x86/speculation/mds: Fix documentation typo
[linux/fpc-iii.git] / drivers / bluetooth / hci_intel.c
blobaad07e40ea4fda37d39915892f53365702f72ca8
1 /*
3 * Bluetooth HCI UART driver for Intel devices
5 * Copyright (C) 2015 Intel Corporation
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
40 #include "hci_uart.h"
41 #include "btintel.h"
43 #define STATE_BOOTLOADER 0
44 #define STATE_DOWNLOADING 1
45 #define STATE_FIRMWARE_LOADED 2
46 #define STATE_FIRMWARE_FAILED 3
47 #define STATE_BOOTING 4
48 #define STATE_LPM_ENABLED 5
49 #define STATE_TX_ACTIVE 6
50 #define STATE_SUSPENDED 7
51 #define STATE_LPM_TRANSACTION 8
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
62 #define LPM_SUSPEND_DELAY_MS 1000
64 struct hci_lpm_pkt {
65 __u8 opcode;
66 __u8 dlen;
67 __u8 data[0];
68 } __packed;
70 struct intel_device {
71 struct list_head list;
72 struct platform_device *pdev;
73 struct gpio_desc *reset;
74 struct hci_uart *hu;
75 struct mutex hu_lock;
76 int irq;
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
82 struct intel_data {
83 struct sk_buff *rx_skb;
84 struct sk_buff_head txq;
85 struct work_struct busy_work;
86 struct hci_uart *hu;
87 unsigned long flags;
90 static u8 intel_convert_speed(unsigned int speed)
92 switch (speed) {
93 case 9600:
94 return 0x00;
95 case 19200:
96 return 0x01;
97 case 38400:
98 return 0x02;
99 case 57600:
100 return 0x03;
101 case 115200:
102 return 0x04;
103 case 230400:
104 return 0x05;
105 case 460800:
106 return 0x06;
107 case 921600:
108 return 0x07;
109 case 1843200:
110 return 0x08;
111 case 3250000:
112 return 0x09;
113 case 2000000:
114 return 0x0a;
115 case 3000000:
116 return 0x0b;
117 default:
118 return 0xff;
122 static int intel_wait_booting(struct hci_uart *hu)
124 struct intel_data *intel = hu->priv;
125 int err;
127 err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128 TASK_INTERRUPTIBLE,
129 msecs_to_jiffies(1000));
131 if (err == -EINTR) {
132 bt_dev_err(hu->hdev, "Device boot interrupted");
133 return -EINTR;
136 if (err) {
137 bt_dev_err(hu->hdev, "Device boot timeout");
138 return -ETIMEDOUT;
141 return err;
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
147 struct intel_data *intel = hu->priv;
148 int err;
150 err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151 TASK_INTERRUPTIBLE,
152 msecs_to_jiffies(1000));
154 if (err == -EINTR) {
155 bt_dev_err(hu->hdev, "LPM transaction interrupted");
156 return -EINTR;
159 if (err) {
160 bt_dev_err(hu->hdev, "LPM transaction timeout");
161 return -ETIMEDOUT;
164 return err;
167 static int intel_lpm_suspend(struct hci_uart *hu)
169 static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170 struct intel_data *intel = hu->priv;
171 struct sk_buff *skb;
173 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174 test_bit(STATE_SUSPENDED, &intel->flags))
175 return 0;
177 if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178 return -EAGAIN;
180 bt_dev_dbg(hu->hdev, "Suspending");
182 skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183 if (!skb) {
184 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185 return -ENOMEM;
188 skb_put_data(skb, suspend, sizeof(suspend));
189 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
191 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
193 /* LPM flow is a priority, enqueue packet at list head */
194 skb_queue_head(&intel->txq, skb);
195 hci_uart_tx_wakeup(hu);
197 intel_wait_lpm_transaction(hu);
