fwname
, &hdev
->dev
);
724 bt_dev_err(hdev
, "Failed to load Intel firmware file (%d)",
730 bt_dev_info(hdev
, "Found device firmware: %s", fwname
);
732 /* Save the DDC file name for later */
733 snprintf(fwname
, sizeof(fwname
), "intel/ibt-%u-%u.ddc",
734 le16_to_cpu(ver
.hw_variant
),
735 le16_to_cpu(params
->dev_revid
));
739 if (fw
->size
< 644) {
740 bt_dev_err(hdev
, "Invalid size of firmware file (%zu)",
746 set_bit(STATE_DOWNLOADING
, &intel
->flags
);
748 /* Start the firmware download transaction with the Init fragment
749 * represented by the 128 bytes of CSS header.
751 err
= btintel_secure_send(hdev
, 0x00, 128, fw
->data
);
753 bt_dev_err(hdev
, "Failed to send firmware header (%d)", err
);
757 /* Send the 256 bytes of public key information from the firmware
758 * as the PKey fragment.
760 err
= btintel_secure_send(hdev
, 0x03, 256, fw
->data
+ 128);
762 bt_dev_err(hdev
, "Failed to send firmware public key (%d)",
767 /* Send the 256 bytes of signature information from the firmware
768 * as the Sign fragment.
770 err
= btintel_secure_send(hdev
, 0x02, 256, fw
->data
+ 388);
772 bt_dev_err(hdev
, "Failed to send firmware signature (%d)",
777 fw_ptr
= fw
->data
+ 644;
780 while (fw_ptr
- fw
->data
< fw
->size
) {
781 struct hci_command_hdr
*cmd
= (void *)(fw_ptr
+ frag_len
);
783 frag_len
+= sizeof(*cmd
) + cmd
->plen
;
785 bt_dev_dbg(hdev
, "Patching %td/%zu", (fw_ptr
- fw
->data
),
788 /* The parameter length of the secure send command requires
789 * a 4 byte alignment. It happens so that the firmware file
790 * contains proper Intel_NOP commands to align the fragments
793 * Send set of commands with 4 byte alignment from the
794 * firmware data buffer as a single Data fragement.
799 /* Send each command from the firmware data buffer as
800 * a single Data fragment.
802 err
= btintel_secure_send(hdev
, 0x01, frag_len
, fw_ptr
);
804 bt_dev_err(hdev
, "Failed to send firmware data (%d)",
813 set_bit(STATE_FIRMWARE_LOADED
, &intel
->flags
);
815 bt_dev_info(hdev
, "Waiting for firmware download to complete");
817 /* Before switching the device into operational mode and with that
818 * booting the loaded firmware, wait for the bootloader notification
819 * that all fragments have been successfully received.
821 * When the event processing receives the notification, then the
822 * STATE_DOWNLOADING flag will be cleared.
824 * The firmware loading should not take longer than 5 seconds
825 * and thus just timeout if that happens and fail the setup
828 err
= wait_on_bit_timeout(&intel
->flags
, STATE_DOWNLOADING
,
830 msecs_to_jiffies(5000));
832 bt_dev_err(hdev
, "Firmware loading interrupted");
838 bt_dev_err(hdev
, "Firmware loading timeout");
843 if (test_bit(STATE_FIRMWARE_FAILED
, &intel
->flags
)) {
844 bt_dev_err(hdev
, "Firmware loading failed");
849 rettime
= ktime_get();
850 delta
= ktime_sub(rettime
, calltime
);
851 duration
= (unsigned long long) ktime_to_ns(delta
) >> 10;
853 bt_dev_info(hdev
, "Firmware loaded in %llu usecs", duration
);
856 release_firmware(fw
);
861 /* We need to restore the default speed before Intel reset */
863 err
= intel_set_baudrate(hu
, init_speed
);
868 calltime
= ktime_get();
870 set_bit(STATE_BOOTING
, &intel
->flags
);
872 skb
= __hci_cmd_sync(hdev
, 0xfc01, sizeof(reset_param
), reset_param
,
879 /* The bootloader will not indicate when the device is ready. This
880 * is done by the operational firmware sending bootup notification.
882 * Booting into operational firmware should not take longer than
883 * 1 second. However if that happens, then just fail the setup
884 * since something went wrong.
886 bt_dev_info(hdev
, "Waiting for device to boot");
888 err
= intel_wait_booting(hu
);
892 clear_bit(STATE_BOOTING
, &intel
->flags
);
894 rettime
= ktime_get();
895 delta
= ktime_sub(rettime
, calltime
);
896 duration
= (unsigned long long) ktime_to_ns(delta
) >> 10;
898 bt_dev_info(hdev
, "Device booted in %llu usecs", duration
);
900 /* Enable LPM if matching pdev with wakeup enabled, set TX active
901 * until further LPM TX notification.