198 /* Even in case of failure, continue and test the suspended flag */
200 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
202 if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203 bt_dev_err(hu->hdev, "Device suspend error");
204 return -EINVAL;
207 bt_dev_dbg(hu->hdev, "Suspended");
209 hci_uart_set_flow_control(hu, true);
211 return 0;
214 static int intel_lpm_resume(struct hci_uart *hu)
216 struct intel_data *intel = hu->priv;
217 struct sk_buff *skb;
219 if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220 !test_bit(STATE_SUSPENDED, &intel->flags))
221 return 0;
223 bt_dev_dbg(hu->hdev, "Resuming");
225 hci_uart_set_flow_control(hu, false);
227 skb = bt_skb_alloc(0, GFP_KERNEL);
228 if (!skb) {
229 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230 return -ENOMEM;
233 hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
235 set_bit(STATE_LPM_TRANSACTION, &intel->flags);
237 /* LPM flow is a priority, enqueue packet at list head */
238 skb_queue_head(&intel->txq, skb);
239 hci_uart_tx_wakeup(hu);
241 intel_wait_lpm_transaction(hu);
242 /* Even in case of failure, continue and test the suspended flag */
244 clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
246 if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247 bt_dev_err(hu->hdev, "Device resume error");
248 return -EINVAL;
251 bt_dev_dbg(hu->hdev, "Resumed");
253 return 0;
255 #endif /* CONFIG_PM */
257 static int intel_lpm_host_wake(struct hci_uart *hu)
259 static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260 struct intel_data *intel = hu->priv;
261 struct sk_buff *skb;
263 hci_uart_set_flow_control(hu, false);
265 clear_bit(STATE_SUSPENDED, &intel->flags);
267 skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268 if (!skb) {
269 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270 return -ENOMEM;
273 skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
274 hci_skb_pkt_type(skb) = HCI_LPM_PKT;
276 /* LPM flow is a priority, enqueue packet at list head */
277 skb_queue_head(&intel->txq, skb);
278 hci_uart_tx_wakeup(hu);
280 bt_dev_dbg(hu->hdev, "Resumed by controller");
282 return 0;
285 static irqreturn_t intel_irq(int irq, void *dev_id)
287 struct intel_device *idev = dev_id;
289 dev_info(&idev->pdev->dev, "hci_intel irq\n");
291 mutex_lock(&idev->hu_lock);
292 if (idev->hu)
293 intel_lpm_host_wake(idev->hu);
294 mutex_unlock(&idev->hu_lock);
296 /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
297 pm_runtime_get(&idev->pdev->dev);
298 pm_runtime_mark_last_busy(&idev->pdev->dev);
299 pm_runtime_put_autosuspend(&idev->pdev->dev);
301 return IRQ_HANDLED;
304 static int intel_set_power(struct hci_uart *hu, bool powered)
306 struct list_head *p;
307 int err = -ENODEV;
309 if (!hu->tty->dev)
310 return err;
312 mutex_lock(&intel_device_list_lock);
314 list_for_each(p, &intel_device_list) {
315 struct intel_device *idev = list_entry(p, struct intel_device,
316 list);
318 /* tty device and pdev device should share the same parent
319 * which is the UART port.
321 if (hu->tty->dev->parent != idev->pdev->dev.parent)
322 continue;
324 if (!idev->reset) {
325 err = -ENOTSUPP;
326 break;
329 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
330 hu, dev_name(&idev->pdev->dev), powered);
332 gpiod_set_value(idev->reset, powered);
334 /* Provide to idev a hu reference which is used to run LPM
335 * transactions (lpm suspend/resume) from PM callbacks.
336 * hu needs to be protected against concurrent removing during
337 * these PM ops.
339 mutex_lock(&idev->hu_lock);
340 idev->hu = powered ? hu : NULL;
341 mutex_unlock(&idev->hu_lock);
343 if (idev->irq < 0)
344 break;
346 if (powered && device_can_wakeup(&idev->pdev->dev)) {
347 err = devm_request_threaded_irq(&idev->pdev->dev,
348 idev->irq, NULL,
349 intel_irq,
350 IRQF_ONESHOT,
351 "bt-host-wake", idev);
352 if (err) {
353 BT_ERR("hu %p, unable to allocate irq-%d",
354 hu, idev->irq);
355 break;
358 device_wakeup_enable(&idev->pdev->dev);
360 pm_runtime_set_active(&idev->pdev->dev);
361 pm_runtime_use_autosuspend(&idev->pdev->dev);
362 pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
363 LPM_SUSPEND_DELAY_MS);
364 pm_runtime_enable(&idev->pdev->dev);
365 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
366 devm_free_irq(&idev->pdev->dev, idev->irq, idev);
367 device_wakeup_disable(&idev->pdev->dev);
369 pm_runtime_disable(&idev->pdev->dev);
373 mutex_unlock(&intel_device_list_lock);
375 return err;
378 static void intel_busy_work(struct work_struct *work)
380 struct list_head *p;
381 struct intel_data *intel = container_of(work, struct intel_data,
382 busy_work);
384 if (!intel->hu->tty->dev)
385 return;
387 /* Link is busy, delay the suspend */
388 mutex_lock(&intel_device_list_lock);
389 list_for_each(p, &intel_device_list) {
390 struct intel_device *idev = list_entry(p, struct intel_device,
391 list);
393 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
394 pm_runtime_get(&idev->pdev->dev);
395 pm_runtime_mark_last_busy(&idev->pdev->dev);
396 pm_runtime_put_autosuspend(&idev->pdev->dev);
397 break;
400 mutex_unlock(&intel_device_list_lock);
403 static int intel_open(struct hci_uart *hu)
405 struct intel_data *intel;
407 BT_DBG("hu %p", hu);
409 intel = kzalloc(sizeof(*intel), GFP_KERNEL);
410 if (!intel)
411 return -ENOMEM;
413 skb_queue_head_init(&intel->txq);
414 INIT_WORK(&intel->busy_work, intel_busy_work);
416 intel->hu = hu;
418 hu->priv = intel;
420 if (!intel_set_power(hu, true))
421 set_bit(STATE_BOOTING, &intel->flags);
423 return 0;
426 static int intel_close(struct hci_uart *hu)
428 struct intel_data *intel = hu->priv;
430 BT_DBG("hu %p", hu);
432 cancel_work_sync(&intel->busy_work);
434 intel_set_power(hu, false);
436 skb_queue_purge(&intel->txq);
437 kfree_skb(intel->rx_skb);
438 kfree(intel);
440 hu->priv = NULL;
441 return 0;
444 static int intel_flush(struct hci_uart *hu)
446 struct intel_data *intel = hu->priv;
448 BT_DBG("hu %p", hu);
450 skb_queue_purge(&intel->txq);
452 return 0;
455 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
457 struct sk_buff *skb;
458 struct hci_event_hdr *hdr;
459 struct hci_ev_cmd_complete *evt;
461 skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
462 if (!skb)
463 return -ENOMEM;
465 hdr = skb_put(skb, sizeof(*hdr));
466 hdr->evt = HCI_EV_CMD_COMPLETE;
467 hdr->plen = sizeof(*evt) + 1;
469 evt = skb_put(skb, sizeof(*evt));
470 evt->ncmd = 0x01;
471 evt->opcode = cpu_to_le16(opcode);
473 skb_put_u8(skb, 0x00);
475 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
477 return hci_recv_frame(hdev, skb);
480 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
482 struct intel_data *intel = hu->priv;
483 struct hci_dev *hdev = hu->hdev;
484 u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
485 struct sk_buff *skb;
486 int err;
488 /* This can be the first command sent to the chip, check
489 * that the controller is ready.
491 err = intel_wait_booting(hu);
493 clear_bit(STATE_BOOTING, &intel->flags);
495 /* In case of timeout, try to continue anyway */
496 if (err && err != -ETIMEDOUT)
497 return err;
499 bt_dev_info(hdev, "Change controller speed to %d", speed);
501 speed_cmd[3] = intel_convert_speed(speed);
502 if (speed_cmd[3] == 0xff) {
503 bt_dev_err(hdev, "Unsupported speed");
504 return -EINVAL;
507 /* Device will not accept speed change if Intel version has not been
508 * previously requested.