903 mutex_lock(&intel_device_list_lock
);
904 list_for_each(p
, &intel_device_list
) {
905 struct intel_device
*dev
= list_entry(p
, struct intel_device
,
909 if (hu
->tty
->dev
->parent
== dev
->pdev
->dev
.parent
) {
910 if (device_may_wakeup(&dev
->pdev
->dev
)) {
911 set_bit(STATE_LPM_ENABLED
, &intel
->flags
);
912 set_bit(STATE_TX_ACTIVE
, &intel
->flags
);
917 mutex_unlock(&intel_device_list_lock
);
919 /* Ignore errors, device can work without DDC parameters */
920 btintel_load_ddc_config(hdev
, fwname
);
922 skb
= __hci_cmd_sync(hdev
, HCI_OP_RESET
, 0, NULL
, HCI_CMD_TIMEOUT
);
928 err
= intel_set_baudrate(hu
, oper_speed
);
933 bt_dev_info(hdev
, "Setup complete");
935 clear_bit(STATE_BOOTLOADER
, &intel
->flags
);
940 static int intel_recv_event(struct hci_dev
*hdev
, struct sk_buff
*skb
)
942 struct hci_uart
*hu
= hci_get_drvdata(hdev
);
943 struct intel_data
*intel
= hu
->priv
;
944 struct hci_event_hdr
*hdr
;
946 if (!test_bit(STATE_BOOTLOADER
, &intel
->flags
) &&
947 !test_bit(STATE_BOOTING
, &intel
->flags
))
950 hdr
= (void *)skb
->data
;
952 /* When the firmware loading completes the device sends
953 * out a vendor specific event indicating the result of
954 * the firmware loading.
956 if (skb
->len
== 7 && hdr
->evt
== 0xff && hdr
->plen
== 0x05 &&
957 skb
->data
[2] == 0x06) {
958 if (skb
->data
[3] != 0x00)
959 set_bit(STATE_FIRMWARE_FAILED
, &intel
->flags
);
961 if (test_and_clear_bit(STATE_DOWNLOADING
, &intel
->flags
) &&
962 test_bit(STATE_FIRMWARE_LOADED
, &intel
->flags
)) {
963 smp_mb__after_atomic();
964 wake_up_bit(&intel
->flags
, STATE_DOWNLOADING
);
967 /* When switching to the operational firmware the device
968 * sends a vendor specific event indicating that the bootup
971 } else if (skb
->len
== 9 && hdr
->evt
== 0xff && hdr
->plen
== 0x07 &&
972 skb
->data
[2] == 0x02) {
973 if (test_and_clear_bit(STATE_BOOTING
, &intel
->flags
)) {
974 smp_mb__after_atomic();
975 wake_up_bit(&intel
->flags
, STATE_BOOTING
);
979 return hci_recv_frame(hdev
, skb
);
982 static void intel_recv_lpm_notify(struct hci_dev
*hdev
, int value
)
984 struct hci_uart
*hu
= hci_get_drvdata(hdev
);
985 struct intel_data
*intel
= hu
->priv
;
987 bt_dev_dbg(hdev
, "TX idle notification (%d)", value
);
990 set_bit(STATE_TX_ACTIVE
, &intel
->flags
);
991 schedule_work(&intel
->busy_work
);
993 clear_bit(STATE_TX_ACTIVE
, &intel
->flags
);
997 static int intel_recv_lpm(struct hci_dev
*hdev
, struct sk_buff
*skb
)
999 struct hci_lpm_pkt
*lpm
= (void *)skb
->data
;
1000 struct hci_uart
*hu
= hci_get_drvdata(hdev
);
1001 struct intel_data
*intel
= hu
->priv
;
1003 switch (lpm
->opcode
) {
1004 case LPM_OP_TX_NOTIFY
:
1005 if (lpm
->dlen
< 1) {
1006 bt_dev_err(hu
->hdev
, "Invalid LPM notification packet");
1009 intel_recv_lpm_notify(hdev