510 skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
511 if (IS_ERR(skb)) {
512 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
513 PTR_ERR(skb));
514 return PTR_ERR(skb);
516 kfree_skb(skb);
518 skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
519 if (!skb) {
520 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
521 return -ENOMEM;
524 skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
525 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
527 hci_uart_set_flow_control(hu, true);
529 skb_queue_tail(&intel->txq, skb);
530 hci_uart_tx_wakeup(hu);
532 /* wait 100ms to change baudrate on controller side */
533 msleep(100);
535 hci_uart_set_baudrate(hu, speed);
536 hci_uart_set_flow_control(hu, false);
538 return 0;
541 static int intel_setup(struct hci_uart *hu)
543 static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
544 0x00, 0x08, 0x04, 0x00 };
545 struct intel_data *intel = hu->priv;
546 struct hci_dev *hdev = hu->hdev;
547 struct sk_buff *skb;
548 struct intel_version ver;
549 struct intel_boot_params *params;
550 struct list_head *p;
551 const struct firmware *fw;
552 const u8 *fw_ptr;
553 char fwname[64];
554 u32 frag_len;
555 ktime_t calltime, delta, rettime;
556 unsigned long long duration;
557 unsigned int init_speed, oper_speed;
558 int speed_change = 0;
559 int err;
561 bt_dev_dbg(hdev, "start intel_setup");
563 hu->hdev->set_diag = btintel_set_diag;
564 hu->hdev->set_bdaddr = btintel_set_bdaddr;
566 calltime = ktime_get();
568 if (hu->init_speed)
569 init_speed = hu->init_speed;
570 else
571 init_speed = hu->proto->init_speed;
573 if (hu->oper_speed)
574 oper_speed = hu->oper_speed;
575 else
576 oper_speed = hu->proto->oper_speed;
578 if (oper_speed && init_speed && oper_speed != init_speed)
579 speed_change = 1;
581 /* Check that the controller is ready */
582 err = intel_wait_booting(hu);
584 clear_bit(STATE_BOOTING, &intel->flags);
586 /* In case of timeout, try to continue anyway */
587 if (err && err != -ETIMEDOUT)
588 return err;
590 set_bit(STATE_BOOTLOADER, &intel->flags);
592 /* Read the Intel version information to determine if the device
593 * is in bootloader mode or if it already has operational firmware
594 * loaded.
596 err = btintel_read_version(hdev, &ver);
597 if (err)
598 return err;
600 /* The hardware platform number has a fixed value of 0x37 and
601 * for now only accept this single value.
603 if (ver.hw_platform != 0x37) {
604 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
605 ver.hw_platform);
606 return -EINVAL;
609 /* Check for supported iBT hardware variants of this firmware
610 * loading method.
612 * This check has been put in place to ensure correct forward
613 * compatibility options when newer hardware variants come along.
615 switch (ver.hw_variant) {
616 case 0x0b: /* LnP */
617 case 0x0c: /* WsP */
618 case 0x12: /* ThP */
619 break;
620 default:
621 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
622 ver.hw_variant);
623 return -EINVAL;
626 btintel_version_info(hdev, &ver);
628 /* The firmware variant determines if the device is in bootloader
629 * mode or is running operational firmware. The value 0x06 identifies
630 * the bootloader and the value 0x23 identifies the operational
631 * firmware.
633 * When the operational firmware is already present, then only
634 * the check for valid Bluetooth device address is needed. This
635 * determines if the device will be added as configured or
636 * unconfigured controller.
638 * It is not possible to use the Secure Boot Parameters in this
639 * case since that command is only available in bootloader mode.
641 if (ver.fw_variant == 0x23) {
642 clear_bit(STATE_BOOTLOADER, &intel->flags);
643 btintel_check_bdaddr(hdev);
644 return 0;
647 /* If the device is not in bootloader mode, then the only possible
648 * choice is to return an error and abort the device initialization.
650 if (ver.fw_variant != 0x06) {
651 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
652 ver.fw_variant);
653 return -ENODEV;
656 /* Read the secure boot parameters to identify the operating
657 * details of the bootloader.
659 skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
660 if (IS_ERR(skb)) {
661 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
662 PTR_ERR(skb));
663 return PTR_ERR(skb);
666 if (skb->len != sizeof(*params)) {
667 bt_dev_err(hdev, "Intel boot parameters size mismatch");
668 kfree_skb(skb);
669 return -EILSEQ;
672 params = (struct intel_boot_params *)skb->data;
673 if (params->status) {
674 bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
675 params->status);
676 err = -bt_to_errno(params->status);
677 kfree_skb(skb);
678 return err;
681 bt_dev_info(hdev, "Device revision is %u",
682 le16_to_cpu(params->dev_revid));
684 bt_dev_info(hdev, "Secure boot is %s",
685 params->secure_boot ? "enabled" : "disabled");
687 bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
688 params->min_fw_build_nn, params->min_fw_build_cw,
689 2000 + params->min_fw_build_yy);
691 /* It is required that every single firmware fragment is acknowledged
692 * with a command complete event. If the boot parameters indicate
693 * that this bootloader does not send them, then abort the setup.
695 if (params->limited_cce != 0x00) {
696 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
697 params->limited_cce);
698 kfree_skb(skb);
699 return -EINVAL;
702 /* If the OTP has no valid Bluetooth device address, then there will
703 * also be no valid address for the operational firmware.
705 if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
706 bt_dev_info(hdev, "No device address configured");
707 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
710 /* With this Intel bootloader only the hardware variant and device
711 * revision information are used to select the right firmware.
713 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
715 * Currently the supported hardware variants are:
716 * 11 (0x0b) for iBT 3.0 (LnP/SfP)
718 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
719 le16_to_cpu(ver.hw_variant),
720 le16_to_cpu(params->dev_revid));
722 err = request_firmware(&fw, fwname, &hdev->dev);
723 if (err < 0) {
724 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
725 err);
726 kfree_skb(skb);
727 return err;
730 bt_dev_info(hdev, "Found device firmware: %s", fwname);
732 /* Save the DDC file name for later */
733 snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
734 le16_to_cpu(ver.hw_variant),
735 le16_to_cpu(params->dev_revid));
737 kfree_skb(skb);
739 if (fw->size < 644) {
740 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
741 fw->size);
742 err = -EBADF;
743 goto done;
746 set_bit(STATE_DOWNLOADING, &intel->flags);
748 /* Start the firmware download transaction with the Init fragment
749 * represented by the 128 bytes of CSS header.
751 err = btintel_secure_send(hdev, 0x00, 128, fw->data);
752 if (err < 0) {
753 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
754 goto done;
757 /* Send the 256 bytes of public key information from the firmware
758 * as the PKey fragment.
760 err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
761 if (err < 0) {
762 bt_dev_err(hdev, "Failed to send firmware public key (%d)",
763 err);
764 goto done;
767 /* Send the 256 bytes of signature information from the firmware
768 * as the Sign fragment.
770 err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
771 if (err < 0) {
772 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
773 err);
774 goto done;
777 fw_ptr = fw->data + 644;
778 frag_len = 0;
780 while (fw_ptr - fw->data < fw->size) {
781 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
783 frag_len += sizeof(*cmd) + cmd->plen;
785 bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
786 fw->size);
788 /* The parameter length of the secure send command requires
789 * a 4 byte alignment. It happens so that the firmware file
790 * contains proper Intel_NOP commands to align the fragments
791 * as needed.
793 * Send set of commands with 4 byte alignment from the
794 * firmware data buffer as a single Data fragement.
796 if (frag_len % 4)
797 continue;
799 /* Send each command from the firmware data buffer as
800 * a single Data fragment.
802 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
803 if (err < 0) {
804 bt_dev_err(hdev, "Failed to send firmware data (%d)",
805 err);
806 goto done;
809 fw_ptr += frag_len;
810 frag_len = 0;
813 set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
815 bt_dev_info(hdev, "Waiting for firmware download to complete");
817 /* Before switching the device into operational mode and with that
818 * booting the loaded firmware, wait for the bootloader notification
819 * that all fragments have been successfully received.
821 * When the event processing receives the notification, then the
822 * STATE_DOWNLOADING flag will be cleared.
824 * The firmware loading should not take longer than 5 seconds
825 * and thus just timeout if that happens and fail the setup
826 * of this device.