, lpm
->data
[0]);
1011 case LPM_OP_SUSPEND_ACK
:
1012 set_bit(STATE_SUSPENDED
, &intel
->flags
);
1013 if (test_and_clear_bit(STATE_LPM_TRANSACTION
, &intel
->flags
)) {
1014 smp_mb__after_atomic();
1015 wake_up_bit(&intel
->flags
, STATE_LPM_TRANSACTION
);
1018 case LPM_OP_RESUME_ACK
:
1019 clear_bit(STATE_SUSPENDED
, &intel
->flags
);
1020 if (test_and_clear_bit(STATE_LPM_TRANSACTION
, &intel
->flags
)) {
1021 smp_mb__after_atomic();
1022 wake_up_bit(&intel
->flags
, STATE_LPM_TRANSACTION
);
1026 bt_dev_err(hdev
, "Unknown LPM opcode (%02x)", lpm
->opcode
);
1035 #define INTEL_RECV_LPM \
1036 .type = HCI_LPM_PKT, \
1037 .hlen = HCI_LPM_HDR_SIZE, \
1040 .maxlen = HCI_LPM_MAX_SIZE
1042 static const struct h4_recv_pkt intel_recv_pkts
[] = {
1043 { H4_RECV_ACL
, .recv
= hci_recv_frame
},
1044 { H4_RECV_SCO
, .recv
= hci_recv_frame
},
1045 { H4_RECV_EVENT
, .recv
= intel_recv_event
},
1046 { INTEL_RECV_LPM
, .recv
= intel_recv_lpm
},
1049 static int intel_recv(struct hci_uart
*hu
, const void *data
, int count
)
1051 struct intel_data
*intel
= hu
->priv
;
1053 if (!test_bit(HCI_UART_REGISTERED
, &hu
->flags
))
1056 intel
->rx_skb
= h4_recv_buf(hu
->hdev
, intel
->rx_skb
, data
, count
,
1058 ARRAY_SIZE(intel_recv_pkts
));
1059 if (IS_ERR(intel
->rx_skb
)) {
1060 int err
= PTR_ERR(intel
->rx_skb
);
1061 bt_dev_err(hu
->hdev
, "Frame reassembly failed (%d)", err
);
1062 intel
->rx_skb
= NULL
;
1069 static int intel_enqueue(struct hci_uart
*hu
, struct sk_buff
*skb
)
1071 struct intel_data
*intel
= hu
->priv
;
1072 struct list_head
*p
;
1074 BT_DBG("hu %p skb %p", hu
, skb
);
1079 /* Be sure our controller is resumed and potential LPM transaction
1080 * completed before enqueuing any packet.
1082 mutex_lock(&intel_device_list_lock
);
1083 list_for_each(p
, &intel_device_list
) {
1084 struct intel_device
*idev
= list_entry(p
, struct intel_device
,
1087 if (hu
->tty
->dev
->parent
== idev
->pdev
->dev
.parent
) {
1088 pm_runtime_get_sync(&idev
->pdev
->dev
);
1089 pm_runtime_mark_last_busy(&idev
->pdev
->dev
);
1090 pm_runtime_put_autosuspend(&idev
->pdev
->dev
);
1094 mutex_unlock(&intel_device_list_lock
);
1096 skb_queue_tail(&intel
->txq
, skb
);
1101 static struct sk_buff
*intel_dequeue(struct hci_uart
*hu
)
1103 struct intel_data
*intel
= hu
->priv
;
1104 struct sk_buff
*skb
;
1106 skb
= skb_dequeue(&intel
->txq
);
1110 if (test_bit(STATE_BOOTLOADER
, &intel
->flags
) &&
1111 (hci_skb_pkt_type(skb
) == HCI_COMMAND_PKT
)) {
1112 struct hci_command_hdr
*cmd
= (void *)skb
->data
;
1113 __u16 opcode
= le16_to_cpu(cmd
->opcode
);
1115 /* When the 0xfc01 command is issued to boot into
1116 * the operational firmware, it will actually not
1117 * send a command complete event. To keep the flow
1118 * control working inject that event here.