828 err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
829 TASK_INTERRUPTIBLE,
830 msecs_to_jiffies(5000));
831 if (err == -EINTR) {
832 bt_dev_err(hdev, "Firmware loading interrupted");
833 err = -EINTR;
834 goto done;
837 if (err) {
838 bt_dev_err(hdev, "Firmware loading timeout");
839 err = -ETIMEDOUT;
840 goto done;
843 if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
844 bt_dev_err(hdev, "Firmware loading failed");
845 err = -ENOEXEC;
846 goto done;
849 rettime = ktime_get();
850 delta = ktime_sub(rettime, calltime);
851 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
853 bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
855 done:
856 release_firmware(fw);
858 if (err < 0)
859 return err;
861 /* We need to restore the default speed before Intel reset */
862 if (speed_change) {
863 err = intel_set_baudrate(hu, init_speed);
864 if (err)
865 return err;
868 calltime = ktime_get();
870 set_bit(STATE_BOOTING, &intel->flags);
872 skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
873 HCI_CMD_TIMEOUT);
874 if (IS_ERR(skb))
875 return PTR_ERR(skb);
877 kfree_skb(skb);
879 /* The bootloader will not indicate when the device is ready. This
880 * is done by the operational firmware sending bootup notification.
882 * Booting into operational firmware should not take longer than
883 * 1 second. However if that happens, then just fail the setup
884 * since something went wrong.
886 bt_dev_info(hdev, "Waiting for device to boot");
888 err = intel_wait_booting(hu);
889 if (err)
890 return err;
892 clear_bit(STATE_BOOTING, &intel->flags);
894 rettime = ktime_get();
895 delta = ktime_sub(rettime, calltime);
896 duration = (unsigned long long) ktime_to_ns(delta) >> 10;
898 bt_dev_info(hdev, "Device booted in %llu usecs", duration);
900 /* Enable LPM if matching pdev with wakeup enabled, set TX active
901 * until further LPM TX notification.
903 mutex_lock(&intel_device_list_lock);
904 list_for_each(p, &intel_device_list) {
905 struct intel_device *dev = list_entry(p, struct intel_device,
906 list);
907 if (!hu->tty->dev)
908 break;
909 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
910 if (device_may_wakeup(&dev->pdev->dev)) {
911 set_bit(STATE_LPM_ENABLED, &intel->flags);
912 set_bit(STATE_TX_ACTIVE, &intel->flags);
914 break;
917 mutex_unlock(&intel_device_list_lock);
919 /* Ignore errors, device can work without DDC parameters */
920 btintel_load_ddc_config(hdev, fwname);
922 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
923 if (IS_ERR(skb))
924 return PTR_ERR(skb);
925 kfree_skb(skb);
927 if (speed_change) {
928 err = intel_set_baudrate(hu, oper_speed);
929 if (err)
930 return err;
933 bt_dev_info(hdev, "Setup complete");
935 clear_bit(STATE_BOOTLOADER, &intel->flags);
937 return 0;
940 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
942 struct hci_uart *hu = hci_get_drvdata(hdev);
943 struct intel_data *intel = hu->priv;
944 struct hci_event_hdr *hdr;
946 if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
947 !test_bit(STATE_BOOTING, &intel->flags))
948 goto recv;
950 hdr = (void *)skb->data;
952 /* When the firmware loading completes the device sends
953 * out a vendor specific event indicating the result of
954 * the firmware loading.
956 if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
957 skb->data[2] == 0x06) {
958 if (skb->data[3] != 0x00)
959 set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
961 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
962 test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
963 smp_mb__after_atomic();
964 wake_up_bit(&intel->flags, STATE_DOWNLOADING);
967 /* When switching to the operational firmware the device
968 * sends a vendor specific event indicating that the bootup
969 * completed.