1120 if (opcode
== 0xfc01)
1121 inject_cmd_complete(hu
->hdev
, opcode
);
1124 /* Prepend skb with frame type */
1125 memcpy(skb_push(skb
, 1), &hci_skb_pkt_type(skb
), 1);
1130 static const struct hci_uart_proto intel_proto
= {
1131 .id
= HCI_UART_INTEL
,
1134 .init_speed
= 115200,
1135 .oper_speed
= 3000000,
1137 .close
= intel_close
,
1138 .flush
= intel_flush
,
1139 .setup
= intel_setup
,
1140 .set_baudrate
= intel_set_baudrate
,
1142 .enqueue
= intel_enqueue
,
1143 .dequeue
= intel_dequeue
,
1147 static const struct acpi_device_id intel_acpi_match
[] = {
1151 MODULE_DEVICE_TABLE(acpi
, intel_acpi_match
);
1155 static int intel_suspend_device(struct device
*dev
)
1157 struct intel_device
*idev
= dev_get_drvdata(dev
);
1159 mutex_lock(&idev
->hu_lock
);
1161 intel_lpm_suspend(idev
->hu
);
1162 mutex_unlock(&idev
->hu_lock
);
1167 static int intel_resume_device(struct device
*dev
)
1169 struct intel_device
*idev
= dev_get_drvdata(dev
);
1171 mutex_lock(&idev
->hu_lock
);
1173 intel_lpm_resume(idev
->hu
);
1174 mutex_unlock(&idev
->hu_lock
);
1180 #ifdef CONFIG_PM_SLEEP
1181 static int intel_suspend(struct device
*dev
)
1183 struct intel_device
*idev
= dev_get_drvdata(dev
);
1185 if (device_may_wakeup(dev
))
1186 enable_irq_wake(idev
->irq
);
1188 return intel_suspend_device(dev
);
1191 static int intel_resume(struct device
*dev
)
1193 struct intel_device
*idev
= dev_get_drvdata(dev
);
1195 if (device_may_wakeup(dev
))
1196 disable_irq_wake(idev
->irq
);
1198 return intel_resume_device(dev
);
1202 static const struct dev_pm_ops intel_pm_ops
= {
1203 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend
, intel_resume
)
1204 SET_RUNTIME_PM_OPS(intel_suspend_device
, intel_resume_device
, NULL
)
1207 static const struct acpi_gpio_params reset_gpios
= { 0, 0, false };
1208 static const struct acpi_gpio_params host_wake_gpios
= { 1, 0, false };
1210 static const struct acpi_gpio_mapping acpi_hci_intel_gpios
[] = {
1211 { "reset-gpios", &reset_gpios
, 1 },
1212 { "host-wake-gpios", &host_wake_gpios
, 1 },
1216 static int intel_probe(struct platform_device
*pdev
)
1218 struct intel_device
*idev
;
1221 idev
= devm_kzalloc(&pdev
->dev
, sizeof(*idev
), GFP_KERNEL
);
1225 mutex_init(&idev
->hu_lock
);
1229 ret
= devm_acpi_dev_add_driver_gpios(&pdev
->dev
, acpi_hci_intel_gpios
);
1231 dev_dbg(&pdev
->dev
, "Unable to add GPIO mapping table\n");
1233 idev
->reset
= devm_gpiod_get(&pdev
->dev
, "reset", GPIOD_OUT_LOW
);
1234 if (IS_ERR(idev
->reset
)) {
1235 dev_err(&pdev
->dev
, "Unable to retrieve gpio\n");
1236 return PTR_ERR(idev
->reset
);
1239 idev
->irq
= platform_get_irq(pdev
, 0);
1240 if (idev
->irq
< 0) {
1241 struct gpio_desc
*host_wake
;
1243 dev_err(&pdev
->dev
, "No IRQ, falling back to gpio-irq\n");
1245 host_wake
= devm_gpiod_get(&pdev
->dev
, "host-wake", GPIOD_IN
);
1246 if (IS_ERR(host_wake
)) {
1247 dev_err(&pdev
->dev
, "Unable to retrieve IRQ\n");
1251 idev
->irq
= gpiod_to_irq(host_wake
);
1252 if (idev
->irq
< 0) {
1253 dev_err(&pdev
->dev
, "No corresponding irq for gpio\n");
1258 /* Only enable wake-up/irq when controller is powered */
1259 device_set_wakeup_capable(&pdev
->dev
, true);
1260 device_wakeup_disable(&pdev
->dev
);
1263 platform_set_drvdata(pdev
, idev
);
1265 /* Place this instance on the device list */
1266 mutex_lock(&intel_device_list_lock
);
1267 list_add_tail(&idev
->list
, &intel_device_list
);
1268 mutex_unlock(&intel_device_list_lock
);
1270 dev_info(&pdev
->dev
, "registered, gpio(%d)/irq(%d).\n",
1271 desc_to_gpio(idev
->reset
), idev
->irq
);
1276 static int intel_remove(struct platform_device
*pdev
)
1278 struct intel_device
*idev
= platform_get_drvdata(pdev
);
1280 device_wakeup_disable(&pdev
->dev
);
1282 mutex_lock(&intel_device_list_lock
);
1283 list_del(&idev
->list
);
1284 mutex_unlock(&intel_device_list_lock
);
1286 dev_info(&pdev
->dev
, "unregistered.\n");
1291 static struct platform_driver intel_driver
= {
1292 .probe
= intel_probe
,
1293 .remove
= intel_remove
,
1295 .name
= "hci_intel",
1296 .acpi_match_table
= ACPI_PTR(intel_acpi_match
),
1297 .pm
= &intel_pm_ops
,
1301 int __init
intel_init(void)
1303 platform_driver_register(&intel_driver
);
1305 return hci_uart_register_proto(&intel_proto
);
1308 int __exit
intel_deinit(void)
1310 platform_driver_unregister(&intel_driver
);
1312 return hci_uart_unregister_proto(&intel_proto
);