971 } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
972 skb->data[2] == 0x02) {
973 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
974 smp_mb__after_atomic();
975 wake_up_bit(&intel->flags, STATE_BOOTING);
978 recv:
979 return hci_recv_frame(hdev, skb);
982 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
984 struct hci_uart *hu = hci_get_drvdata(hdev);
985 struct intel_data *intel = hu->priv;
987 bt_dev_dbg(hdev, "TX idle notification (%d)", value);
989 if (value) {
990 set_bit(STATE_TX_ACTIVE, &intel->flags);
991 schedule_work(&intel->busy_work);
992 } else {
993 clear_bit(STATE_TX_ACTIVE, &intel->flags);
997 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
999 struct hci_lpm_pkt *lpm = (void *)skb->data;
1000 struct hci_uart *hu = hci_get_drvdata(hdev);
1001 struct intel_data *intel = hu->priv;
1003 switch (lpm->opcode) {
1004 case LPM_OP_TX_NOTIFY:
1005 if (lpm->dlen < 1) {
1006 bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1007 break;
1009 intel_recv_lpm_notify(hdev, lpm->data[0]);
1010 break;
1011 case LPM_OP_SUSPEND_ACK:
1012 set_bit(STATE_SUSPENDED, &intel->flags);
1013 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1014 smp_mb__after_atomic();
1015 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1017 break;
1018 case LPM_OP_RESUME_ACK:
1019 clear_bit(STATE_SUSPENDED, &intel->flags);
1020 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1021 smp_mb__after_atomic();
1022 wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1024 break;
1025 default:
1026 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1027 break;
1030 kfree_skb(skb);
1032 return 0;
1035 #define INTEL_RECV_LPM \
1036 .type = HCI_LPM_PKT, \
1037 .hlen = HCI_LPM_HDR_SIZE, \
1038 .loff = 1, \
1039 .lsize = 1, \
1040 .maxlen = HCI_LPM_MAX_SIZE
1042 static const struct h4_recv_pkt intel_recv_pkts[] = {
1043 { H4_RECV_ACL, .recv = hci_recv_frame },
1044 { H4_RECV_SCO, .recv = hci_recv_frame },
1045 { H4_RECV_EVENT, .recv = intel_recv_event },
1046 { INTEL_RECV_LPM, .recv = intel_recv_lpm },
1049 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1051 struct intel_data *intel = hu->priv;
1053 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1054 return -EUNATCH;
1056 intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1057 intel_recv_pkts,
1058 ARRAY_SIZE(intel_recv_pkts));
1059 if (IS_ERR(intel->rx_skb)) {
1060 int err = PTR_ERR(intel->rx_skb);
1061 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1062 intel->rx_skb = NULL;
1063 return err;
1066 return count;
1069 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1071 struct intel_data *intel = hu->priv;
1072 struct list_head *p;
1074 BT_DBG("hu %p skb %p", hu, skb);
1076 if (!hu->tty->dev)
1077 goto out_enqueue;
1079 /* Be sure our controller is resumed and potential LPM transaction
1080 * completed before enqueuing any packet.
1082 mutex_lock(&intel_device_list_lock);
1083 list_for_each(p, &intel_device_list) {
1084 struct intel_device *idev = list_entry(p, struct intel_device,
1085 list);
1087 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1088 pm_runtime_get_sync(&idev->pdev->dev);
1089 pm_runtime_mark_last_busy(&idev->pdev->dev);
1090 pm_runtime_put_autosuspend(&idev->pdev->dev);
1091 break;
1094 mutex_unlock(&intel_device_list_lock);
1095 out_enqueue:
1096 skb_queue_tail(&intel->txq, skb);
1098 return 0;
1101 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1103 struct intel_data *intel = hu->priv;
1104 struct sk_buff *skb;
1106 skb = skb_dequeue(&intel->txq);
1107 if (!skb)
1108 return skb;
1110 if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1111 (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1112 struct hci_command_hdr *cmd = (void *)skb->data;
1113 __u16 opcode = le16_to_cpu(cmd->opcode);
1115 /* When the 0xfc01 command is issued to boot into
1116 * the operational firmware, it will actually not
1117 * send a command complete event. To keep the flow
1118 * control working inject that event here.
1120 if (opcode == 0xfc01)
1121 inject_cmd_complete(hu->hdev, opcode);
1124 /* Prepend skb with frame type */
1125 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1127 return skb;
1130 static const struct hci_uart_proto intel_proto = {
1131 .id = HCI_UART_INTEL,
1132 .name = "Intel",
1133 .manufacturer = 2,
1134 .init_speed = 115200,
1135 .oper_speed = 3000000,
1136 .open = intel_open,
1137 .close = intel_close,
1138 .flush = intel_flush,
1139 .setup = intel_setup,
1140 .set_baudrate = intel_set_baudrate,
1141 .recv = intel_recv,
1142 .enqueue = intel_enqueue,
1143 .dequeue = intel_dequeue,
1146 #ifdef CONFIG_ACPI
1147 static const struct acpi_device_id intel_acpi_match[] = {
1148 { "INT33E1", 0 },
1149 { },
1151 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1152 #endif
1154 #ifdef CONFIG_PM
1155 static int intel_suspend_device(struct device *dev)
1157 struct intel_device *idev = dev_get_drvdata(dev);
1159 mutex_lock(&idev->hu_lock);
1160 if (idev->hu)
1161 intel_lpm_suspend(idev->hu);
1162 mutex_unlock(&idev->hu_lock);
1164 return 0;
1167 static int intel_resume_device(struct device *dev)
1169 struct intel_device *idev = dev_get_drvdata(dev);
1171 mutex_lock(&idev->hu_lock);
1172 if (idev->hu)
1173 intel_lpm_resume(idev->hu);
1174 mutex_unlock(&idev->hu_lock);
1176 return 0;
1178 #endif
1180 #ifdef CONFIG_PM_SLEEP
1181 static int intel_suspend(struct device *dev)
1183 struct intel_device *idev = dev_get_drvdata(dev);
1185 if (device_may_wakeup(dev))
1186 enable_irq_wake(idev->irq);
1188 return intel_suspend_device(dev);
1191 static int intel_resume(struct device *dev)
1193 struct intel_device *idev = dev_get_drvdata(dev);
1195 if (device_may_wakeup(dev))
1196 disable_irq_wake(idev->irq);
1198 return intel_resume_device(dev);
1200 #endif
1202 static const struct dev_pm_ops intel_pm_ops = {
1203 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1204 SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1207 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1208 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1210 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1211 { "reset-gpios", &reset_gpios, 1 },
1212 { "host-wake-gpios", &host_wake_gpios, 1 },
1213 { },
1216 static int intel_probe(struct platform_device *pdev)
1218 struct intel_device *idev;
1219 int ret;
1221 idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1222 if (!idev)
1223 return -ENOMEM;
1225 mutex_init(&idev->hu_lock);
1227 idev->pdev = pdev;
1229 ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1230 if (ret)
1231 dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1233 idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1234 if (IS_ERR(idev->reset)) {
1235 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1236 return PTR_ERR(idev->reset);
1239 idev->irq = platform_get_irq(pdev, 0);
1240 if (idev->irq < 0) {
1241 struct gpio_desc *host_wake;
1243 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1245 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1246 if (IS_ERR(host_wake)) {
1247 dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1248 goto no_irq;
1251 idev->irq = gpiod_to_irq(host_wake);
1252 if (idev->irq < 0) {
1253 dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1254 goto no_irq;
1258 /* Only enable wake-up/irq when controller is powered */
1259 device_set_wakeup_capable(&pdev->dev, true);
1260 device_wakeup_disable(&pdev->dev);
1262 no_irq:
1263 platform_set_drvdata(pdev, idev);
1265 /* Place this instance on the device list */
1266 mutex_lock(&intel_device_list_lock);
1267 list_add_tail(&idev->list, &intel_device_list);
1268 mutex_unlock(&intel_device_list_lock);
1270 dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1271 desc_to_gpio(idev->reset), idev->irq);
1273 return 0;
1276 static int intel_remove(struct platform_device *pdev)
1278 struct intel_device *idev = platform_get_drvdata(pdev);
1280 device_wakeup_disable(&pdev->dev);
1282 mutex_lock(&intel_device_list_lock);
1283 list_del(&idev->list);
1284 mutex_unlock(&intel_device_list_lock);
1286 dev_info(&pdev->dev, "unregistered.\n");
1288 return 0;
1291 static struct platform_driver intel_driver = {
1292 .probe = intel_probe,
1293 .remove = intel_remove,
1294 .driver = {
1295 .name = "hci_intel",
1296 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1297 .pm = &intel_pm_ops,
1301 int __init intel_init(void)
1303 platform_driver_register(&intel_driver);
1305 return hci_uart_register_proto(&intel_proto);
1308 int __exit intel_deinit(void)
1310 platform_driver_unregister(&intel_driver);
1312 return hci_uart_unregister_proto(&intel_proto);